[go: up one dir, main page]

CN104764451A - Target posture tracking method based on inertia and geomagnetic sensor - Google Patents

Target posture tracking method based on inertia and geomagnetic sensor Download PDF

Info

Publication number
CN104764451A
CN104764451A CN201510196626.9A CN201510196626A CN104764451A CN 104764451 A CN104764451 A CN 104764451A CN 201510196626 A CN201510196626 A CN 201510196626A CN 104764451 A CN104764451 A CN 104764451A
Authority
CN
China
Prior art keywords
target
mag
tracking
attitude
kalman filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510196626.9A
Other languages
Chinese (zh)
Inventor
刘越
贺长宇
闫达远
常军
翁冬冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201510196626.9A priority Critical patent/CN104764451A/en
Publication of CN104764451A publication Critical patent/CN104764451A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Gyroscopes (AREA)

Abstract

The invention discloses a target posture tracking method based on inertia and a geomagnetic sensor. According to the target posture tracking method, posture tracking can be realized without any reference marker and a specific tracking environment, and the method is simple and feasible; a gyroscope, an accelerometer and the geomagnetic sensor are used for respectively acquiring components of angular speeds, accelerated speeds and magnetic intensity data corresponding to a current posture of a target in three sensitive axes; a posture tracking result of the gyroscope is corrected by using the accelerometer and the geomagnetic sensor and drift errors are eliminated so that the precision of a tracking result is improved; and the target posture tracking method utilizes an efficient offline operated Kalman filtering algorithm and fuses a multi-sensor tracking result, so that the real-time online posture tracking is realized.

Description

一种基于惯性和地磁传感器的目标姿态跟踪方法A Target Attitude Tracking Method Based on Inertial and Geomagnetic Sensors

技术领域technical field

本发明涉及智能传感与人机交互技术领域,尤其涉及一种基于惯性和地磁传感器的目标姿态跟踪方法。The invention relates to the technical field of intelligent sensing and human-computer interaction, in particular to a target posture tracking method based on inertial and geomagnetic sensors.

背景技术Background technique

基于姿态跟踪的增强现实技术将虚拟的三维物体、视频、文字、图片等计算机生成的信息实时叠加显示到真实场景中,通过姿态跟踪实现自然的人机交互,在医疗卫生、军事仿真、工业维修、教育娱乐等行业具有广泛的应用前景。增强现实中的姿态跟踪的目的在于识别运动目标并获得其姿态变化信息,所获取的姿态信息通常被应用在如下五方面:Augmented reality technology based on attitude tracking superimposes and displays computer-generated information such as virtual three-dimensional objects, videos, texts, and pictures into real scenes in real time, and realizes natural human-computer interaction through attitude tracking. , education and entertainment industries have broad application prospects. The purpose of attitude tracking in augmented reality is to identify moving targets and obtain information about their attitude changes. The acquired attitude information is usually applied in the following five aspects:

1)视野控制,利用姿态信息控制虚拟摄像机的位置和方向;1) Field of view control, using attitude information to control the position and direction of the virtual camera;

2)导航,协助用户在虚拟环境中进行移动;2) Navigation, assisting users to move in the virtual environment;

3)虚实交互,通过跟踪用户的肢体,实现抓取、移动等交互功能;3) Virtual-real interaction, by tracking the user's limbs, interactive functions such as grasping and moving are realized;

4)仪器跟踪,跟踪系统中的仪器设备,如手术工具、维修工具等;4) Instrument tracking, tracking the instruments and equipment in the system, such as surgical tools, maintenance tools, etc.;

5)姿态传递,将用户的姿态信息传递给随动设备,如手术机器人或电影中的虚拟角色。5) Gesture transmission, which transmits the user's posture information to the follower device, such as a surgical robot or a virtual character in a movie.

常用于姿态跟踪的惯性传感器件包括惯性陀螺仪和加速计等。在测量中采用捷联式惯性导航原理目标姿态,其中惯性陀螺主要用于测量三轴旋转角速度或角加速度,并利用增量积分法获得跟踪器的方向信息,但会产生随时间增加的漂移误差;加速计则主要用于测量三个敏感轴上的重力加速度分量,再利用余弦算法获得跟踪器的俯仰角和横滚角并克服陀螺仪带来的这两个姿态角上的漂移误差。惯性跟踪器具有体积小、重量轻、无遮挡问题、工作范围不受限制以及刷新率高等优点,同时利用磁场传感器可以得到航向角的特点可以实现对目标的三维姿态跟踪。Commonly used inertial sensors for attitude tracking include inertial gyroscopes and accelerometers. In the measurement, the strapdown inertial navigation principle is used to measure the target attitude. The inertial gyro is mainly used to measure the three-axis rotational angular velocity or angular acceleration, and the incremental integration method is used to obtain the direction information of the tracker, but it will produce drift errors that increase with time. The accelerometer is mainly used to measure the gravitational acceleration components on the three sensitive axes, and then use the cosine algorithm to obtain the pitch angle and roll angle of the tracker and overcome the drift error on the two attitude angles caused by the gyroscope. The inertial tracker has the advantages of small size, light weight, no occlusion problem, unlimited working range, and high refresh rate. At the same time, the feature of using the magnetic field sensor to obtain the heading angle can realize the three-dimensional attitude tracking of the target.

利用惯性传感器进行人体姿态跟踪的方法提出于1999年(参见Jihong Lee,Insoo Ha.Sensor fusion and calibration for motion captures using accelerometers.Robotics and Automation,Volume 3,Page 1954–1959.1999)。该方法利用地球重力在加速度计三个敏感轴上的分量计算目标的俯仰角和横滚角,可以得到目标在两个自由度上的姿态信息,缺点是仅通过重力分量无法得到完整的三自由度姿态信息并且加速度传感器数据不适用于可提高系统精度的卡尔曼滤波器。The method of human body posture tracking using inertial sensors was proposed in 1999 (see Jihong Lee, Insoo Ha. Sensor fusion and calibration for motion captures using accelerometers. Robotics and Automation, Volume 3, Page 1954–1959.1999). This method uses the components of the earth's gravity on the three sensitive axes of the accelerometer to calculate the pitch angle and roll angle of the target, and can obtain the attitude information of the target in two degrees of freedom. The disadvantage is that the complete three-freedom cannot be obtained only through the gravity component. Attitude information and accelerometer data are not suitable for Kalman filter which can improve system accuracy.

利用陀螺仪、加速度计和磁传感器的姿态跟踪方法如2007年,Rehbinder,H等(参见Rehbinder,H.,Xiaoming Hu.Drift-free attitude estimation for acceleratedrigid bodies.Robotics and Automation,Volume 4,Page 4244–4249.2001)提出使用多传感器融合方法,通过结合角速度、重力加速度和磁场分量并利用卡尔曼滤波器进行误差校正,实现了对目标三维姿态的实时跟踪,但是该方法没能解决线性加速度对目标姿态跟踪的影响。Attitude tracking methods using gyroscopes, accelerometers and magnetic sensors such as 2007, Rehbinder, H, etc. (see Rehbinder, H., Xiaoming Hu. Drift-free attitude estimation for accelerated rigid bodies. Robotics and Automation, Volume 4, Page 4244– 4249.2001) proposed the use of multi-sensor fusion method, by combining angular velocity, gravitational acceleration and magnetic field components and using Kalman filter for error correction, the real-time tracking of the three-dimensional attitude of the target was realized, but this method failed to solve the linear acceleration tracking of the target attitude. Impact.

发明内容Contents of the invention

有鉴于此,本发明提供了一种基于惯性和地磁传感器的目标姿态跟踪方法,无需复杂的跟踪设备和特定的跟踪环境,使用基于惯性和地磁传感器即可完成对目标的实时三维姿态跟踪,且跟踪结果具有精度和刷新率高的特点。In view of this, the present invention provides a target posture tracking method based on inertial and geomagnetic sensors, without the need for complex tracking equipment and specific tracking environments, the real-time three-dimensional posture tracking of the target can be completed using inertial and geomagnetic sensors, and The tracking results are characterized by high precision and high refresh rate.

本发明的一种基于惯性和地磁传感器的目标姿态跟踪方法,采用陀螺仪、加速度计以及地磁传感器分别采集目标当前姿态所对应的角速度、加速度和磁强度数据在三个敏感轴上的分量,并采用卡尔曼滤波器对上述三个传感器数据进行融合并计算目标的姿态信息,具体方法如下:A target attitude tracking method based on inertial and geomagnetic sensors of the present invention uses gyroscopes, accelerometers and geomagnetic sensors to respectively collect the components of angular velocity, acceleration and magnetic intensity data corresponding to the current attitude of the target on three sensitive axes, and The Kalman filter is used to fuse the above three sensor data and calculate the attitude information of the target. The specific method is as follows:

步骤1、通过卡尔曼滤波器对目标姿态信息进行时间更新,具体为:Step 1. Time update the target attitude information through the Kalman filter, specifically:

S10、在时间更新方程中对目标的状态矢量进行估计:S10, the state vector of the target in the time update equation Make an estimate:

其中,A为所述陀螺仪测得的目标在三个敏感轴上角速度测量值构成的滤波器增益矩阵;为当前时刻目标状态矢量估计值,为卡尔曼滤波器上一时刻输出的目标状态矢量;Wherein, A is the filter gain matrix formed by the angular velocity measurement values of the target measured by the gyroscope on the three sensitive axes; is the estimated value of the target state vector at the current moment, is the target state vector output by the Kalman filter at the last moment;

S11、对卡尔曼滤波器的传递函数的估计值进行更新:S11. Estimated value of the transfer function of the Kalman filter Make an update:

PP kk -- == APAP kk -- 11 AA TT ++ QQ

其中,Q值为系统噪声协方差矩阵;AT为增益矩阵A的转置矩阵;Pk-1为卡尔曼滤波器上一时刻输出的传递函数;Among them, Q is the system noise covariance matrix; AT is the transpose matrix of the gain matrix A; Pk-1 is the transfer function output by the Kalman filter at the previous moment;

步骤2、通过卡尔曼滤波器对目标姿态信息进行测量更新,具体为:Step 2. Measure and update the attitude information of the target through the Kalman filter, specifically:

S20、基于步骤1中更新得到的传递函数的估计值获得卡尔曼滤波器的测量置信参数KkS20, based on the estimated value of the transfer function updated in step 1 Obtain the measurement confidence parameter K k of the Kalman filter:

KK kk == PP kk -- Hh TT (( HPHP kk -- Hh TT ++ RR )) -- 11

其中,H为测量模型与估计模型间转换矩阵:Among them, H is the conversion matrix between the measurement model and the estimated model:

[q1 q2 q3 q4]表示组成目标的状态矢量估计值的旋转四元数,即R为测量误差模型:R=ACCx 2+ACCy 2+ACCz 2-g2;其中ACCx、ACCy和ACCz分别为加速度传感器测得的目标在三个敏感轴上的加速度分量,g为重力加速度;[q 1 q 2 q 3 q 4 ] represents the estimated value of the state vector of the constituent target The rotation quaternion of R is the measurement error model: R=ACC x 2 +ACC y 2 +ACC z 2 -g 2 ; where ACC x , ACC y and ACC z are the acceleration components of the target on the three sensitive axes measured by the acceleration sensor, g is the acceleration due to gravity;

S21、对目标的状态矢量的测量结果进行更新:S21, the measurement result of the state vector of the target Make an update:

Z k = θ γ ψ 表示目标的姿态,其中,θ=arcsin(ACCx)表示目标的俯仰角,表示目标的横滚角,表示目标的航向角,A=MAGxcos(θ)+MAGysin(θ)+MAGzcos(θ)sin(γ),B=MAGycos(γ)+MAGzsin(γ),MAGx、MAGy和MAGz分别表示磁场传感器获得的目标所在位置的地球磁场在体坐标系的三个敏感轴上的分量; Z k = θ γ ψ Represents the attitude of the target, where θ=arcsin(ACC x ) represents the pitch angle of the target, represents the roll angle of the target, Indicates the heading angle of the target, A=MAG x cos(θ)+MAG y sin(θ)+MAG z cos(θ)sin(γ), B=MAG y cos(γ)+MAG z sin(γ), MAG x , MAG y and MAG z represent the components of the earth's magnetic field at the position of the target obtained by the magnetic field sensor on the three sensitive axes of the body coordinate system;

S22、对传递函数的测量结果Pk进行更新:S22. Update the measurement result P k of the transfer function:

PP kk == (( 11 -- KK kk Hh )) PP kk --

步骤3、目标状态矢量的测量结果即为当前目标姿态的跟踪结果,将当前时刻测量结果和传递函数的测量结果Pk输出并作为下一时刻滤波器的输入结果,返回步骤1,进行下一时刻的目标姿态跟踪。Step 3. Measurement results of the target state vector That is, the tracking result of the current target attitude, and the measurement result at the current moment The measurement result P k of the sum transfer function is output and used as the input result of the filter at the next moment, and returns to step 1 to perform target attitude tracking at the next moment.

所述步骤1中系统噪声协方差矩阵Q取值为0.01。In the step 1, the value of the system noise covariance matrix Q is 0.01.

本发明具有如下有益效果:The present invention has following beneficial effect:

本发明的目标姿态跟踪方法无需任何参考标志物和特定跟踪环境即可实现姿态跟踪,方法简单易行;采用陀螺仪、加速度计以及地磁传感器分别采集目标当前姿态所对应的角速度、加速度和磁强度数据在三个敏感轴上的分量,利用加速度计和磁传感器校正陀螺仪的姿态跟踪结果,消除了漂移误差,从而提高跟踪结果的精度;本发明使用高效离线运行的卡尔曼滤波算法,融合了多传感器跟踪结果,实现了实时在线姿态跟踪。The target attitude tracking method of the present invention can realize attitude tracking without any reference markers and specific tracking environment, and the method is simple and easy; the angular velocity, acceleration and magnetic intensity corresponding to the current attitude of the target are collected respectively by using a gyroscope, an accelerometer and a geomagnetic sensor The components of the data on the three sensitive axes use the accelerometer and the magnetic sensor to correct the attitude tracking results of the gyroscope, eliminating the drift error and thus improving the accuracy of the tracking results; The result of multi-sensor tracking realizes real-time online attitude tracking.

附图说明Description of drawings

图1是本发明的目标姿态跟踪的方法流程图;Fig. 1 is the method flow chart of target posture tracking of the present invention;

图2是本发明实施例中的姿态跟踪模块空间坐标系图。Fig. 2 is a diagram of the spatial coordinate system of the posture tracking module in the embodiment of the present invention.

具体实施方式Detailed ways

下面结合附图并举实施例,对本发明进行详细描述。The present invention will be described in detail below with reference to the accompanying drawings and examples.

如图1为本发明的方法流程图。采用陀螺仪、加速度计以及地磁传感器分别采集目标当前姿态所对应的角速度、加速度和磁强度数据在三个敏感轴上的分量,并采用卡尔曼滤波器对上述三个传感器数据进行融合并计算目标的姿态信息,以b表示的传感器体坐标系和以r表示的空间坐标系定义如图2所示,具体方法如下:Figure 1 is a flow chart of the method of the present invention. Gyroscopes, accelerometers, and geomagnetic sensors are used to collect the components of the angular velocity, acceleration, and magnetic intensity data corresponding to the current attitude of the target on the three sensitive axes, and the Kalman filter is used to fuse the above three sensor data and calculate the target. The attitude information of , the sensor body coordinate system represented by b and the space coordinate system represented by r are defined as shown in Figure 2, and the specific methods are as follows:

步骤1、通过卡尔曼滤波器对目标姿态信息进行时间更新:Step 1. Time update the target attitude information through the Kalman filter:

离散卡尔曼滤波器的时间更新方程如下:The time update equation of the discrete Kalman filter is as follows:

其中时间更新方程中的状态矢量由旋转四元数组成:where the state vector in the time update equation consists of a rotation quaternion:

式(1)中的A为所述陀螺仪测得的目标再三个敏感轴上角速度测量值构成的滤波器增益矩阵;,其作用是根据前一时刻目标的状态矢量估计当前状态矢量其构成如下:A in the formula (1) is the filter gain matrix formed by the angular velocity measurements on the three sensitive axes of the target measured by the gyroscope; its function is based on the state vector of the target at the previous moment Estimate the current state vector Its composition is as follows:

AA == 11 dGyrodGyro (( 22 )) -- dGyrodGyro (( 11 )) -- dGyrodGyro (( 22 )) -- dGyrodGyro (( 22 )) 11 dGyrodGyro (( 00 )) -- dGyrodGyro (( 11 )) dGyrodGyro (( 11 )) dGyrodGyro (( 00 )) 11 -- dGyrodGyro (( 22 )) dGyrodGyro (( 00 )) dGyrodGyro (( 11 )) dGyrodGyro (( 22 )) 11 -- -- -- (( 33 ))

其中,d表示目标两相邻状态间的时间间隔;Gyro(0)、Gyro(1)和Gyro(2)分别为陀螺仪测量的目标在三个敏感轴(x、y和z轴)上的旋转角速度,它的测量结果不会受到运动加速度的影响且为线性,所以本发明利用陀螺仪测量值构成系统的增益矩阵。并且在卡尔曼滤波器中利用陀螺仪对目标姿态角进行预估有利于提高系统的运算速度。卡尔曼滤波器的传递函数的估计值通过如下公式进行更新:Among them, d represents the time interval between two adjacent states of the target; Gyro(0), Gyro(1) and Gyro(2) are the distances of the target measured by the gyroscope on the three sensitive axes (x, y and z axes) Rotational angular velocity, its measurement result will not be affected by the motion acceleration and is linear, so the present invention uses the gyroscope measurement value to form the gain matrix of the system. And using the gyroscope in the Kalman filter to estimate the target attitude angle is beneficial to improve the computing speed of the system. An estimate of the transfer function of the Kalman filter Update with the following formula:

PP kk -- == APAP kk -- 11 AA TT ++ QQ -- -- -- (( 44 ))

其中Q值为系统噪声协方差矩阵。Q值根据目标的运动速度所决定,当目标运动速度较慢时,将Q值设一个较低的值,反之亦然。本实例将Q值选为0.001。Where Q is the system noise covariance matrix. The Q value is determined according to the moving speed of the target. When the moving speed of the target is slow, set the Q value to a lower value, and vice versa. In this example, the Q value is selected as 0.001.

步骤2、通过卡尔曼滤波器对目标姿态信息进行测量更新:Step 2. Measure and update the target attitude information through the Kalman filter:

离散卡尔曼滤波器的测量置信参数定义如下:The measurement confidence parameter of the discrete Kalman filter is defined as follows:

KK kk == PP kk -- Hh TT (( HPHP kk -- Hh TT ++ RR )) -- 11 -- -- -- (( 55 ))

测量值置信参数的数值大小与测量噪声以及滤波器传递函数相关,H为测量模型与估计模型间转换矩阵,根据公式(6)进行定义:The numerical value of the confidence parameter of the measured value is related to the measurement noise and the filter transfer function. H is the conversion matrix between the measurement model and the estimated model, which is defined according to formula (6):

测量更新方程中的测量误差模型根据如下方程进行定义:The measurement error model in the measurement update equation is defined according to the following equation:

R=ACCx 2+ACCy 2+ACCz 2-g2    (7)R=ACC x 2 +ACC y 2 +ACC z 2 -g 2 (7)

其中ACCx、ACCy和ACCz分别为加速度传感器测得的目标在x、y和z三轴上的加速度分量,g为重力加速度;为了将运动加速度作为噪声从系统的测量值中提取出来,我们以加速度测量值平方和与重力加速度平方之差为基础定义了惯性测量系统的运动加速度误差模型。在理想状态下,误差值R应为0,随着目标运动加速度的增加或减少,误差值R也将随之变化。将此模型加入卡尔曼滤波器中将有效消除运动加速度带来的估计误差。将以上计算得到的参数带入卡尔曼滤波器测量更新方程得到本次卡尔曼滤波的测量结果并更新传递函数出的测量结果PkAmong them, ACC x , ACC y and ACC z are the acceleration components of the target on the x, y and z axes measured by the acceleration sensor, and g is the acceleration of gravity; in order to extract the motion acceleration as noise from the measured value of the system, We define the motion acceleration error model of the inertial measurement system based on the difference between the sum of the squares of the acceleration measurements and the square of the gravitational acceleration. In an ideal state, the error value R should be 0, and as the target motion acceleration increases or decreases, the error value R will also change accordingly. Adding this model to the Kalman filter will effectively eliminate the estimation error caused by motion acceleration. Bring the parameters calculated above into the Kalman filter measurement update equation to get the measurement result of this Kalman filter And update the measurement result P k from the transfer function:

PP kk == (( 11 -- KK kk Hh )) PP kk -- -- -- -- (( 99 ))

公式(8)中的目标实时姿态Zk通过余弦算法得出。对于三轴测量系统,通过重力加速度在跟踪模块提坐标系x轴上的分量可以计算出系统的俯仰角大小:The real-time attitude Z k of the target in formula (8) is obtained by cosine algorithm. For a three-axis measurement system, the pitch angle of the system can be calculated by the component of the acceleration of gravity on the x-axis of the coordinate system of the tracking module:

θ=arcsin(ACCx)   (10)θ=arcsin(ACC x ) (10)

在得到俯仰角的情况下,通过另一轴上的重力加速度分量我们可以得到系统的横滚角大小:In the case of obtaining the pitch angle, we can obtain the roll angle of the system through the gravitational acceleration component on the other axis:

γγ == arcsinarcsin (( ACCACC ythe y gg coscos (( θθ )) )) -- -- -- (( 1111 ))

虽然已知俯仰角和横滚角的大小,仅通过在同一坐标系下的测量值,比如重力加速度,仍无法确定系统的航向角。地磁场的方向和大小为常量且方向与地磁场方向不同,能够作为计算目标姿态角的另一个参考测量值,于是引用磁传感器辅助测量航向角。通过如下公式,我们可以利用重力加速度和地磁场计算出目标的航向角:Although the pitch angle and roll angle are known, the heading angle of the system cannot be determined only by measuring values in the same coordinate system, such as the acceleration of gravity. The direction and magnitude of the geomagnetic field are constant and different from the direction of the geomagnetic field, which can be used as another reference measurement value for calculating the target attitude angle, so a magnetic sensor is used to assist in measuring the heading angle. Through the following formula, we can use the acceleration of gravity and the geomagnetic field to calculate the heading angle of the target:

ψψ == arctanarctan AA BB -- -- -- (( 1212 ))

A=MAGxcos(θ)+MAGysin(θ)+MAGzcos(θ)sin(γ)    (13)A=MAG x cos(θ)+MAG y sin(θ)+MAG z cos(θ)sin(γ) (13)

B=MAGycos(γ)+MAGzsin(γ)    (14)B=MAG y cos(γ)+MAG z sin(γ) (14)

公式中的MAGx、MAGy和MAGz分别表示磁场传感器获得的目标所在位置的地球磁场在体坐标系的x、y和z轴上的分量。MAG x , MAG y and MAG z in the formula represent the components of the earth's magnetic field at the target's location obtained by the magnetic field sensor on the x, y and z axes of the body coordinate system, respectively.

通过上述计算方法,可以通过重力加速度和地球磁场在目标体坐标系的三个轴上的分量计算出目标的实时姿态:Through the above calculation method, the real-time attitude of the target can be calculated by the components of the acceleration of gravity and the earth's magnetic field on the three axes of the target body coordinate system:

ZZ kk == θθ γγ ψψ -- -- -- (( 1515 ))

步骤3、目标的状态矢量的测量结果即为当前目标姿态的跟踪结果,将当前时刻测量结果和传递函数的测量结果Pk输出并作为下一时刻滤波器的输入结果,返回步骤1,进行下一时刻的姿态跟踪。Step 3. The measurement result of the state vector of the target That is, the tracking result of the current target attitude, and the measurement result at the current moment The measurement result P k of the sum transfer function is output and used as the input result of the filter at the next moment, and returns to step 1 to perform attitude tracking at the next moment.

综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。To sum up, the above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (2)

1. the target attitude tracking method based on inertia and geomagnetic sensor, it is characterized in that, employing gyroscope, accelerometer and geomagnetic sensor gather angular velocity, acceleration and the magnetic intensity data component in three sensitive axes corresponding to target current pose respectively, and adopt Kalman filter to melt the attitude information of joint account target to above-mentioned three sensing datas, concrete grammar is as follows:
Step 1, by Kalman filter, time renewal is carried out to targeted attitude information, is specially:
S10, in time update equation to the state vector of target estimate:
Wherein, A is the target filter gain matrix that angular velocity measurement value is formed in three sensitive axes that described gyroscope records; for current target state vector estimated value, for the dbjective state vector that a moment in Kalman filter exports;
S11, estimated value to the transport function of Kalman filter upgrade:
p k - = Ap k - 1 A T + Q
Wherein, Q value is system noise covariance matrix; A tfor the transposed matrix of gain matrix A; P k-1for the transport function that a moment in Kalman filter exports;
Step 2, by Kalman filter, measurement updaue is carried out to targeted attitude information, is specially:
S20, based on the estimated value upgrading the transport function obtained in step 1 obtain the measurement confidence parameter K of Kalman filter k:
K k = P k - H T ( HR k - H T + R ) - 1
Wherein, H is transition matrix between measurement model and estimation model:
[q 1q 2q 3q 4] represent the state vector estimated value forming target rotation hypercomplex number, namely r is Measuring error model: wherein ACC x, ACC yand ACC zbe respectively the component of acceleration of target in three sensitive axes that acceleration transducer records, g is acceleration of gravity;
S21, measurement result to the state vector of target upgrade:
Z k = θ γ ψ Represent the attitude of target, wherein, θ=arcsin (ACC x) represent the angle of pitch of target, represent the roll angle of target, represent the course angle of target, A=MAG xcos (θ)+MAG ysin (θ)+MAG zcos (θ) sin (γ), B=MAG ycos (γ)+MAG zsin (γ), MAG x, MAG yand MAG zrepresent the component of magnetic field of the earth in three sensitive axes of body coordinate system of the target position that magnetic field sensor obtains respectively;
S22, measurement result P to transport function kupgrade:
P k = ( 1 - K l H ) P k -
The measurement result of step 3, dbjective state vector be the tracking results of current goal attitude, by current time measurement result with the measurement result P of transport function kexport and as the input results of subsequent time wave filter, return step 1, carry out the target attitude tracking of subsequent time.
2. a kind of target attitude tracking method based on inertia and geomagnetic sensor as claimed in claim 1, it is characterized in that, in described step 1, system noise covariance matrix Q value is 0.01.
CN201510196626.9A 2015-04-23 2015-04-23 Target posture tracking method based on inertia and geomagnetic sensor Pending CN104764451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510196626.9A CN104764451A (en) 2015-04-23 2015-04-23 Target posture tracking method based on inertia and geomagnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510196626.9A CN104764451A (en) 2015-04-23 2015-04-23 Target posture tracking method based on inertia and geomagnetic sensor

Publications (1)

Publication Number Publication Date
CN104764451A true CN104764451A (en) 2015-07-08

Family

ID=53646429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510196626.9A Pending CN104764451A (en) 2015-04-23 2015-04-23 Target posture tracking method based on inertia and geomagnetic sensor

Country Status (1)

Country Link
CN (1) CN104764451A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607760A (en) * 2015-12-18 2016-05-25 上海开圣影视文化传媒股份有限公司 Trace restoration method and system based on micro inertial sensor
CN105975989A (en) * 2016-05-10 2016-09-28 东南大学 Elbow motion state identification method based on nine-axis motion sensor
WO2016150312A1 (en) * 2015-03-20 2016-09-29 阿里巴巴集团控股有限公司 Geomagnetic sensor calibration method and apparatus, and intelligent device
CN106500695A (en) * 2017-01-05 2017-03-15 大连理工大学 A kind of human posture recognition method based on adaptive extended kalman filtering
CN106643708A (en) * 2016-09-21 2017-05-10 苏州坦特拉自动化科技有限公司 IMU-based interactive sitting posture correction device, sitting posture correction appliance and monitoring software
CN106767776A (en) * 2016-11-17 2017-05-31 上海兆芯集成电路有限公司 Mobile device and the method for asking for mobile device attitude
CN108225370A (en) * 2017-12-15 2018-06-29 路军 A kind of data fusion and calculation method of athletic posture sensor
CN108803673A (en) * 2018-05-07 2018-11-13 约肯机器人(上海)有限公司 Directional controlling method and device
CN109029459A (en) * 2018-07-24 2018-12-18 南京信息工程大学 A kind of movement objective orbit tracing system and the calculation method based on the system
CN109099828A (en) * 2018-07-13 2018-12-28 北京市劳动保护科学研究所 The real-time acquisition system of dynamic displacement and method based on Arduino
CN109696178A (en) * 2017-10-20 2019-04-30 夏普株式会社 Offset correction device, offset correction program, pedestrian's dead-reckoning analyzer and recording medium
WO2019127092A1 (en) * 2017-12-27 2019-07-04 SZ DJI Technology Co., Ltd. State estimatation
CN110312913A (en) * 2017-03-24 2019-10-08 深圳市大疆灵眸科技有限公司 Method and system for adaptive holder
CN110470294A (en) * 2019-08-09 2019-11-19 西安电子科技大学 A kind of attitude of carrier estimation method that virtual measurement is merged with Kalman filtering
CN110530396A (en) * 2019-07-31 2019-12-03 苏州浪潮智能科技有限公司 A kind of processing method and equipment of gyro sensor error
CN110567491A (en) * 2019-08-29 2019-12-13 青岛歌尔智能传感器有限公司 Initial alignment method and device of inertial navigation system and electronic equipment
CN110876275A (en) * 2019-04-30 2020-03-10 深圳市大疆创新科技有限公司 Aiming control method, mobile robot and computer readable storage medium
CN111949123A (en) * 2020-07-01 2020-11-17 青岛小鸟看看科技有限公司 Hybrid tracking method and device for multi-sensor handle controller
CN112720503A (en) * 2021-01-12 2021-04-30 深圳康诺思腾科技有限公司 Robot equipment and control method thereof
CN112762925A (en) * 2020-12-28 2021-05-07 东方红卫星移动通信有限公司 Low-orbit satellite attitude determination method based on geomagnetism meter and gyroscope
CN113171077A (en) * 2021-03-11 2021-07-27 爱乔(上海)医疗科技有限公司 Lower limb length measuring device and method for total hip replacement
CN114398827A (en) * 2022-01-05 2022-04-26 北京理工大学 A construction method of virtual gyroscope based on deep learning
CN114967458A (en) * 2022-05-30 2022-08-30 江南大学 Drive control system of micro-nano robot cluster
CN115900770A (en) * 2023-02-14 2023-04-04 北京理工大学前沿技术研究院 Online correction method and system for magnetic sensor in airborne environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243657B1 (en) * 1997-12-23 2001-06-05 Pii North America, Inc. Method and apparatus for determining location of characteristics of a pipeline
US6473676B2 (en) * 1999-12-22 2002-10-29 Honeywell International, Inc. Method, apparatus and computer program product for estimating airplane attitude with reduced sensor set
US6493631B1 (en) * 2001-05-31 2002-12-10 Mlho, Inc. Geophysical inertial navigation system
CN101561281A (en) * 2009-05-19 2009-10-21 北京星箭长空测控技术股份有限公司 Working method of strap-down magnetic inertia combination system
CN101782391A (en) * 2009-06-22 2010-07-21 北京航空航天大学 Attitude estimation method of maneuvering acceleration-assisted extended Kalman filter (EKF) attitude and heading reference system (AHRS)
CN103940425A (en) * 2014-04-22 2014-07-23 北京信息科技大学 Magnetic-inertial combination strapdown measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243657B1 (en) * 1997-12-23 2001-06-05 Pii North America, Inc. Method and apparatus for determining location of characteristics of a pipeline
US6473676B2 (en) * 1999-12-22 2002-10-29 Honeywell International, Inc. Method, apparatus and computer program product for estimating airplane attitude with reduced sensor set
US6493631B1 (en) * 2001-05-31 2002-12-10 Mlho, Inc. Geophysical inertial navigation system
CN101561281A (en) * 2009-05-19 2009-10-21 北京星箭长空测控技术股份有限公司 Working method of strap-down magnetic inertia combination system
CN101782391A (en) * 2009-06-22 2010-07-21 北京航空航天大学 Attitude estimation method of maneuvering acceleration-assisted extended Kalman filter (EKF) attitude and heading reference system (AHRS)
CN103940425A (en) * 2014-04-22 2014-07-23 北京信息科技大学 Magnetic-inertial combination strapdown measuring method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANGYU HE等: "Fusion of inertial sensing to compensate for partial occlusions in optical tracking systems", 《SPRINGER INTERNATIONAL PUBLISHING》 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016150312A1 (en) * 2015-03-20 2016-09-29 阿里巴巴集团控股有限公司 Geomagnetic sensor calibration method and apparatus, and intelligent device
CN105607760A (en) * 2015-12-18 2016-05-25 上海开圣影视文化传媒股份有限公司 Trace restoration method and system based on micro inertial sensor
CN105975989B (en) * 2016-05-10 2019-03-19 东南大学 A kind of ancon moving state identification method based on nine axis movement sensors
CN105975989A (en) * 2016-05-10 2016-09-28 东南大学 Elbow motion state identification method based on nine-axis motion sensor
CN106643708A (en) * 2016-09-21 2017-05-10 苏州坦特拉自动化科技有限公司 IMU-based interactive sitting posture correction device, sitting posture correction appliance and monitoring software
CN106767776A (en) * 2016-11-17 2017-05-31 上海兆芯集成电路有限公司 Mobile device and the method for asking for mobile device attitude
CN106500695B (en) * 2017-01-05 2019-02-01 大连理工大学 A kind of human posture recognition method based on adaptive extended kalman filtering
CN106500695A (en) * 2017-01-05 2017-03-15 大连理工大学 A kind of human posture recognition method based on adaptive extended kalman filtering
CN110312913A (en) * 2017-03-24 2019-10-08 深圳市大疆灵眸科技有限公司 Method and system for adaptive holder
CN109696178A (en) * 2017-10-20 2019-04-30 夏普株式会社 Offset correction device, offset correction program, pedestrian's dead-reckoning analyzer and recording medium
CN108225370B (en) * 2017-12-15 2024-01-30 路军 Data fusion and calculation method of motion attitude sensor
CN108225370A (en) * 2017-12-15 2018-06-29 路军 A kind of data fusion and calculation method of athletic posture sensor
WO2019127092A1 (en) * 2017-12-27 2019-07-04 SZ DJI Technology Co., Ltd. State estimatation
CN111492203A (en) * 2017-12-27 2020-08-04 深圳市大疆创新科技有限公司 State estimation
CN108803673A (en) * 2018-05-07 2018-11-13 约肯机器人(上海)有限公司 Directional controlling method and device
CN109099828B (en) * 2018-07-13 2024-02-13 北京市劳动保护科学研究所 Arduino-based dynamic displacement real-time acquisition system and method
CN109099828A (en) * 2018-07-13 2018-12-28 北京市劳动保护科学研究所 The real-time acquisition system of dynamic displacement and method based on Arduino
CN109029459B (en) * 2018-07-24 2023-07-21 南京信息工程大学 A moving target trajectory tracking system and a calculation method based on the system
CN109029459A (en) * 2018-07-24 2018-12-18 南京信息工程大学 A kind of movement objective orbit tracing system and the calculation method based on the system
CN110876275A (en) * 2019-04-30 2020-03-10 深圳市大疆创新科技有限公司 Aiming control method, mobile robot and computer readable storage medium
CN110530396A (en) * 2019-07-31 2019-12-03 苏州浪潮智能科技有限公司 A kind of processing method and equipment of gyro sensor error
CN110470294B (en) * 2019-08-09 2020-12-18 西安电子科技大学 A Carrier Attitude Estimation Method Fusion of Virtual Measurement and Kalman Filtering
CN110470294A (en) * 2019-08-09 2019-11-19 西安电子科技大学 A kind of attitude of carrier estimation method that virtual measurement is merged with Kalman filtering
WO2021036085A1 (en) * 2019-08-29 2021-03-04 潍坊歌尔微电子有限公司 Inertial navigation system initial alignment method, apparatus, and electronic device
CN110567491A (en) * 2019-08-29 2019-12-13 青岛歌尔智能传感器有限公司 Initial alignment method and device of inertial navigation system and electronic equipment
CN111949123A (en) * 2020-07-01 2020-11-17 青岛小鸟看看科技有限公司 Hybrid tracking method and device for multi-sensor handle controller
US12008173B2 (en) 2020-07-01 2024-06-11 Qingdao Pico Technology Co., Ltd. Multi-sensor handle controller hybrid tracking method and device
CN111949123B (en) * 2020-07-01 2023-08-08 青岛小鸟看看科技有限公司 Multi-sensor handle controller hybrid tracking method and device
CN112762925A (en) * 2020-12-28 2021-05-07 东方红卫星移动通信有限公司 Low-orbit satellite attitude determination method based on geomagnetism meter and gyroscope
CN112720503A (en) * 2021-01-12 2021-04-30 深圳康诺思腾科技有限公司 Robot equipment and control method thereof
CN113171077A (en) * 2021-03-11 2021-07-27 爱乔(上海)医疗科技有限公司 Lower limb length measuring device and method for total hip replacement
CN114398827A (en) * 2022-01-05 2022-04-26 北京理工大学 A construction method of virtual gyroscope based on deep learning
CN114398827B (en) * 2022-01-05 2024-11-08 北京理工大学 A method for constructing a virtual gyroscope based on deep learning
CN114967458A (en) * 2022-05-30 2022-08-30 江南大学 Drive control system of micro-nano robot cluster
CN115900770A (en) * 2023-02-14 2023-04-04 北京理工大学前沿技术研究院 Online correction method and system for magnetic sensor in airborne environment

Similar Documents

Publication Publication Date Title
CN104764451A (en) Target posture tracking method based on inertia and geomagnetic sensor
Weiss et al. Real-time metric state estimation for modular vision-inertial systems
CN102297693B (en) Method for measuring position and azimuths of object
EP2828675B1 (en) Method and device for pose tracking using vector magnetometers
Phuong et al. A DCM based orientation estimation algorithm with an inertial measurement unit and a magnetic compass
CN106979780B (en) A real-time attitude measurement method for unmanned vehicles
CN107478223A (en) A kind of human body attitude calculation method based on quaternary number and Kalman filtering
CN107490378B (en) Indoor positioning and navigation method based on MPU6050 and smart phone
CN103196445B (en) Based on the carrier posture measuring method of the earth magnetism supplementary inertial of matching technique
CN108362288B (en) Polarized light SLAM method based on unscented Kalman filtering
CN105203098A (en) Whole attitude angle updating method applied to agricultural machinery and based on nine-axis MEMS (micro-electromechanical system) sensor
CN108731676B (en) An attitude fusion enhanced measurement method and system based on inertial navigation technology
CN108318038A (en) A kind of quaternary number Gaussian particle filtering pose of mobile robot calculation method
CN103940442A (en) Location method and device adopting accelerating convergence algorithm
Yousuf et al. Sensor fusion of INS, odometer and GPS for robot localization
CN106643715A (en) Indoor inertial navigation method based on bp neural network improvement
CN104280022A (en) Digital helmet display device tracking system of visual-aided inertial measuring unit
CN107909614A (en) Crusing robot localization method under a kind of GPS failures environment
CN109000633A (en) Human body attitude motion capture algorithm design based on isomeric data fusion
CN103175502A (en) Attitude angle detecting method based on low-speed movement of data glove
CN108592902B (en) Positioning equipment, positioning method and system based on multiple sensors and mechanical arm
CN107883965A (en) Based on optical information Interactive Multiple-Model strong tracking volume Kalman filtering air navigation aid
CN107747953A (en) A kind of multi-sensor data and orbit information method for synchronizing time
CN103438890B (en) Based on the planetary power descending branch air navigation aid of TDS and image measurement
CN108279773B (en) A data glove based on MARG sensor and magnetic field positioning technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150708