CN104752056B - Thin film capacitor - Google Patents
Thin film capacitor Download PDFInfo
- Publication number
- CN104752056B CN104752056B CN201410844332.8A CN201410844332A CN104752056B CN 104752056 B CN104752056 B CN 104752056B CN 201410844332 A CN201410844332 A CN 201410844332A CN 104752056 B CN104752056 B CN 104752056B
- Authority
- CN
- China
- Prior art keywords
- terminal
- layer
- semiconductor layer
- nanoconductor
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6732—Bottom-gate only TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6731—Top-gate only TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
- H10D30/6745—Polycrystalline or microcrystalline silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
- H10D30/6746—Amorphous silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6757—Thin-film transistors [TFT] characterised by the structure of the channel, e.g. transverse or longitudinal shape or doping profile
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/484—Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
- H10K10/486—Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising two or more active layers, e.g. forming pn heterojunctions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
Landscapes
- Thin Film Transistor (AREA)
Abstract
一种薄膜电容器,其包括:半导体层;第一介电层和第二介电层,二者布置在所述半导体层的相反侧;第一金属层,其在所述第一介电层的与所述半导体层相反的一侧形成第一端子和第二端子,所述第一端子和第二端子中的一者延伸穿过所述第一介电层而与所述半导体层接触,所述第一端子和第二端子与所述第一介电层形成电容器;以及第二金属层,其在所述第二介电层的与所述半导体层相反的一侧形成第三端子。所述第一端子和第二端子可以是源极端子和漏极端子,且所述第三端子可以是栅极端子。所述第一金属层可被分割成形成所述第一端子和第二端子。所述第三端子可与所述第一端子和第二端子中的一者共用。
A film capacitor comprising: a semiconductor layer; a first dielectric layer and a second dielectric layer arranged on opposite sides of the semiconductor layer; a first metal layer on the first dielectric layer A side opposite to the semiconductor layer forms a first terminal and a second terminal, one of the first terminal and the second terminal extending through the first dielectric layer into contact with the semiconductor layer, so The first terminal and the second terminal form a capacitor with the first dielectric layer; and a second metal layer forms a third terminal on a side of the second dielectric layer opposite to the semiconductor layer. The first and second terminals may be source and drain terminals, and the third terminal may be a gate terminal. The first metal layer may be divided to form the first terminal and the second terminal. The third terminal may be shared with one of the first terminal and the second terminal.
Description
发明领域field of invention
本发明大体涉及薄膜电容器。The present invention generally relates to film capacitors.
背景技术Background technique
显示器可以由有机发光装置(“OLEDs”)的阵列形成,每个有机发光装置都由单个电路(即,像素电路)控制,这些单个电路具有用于选择性地控制所述电路的晶体管,从而用显示信息编程并且根据显示信息来发光。制作在衬底上的薄膜晶体管(“TFTs”)可以被并入这些显示器中。Displays may be formed from arrays of organic light emitting devices ("OLEDs") each controlled by individual circuits (i.e., pixel circuits) with transistors for selectively controlling the circuits, thereby using The display information is programmed and illuminated according to the display information. Thin film transistors ("TFTs") fabricated on substrates can be incorporated into these displays.
迁移率表征载流子在电场存在下的反应性。迁移率通常以单位cm2/V s表示。对于晶体管来说,沟道区的迁移率提供了晶体管“接通”电流(例如,该电流可以由晶体管供应)时的性能的度量。在薄膜晶体管中,通常利用半导体材料层来形成沟道区。Mobility characterizes the reactivity of charge carriers in the presence of an electric field. Mobility is usually expressed in units of cm 2 /V s. For a transistor, the mobility of the channel region provides a measure of the transistor's performance when a current is "on" (eg, the current may be supplied by the transistor). In thin film transistors, a layer of semiconductor material is typically used to form the channel region.
OLED显示装置的发展因为像素电路中对于合适的驱动晶体管的需求而受到了挑战。作为源于电压来切换AM-LCD像素的晶体管沟道材料的非晶硅(a-Si)具有较低的迁移率(~0.1cm2V-1s-1)。有机半导体沟道材料因其均质性、低成本和可以进行沉积的手段多样,而十分适合用作像素电路驱动晶体管,但所述有机半导体沟道材料的最佳迁移率与a-Si的迁移率相似。在典型的TFT结构中,低迁移率沟道层需要较大的源极-漏极电压来驱动必要的电流。这就消耗了晶体管内的电力(与在OLED中产生光相反),有损于电力节省。The development of OLED display devices has been challenged by the need for suitable driving transistors in the pixel circuits. Amorphous silicon (a-Si), which is the channel material of transistors switching AM-LCD pixels from voltage, has a low mobility (~0.1 cm 2 V −1 s −1 ). Organic semiconductor channel materials are very suitable for use as pixel circuit drive transistors because of their homogeneity, low cost and various means of deposition, but the optimal mobility of the organic semiconductor channel materials is not compatible with the migration of a-Si rates are similar. In a typical TFT structure, the low-mobility channel layer requires a large source-drain voltage to drive the necessary current. This drains power within the transistor (as opposed to generating light in an OLED), to the detriment of power savings.
P型a-Si TFT甚至可以具有更低的迁移率值,并且可以低至0.01cm2V-1s-1。P-type a-Si TFTs can have even lower mobility values, and can be as low as 0.01 cm 2 V −1 s −1 .
发明内容Contents of the invention
根据一个实施例,薄膜电容器包括:半导体层;第一介电层和第二介电层,二者布置在所述半导体层的相反侧;第一金属层,其在所述第一介电层的与所述半导体层相反的一侧形成第一端子和第二端子,所述第一端子和第二端子中的一者延伸穿过所述第一介电层而与所述半导体层接触,所述第一端子和第二端子与所述第一介电层形成电容器;以及第二金属层,其在所述第二介电层的与所述半导体层相反的一侧形成第三端子。在一个实施方案中,所述第一端子和第二端子是源极端子和漏极端子,且所述第三端子是栅极端子。所述第一金属层可分割成形成所述第一端子和第二端子。所述第三端子可与所述第一端子和第二端子中的一者共用。According to one embodiment, a film capacitor includes: a semiconductor layer; a first dielectric layer and a second dielectric layer arranged on opposite sides of the semiconductor layer; a first metal layer on the first dielectric layer A side of the semiconductor layer opposite to the semiconductor layer forms a first terminal and a second terminal, one of the first terminal and the second terminal extending through the first dielectric layer into contact with the semiconductor layer, The first and second terminals form a capacitor with the first dielectric layer; and a second metal layer forms a third terminal on an opposite side of the second dielectric layer from the semiconductor layer. In one embodiment, the first and second terminals are source and drain terminals and the third terminal is a gate terminal. The first metal layer may be divided to form the first terminal and the second terminal. The third terminal may be shared with one of the first terminal and the second terminal.
在另一个实施例中,薄膜电容器包括:半导体层;第一介电层和第二介电层,二者布置在所述半导体层的相反侧,至少所述第二介电层在其中具有开口;第一金属层,其在所述第一介电层的与所述半导体层相反的一侧形成第一端子;以及第二金属层,其在所述第二介电层的与所述半导体层相反的一侧形成第二端子,所述第二金属层延伸穿过所述第二介电层中的所述开口而与所述半导体层接触。In another embodiment, a film capacitor includes: a semiconductor layer; a first dielectric layer and a second dielectric layer disposed on opposite sides of the semiconductor layer, at least the second dielectric layer having an opening therein a first metal layer forming a first terminal on the opposite side of the first dielectric layer from the semiconductor layer; and a second metal layer on the second dielectric layer opposite the semiconductor layer The opposite side of the layer forms a second terminal, the second metal layer extending through the opening in the second dielectric layer into contact with the semiconductor layer.
鉴于各种实施例和/或方面的详细描述,本发明的前文方面和另外方面以及实施例对于本领域的普通技术人员来说将变得显而易见,所述详细描述是参考附图来进行的,接下来提供所述附图的简述。The foregoing aspects and further aspects and embodiments of the present invention will become apparent to those of ordinary skill in the art in view of the detailed description of various embodiments and/or aspects, which is taken with reference to the accompanying drawings, A brief description of the figures is provided next.
附图说明Description of drawings
在阅读以下详细描述并且参考附图之后,本发明的前文和其它优点将变得显而易见。The foregoing and other advantages of the present invention will become apparent upon reading the following detailed description and upon reference to the accompanying drawings.
图1图示了具有包括纳米导体层的沟道区的底栅极薄膜晶体管的框图。FIG. 1 illustrates a block diagram of a bottom-gate thin film transistor having a channel region including a nanoconductor layer.
图2图示了具有包括纳米导体层的沟道区的顶栅极薄膜晶体管的框图。2 illustrates a block diagram of a top-gate thin film transistor having a channel region including a nanoconductor layer.
图3A是具有包括纳米导体层的沟道区的薄膜晶体管100的横截面示意图。FIG. 3A is a schematic cross-sectional view of a thin film transistor 100 having a channel region including a nanoconductor layer.
图3B是与图3A所示的薄膜晶体管类似、但具有更短纳米导体层的薄膜晶体管的示意图。FIG. 3B is a schematic diagram of a thin film transistor similar to that shown in FIG. 3A but with a shorter nanoconductor layer.
图4A是具有大于TFT的漏极端子与源极端子之间的间隔的特性长度的纳米导体层的俯视示意图。4A is a schematic top view of a nanoconductor layer having a characteristic length greater than the spacing between the drain and source terminals of a TFT.
图4B是与图4A类似的纳米导体层的俯视示意图,但其中单个纳米导体并未完全沿从漏极端子到源极端子的方向对齐。Fig. 4B is a schematic top view of a nanoconductor layer similar to Fig. 4A, but in which the individual nanoconductors are not completely aligned in the direction from the drain terminal to the source terminal.
图4C是与图4A类似的纳米导体层的俯视示意图,但其中纳米导体层的特性长度小于TFT的漏极端子与源极端子之间的间隔。FIG. 4C is a schematic top view of a nanoconductor layer similar to FIG. 4A , but wherein the characteristic length of the nanoconductor layer is smaller than the distance between the drain terminal and the source terminal of the TFT.
图5是图示了用于制造具有包括纳米导体层的沟道区的薄膜晶体管的示例过程的流程图。5 is a flowchart illustrating an example process for fabricating a thin film transistor having a channel region including a nanoconductor layer.
图6是具有包括纳米导体层的沟道区的薄膜晶体管的剖面示意图。6 is a schematic cross-sectional view of a thin film transistor having a channel region including a nanoconductor layer.
图7是两种典型的金属-绝缘层-金属(MIM)电容器的一对截面图。Figure 7 is a pair of cross-sectional views of two typical metal-insulator-metal (MIM) capacitors.
图8是具有高电容值的结构的截面图。Fig. 8 is a cross-sectional view of a structure with a high capacitance value.
图9是图8所示的结构的平面图。FIG. 9 is a plan view of the structure shown in FIG. 8 .
图10是具有高电容值的变换结构的截面图。Fig. 10 is a cross-sectional view of a conversion structure with a high capacitance value.
虽然本发明容易有各种更改和替代形式,但已通过举例方式在附图中显示了本发明的具体实施例并在本文中对其作了详细的描述。然而,应当理解,本发明并不意图限于所公开的特定形式。事实上,本发明将要覆盖属于本发明的随附权利要求书所限定的精神和范围内的所有的修改、等同物和替代形式。While the invention is susceptible to various modifications and alternative forms, specific embodiments of the invention have been shown by way of example in the drawings and described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. In fact, the present invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
具体实施例specific embodiment
图1图示了具有包括纳米导体层20的沟道区31的底栅极薄膜晶体管10的框图。薄膜晶体管10通常可以通过在显示器的衬底12上的沉积作用或类似过程来形成。例如,衬底12可以是背板衬底或封装玻璃衬底,或提供其上可以生成TFT 10的表面的另一种合适的衬底。栅极端子14形成在衬底12上。栅极端子14是用于接收信号来操作TFT 10的导电电极。施加到栅极端子14上的信号可以是开启或关闭TFT 10的二进制“高”信号或二进制“低”信号,或可以是控制通过漏极端子和源极端子来输送的电流的数量的处于多个电平的信号。FIG. 1 illustrates a block diagram of a bottom-gate thin film transistor 10 having a channel region 31 including a nanoconductor layer 20 . Thin film transistor 10 may generally be formed by deposition or similar process on substrate 12 of the display. For example, substrate 12 may be a backplane substrate or an encapsulating glass substrate, or another suitable substrate that provides a surface on which TFT 10 may be grown. Gate terminal 14 is formed on substrate 12 . The gate terminal 14 is a conductive electrode for receiving signals to operate the TFT 10 . The signal applied to the gate terminal 14 may be a binary "high" signal or a binary "low" signal that turns the TFT 10 on or off, or may be a multi-phase signal that controls the amount of current delivered through the drain and source terminals. level signal.
在栅极端子14的上方生成介电层16(“绝缘层”),来防止电流流到栅极端子14和TFT 10的沟道区31或防止电流从栅极端子14和TFT 10的沟道区31流动。可以通过沉积过程来生成介电层16。然后将纳米导体的层(即,纳米导体层20)放置(“定位”)在介电层16上。纳米导体层20通常包括多个纳米导体并且可以包括纳米线、纳米纤维和/或诸如单壁纳米管(“SWNT”)、双壁纳米管(“DWNT”)和/或多壁纳米管(“MWNT”)的纳米管。纳米导体可以由碳和/或硅形成,并且可以任选地并入掺杂材料以更改纳米导体的导电性能。纳米导体层20可以是纳米导体的单一层(即,单层)。A dielectric layer 16 (“insulating layer”) is formed over the gate terminal 14 to prevent current from flowing to or from the gate terminal 14 and the channel region 31 of the TFT 10. Area 31 Mobility. Dielectric layer 16 may be produced by a deposition process. A layer of nanoconductors (ie, nanoconductor layer 20 ) is then placed (“positioned”) on dielectric layer 16 . Nanoconductor layer 20 typically includes a plurality of nanoconductors and may include nanowires, nanofibers, and/or nanotubes such as single-walled nanotubes (“SWNTs”), double-walled nanotubes (“DWNTs”), and/or multi-walled nanotubes (“DWNTs”). MWNT") nanotubes. Nanoconductors can be formed from carbon and/or silicon, and can optionally incorporate dopant materials to alter the conductive properties of the nanoconductors. Nanoconductor layer 20 may be a single layer (ie, a single layer) of nanoconductors.
在纳米导体层20上方生成半导体层30。半导体层30和纳米导体层20一起形成TFT10的双层沟道区31。例如,半导体层30可以由有机半导体材料或无机半导体材料制成。例如,半导体层30可以由非晶硅或多晶硅形成。半导体层30也可以并入掺杂物来更改TFT 10的迁移率特性。A semiconductor layer 30 is grown over the nanoconductor layer 20 . The semiconductor layer 30 and the nanoconductor layer 20 together form a double-layer channel region 31 of the TFT 10 . For example, the semiconductor layer 30 may be made of an organic semiconductor material or an inorganic semiconductor material. For example, the semiconductor layer 30 may be formed of amorphous silicon or polycrystalline silicon. The semiconductor layer 30 may also incorporate dopants to modify the mobility characteristics of the TFT 10 .
然后将TFT的漏极端子32和源极端子34形成在半导体层上。漏极端子32和源极端子34各自由适合于输送电能的导电材料形成。例如,端子32、34可以是金属性的。漏极端子32与源极端子34之间的距离界定出沟道间隔距离。该沟道间隔距离是影响TFT 10的操作性能的一个参数。The drain terminal 32 and source terminal 34 of the TFT are then formed on the semiconductor layer. Drain terminal 32 and source terminal 34 are each formed of a conductive material suitable for transporting electrical energy. For example, terminals 32, 34 may be metallic. The distance between the drain terminal 32 and the source terminal 34 defines the channel separation distance. This channel separation distance is a parameter that affects the operational performance of the TFT 10 .
由于栅极14直接形成在衬底12上,所以将TFT 10称为底栅极TFT,从而具有栅极14的TFT 10的一侧称为TFT 10的底侧,而具有漏极端子32和源极端子34的TFT 10的一侧称为TFT 10的顶侧。Since the gate 14 is formed directly on the substrate 12, the TFT 10 is referred to as a bottom-gate TFT, so that the side of the TFT 10 having the gate 14 is referred to as the bottom side of the TFT 10, while the side having the drain terminal 32 and the source The side of the TFT 10 with the extreme terminals 34 is referred to as the top side of the TFT 10 .
图2图示了具有包括纳米导体层20的沟道区31的顶栅极薄膜晶体管40的框图。顶栅极TFT 40是通过以相反的顺序施加与图1中所示的底栅极TFT 10相关地论述的分层组件来制造。漏极端子32和源极端子34各自形成在衬底12上。然后将半导体层30沉积在漏极端子32和源极端子34上。然后将纳米导体层20施加到半导体层30以形成双层沟道区31。通过将纳米导体层20施加到与漏极端子32和源极端子34相反的半导体层30的表面,纳米导体层20被定位成不与漏极端子32和源极端子34存在任何直接接触。因此,在低场效应操作(例如,低栅极-源极电压)期间,TFT的性能由半导体层来支配,这是因为纳米导体不与TFT的源极端子或漏极端子存在任何直接接触。TFT因而提供与半导体层30的性能类似的良好的泄漏电流性能。然后在沟道区31的纳米导体侧生成介电层16,并且将栅极端子14形成在介电层16上。FIG. 2 illustrates a block diagram of a top-gate thin film transistor 40 having a channel region 31 including a nanoconductor layer 20 . Top-gate TFT 40 is fabricated by applying in reverse order the layered components discussed in relation to bottom-gate TFT 10 shown in FIG. 1 . A drain terminal 32 and a source terminal 34 are each formed on the substrate 12 . A semiconductor layer 30 is then deposited on the drain terminal 32 and the source terminal 34 . Nanoconductor layer 20 is then applied to semiconductor layer 30 to form bilayer channel region 31 . By applying nanoconductor layer 20 to the surface of semiconductor layer 30 opposite drain terminal 32 and source terminal 34 , nanoconductor layer 20 is positioned without any direct contact with drain terminal 32 and source terminal 34 . Therefore, during low field effect operation (eg, low gate-source voltage), the performance of the TFT is dominated by the semiconductor layer, since the nanoconductor does not have any direct contact with the source or drain terminals of the TFT. The TFT thus provides good leakage current performance similar to that of the semiconductor layer 30 . A dielectric layer 16 is then grown on the nanoconductor side of the channel region 31 and the gate terminal 14 is formed on the dielectric layer 16 .
此外,纳米导体纳米导体层可以改变TFT装置的极性。例如,碳纳米管具有p型特性。因此,形成有包括碳纳米管的沟道区的非晶硅(a-Si)TFT可以具有p型特性。如此形成的p型a-Si TFT因与常规p型TFT相比较之下的这种p型晶体管的增强的迁移率,而可以大大地有益于a-Si TFT应用。与常规p型TFT相比较之下的这种p型晶体管的增强的迁移率可以有利地使这种p型a-Si TFT被利用在先前由n型TFT支配的AMOLED显示器应用中,从而允许p型像素电路结构。In addition, the nanoconductor nanoconductor layer can change the polarity of the TFT device. For example, carbon nanotubes have p-type characteristics. Accordingly, an amorphous silicon (a-Si) TFT formed with a channel region including carbon nanotubes may have p-type characteristics. The p-type a-Si TFTs thus formed can greatly benefit a-Si TFT applications due to the enhanced mobility of such p-type transistors compared to conventional p-type TFTs. The enhanced mobility of such p-type transistors compared with conventional p-type TFTs may advantageously enable such p-type a-Si TFTs to be utilized in AMOLED display applications previously dominated by n-type TFTs, allowing p type pixel circuit structure.
图3A是具有包括纳米导体层120的沟道区131的薄膜晶体管110(“TFT”)的横截面示意图。在图3A中的示意图中,TFT 110的组件被编有比图1的框图中TFT 10的相应组件的参考数字大100的参考数字。TFT 110形成在衬底112上,所述衬底112可以是诸如背板衬底、透明平面衬底或封装玻璃衬底等显示器的衬底。栅极端子114形成在衬底112上。栅极端子114可以是具有与图1相关地描述的栅极端子14的特性类似的特性的导电端子。在栅极端子114上生成介电层116以使栅极端子114与TFT 110的沟道区131绝缘。介电层116可以是电绝缘体。3A is a schematic cross-sectional view of a thin film transistor 110 (“TFT”) having a channel region 131 including a nanoconductor layer 120 . In the schematic diagram of FIG. 3A , components of TFT 110 are numbered with reference numerals that are 100 greater than the reference numerals of corresponding components of TFT 10 in the block diagram of FIG. 1 . The TFT 110 is formed on a substrate 112, which may be a substrate for a display such as a backplane substrate, a transparent planar substrate, or an encapsulating glass substrate. A gate terminal 114 is formed on the substrate 112 . The gate terminal 114 may be a conductive terminal having characteristics similar to those of the gate terminal 14 described in relation to FIG. 1 . A dielectric layer 116 is grown on the gate terminal 114 to insulate the gate terminal 114 from the channel region 131 of the TFT 110 . Dielectric layer 116 may be an electrical insulator.
TFT的沟道区131具有两个层:纳米导体层120和半导体层130。半导体层130使纳米导体层120避免与漏极端子132或源极端子134的直接接触。纳米导体层120通常包括多条纳米线、多条纳米纤维和/或多根纳米管。将纳米导体层120中的单个纳米导体(“纳米颗粒”)放置在介电层116上的薄膜内。单个纳米导体各自期望地沿从漏极端子132到源极端子134的方向大体对齐,以增加漏极端子132与源极端子134之间的电荷转移的效力。The channel region 131 of the TFT has two layers: the nanoconductor layer 120 and the semiconductor layer 130 . The semiconductor layer 130 prevents the nanoconductor layer 120 from direct contact with the drain terminal 132 or the source terminal 134 . The nanoconductor layer 120 typically includes a plurality of nanowires, a plurality of nanofibers and/or a plurality of nanotubes. Individual nanoconductors (“nanoparticles”) in nanoconductor layer 120 are placed within a thin film on dielectric layer 116 . The individual nanoconductors are each desirably generally aligned in a direction from drain terminal 132 to source terminal 134 to increase the effectiveness of charge transfer between drain terminal 132 and source terminal 134 .
图3B是与图3A中图示的薄膜晶体管类似但具有更短纳米导体层121的薄膜晶体管111的示意图。图3B中的示意图示出了漏极端子132和源极端子134能够以不同的数量与纳米导体层121重叠。通过沿从漏极端子132到源极端子134的方向调节纳米导体层121的尺寸程度,可以更改双层沟道区131的电荷转移特性。例如,双层沟道区131可以通过增加纳米导体层121的尺寸程度(例如,长度)、通过增加纳米导体层121内的纳米导体的密度和/或通过增加与漏极端子132和/或源极端子134的重叠数量来提供相对较多的电荷转移(例如,增加的迁移率)。如本文所述,纳米导体层121与漏极端子132和源极端子134之间的重叠数量指的是仅通过穿过半导体层130的垂直路径来与纳米导体层121分离的漏极端子132/源极端子134的表面积数量。在图3A和图3B中,穿过半导体层130的垂直方向是向外垂直于衬底112的方向。FIG. 3B is a schematic diagram of a thin film transistor 111 similar to that illustrated in FIG. 3A but with a shorter nanoconductor layer 121 . The schematic diagram in FIG. 3B shows that the drain terminal 132 and the source terminal 134 can overlap the nanoconductor layer 121 by different amounts. By adjusting the extent of the size of the nanoconductor layer 121 in the direction from the drain terminal 132 to the source terminal 134, the charge transfer characteristics of the bilayer channel region 131 can be altered. For example, the bilayer channel region 131 can be formed by increasing the dimension (e.g., length) of the nanoconductor layer 121, by increasing the density of nanoconductors within the nanoconductor layer 121, and/or by increasing the contact with the drain terminal 132 and/or source The overlapping amount of the extreme terminals 134 is used to provide relatively more charge transfer (eg, increased mobility). As described herein, the amount of overlap between the nanoconductor layer 121 and the drain terminal 132 and source terminal 134 refers to the drain terminal 132/source terminal 132 separated from the nanoconductor layer 121 only by a vertical path through the semiconductor layer 130. The amount of surface area of the source terminal 134 . In FIGS. 3A and 3B , the vertical direction through the semiconductor layer 130 is the direction outwardly perpendicular to the substrate 112 .
本发明的多个方面进一步提供,纳米导体层121可以沿从漏极端子132到源极端子134的方向被配置有不与漏极端子132或源极端子134中的任一者重叠的尺寸程度。例如,纳米导体层121的长度可以小于漏极端子132与源极端子134之间的间隔距离。通过图4A至图4C中的俯视示意图大体图示了纳米导体层121的额外配置。Aspects of the present invention further provide that the nanoconductor layer 121 may be configured in a direction from the drain terminal 132 to the source terminal 134 with a dimension that does not overlap with either the drain terminal 132 or the source terminal 134 . For example, the length of the nanoconductor layer 121 may be smaller than the separation distance between the drain terminal 132 and the source terminal 134 . Additional configurations of the nanoconductor layer 121 are generally illustrated by the schematic top views in FIGS. 4A-4C .
图4A是具有大于TFT的漏极端子与源极端子之间的间隔的特性长度的纳米导体层的俯视示意图。虽然出于示意性目的,以具有均一长度且各自在漏极端子32与源极端子34之间对齐的单个纳米导体(例如,纳米导体21、22)示出了纳米导体层20,但本发明并不限于此。本发明的多个方面适用于纳米导体层20具有长度和定向不均一的单个纳米导体的配置。图4A中的纳米导体层20的示意图也图示了单个纳米导体(例如,纳米导体21、22)是以单层布置的。纳米导体层20可以是未完全覆盖住双层沟道区的完整横截面积的纳米导体的分散单层。例如,单个纳米导体(例如,纳米导体21、22)之间的间隙大致可以是与纳米导体自身宽度相同的尺寸,以使得纳米导体层20中的单个纳米导体(例如,纳米导体21、22)累积覆盖住近似一半(例如,50%)的双层沟道区。在一个示例中,单个纳米导体(例如,纳米导体21、22)之间的任何间隙都由沉积在纳米导体层20上方的半导体层填充。可以在覆盖范围大于或小于50%的覆盖范围(诸如,30%覆盖范围或70%覆盖范围)的情况下执行纳米导体层20。通常来说,增加纳米导体单层的密度(即,覆盖率)可以增强双层沟道区的电荷转移特性。4A is a schematic top view of a nanoconductor layer having a characteristic length greater than the spacing between the drain and source terminals of a TFT. While for illustrative purposes nanoconductor layer 20 is shown as individual nanoconductors (e.g., nanoconductors 21, 22) of uniform length each aligned between drain terminal 32 and source terminal 34, the present invention It is not limited to this. Aspects of the present invention are applicable to configurations in which the nanoconductor layer 20 has individual nanoconductors that are not uniform in length and orientation. The schematic diagram of nanoconductor layer 20 in FIG. 4A also illustrates that individual nanoconductors (eg, nanoconductors 21 , 22 ) are arranged in a single layer. Nanoconductor layer 20 may be a dispersed monolayer of nanoconductors that does not completely cover the full cross-sectional area of the bilayer channel region. For example, the gaps between individual nanoconductors (e.g., nanoconductors 21, 22) may be approximately the same size as the width of the nanoconductors themselves, such that individual nanoconductors (e.g., nanoconductors 21, 22) in nanoconductor layer 20 Cumulatively covers approximately half (eg, 50%) of the bilayer channel region. In one example, any gaps between individual nanoconductors (eg, nanoconductors 21 , 22 ) are filled by a semiconductor layer deposited over nanoconductor layer 20 . The nanoconductor layer 20 may be performed with a coverage greater or less than 50% coverage, such as 30% coverage or 70% coverage. In general, increasing the density (ie, coverage) of a nanoconductor monolayer can enhance the charge transfer properties of a bilayer channel region.
在图4A至图4C中,标示为“D”和“S”的散列块分别表示漏极端子32和源极端子34的位置。漏极端子32具有沟道侧33,而源极端子34具有沟道侧35。出于方便考虑,可以将漏极端子32的沟道侧33与源极端子34的沟道侧35之间的距离称为沟道间隔距离。如图4A中所示,纳米导体层20的长度可以大于漏极端子32与源极端子34之间的沟道间隔距离,以使得漏极端子32和源极端子34各自与纳米导体层20的至少一部分重叠。通过使纳米导体层20的至少一部分与漏极端子32/源极端子34重叠,纳米导体层20有利地允许穿过半导体层的垂直连接路径来增强双层沟道区的电荷转移特性。In FIGS. 4A-4C , the hash blocks labeled "D" and "S" represent the locations of the drain terminal 32 and the source terminal 34, respectively. The drain terminal 32 has a channel side 33 and the source terminal 34 has a channel side 35 . For convenience, the distance between the channel side 33 of the drain terminal 32 and the channel side 35 of the source terminal 34 may be referred to as a channel separation distance. As shown in FIG. 4A , the length of the nanoconductor layer 20 may be greater than the channel separation distance between the drain terminal 32 and the source terminal 34, so that the drain terminal 32 and the source terminal 34 are each separated from the nanoconductor layer 20. at least partially overlap. By overlapping at least a portion of the nanoconductor layer 20 with the drain terminal 32/source terminal 34, the nanoconductor layer 20 advantageously allows a vertical connection path through the semiconductor layer to enhance the charge transfer characteristics of the bilayer channel region.
图4B是与图4A类似的纳米导体层的俯视示意图,但其中单个纳米导体(例如,纳米导体21、23)并未完全沿从漏极端子32定向到源极端子34的方向对齐。由于纳米导体层20并未直接连接到漏极端子32/源极端子34的任一者(即,纳米导体层20仅通过半导体层连接到漏极端子/源极端子),所以双层沟道区的电荷转移特性对单个纳米导体(例如,纳米导体23)的精确对齐要求相对不敏感。因此,纳米导体(例如,纳米导体21、23)通常通过穿过半导体层输送电荷到漏极端子32/源极端子34或从漏极端子32/源极端子34输送电荷穿过半导体层来增强双层沟道区的有效迁移率,以使得薄膜晶体管的电荷转移特性不受限于半导体层的迁移率。FIG. 4B is a schematic top view of a nanoconductor layer similar to FIG. 4A , but where the individual nanoconductors (eg, nanoconductors 21 , 23 ) are not perfectly aligned in a direction oriented from drain terminal 32 to source terminal 34 . Since the nanoconductor layer 20 is not directly connected to any of the drain terminal 32/source terminal 34 (i.e., the nanoconductor layer 20 is only connected to the drain/source terminal through the semiconducting layer), the double-layer channel The charge transfer properties of the regions are relatively insensitive to the precise alignment requirements of the individual nanoconductors (eg, nanoconductors 23). Accordingly, nanoconductors (e.g., nanoconductors 21, 23) are typically enhanced by transporting charge to or from drain terminal 32/source terminal 34 through the semiconductor layer. The effective mobility of the double-layer channel region, so that the charge transfer characteristics of the thin film transistor are not limited by the mobility of the semiconductor layer.
图4C是与图4A类似的纳米导体层的俯视示意图,但其中纳米导体层的特性长度小于TFT的漏极端子与源极端子之间的间隔。在图4C中的示意图中,单个纳米导体(例如,纳米导体24、25)图示为具有小于沟道间隔距离的长度。在图4C中图示的配置中,纳米导体层20并不与漏极端子32或源极端子34的任一者重叠。因此,从漏极端子32/源极端子34至纳米导体层20不存在电荷转移路径,所述电荷转移路径只包括穿过半导体层的垂直电荷转移路径。例如,在图4C中示出的配置中,双层沟道区的有效迁移率可能会受到电荷横向转移穿过的要求的限制。FIG. 4C is a schematic top view of a nanoconductor layer similar to FIG. 4A , but wherein the characteristic length of the nanoconductor layer is smaller than the distance between the drain terminal and the source terminal of the TFT. In the schematic diagram in FIG. 4C, individual nanoconductors (eg, nanoconductors 24, 25) are shown having a length that is less than the channel separation distance. In the configuration illustrated in FIG. 4C , nanoconductor layer 20 does not overlap either drain terminal 32 or source terminal 34 . Therefore, there is no charge transfer path from the drain terminal 32/source terminal 34 to the nanoconductor layer 20, which only includes a vertical charge transfer path through the semiconductor layer. For example, in the configuration shown in Figure 4C, the effective mobility of the bilayer channel region may be limited by the requirement for lateral transfer of charges across.
图5是图示了用于制造具有包括纳米导体层的沟道区的薄膜晶体管(“TFT”)的示例过程的流程图50。在第一步骤51中,将TFT的栅极端子形成在衬底上。接着,在步骤52中在栅极端子54上生成介电层。该介电层包盖住栅极端子的暴露表面,以便防止接下来沉积的双层沟道区直接接触栅极端子。在步骤53中,将诸如纳米管或纳米线的纳米导体分散层定位在介电层上。如与图3A至图3B相关地论述,纳米导体分散层可以是未覆盖住沟道区的全部暴露面积的单层。在步骤54中,将半导体层沉积在纳米导体层、和介电层的任何暴露区域上。半导体层可以包括非晶硅。因此,半导体层和纳米导体层共同形成双层沟道区。然后在步骤55中,将源极端子和漏极端子形成在半导体层上。源极端子和漏极端子被如此形成从而不与纳米导体直接连接。5 is a flowchart 50 illustrating an example process for fabricating a thin film transistor ("TFT") having a channel region that includes a nanoconductor layer. In a first step 51, a gate terminal of a TFT is formed on a substrate. Next, a dielectric layer is grown on the gate terminal 54 in step 52 . The dielectric layer covers the exposed surface of the gate terminal to prevent the subsequently deposited bilayer channel region from directly contacting the gate terminal. In step 53, a dispersed layer of nanoconductors, such as nanotubes or nanowires, is positioned on the dielectric layer. As discussed in relation to FIGS. 3A-3B , the nanoconductor dispersion layer may be a single layer that does not cover the entire exposed area of the channel region. In step 54, a semiconductor layer is deposited on the nanoconductor layer, and any exposed areas of the dielectric layer. The semiconductor layer may include amorphous silicon. Therefore, the semiconductor layer and the nanoconductor layer jointly form a double-layer channel region. Then in step 55, source and drain terminals are formed on the semiconductor layer. The source and drain terminals are formed so as not to be directly connected to the nanoconductor.
流程图50是用于制造底栅极TFT(即,将栅极端子沉积在衬底上)的过程的实施例。然而,可以采用类似的过程来制造顶栅极TFT,该顶栅极TFT具有并入不直接接触漏极端子或源极端子的纳米导体的双层沟道区,诸如图2中示出的顶栅极TFT 40。例如,漏极端子和源极端子可以形成在衬底上。可以将半导体层沉积在漏极端子和源极端子的上方,并且可以将纳米导体层放置在半导体层的上方,从而形成双层沟道区。可以将介电层沉积在双层沟道区的上方,并且可以将栅极端子形成在介电层上。Flowchart 50 is an embodiment of a process for fabricating a bottom-gate TFT (ie, depositing a gate terminal on a substrate). However, a similar process can be used to fabricate a top-gate TFT with a double-layer channel region incorporating a nanoconductor that does not directly contact the drain or source terminal, such as the top-gate TFT shown in FIG. Gate TFT 40. For example, drain and source terminals may be formed on the substrate. A semiconductor layer can be deposited over the drain and source terminals, and a nanoconductor layer can be placed over the semiconductor layer, thereby forming a bilayer channel region. A dielectric layer can be deposited over the bilayer channel region, and a gate terminal can be formed on the dielectric layer.
图6图示了更改的结构,其中金属源和漏极端子61和62(例如,厚度为约100纳米的铝)形成在p+硅(例如,厚度为约35纳米)的各自的层63和64上。紧接在层63和64下方的是半导体材料(例如,总厚度为约30纳米的交替的纳米晶硅和非晶硅)层65,所述半导体材料层65被沉积在诸如碳纳米管(例如,厚度为约1至2纳米)的纳米导体层66之上。将纳米导体沉积在介电层67(例如,厚度为约100纳米的热二氧化硅)之上,又将所述介电层沉积在衬底68(例如,p+硅)上。衬底67的底面覆盖有导电背部触点69(例如,厚度为约100纳米的铝)。Figure 6 illustrates a modified structure in which metal source and drain terminals 61 and 62 (e.g., aluminum with a thickness of about 100 nm) are formed on respective layers 63 and 64 of p+ silicon (e.g., about 35 nm in thickness) superior. Immediately below layers 63 and 64 is a layer 65 of semiconductor material (e.g., alternating nanocrystalline silicon and amorphous silicon with a total thickness of about 30 nanometers) deposited on a surface such as carbon nanotubes (e.g., , with a thickness of about 1 to 2 nanometers) on the nanoconductor layer 66. The nanoconductor is deposited over a dielectric layer 67 (eg, thermal silicon dioxide with a thickness of about 100 nanometers), which in turn is deposited on a substrate 68 (eg, p+ silicon). The bottom surface of the substrate 67 is covered with a conductive back contact 69 (eg, aluminum with a thickness of about 100 nanometers).
用于形成图6中所示的结构的示例性过程如下:An exemplary process for forming the structure shown in Figure 6 is as follows:
1.热P+硅衬底清洗1. Thermal P + Si Substrate Cleaning
(a)使衬底在丙酮中进行10分钟的超声波清洗,然后在异丙醇(IPA)中进行另外10分钟的超声波清洗。将这一过程重复两次。(a) The substrate was ultrasonically cleaned in acetone for 10 minutes, followed by an additional 10 minutes in isopropanol (IPA). This process was repeated twice.
(b)用去离子水对衬底进行漂洗并且用氮进行干燥。(b) The substrate was rinsed with deionized water and dried with nitrogen.
注意:在下一步骤之前将衬底放在电炉(~90℃)上持续10分钟。NOTE: Place the substrate on the electric furnace (~90°C) for 10 minutes before the next step.
2.碳纳米管涂布2. Carbon nanotube coating
(a)使用氨丙基三乙氧基硅烷(APTES)处理衬底。(a) The substrate was treated with aminopropyltriethoxysilane (APTES).
在涂布之前,将衬底浸入APTES溶液(1%v/v的IPA溶液)中20分钟,然后用IPA对所述衬底进行漂洗并且用氮进行干燥。Prior to coating, the substrate was immersed in APTES solution (1% v/v in IPA solution) for 20 minutes, rinsed with IPA and dried with nitrogen.
(b)将碳纳米管浸涂在经过APTES处理的衬底上。(b) Dip-coating carbon nanotubes on the APTES-treated substrate.
将衬底浸入碳纳米管溶液中15分钟。然后用充足的去离子水对衬底进行漂洗并且用氮进行干燥。Submerge the substrate in the carbon nanotube solution for 15 min. The substrate was then rinsed with plenty of deionized water and dried with nitrogen.
将所述涂布有碳纳米管的衬底在180℃电炉上烘烤20分钟,之后将它加载到等离子增强化学气相沉积(PECVD)系统上。The carbon nanotube-coated substrate was baked on an electric furnace at 180° C. for 20 minutes, after which it was loaded onto a plasma-enhanced chemical vapor deposition (PECVD) system.
3.使用PECVD沉积纳米晶硅(nc-Si)和非晶硅SiNx。3. Deposit nanocrystalline silicon (nc-Si) and amorphous silicon SiNx using PECVD.
(a)nc-Si(~30nm.)(a) nc-Si (~30nm.)
气体:SiH4/H2=40/200sccm;Pr=900mtorr;RF=2W;T=210C(设定);速率=4.07nm/min。Gas: SiH 4 /H 2 = 40/200 sccm; Pr = 900 mtorr; R F = 2W; T = 210C (set); Rate = 4.07 nm/min.
(b)SiNx(150nm)(b) SiN x (150nm)
气体:SiH4/NH3/N2=5/100/50sccm;Pr=1000mtorr;RF=15W;T=250C(设定);速率=15nm/min。Gas: SiH 4 /NH 3 /N 2 = 5/100/50 sccm; Pr = 1000 mtorr; R F = 15 W; T = 250C (set); Rate = 15 nm/min.
4.经由(掩模#1)的SiNx 4. SiN x via (mask #1)
(a)光刻法(a) Photolithography
光致抗蚀剂:NLOF 2035Photoresist: NLOF 2035
旋转:10秒500rpm,接着90秒4000rmp。Rotation: 500 rpm for 10 seconds, followed by 4000 rpm for 90 seconds.
软性烘烤:110℃下持续1分钟。Soft Bake: 1 minute at 110°C.
接触:低真空。Contact: low vacuum.
曝光:5.4秒。Exposure: 5.4 seconds.
曝光后烘烤:110℃。Post-exposure bake: 110°C.
显影:~30秒的AZ300MIF。Development: ~30 sec AZ300MIF.
(b)使用缓冲氢氟酸(BHF)湿法蚀刻SiNx。(b) Wet etching of SiN x using buffered hydrofluoric acid (BHF).
将衬底浸入在BHF溶液(10%v/v)中27秒。The substrate was immersed in a BHF solution (10% v/v) for 27 seconds.
(c)光致抗蚀剂的剥离(c) Stripping of photoresist
将衬底浸入AZ KWIT剥离剂中10分钟,然后通过去离子水、丙酮和IPA来对所述衬底进行漂洗。The substrate was immersed in AZ KWIT stripper for 10 minutes and then rinsed with deionized water, acetone and IPA.
5.P+沉积(~35nm厚)5. P + deposition (~35nm thick)
气体:SiH4/B2H6/H2=1.8/1.8/200sccm;Pr=1500mtorr;RF=65W;T=250C,(设定);速率=7.7nm/min。Gas: SiH 4 /B 2 H 6 /H 2 = 1.8/1.8/200 sccm; Pr = 1500 mtorr; RF = 65W; T = 250C, (set); Rate = 7.7 nm/min.
6.S/D金属沉积(铝,~100nm厚)6. S/D metal deposition (aluminum, ~100nm thick)
7.S/D图案化(掩模#1’)7. S/D Patterning (Mask #1')
光致抗蚀剂:AZ 3312Photoresist: AZ 3312
旋转:10秒700rpm,接着60秒4000rmp。Rotation: 700 rpm for 10 seconds, followed by 4000 rpm for 60 seconds.
软性烘烤:90℃下持续1分钟。Soft Bake: 1 minute at 90°C.
接触:低真空。Contact: low vacuum.
曝光:4秒。Exposure: 4 seconds.
曝光后烘烤:120℃下持续1分钟。Post-exposure bake: 120°C for 1 minute.
显影:~15秒的AZ300MIF。Development: ~15 sec AZ300MIF.
蚀刻:在室温下在PAN蚀刻剂中~3分钟。Etching: ~3 minutes in PAN etchant at room temperature.
剥离:在AZ KWIT剥离剂中漂洗4分钟,然后用去离子水、丙酮和IPA来对所述衬底进行漂洗。Stripping: Rinse in AZ KWIT stripper for 4 minutes, then rinse the substrate with deionized water, acetone and IPA.
8.将S/D金属用作硬质掩模来分离P+。8. Use S/D metal as a hard mask to separate P + .
RIE干法蚀刻P+硅:RIE dry etching of P+ silicon:
RF=50W;Pr=20mtorr;CF4/H2=20/3sccm;速率=~0.43nm/sRF=50W; Pr=20mtorr; CF4/H2=20/3sccm; Rate=~0.43nm/s
9.装置分离和隔离(掩模#2)9. Device Separation and Isolation (Mask #2)
(a)光刻法(a) Photolithography
光致抗蚀剂:AZ 3312Photoresist: AZ 3312
旋转:10秒700rpm,接着60秒4000rmp。Rotation: 700 rpm for 10 seconds, followed by 4000 rpm for 60 seconds.
软性烘烤:90℃下持续1分钟。Soft Bake: 1 minute at 90°C.
接触:低真空。Contact: low vacuum.
曝光:4秒。Exposure: 4 seconds.
曝光后烘烤:120℃下持续1分钟。Post-exposure bake: 120°C for 1 minute.
显影:~15秒的AZ300MIF。Development: ~15 sec AZ300MIF.
(b)干法蚀刻SiNx/Si/碳纳米管。(b) Dry etching of SiN x /Si/carbon nanotubes.
RF=125W;Pr=150mtorr;CF4/O2=43/5sccm;速率=~4nm/s。 RF = 125W; Pr = 150mtorr; CF4 / O2 = 43/5 sccm; rate = ~4nm/s.
10.背部触点金属沉积(铝,~100nm厚)10. Back contact metal deposition (Al, ~100nm thick)
(a)除去背部热氧化物。(a) Removal of back thermal oxide.
将所述晶圆前侧由PR AZ3312来保护,之后将它浸入BHF(10%v/v)中4分钟。The front side of the wafer was protected by PR AZ3312 before it was immersed in BHF (10% v/v) for 4 minutes.
(b)金属沉积在晶圆的后侧。(b) Metal deposited on the backside of the wafer.
在通过BHF将晶圆后侧的热氧化物除去之后,将晶圆立即加载到真空室中以便进行金属沉积。Immediately after the thermal oxide on the backside of the wafer was removed by BHF, the wafer was loaded into a vacuum chamber for metal deposition.
图7~10图示了薄膜电容器,该薄膜电容器包括:半导体层,其具有可控电阻;第一介电层和第二介电层,二者布置在所述半导体层的相反侧;第一金属层,其在所述第一介电层的与所述半导体层相反的一侧形成第一端子;第二金属层,其在所述第二介电层的与所述半导体层相反的一侧形成第二端子和第三端子,所述第三端子延伸穿过所述第二介电层而与所述半导体层接触,所述第二端子不与所述半导体层接触;以及电压源,其与所述第二端子和第三端子中的一者耦接以减小所述半导体层的电阻,且所述第二端子和第三端子中的另一者与所述半导体层形成电容器。所述第二端子和第三端子可以是源极端子和漏极端子,且所述第一端子可以是栅极端子。所述第二金属层可被分割成形成所述第二端子和第三端子,且所述第一端子可与所述第二端子和第三端子中的一者共用。所述第二端子和第三端子可连接成在所述半导体层与所述第二端子和第三端子之间形成电容器。切换电压的电源可连接至薄膜电容器的端子。7-10 illustrate a film capacitor comprising: a semiconductor layer having a controllable resistance; a first dielectric layer and a second dielectric layer arranged on opposite sides of the semiconductor layer; a first a metal layer forming a first terminal on a side of the first dielectric layer opposite to the semiconductor layer; a second metal layer on a side of the second dielectric layer opposite to the semiconductor layer forming a second terminal and a third terminal extending through the second dielectric layer in contact with the semiconductor layer, the second terminal not in contact with the semiconductor layer; and a voltage source, It is coupled with one of the second terminal and the third terminal to reduce the resistance of the semiconductor layer, and the other of the second terminal and the third terminal forms a capacitor with the semiconductor layer. The second and third terminals may be source and drain terminals, and the first terminal may be a gate terminal. The second metal layer may be divided to form the second terminal and the third terminal, and the first terminal may be shared with one of the second terminal and the third terminal. The second and third terminals may be connected to form a capacitor between the semiconductor layer and the second and third terminals. A power source of switched voltage may be connected to the terminals of the film capacitor.
在图7中,在半导体层与位于该半导体层的相反侧的两个金属层中的至少一者之间形成电容器。每个金属层通过介电层与半导体层隔开。主要的挑战在于半导体是很电阻性的,且因此,与对电容器进行充电相关联的RC延迟将较高,这导致更低的帧率或滞后。In FIG. 7, a capacitor is formed between the semiconductor layer and at least one of the two metal layers on opposite sides of the semiconductor layer. Each metal layer is separated from the semiconductor layer by a dielectric layer. The main challenge is that semiconductors are very resistive, and therefore, the RC delay associated with charging the capacitor will be high, resulting in lower frame rates or lag.
为了避免高的RC延迟,如图8和9所示,使用了三端子电容器。位于半导体层一侧的第一金属层通过第一介电层与半导体层隔开并形成用于控制半导体层的电阻率的第一端子A。位于半导体层另一侧的第二金属层通过第二介电层与半导体层隔开。该第二金属层被分割成形成第二端子B和第三端子C,从而在端子B和端子C之间形成电容器。端子C延伸穿过第二介电层以与半导体层接触。To avoid high RC delays, three-terminal capacitors are used as shown in Figures 8 and 9. The first metal layer on one side of the semiconductor layer is separated from the semiconductor layer by the first dielectric layer and forms a first terminal A for controlling the resistivity of the semiconductor layer. The second metal layer on the other side of the semiconductor layer is separated from the semiconductor layer by the second dielectric layer. The second metal layer is divided to form a second terminal B and a third terminal C, thereby forming a capacitor between the terminal B and the terminal C. Terminal C extends through the second dielectric layer to contact the semiconductor layer.
在一个示例中,端子A与面板中的低或高电压线连接,这取决于半导体的类型(例如,低的用于p型而高的用于n型)。在此情况下,通过电荷累积(或消耗)显著地降低了半导体层电阻。在另一个示例中,端子A与另一端子(B或C)共用。在此情况下,这些端子之一具有降低半导体材料的电阻的电压,这取决于半导体的类型。In one example, terminal A is connected to a low or high voltage line in the panel, depending on the type of semiconductor (eg, low for p-type and high for n-type). In this case, the resistance of the semiconductor layer is significantly lowered by charge accumulation (or consumption). In another example, terminal A is shared with the other terminal (B or C). In this case, one of these terminals has a voltage which reduces the resistance of the semiconductor material, depending on the type of semiconductor.
在图8和9中,在端子C与半导体层之间具有两个接触部,但是一个接触部或两个以上接触部也是可以的(这取决于可用面积)。In Figures 8 and 9 there are two contacts between the terminal C and the semiconductor layer, but one contact or more than two contacts are also possible (depending on the available area).
层的顺序可以变化,且图8和9示出了3端子电容器的一个示例。The order of the layers can vary, and Figures 8 and 9 show an example of a 3-terminal capacitor.
电容器的控制端子上的电压可以是固定电压或切换电压。在切换电压的情况下,可以控制对电容器进行充电或放电的RC延迟。例如,在对电容器进行充电期间可使用降低RC延迟的电压,并然后使用使电容变得更稳定的用于保持周期的电压。在此情况下,电容的特性没有因为高的电压差偏置应力而发生显著变化。The voltage on the control terminal of the capacitor can be a fixed voltage or a switched voltage. In the case of switching voltages, the RC delay to charge or discharge the capacitor can be controlled. For example, a voltage that reduces the RC delay can be used during charging of the capacitor, and then a voltage for the hold cycle that makes the capacitor more stable. In this case, the characteristics of the capacitor do not change significantly due to the high voltage difference bias stress.
图10示出了在不给制造过程增加额外的处理步骤的情况下提供高电容值的另一结构。由于第二介电体2通常厚于半导体层,所以具有堆叠的介电体的传统方法比使用堆叠的半导体和介电体导致更小的电容器。这里,对第二介电体进行蚀刻,在此期间对该介电层进行图案化,并然后,用于电极B的金属被沉积成穿过图案中的开口与半导体层接触。为了具有一致的电容,可以如下方式连接电极B和电极A:两个电极A和B两端的电压总是高于或低于已形成的金属-绝缘体-半导体电容器的阀值电压。因此,半导体层将总是用作绝缘体或导体层。Figure 10 shows another structure that provides high capacitance values without adding additional processing steps to the manufacturing process. Since the second dielectric 2 is usually thicker than the semiconductor layer, the conventional approach with stacked dielectrics results in smaller capacitors than using stacked semiconductors and dielectrics. Here, the second dielectric is etched, during which the dielectric layer is patterned, and then the metal for electrode B is deposited in contact with the semiconductor layer through the opening in the pattern. In order to have a consistent capacitance, electrode B and electrode A can be connected in such a way that the voltage across both electrodes A and B is always higher or lower than the threshold voltage of the formed metal-insulator-semiconductor capacitor. Therefore, a semiconducting layer will always act as an insulator or a conductor layer.
虽然已示出和描述了本发明的具体实施例和应用,但应当理解,本发明并不限于本文所公开的精确构造和组成,并且在不偏离本发明的随附权利要求书中限定的精神和范围的情况下,各种更改、改变和变化可以根据前文描述变得显而易见。While particular embodiments and applications of the present invention have been shown and described, it is to be understood that the invention is not limited to the precise constructions and compositions disclosed herein and does not depart from the spirit of the invention as defined in the appended claims. Various modifications, changes, and variations may become apparent from the foregoing description, given the scope and scope.
Claims (6)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361921912P | 2013-12-30 | 2013-12-30 | |
US61/921,912 | 2013-12-30 | ||
US201461931778P | 2014-01-27 | 2014-01-27 | |
US61/931,778 | 2014-01-27 | ||
US14/245,203 US9070775B2 (en) | 2011-08-03 | 2014-04-04 | Thin film transistor |
US14/245,203 | 2014-04-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104752056A CN104752056A (en) | 2015-07-01 |
CN104752056B true CN104752056B (en) | 2018-06-05 |
Family
ID=53372334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410844332.8A Active CN104752056B (en) | 2013-12-30 | 2014-12-30 | Thin film capacitor |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104752056B (en) |
DE (1) | DE102014227034A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1041061A (en) * | 1988-09-07 | 1990-04-04 | 李钊华 | Piezocapacitor |
CN1871675A (en) * | 2003-08-20 | 2006-11-29 | 波尔伊克两合公司 | Organic capacitor having a voltage-controlled capacitance |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101032027B (en) * | 2004-09-02 | 2010-10-13 | 卡西欧计算机株式会社 | Thin film transistor and its manufacturing method |
-
2014
- 2014-12-30 DE DE102014227034.0A patent/DE102014227034A1/en not_active Ceased
- 2014-12-30 CN CN201410844332.8A patent/CN104752056B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1041061A (en) * | 1988-09-07 | 1990-04-04 | 李钊华 | Piezocapacitor |
CN1871675A (en) * | 2003-08-20 | 2006-11-29 | 波尔伊克两合公司 | Organic capacitor having a voltage-controlled capacitance |
Also Published As
Publication number | Publication date |
---|---|
CN104752056A (en) | 2015-07-01 |
DE102014227034A1 (en) | 2015-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102983176B (en) | Thin film transistor (TFT) including nanoconductor layer | |
US9070775B2 (en) | Thin film transistor | |
CN102136499B (en) | Thin-film transistor and manufacture method thereof | |
CN103403873B (en) | offset electrode TFT structure | |
US10008605B2 (en) | Connecting structure and method for manufacturing the same, and semiconductor device | |
CN106158978A (en) | Thin film transistor (TFT), array base palte and preparation method thereof | |
US9843007B2 (en) | Field effect transistor structure with gate structure having a wall and floor portions | |
TW202230798A (en) | Semiconductor device | |
KR102212999B1 (en) | Thin Film Transistor Based on Graphine Comprising N-Dopped Graphine Layer as Active Layer | |
CN104347813B (en) | Transistor, the method for manufacturing transistor and the electronic device including transistor | |
WO2016115824A1 (en) | Thin film transistor and array substrate, and manufacturing method therefor | |
Lin et al. | Fabrication of high-performance ZnO thin-film transistors with submicrometer channel length | |
US8658461B2 (en) | Self aligned carbide source/drain FET | |
JP5701015B2 (en) | Driving method of semiconductor device | |
CN108172626A (en) | A kind of thin film transistor and its preparation method | |
CN111129162B (en) | Thin film transistor, display substrate, display panel and display device | |
Lyu et al. | A film-profile-engineered 3-D InGaZnO inverter technology with systematically tunable threshold voltage | |
CN104752056B (en) | Thin film capacitor | |
CN108172627A (en) | A kind of thin film transistor and its preparation method | |
US20230118661A1 (en) | Space-free vertical field effect transistor including active layer having vertically grown crystal grains | |
CN108172625A (en) | a logic circuit | |
CN118039702A (en) | Top gate Schottky oxide thin film transistor and preparation method thereof | |
WO2014192282A1 (en) | Organic thin film transistor | |
JP4811638B2 (en) | Method for controlling threshold voltage of organic semiconductor device | |
TW202401828A (en) | Transistor devices with multi-layer interlayer dielectric structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |