[go: up one dir, main page]

CN104749434B - Harmonic emission level estimation method based on parameter identification - Google Patents

Harmonic emission level estimation method based on parameter identification Download PDF

Info

Publication number
CN104749434B
CN104749434B CN201510103513.XA CN201510103513A CN104749434B CN 104749434 B CN104749434 B CN 104749434B CN 201510103513 A CN201510103513 A CN 201510103513A CN 104749434 B CN104749434 B CN 104749434B
Authority
CN
China
Prior art keywords
voltage
sequence
current
harmonic
fundamental wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510103513.XA
Other languages
Chinese (zh)
Other versions
CN104749434A (en
Inventor
沈沉
唐可翾
吴翔宇
陈卫东
孙艺敏
黄秀琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Guangxi Power Grid Co Ltd
Original Assignee
Tsinghua University
Guangxi Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Guangxi Power Grid Co Ltd filed Critical Tsinghua University
Priority to CN201510103513.XA priority Critical patent/CN104749434B/en
Publication of CN104749434A publication Critical patent/CN104749434A/en
Application granted granted Critical
Publication of CN104749434B publication Critical patent/CN104749434B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于参数辨识的谐波发射水平估计方法,该方法包括:确定待估计的电气端口,并设定谐波分量的次数h;以相同的采样间隔同时对待估计的电气端口上的电压和电流进行采样,以获取第一电压采样序列和第一电流采样序列;对第一电压采样序列和第一电流采样序列进行信息提取,以获取电压基波幅值、基波实际频率、第二电压采样序列和第二电流采样序列;根据第二电压采样序列获取电压修正积分序列;根据电压修正积分序列、第二电压采样序列和第二电流采样序列获取负荷时域等值参数,生成负荷时域等值参数序列并计算其标准差;根据标准差计算主动h次谐波电流有效值和主动h次谐波电流畸变率。该方法简便、准确,利于在实际工程中推广应用。

The invention discloses a method for estimating the harmonic emission level based on parameter identification. The method includes: determining the electrical port to be estimated, and setting the order h of the harmonic component; Sampling the voltage and current to obtain the first voltage sampling sequence and the first current sampling sequence; information extraction is performed on the first voltage sampling sequence and the first current sampling sequence to obtain the voltage fundamental wave amplitude, fundamental fundamental frequency, The second voltage sampling sequence and the second current sampling sequence; obtain the voltage correction integral sequence according to the second voltage sampling sequence; obtain the load time-domain equivalent parameters according to the voltage correction integral sequence, the second voltage sampling sequence and the second current sampling sequence, and generate Load time-domain equivalent parameter sequence and calculate its standard deviation; calculate active h-order harmonic current effective value and active h-order harmonic current distortion rate according to the standard deviation. The method is simple and accurate, and is conducive to popularization and application in practical engineering.

Description

基于参数辨识的谐波发射水平估计方法Estimation Method of Harmonic Emission Level Based on Parameter Identification

技术领域technical field

本发明涉及电力系统的电能质量监测与分析技术领域,尤其涉及一种基于参数辨识的谐波发射水平估计方法。The invention relates to the technical field of power quality monitoring and analysis of power systems, in particular to a method for estimating harmonic emission levels based on parameter identification.

背景技术Background technique

谐波污染问题是配电网和微电网中常见的电能质量问题,近年来分布式电源和非线性负荷的接入量不断上升,使得公用电网的谐波问题日渐突出。为有效治理谐波污染,必须明确谐波污染责任,即准确定位谐波来源并评估谐波发射水平。谐波在电网中的传播特性较为特殊,且存在交互作用和叠加效应,这些特性给谐波发射水平的估计造成了困难。相关技术中的谐波发射水平估计方法在使用条件上存在一定的适应性问题,工程实际应用中的精度不能令人满意。部分谐波发射水平估计方法依赖于一些不便测量的系统参数,因而在实际工程应用中的实用性受到较大局限。Harmonic pollution is a common power quality problem in distribution networks and microgrids. In recent years, the access of distributed power sources and nonlinear loads has been increasing, making the harmonic problems of public power grids increasingly prominent. In order to effectively control harmonic pollution, it is necessary to clarify the responsibility for harmonic pollution, that is, accurately locate the source of harmonics and evaluate the level of harmonic emissions. The propagation characteristics of harmonics in the power grid are relatively special, and there are interaction and superposition effects, which make it difficult to estimate the level of harmonic emissions. The harmonic emission level estimation method in the related art has certain adaptability problems in terms of use conditions, and the accuracy in practical engineering applications is not satisfactory. The partial harmonic emission level estimation method depends on some system parameters that are inconvenient to measure, so its practicability in actual engineering applications is greatly limited.

发明内容Contents of the invention

本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的目的在于提出一种基于参数辨识的谐波发射水平估计方法,该方法能够较为简便、准确地估计谐波发射水平,适用性广,利于在实际工程中推广应用。The present invention aims to solve one of the technical problems in the related art at least to a certain extent. Therefore, the object of the present invention is to propose a method for estimating the harmonic emission level based on parameter identification, which can estimate the harmonic emission level relatively simply and accurately, has wide applicability, and is conducive to popularization and application in practical engineering.

为了实现上述目的,本发明实施例的基于参数辨识的谐波发射水平估计方法,包括以下步骤:S1、确定待估计的电气端口,并设定谐波分量的次数h;S2、以相同的采样间隔同时对所述待估计的电气端口上的电压和电流进行采样,以获取第一电压采样序列和第一电流采样序列;S3、对所述第一电压采样序列和第一电流采样序列进行信息提取,以获取电压基波幅值、基波实际频率、仅包含基波分量和h次谐波分量的第二电压采样序列以及仅包含基波分量和h次谐波分量的第二电流采样序列;S4、根据所述第二电压采样序列获取电压修正积分序列;S5、根据所述电压修正积分序列、所述第二电压采样序列和所述第二电流采样序列获取负荷时域等值参数,并根据所述负荷时域等值参数生成负荷时域等值参数序列,以及计算所述负荷时域等值参数序列的标准差;以及S6、根据所述标准差计算主动h次谐波电流有效值和主动h次谐波电流畸变率,以对所述电气端口的谐波发射水平进行估计。In order to achieve the above object, the harmonic emission level estimation method based on parameter identification in the embodiment of the present invention includes the following steps: S1, determine the electrical port to be estimated, and set the order h of the harmonic component; S2, use the same sampling Sampling the voltage and current on the electrical port to be estimated at intervals to obtain a first voltage sampling sequence and a first current sampling sequence; S3, performing information on the first voltage sampling sequence and the first current sampling sequence Extract to obtain the amplitude of the fundamental voltage, the actual frequency of the fundamental, a second voltage sampling sequence containing only the fundamental component and the h-th harmonic component, and a second current sampling sequence containing only the fundamental component and the h-th harmonic component ; S4. Obtain a voltage correction integral sequence according to the second voltage sampling sequence; S5. Acquire load time-domain equivalent parameters according to the voltage correction integral sequence, the second voltage sampling sequence, and the second current sampling sequence, And generate a load time-domain equivalent parameter sequence according to the load time-domain equivalent parameter, and calculate the standard deviation of the load time-domain equivalent parameter sequence; and S6, calculate the effective active h-th harmonic current according to the standard deviation value and the active hth harmonic current distortion rate to estimate the harmonic emission level of the electrical port.

本发明实施例的基于参数辨识的谐波发射水平估计方法,利用电压波形与电流波形的信号采样数据对负荷端口的时域等值参数进行分析,结合时域等值参数的标准差与谐波发射水平之间的定量关系,计算谐波源的谐波发射水平,该方法能够较为简便、准确地估计谐波发射水平,适用性广,利于在实际工程中推广应用。The harmonic emission level estimation method based on parameter identification in the embodiment of the present invention uses the signal sampling data of the voltage waveform and current waveform to analyze the time-domain equivalent parameters of the load port, and combines the standard deviation of the time-domain equivalent parameters with the harmonic The quantitative relationship between emission levels is used to calculate the harmonic emission level of harmonic sources. This method can estimate the harmonic emission level more easily and accurately, and has wide applicability, which is conducive to popularization and application in practical engineering.

进一步地,在本发明的一个实施例中,所述S3具体包括:对所述第一电压采样序列和所述第一电流采样序列进行快速傅立叶变换,以获取所述电压基波幅值、电压基波相位、电流基波幅值、电流基波相位、所述基波实际频率和电压h次谐波幅值、电压h次谐波相位、电流h次谐波幅值、电流h次谐波相位;根据所述电压基波幅值和所述电压基波相位合成电压基波分量,并根据所述电压h次谐波幅值和所述电压h次谐波相位合成电压h次谐波分量,以及对所述电压基波分量和所述电压h次谐波分量进行快速傅立叶反变换,以生成所述第二电压采样序列;根据所述电流基波幅值和所述电流基波相位合成电流基波分量,并根据所述电流h次谐波幅值和所述电流h次谐波相位合成电流h次谐波分量,以及对所述电流基波分量和所述电流h次谐波分量进行快速傅立叶反变换,以生成所述第二电流采样序列。Further, in an embodiment of the present invention, the S3 specifically includes: performing fast Fourier transform on the first voltage sampling sequence and the first current sampling sequence to obtain the voltage fundamental wave amplitude, voltage Fundamental wave phase, current fundamental wave amplitude, current fundamental wave phase, actual frequency of the fundamental wave and voltage hth harmonic amplitude, voltage hth harmonic phase, current hth harmonic amplitude, current hth harmonic Phase: Synthesize the voltage fundamental wave component according to the voltage fundamental wave amplitude and the voltage fundamental wave phase, and synthesize the voltage h order harmonic component according to the voltage h order harmonic amplitude and the voltage h order harmonic phase , and performing an inverse fast Fourier transform on the voltage fundamental component and the voltage hth harmonic component to generate the second voltage sampling sequence; synthesized according to the current fundamental amplitude and the current fundamental phase The current fundamental wave component, and synthesize the current h-order harmonic component according to the current h-order harmonic amplitude and the current h-order harmonic phase, and the current h-order harmonic component and the current h-order harmonic component performing an inverse fast Fourier transform to generate the second current sampling sequence.

进一步地,在本发明的一个实施例中,所述S4具体包括:根据所述电压基波相位获取所述第二电压采样序列的基波相位零点;对所述第二电压采样序列进行数值积分,以生成电压原始积分序列;以及根据所述基波相位零点和所述电压原始积分序列获取所述电压修正积分序列。Further, in an embodiment of the present invention, the S4 specifically includes: obtaining the fundamental wave phase zero point of the second voltage sampling sequence according to the voltage fundamental wave phase; numerically integrating the second voltage sampling sequence , to generate a voltage original integration sequence; and obtain the voltage correction integration sequence according to the fundamental wave phase zero point and the voltage original integration sequence.

进一步地,在本发明的一个实施例中,所述S5具体包括:确定求解阶数K,根据所述电压修正积分序列、所述第二电压采样序列和所述第二电流采样序列构建线性方程组;对所述线性方程组进行求解,以获取p位K阶的负荷时域等值参数,其中,K为所述求解阶数,K≥2,p=1,2,…,N,N为采样点数;以及根据所述p位K阶的负荷时域等值参数生成所述负荷时域等值参数序列,并计算所述负荷时域等值参数序列的标准差。Further, in an embodiment of the present invention, the S5 specifically includes: determining the solution order K, constructing a linear equation according to the voltage correction integration sequence, the second voltage sampling sequence and the second current sampling sequence group; solve the linear equation system to obtain the equivalent parameters of the p-bit K-order load time domain, where K is the solution order, K≥2, p=1,2,...,N,N is the number of sampling points; and generating the load time-domain equivalent parameter sequence according to the p-bit K-order load time-domain equivalent parameter sequence, and calculating the standard deviation of the load time-domain equivalent parameter sequence.

进一步地,在本发明的一个实施例中,所述线性方程组为:Further, in one embodiment of the present invention, the linear equation system is:

其中,up为所述第二电压采样序列u1,u2,…,uN中第p个元素,ip为所述第二电流采样序列i1,i2,…,iN中第p个元素,yp为所述电压修正积分序列y1,y2,…,yN中第p个元素,rp和lp为所述p位K阶的负荷时域等值参数,K为所述求解阶数,N为所述采样点数,a除以b的余数mod(a,b)定义为:为小于或者等于的最大整数。Wherein, u p is the pth element in the second voltage sampling sequence u 1 , u 2 ,...,u N , and i p is the second current sampling sequence i 1 , i 2 ,..., i N p elements, y p is the pth element in the voltage correction integral sequence y 1 , y 2 ,...,y N , r p and l p are the load time-domain equivalent parameters of the p-bit K-order, K For the solution order, N is the number of sampling points, and the remainder mod (a, b) of a divided by b is defined as: is less than or equal to largest integer of .

进一步地,在本发明的一个实施例中,根据下述公式计算所述负荷时域等值参数序列的标准差:Further, in one embodiment of the present invention, the standard deviation of the load time-domain equivalent parameter sequence is calculated according to the following formula:

其中,分别为所述负荷时域等值参数序列r1,r2,…,rN和l1,l2,…,lN的算术平均值,σr和σl分别为所述负荷时域等值参数序列r1,r2,…,rN和l1,l2,…,lN的标准差,N为所述采样点数。in, with are the arithmetic mean values of the load time-domain equivalent parameter sequences r 1 , r 2 ,...,r N and l 1 , l 2 ,...,l N , respectively, and σ r and σ l are the load time domain, etc. The standard deviation of the value parameter sequence r 1 , r 2 ,...,r N and l 1 , l 2 ,...,l N , where N is the number of sampling points.

进一步地,在本发明的一个实施例中,根据下述公式计算所述主动h次谐波电流有效值和所述主动h次谐波电流畸变率:Further, in one embodiment of the present invention, the effective value of the active hth harmonic current and the distortion rate of the active hth harmonic current are calculated according to the following formula:

CHDha=Iha/I1CHD ha = I ha /I 1 ,

其中,Iha为所述主动h次谐波电流有效值,U1为所述电压基波幅值,σr和σl为所述负荷时域等值参数序列的标准差,f1为所述基波实际频率,h为所述谐波分量的次数,CHDha为所述主动h次谐波电流畸变率,I1为所述电流基波幅值。Among them, I ha is the effective value of the active hth harmonic current, U 1 is the amplitude of the voltage fundamental wave, σ r and σ l are the standard deviations of the load time-domain equivalent parameter sequence, f 1 is the The actual frequency of the fundamental wave, h is the order of the harmonic component, CHD ha is the distortion rate of the active h order harmonic current, I 1 is the amplitude of the current fundamental wave.

进一步地,在本发明的一个实施例中,根据下述公式获取所述第二电压采样序列的基波相位零点:Further, in an embodiment of the present invention, the fundamental phase zero point of the second voltage sampling sequence is obtained according to the following formula:

其中,S为所述基波相位零点,θu1为所述电压基波相位,L为每个工频基波周期内对所述待估计的电气端口上的电压和电流进行采样的采样点数,N为采样点数,round(a)定义为最接近a的整数,a除以b的余数mod(a,b)定义为:为小于或者等于的最大整数。Wherein, S is the zero point of the fundamental wave phase, θ u1 is the phase of the fundamental wave of the voltage, and L is the number of sampling points for sampling the voltage and current on the electrical port to be estimated in each power frequency fundamental wave period, N is the number of sampling points, round(a) is defined as the integer closest to a, and the remainder mod(a,b) of a divided by b is defined as: is less than or equal to largest integer of .

进一步地,在本发明的一个实施例中,根据下述公式获取所述电压修正积分序列:Further, in an embodiment of the present invention, the voltage correction integral sequence is obtained according to the following formula:

yk=ysk-ysS,k=1,2,…,N,y k =y sk -y sS , k=1,2,...,N,

其中,yk为所述电压修正积分序列的第k个元素,ysk为所述电压原始积分序列的第k个元素,ysS为所述电压原始积分序列的第S个元素,S为所述基波相位零点,N为所述采样点数。Wherein, y k is the kth element of the voltage correction integration sequence, y sk is the kth element of the voltage original integration sequence, y sS is the Sth element of the voltage original integration sequence, and S is the The fundamental wave phase zero point, N is the number of sampling points.

进一步地,在本发明的一个实施例中,所述N和所述L满足以下关系:N=mL,其中,m为正整数。Further, in an embodiment of the present invention, the N and the L satisfy the following relationship: N=mL, where m is a positive integer.

附图说明Description of drawings

图1是根据本发明一个实施例的基于参数辨识的谐波发射水平估计方法的流程图;1 is a flowchart of a method for estimating harmonic emission levels based on parameter identification according to an embodiment of the present invention;

图2是根据本发明一个实施例的对第一电压采样序列和第一电流采样序列进行信息提取,以获取电压基波幅值、基波实际频率、仅包含基波分量和h次谐波分量的第二电压采样序列以及仅包含基波分量和h次谐波分量的第二电流采样序列的流程图;Fig. 2 is an information extraction of the first voltage sampling sequence and the first current sampling sequence according to an embodiment of the present invention, to obtain the voltage fundamental wave amplitude, the actual frequency of the fundamental wave, including only the fundamental wave component and the hth harmonic component The flow chart of the second voltage sampling sequence of the second voltage sampling sequence and the second current sampling sequence that only includes the fundamental wave component and the hth harmonic component;

图3是根据本发明一个实施例的根据第二电压采样序列获取电压修正积分序列的流程图;FIG. 3 is a flow chart of obtaining a voltage correction integral sequence according to a second voltage sampling sequence according to an embodiment of the present invention;

图4是根据本发明一个实施例的根据电压修正积分序列、第二电压采样序列和第二电流采样序列获取负荷时域等值参数,并根据负荷时域等值参数生成负荷时域等值参数序列,以及计算负荷时域等值参数序列的标准差的流程图。Fig. 4 is the time domain equivalent parameters of load obtained according to the voltage correction integration sequence, the second voltage sampling sequence and the second current sampling sequence, and the time domain equivalent parameters of load are generated according to the load time domain equivalent parameters according to an embodiment of the present invention sequence, and a flow chart for calculating the standard deviation of a sequence of equivalent parameters in the load time domain.

具体实施方式detailed description

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary and are intended to explain the present invention and should not be construed as limiting the present invention.

普通线性负荷的端口等值阻抗数值在工频基波周期内的波动较小,谐波源的端口等值阻抗数值在工频基波周期内的波动较大。因此,可以利用端口等值阻抗数值在工频基波周期内的波动情况来区分普通线性负荷与含谐波源负荷。这一方法指标明确,原理简单,所需的量测量较少,具有很强的工程实用性和应用前景。The port equivalent impedance value of ordinary linear load fluctuates less in the power frequency fundamental wave cycle, while the port equivalent impedance value of harmonic source fluctuates greatly in the power frequency fundamental wave cycle. Therefore, the fluctuation of the port equivalent impedance value in the power frequency fundamental cycle can be used to distinguish between ordinary linear loads and harmonic source loads. This method has clear indicators, simple principle, less quantity measurement required, and has strong engineering practicability and application prospect.

因此,为了估计谐波发射水平,明确谐波污染责任,本发明基于负荷时域等值理论,考虑等值参数标准差与谐波发射水平之间的定量关系,提出了一种基于参数辨识的谐波发射水平估计方法。下面参考附图描述本发明实施例的基于参数辨识的谐波发射水平估计方法。Therefore, in order to estimate the level of harmonic emission and clarify the responsibility of harmonic pollution, the present invention is based on the load time-domain equivalent theory, considering the quantitative relationship between the standard deviation of equivalent parameters and the level of harmonic emission, and proposes a method based on parameter identification. Harmonic emission level estimation method. The method for estimating the harmonic emission level based on parameter identification according to the embodiment of the present invention will be described below with reference to the accompanying drawings.

图1是根据本发明一个实施例的基于参数辨识的谐波发射水平估计方法的流程图。如图1所示,本发明实施例的基于参数辨识的谐波发射水平估计方法,包括以下步骤:Fig. 1 is a flowchart of a method for estimating harmonic emission levels based on parameter identification according to an embodiment of the present invention. As shown in Figure 1, the harmonic emission level estimation method based on parameter identification in the embodiment of the present invention includes the following steps:

S1,确定待估计的电气端口,并设定谐波分量的次数h。S1, determine the electrical port to be estimated, and set the order h of the harmonic component.

具体地,首先确定分析需求,也就是确定需要进行谐波发射水平估计的电气端口,该端口是待分析的子系统与上级电网的连接端口。待分析的子系统可能是单台负载设备,也可能是包含多个负载和发电设备的一个中小型电力系统。Specifically, first determine the analysis requirements, that is, determine the electrical port that needs to be estimated for the harmonic emission level, and this port is the connection port between the subsystem to be analyzed and the upper-level power grid. The subsystem to be analyzed may be a single load device, or it may be a small and medium-sized power system including multiple loads and generating devices.

进一步地,确定需要进行谐波发射水平估计的谐波分量的次数,记这一谐波分量的次数为h。限于实际工程应用的条件,该次数h应取值于一定的合理范围之内,典型的取值在50次以下。Further, the order of the harmonic component that needs to be estimated for the harmonic emission level is determined, and the order of this harmonic component is denoted as h. Limited to the conditions of practical engineering applications, the value of the number h should be within a certain reasonable range, and the typical value is less than 50 times.

S2,以相同的采样间隔同时对待估计的电气端口上的电压和电流进行采样,以获取第一电压采样序列和第一电流采样序列。S2. Simultaneously sample the voltage and current on the electrical port to be estimated at the same sampling interval to obtain a first voltage sampling sequence and a first current sampling sequence.

在本发明的一个实施例中,N和L满足以下关系:N=mL,其中,N为采样点数,L为每个工频基波周期内对待估计的电气端口上的电压和电流进行采样的采样点数,m为正整数。In one embodiment of the present invention, N and L satisfy the following relationship: N=mL, wherein, N is the number of sampling points, and L is the voltage and current on the electrical port to be estimated in each cycle of the power frequency fundamental wave. The number of sampling points, m is a positive integer.

具体地,在待估计的电气端口处对端口上的电压波形和电流波形进行采样,得到第一电压采样序列us1,us2,…,usN和第一电流采样序列is1,is2,…,isN,其中,N为采样点数。Specifically, the voltage waveform and current waveform on the port are sampled at the electrical port to be estimated to obtain the first voltage sampling sequence u s1 , u s2 ,..., u sN and the first current sampling sequence i s1 , i s2 , …,i sN , where N is the number of sampling points.

更具体地,对待估计的电气端口上的电压和电流进行采样时,应满足如下条件:More specifically, when sampling the voltage and current on the electrical port to be estimated, the following conditions should be met:

1)对电压波形和电流波形的采样应是同时的,即对于第一电压采样序列和第一电流采样序列中对应的数据点usk和isk,其采样时刻应是相同的,其中,k=1,2,…,N。1) The sampling of the voltage waveform and the current waveform should be simultaneous, that is, for the corresponding data points u sk and i sk in the first voltage sampling sequence and the first current sampling sequence, the sampling time should be the same, where k =1,2,...,N.

2)采样应是等间隔的,即第一电压采样序列和第一电流采样序列中所有相邻的两个数据点之间的采样时间间隔Δt应是相同的。2) Sampling should be at equal intervals, that is, the sampling time interval Δt between all two adjacent data points in the first voltage sampling sequence and the first current sampling sequence should be the same.

3)采样应是完整周期采样,即采样点数N和第一电压采样序列或第一电流采样序列中一个工频基波周期所对应的点数L应满足N=mL,其中,m为正整数。3) Sampling should be a complete period of sampling, that is, the number of sampling points N and the number of points L corresponding to a power frequency fundamental wave cycle in the first voltage sampling sequence or the first current sampling sequence should satisfy N=mL, where m is a positive integer.

4)采样应满足采样定理,即对于采样频率fs=1/Δt,应满足fs>2hfs1,其中,fs1=50Hz。为保证可靠性和精确性,在实际工程应用中应取fs>4hfs14) The sampling should satisfy the sampling theorem, that is, for the sampling frequency f s =1/Δt, it should satisfy f s >2hf s1 , where f s1 =50Hz. To ensure reliability and accuracy, f s >4hf s1 should be taken in practical engineering applications.

S3,对第一电压采样序列和第一电流采样序列进行信息提取,以获取电压基波幅值、基波实际频率、仅包含基波分量和h次谐波分量的第二电压采样序列以及仅包含基波分量和h次谐波分量的第二电流采样序列。S3. Perform information extraction on the first voltage sampling sequence and the first current sampling sequence to obtain the amplitude of the voltage fundamental wave, the actual frequency of the fundamental wave, the second voltage sampling sequence containing only the fundamental wave component and the h-order harmonic component, and only A second current sampling sequence including the fundamental component and the hth harmonic component.

在本发明的一个实施例中,如图2所示,S3具体包括:In one embodiment of the present invention, as shown in FIG. 2, S3 specifically includes:

S31,对第一电压采样序列和第一电流采样序列进行快速傅立叶变换,以获取电压基波幅值、电压基波相位、电流基波幅值、电流基波相位、基波实际频率和电压h次谐波幅值、电压h次谐波相位、电流h次谐波幅值、电流h次谐波相位。S31. Perform fast Fourier transform on the first voltage sampling sequence and the first current sampling sequence to obtain the voltage fundamental wave amplitude, voltage fundamental wave phase, current fundamental wave amplitude, current fundamental wave phase, fundamental fundamental wave actual frequency, and voltage h Sub-harmonic amplitude, voltage h-th harmonic phase, current h-th harmonic amplitude, current h-th harmonic phase.

具体地,对第一电压采样序列和第一电流采样序列进行快速傅立叶变换,获取电压基波幅值U1、电压基波相位θu1、电流基波幅值I1、电流基波相位θi1、基波实际频率f1和电压h次谐波幅值Uh、电压h次谐波相位θuh、电流h次谐波幅值Ih、电流h次谐波相位θihSpecifically, fast Fourier transform is performed on the first voltage sampling sequence and the first current sampling sequence to obtain voltage fundamental wave amplitude U 1 , voltage fundamental wave phase θ u1 , current fundamental wave amplitude I 1 , and current fundamental wave phase θ i1 , the actual frequency f 1 of the fundamental wave, the voltage h-order harmonic amplitude U h , the voltage h-order harmonic phase θ uh , the current h-order harmonic amplitude I h , and the current h-order harmonic phase θ ih .

S32,根据电压基波幅值和电压基波相位合成电压基波分量,并根据电压h次谐波幅值和电压h次谐波相位合成电压h次谐波分量,以及对电压基波分量和电压h次谐波分量进行快速傅立叶反变换,以生成第二电压采样序列。S32, synthesizing the voltage fundamental wave component according to the voltage fundamental wave amplitude and the voltage fundamental wave phase, and synthesizing the voltage h order harmonic component according to the voltage h order harmonic amplitude and the voltage h order harmonic phase, and the voltage fundamental wave component and An inverse fast Fourier transform is performed on the hth harmonic component of the voltage to generate a second voltage sampling sequence.

具体地,利用快速傅立叶反变换,由电压基波分量(U1u1)和电压h次谐波分量(Uhuh)生成仅包含基波分量和h次谐波分量的第二电压采样序列,将第二电压采样序列记为u1,u2,…,uNSpecifically, using the inverse fast Fourier transform, the voltage fundamental component (U 1 , θ u1 ) and the voltage h-th harmonic component (U h , θ uh ) generate the second For the voltage sampling sequence, the second voltage sampling sequence is denoted as u 1 , u 2 , . . . , u N .

S33,根据电流基波幅值和电流基波相位合成电流基波分量,并根据电流h次谐波幅值和电流h次谐波相位合成电流h次谐波分量,以及对电流基波分量和电流h次谐波分量进行快速傅立叶反变换,以生成第二电流采样序列。S33, synthesizing the current fundamental wave component according to the current fundamental wave amplitude and the current fundamental wave phase, and synthesizing the current h order harmonic component according to the current h order harmonic amplitude and the current h order harmonic phase, and synthesizing the current fundamental wave component and An inverse fast Fourier transform is performed on the hth harmonic component of the current to generate a second current sampling sequence.

具体地,利用快速傅立叶反变换,由电流基波分量(I1i1)和电流h次谐波分量(Ihih)生成仅包含基波分量和h次谐波分量的第二电流采样序列,将第二电流采样序列记为i1,i2,…,iNSpecifically, using the inverse fast Fourier transform, the current fundamental component (I 1 , θ i1 ) and the current h-th harmonic component (I h , θ ih ) generate the second For the current sampling sequence, the second current sampling sequence is denoted as i 1 , i 2 , . . . , i N .

S4,根据第二电压采样序列获取电压修正积分序列。S4. Acquire a voltage correction integration sequence according to the second voltage sampling sequence.

在本发明的一个实施例中,如图3所示,S4具体包括:In one embodiment of the present invention, as shown in FIG. 3, S4 specifically includes:

S41,根据电压基波相位获取第二电压采样序列的基波相位零点。S41. Acquire the fundamental phase zero point of the second voltage sampling sequence according to the voltage fundamental phase.

在本发明的一个实施例中,根据下述公式获取第二电压采样序列的基波相位零点:In one embodiment of the present invention, the fundamental phase zero point of the second voltage sampling sequence is obtained according to the following formula:

其中,S为基波相位零点,θu1为电压基波相位,L为每个工频基波周期内对待估计的电气端口上的电压和电流进行采样的采样点数,N为采样点数,round(a)定义为最接近a的整数,a除以b的余数mod(a,b)定义为:为小于或者等于的最大整数。Among them, S is the zero point of the fundamental phase, θ u1 is the phase of the fundamental voltage, L is the number of sampling points for sampling the voltage and current on the electrical port to be estimated in each cycle of the fundamental wave of power frequency, N is the number of sampling points, round( a) is defined as the integer closest to a, and the remainder mod(a,b) of a divided by b is defined as: is less than or equal to largest integer of .

具体地,对于整数a,定义其整数部分[a]为小于或等于a的最大整数,定义其取整round(a)为最接近a的整数(若同时有2个整数满足要求,则取其中的绝对值小者)。Specifically, for an integer a, its integer part [a] is defined as the largest integer less than or equal to a, and its rounded round(a) is defined as the nearest integer to a (if there are 2 integers that meet the requirements at the same time, take one of them the smaller absolute value).

S42,对第二电压采样序列进行数值积分,以生成电压原始积分序列。S42. Perform numerical integration on the second voltage sampling sequence to generate a voltage original integration sequence.

具体地,对于第二电压采样序列u1,u2,…,uN,对该序列进行数值积分,求得电压原始积分序列ys1,ys2,…,ysNSpecifically, for the second voltage sampling sequence u 1 , u 2 , .

S43,根据基波相位零点和电压原始积分序列获取电压修正积分序列。S43. Obtain a voltage correction integration sequence according to the fundamental wave phase zero point and the original voltage integration sequence.

具体地,根据基波相位零点和电压原始积分序列,按如下规则求取电压修正积分序列y1,y2,…,yNSpecifically, according to the fundamental phase zero point and the original voltage integral sequence, the voltage correction integral sequence y 1 , y 2 ,...,y N is obtained according to the following rules:

yk=ysk-ysS,k=1,2,…,N, (2)y k =y sk -y sS , k=1,2,...,N, (2)

其中,yk为电压修正积分序列的第k个元素,ysk为电压原始积分序列的第k个元素,ysS为电压原始积分序列的第S个元素,S为基波相位零点,N为采样点数。Among them, y k is the k-th element of the voltage correction integral sequence, y sk is the k-th element of the original voltage integral sequence, y sS is the S-th element of the original voltage integral sequence, S is the fundamental phase zero point, and N is Sampling points.

S5,根据电压修正积分序列、第二电压采样序列和第二电流采样序列获取负荷时域等值参数,并根据负荷时域等值参数生成负荷时域等值参数序列,以及计算负荷时域等值参数序列的标准差。S5, according to the voltage correction integration sequence, the second voltage sampling sequence and the second current sampling sequence to obtain the load time domain equivalent parameters, and according to the load time domain equivalent parameters to generate the load time domain equivalent parameter sequence, and calculate the load time domain, etc. The standard deviation of the sequence of value arguments.

在本发明的一个实施例中,如图4所示,S5具体包括:In one embodiment of the present invention, as shown in FIG. 4, S5 specifically includes:

S51,确定求解阶数K,根据电压修正积分序列、第二电压采样序列和第二电流采样序列构建线性方程组。S51. Determine the solution order K, and construct a linear equation system according to the voltage correction integral sequence, the second voltage sampling sequence, and the second current sampling sequence.

具体地,确定求解阶数K,K应为正整数,且应有K≥2。增大K的取值有助于改善数值求解的稳定性,克服测量噪声的影响,但可能引起等值参数时域分辨率下降、求解精度降低,且数值求解的计算量会上升;K的典型取值为4左右。Specifically, determine the solution order K, K should be a positive integer, and there should be K≥2. Increasing the value of K helps to improve the stability of the numerical solution and overcome the influence of measurement noise, but it may cause a decrease in the time-domain resolution of the equivalent parameters, a decrease in the solution accuracy, and an increase in the calculation amount of the numerical solution; the typical value of K The value is around 4.

进一步地,对于正整数p(p≤N)、求解阶数K(K≥2)、第二电压采样序列u1,u2,…,uN、第二电流采样序列i1,i2,…,iN和电压修正积分序列y1,y2,…,yN,按照如下公式(3)构建线性方程组。Further, for a positive integer p (p≤N), solution order K (K≥2), second voltage sampling sequence u 1 , u 2 ,...,u N , second current sampling sequence i 1 , i 2 , ..., i N and the voltage correction integral sequence y 1 , y 2 , ..., y N construct a linear equation system according to the following formula (3).

在本发明的一个实施例中,所述线性方程组为:In one embodiment of the present invention, the linear equation system is:

其中,up为第二电压采样序列u1,u2,…,uN中第p个元素,ip为第二电流采样序列i1,i2,…,iN中第p个元素,yp为电压修正积分序列y1,y2,…,yN中第p个元素,K为求解阶数,N为采样点数,a除以b的余数mod(a,b)定义为:为小于或者等于的最大整数,称线性方程组(3)的解rp和lp为p位K阶的负荷时域等值参数。Wherein, u p is the p-th element in the second voltage sampling sequence u 1 , u 2 ,…,u N , i p is the p-th element in the second current sampling sequence i 1 , i 2 ,…,i N , y p is the pth element in the voltage correction integral sequence y 1 , y 2 ,…,y N , K is the solution order, N is the number of sampling points, and the remainder mod(a,b) of dividing a by b is defined as: is less than or equal to The largest integer of , the solutions r p and l p of the linear equations (3) are called the equivalent parameters of the p-bit K-order load time domain.

S52,对线性方程组进行求解,以获取所有p位K阶的负荷时域等值参数,其中,K为求解阶数,K≥2,p=1,2,…,N,N为采样点数。S52, solve the linear equations to obtain all p-bit K-order load time-domain equivalent parameters, where K is the solution order, K≥2, p=1,2,...,N, N is the number of sampling points .

具体地,对于线性方程组(3),当k=2时,求解(3)式所示的线性方程组,得到解rp和lp;当k>2时,求解(3)式所示的超定线性方程组,得到最小二乘解rp和lp;求解结果rp和lp为p位K阶的负荷时域等值参数。Specifically, for the linear equation system (3), when k=2, solve the linear equation system shown in (3) to obtain the solutions r p and l p ; when k>2, solve the solution shown in (3) The overdetermined linear equations are obtained, and the least square solutions r p and l p are obtained; the solution results r p and l p are the equivalent parameters of the p-bit K-order load in the time domain.

更具体地,计算所有p位K阶的负荷时域等值参数rp和lp,其中,p=1,2,…,N,N为采样点数。More specifically, all p-bit K-order load time-domain equivalent parameters r p and l p are calculated, where p=1, 2, . . . , N, where N is the number of sampling points.

S53,根据p位K阶的负荷时域等值参数生成负荷时域等值参数序列,并计算负荷时域等值参数序列的标准差。S53. Generate a load time-domain equivalent parameter sequence according to the p-bit K-order load time-domain equivalent parameter sequence, and calculate a standard deviation of the load time-domain equivalent parameter sequence.

具体地,将求得的所有p位K阶的负荷时域等值参数(p=1,2,…,N)组成负荷时域等值参数序列r1,r2,…,rN和l1,l2,…,lN。并按照公式(4)计算负荷时域等值参数序列r1,r2,…,rN和l1,l2,…,lN的标准差。Specifically, all the obtained p-bit K-order load time-domain equivalent parameters (p=1, 2,...,N) are composed of load time-domain equivalent parameter sequences r 1 , r 2 ,...,r N and l 1 ,l 2 ,…,l N . And according to the formula (4), calculate the standard deviation of the equivalent parameter sequence r 1 ,r 2 ,…,r N and l 1 ,l 2 ,…,l N in the load time domain.

在本发明的一个实施例中,根据下述公式(4)计算负荷时域等值参数序列的标准差:In one embodiment of the present invention, the standard deviation of the load time-domain equivalent parameter sequence is calculated according to the following formula (4):

其中,分别为负荷时域等值参数序列r1,r2,…,rN和l1,l2,…,lN的算术平均值,σr和σl分别为负荷时域等值参数序列r1,r2,…,rN和l1,l2,…,lN的标准差,N为采样点数。in, with are the arithmetic mean values of the load time-domain equivalent parameter sequences r 1 , r 2 ,…,r N and l 1 ,l 2 ,…,l N , respectively, σ r and σ l are the load time-domain equivalent parameter sequences r 1 ,r 2 ,…,r N and the standard deviation of l 1 ,l 2 ,…,l N , where N is the number of sampling points.

S6,根据标准差计算主动h次谐波电流有效值和主动h次谐波电流畸变率,以对电气端口的谐波发射水平进行估计。S6. Calculate the effective value of the active h-order harmonic current and the distortion rate of the active h-order harmonic current according to the standard deviation, so as to estimate the harmonic emission level of the electrical port.

具体地,主动h次谐波电流有效值Iha即为电气端口主动注入上级电网的h次谐波电流有效值,该指标是谐波发射水平估计的指标之一,以该指标进行谐波发射水平估计,可以评价电气端口h次谐波电流发射量的实际大小;主动h次谐波电流畸变率CHDha即为电气端口主动注入上级电网的h次谐波电流幅值与基波电流幅值的比值,该指标也是谐波发射水平估计的指标之一,以该指标进行谐波发射水平估计,可以评价电气端口h次谐波电流发射量相对于基波电流的大小。Specifically, the effective value of the active h-order harmonic current I ha is the effective value of the h-order harmonic current that the electrical port actively injects into the upper-level power grid. This index is one of the indicators for estimating the harmonic emission level, and the harmonic emission Level estimation can evaluate the actual size of the h-order harmonic current emission of the electrical port; the active h-order harmonic current distortion rate CHD ha is the h-order harmonic current amplitude and the fundamental current amplitude that the electrical port actively injects into the upper-level power grid This indicator is also one of the indicators for estimating the level of harmonic emission. Using this indicator to estimate the level of harmonic emission can evaluate the magnitude of the hth harmonic current emission of the electrical port relative to the fundamental current.

在本发明的一个实施例中,根据下述公式(5)和(6)计算主动h次谐波电流有效值和主动h次谐波电流畸变率:In one embodiment of the present invention, the effective value of the active h-order harmonic current and the distortion rate of the active h-order harmonic current are calculated according to the following formulas (5) and (6):

CHDha=Iha/I1, (6)CHD ha = I ha /I 1 , (6)

其中,Iha为主动h次谐波电流有效值,U1为电压基波幅值,σr和σl为负荷时域等值参数序列的标准差,f1为基波实际频率,h为谐波分量的次数,CHDha为主动h次谐波电流畸变率,I1为电流基波幅值。Among them, I ha is the effective value of the active hth harmonic current, U 1 is the amplitude of the fundamental voltage wave, σ r and σ l are the standard deviations of the equivalent parameter sequence in the load time domain, f 1 is the actual frequency of the fundamental wave, and h is The order of the harmonic component, CHD ha is the distortion rate of the active hth harmonic current, and I 1 is the amplitude of the current fundamental wave.

本发明实施例的基于参数辨识的谐波发射水平估计方法,利用电压波形与电流波形的信号采样数据对负荷端口的时域等值参数进行分析,结合时域等值参数的标准差与谐波发射水平之间的定量关系,计算谐波源的谐波发射水平,该方法能够较为简便、准确地估计谐波发射水平,适用性广,利于在实际工程中推广应用。The harmonic emission level estimation method based on parameter identification in the embodiment of the present invention uses the signal sampling data of the voltage waveform and current waveform to analyze the time-domain equivalent parameters of the load port, and combines the standard deviation of the time-domain equivalent parameters with the harmonic The quantitative relationship between emission levels is used to calculate the harmonic emission level of harmonic sources. This method can estimate the harmonic emission level more easily and accurately, and has wide applicability, which is conducive to popularization and application in practical engineering.

在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In describing the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", " Back", "Left", "Right", "Vertical", "Horizontal", "Top", "Bottom", "Inner", "Outer", "Clockwise", "Counterclockwise", "Axial" , "radial", "circumferential" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, which are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying the referred device or Elements must have certain orientations, be constructed and operate in certain orientations, and therefore should not be construed as limitations on the invention.

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined.

在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrated; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components or the interaction relationship between two components, unless otherwise specified limit. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.

在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch. Moreover, "above", "above" and "above" the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature. "Below", "beneath" and "beneath" the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples" or "some examples" mean specific features described in connection with the embodiment or example, A structure, material or characteristic is included in at least one embodiment or example of the invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.

Claims (10)

1.一种基于参数辨识的谐波发射水平估计方法,其特征在于,包括以下步骤:1. A method for estimating harmonic emission levels based on parameter identification, characterized in that, comprising the following steps: S1、确定待估计的电气端口,并设定谐波分量的次数h;S1. Determine the electrical port to be estimated, and set the order h of the harmonic component; S2、以相同的采样间隔同时对所述待估计的电气端口上的电压和电流进行采样,以获取第一电压采样序列和第一电流采样序列;S2. Simultaneously sampling the voltage and current on the electrical port to be estimated at the same sampling interval to obtain a first voltage sampling sequence and a first current sampling sequence; S3、对所述第一电压采样序列和第一电流采样序列进行信息提取,以获取电压基波幅值、基波实际频率、仅包含基波分量和h次谐波分量的第二电压采样序列以及仅包含基波分量和h次谐波分量的第二电流采样序列;S3. Perform information extraction on the first voltage sampling sequence and the first current sampling sequence to obtain the amplitude of the voltage fundamental wave, the actual frequency of the fundamental wave, and the second voltage sampling sequence including only the fundamental wave component and the h-order harmonic component and a second current sampling sequence comprising only the fundamental component and the hth harmonic component; S4、根据所述第二电压采样序列获取电压修正积分序列;S4. Obtain a voltage correction integration sequence according to the second voltage sampling sequence; S5、根据所述电压修正积分序列、所述第二电压采样序列和所述第二电流采样序列获取负荷时域等值参数,并根据所述负荷时域等值参数生成负荷时域等值参数序列,以及计算所述负荷时域等值参数序列的标准差;S5. Acquire load time-domain equivalent parameters according to the voltage correction integration sequence, the second voltage sampling sequence, and the second current sampling sequence, and generate load time-domain equivalent parameters according to the load time-domain equivalent parameters sequence, and calculate the standard deviation of the load time-domain equivalent parameter sequence; S6、根据所述标准差计算主动h次谐波电流有效值和主动h次谐波电流畸变率,以对所述电气端口的谐波发射水平进行估计。S6. Calculate the effective value of the active h-order harmonic current and the distortion rate of the active h-order harmonic current according to the standard deviation, so as to estimate the harmonic emission level of the electrical port. 2.如权利要求1所述的基于参数辨识的谐波发射水平估计方法,其特征在于,所述S3具体包括:2. The harmonic emission level estimation method based on parameter identification as claimed in claim 1, wherein said S3 specifically comprises: 对所述第一电压采样序列和所述第一电流采样序列进行快速傅立叶变换,以获取所述电压基波幅值、电压基波相位、电流基波幅值、电流基波相位、所述基波实际频率和电压h次谐波幅值、电压h次谐波相位、电流h次谐波幅值、电流h次谐波相位;performing fast Fourier transform on the first voltage sampling sequence and the first current sampling sequence to obtain the voltage fundamental wave amplitude, voltage fundamental wave phase, current fundamental wave amplitude, current fundamental wave phase, and the fundamental Actual wave frequency and voltage h-th harmonic amplitude, voltage h-th harmonic phase, current h-th harmonic amplitude, and current h-th harmonic phase; 根据所述电压基波幅值和所述电压基波相位合成电压基波分量,并根据所述电压h次谐波幅值和所述电压h次谐波相位合成电压h次谐波分量,以及对所述电压基波分量和所述电压h次谐波分量进行快速傅立叶反变换,以生成所述第二电压采样序列;synthesizing a voltage fundamental wave component based on the voltage fundamental wave amplitude and the voltage fundamental wave phase, and synthesizing a voltage h order harmonic component based on the voltage h order harmonic amplitude and the voltage h order harmonic phase, and performing an inverse fast Fourier transform on the voltage fundamental component and the voltage hth harmonic component to generate the second voltage sampling sequence; 根据所述电流基波幅值和所述电流基波相位合成电流基波分量,并根据所述电流h次谐波幅值和所述电流h次谐波相位合成电流h次谐波分量,以及对所述电流基波分量和所述电流h次谐波分量进行快速傅立叶反变换,以生成所述第二电流采样序列。synthesizing a current fundamental wave component based on the current fundamental wave amplitude and the current fundamental wave phase, and synthesizing a current h order harmonic component based on the current h order harmonic amplitude and the current h order harmonic phase, and performing an inverse fast Fourier transform on the current fundamental component and the current hth harmonic component to generate the second current sampling sequence. 3.如权利要求2所述的基于参数辨识的谐波发射水平估计方法,其特征在于,所述S4具体包括:3. The harmonic emission level estimation method based on parameter identification as claimed in claim 2, wherein said S4 specifically comprises: 根据所述电压基波相位获取所述第二电压采样序列的基波相位零点;Acquiring the fundamental wave phase zero point of the second voltage sampling sequence according to the voltage fundamental wave phase; 对所述第二电压采样序列进行数值积分,以生成电压原始积分序列;numerically integrating the second voltage sampling sequence to generate a voltage original integration sequence; 根据所述基波相位零点和所述电压原始积分序列获取所述电压修正积分序列。The voltage correction integration sequence is obtained according to the fundamental phase zero point and the voltage original integration sequence. 4.如权利要求1所述的基于参数辨识的谐波发射水平估计方法,其特征在于,所述S5具体包括:4. The harmonic emission level estimation method based on parameter identification as claimed in claim 1, wherein said S5 specifically comprises: 确定求解阶数K,根据所述电压修正积分序列、所述第二电压采样序列和所述第二电流采样序列构建线性方程组;Determine the solution order K, and construct a linear equation system according to the voltage correction integral sequence, the second voltage sampling sequence and the second current sampling sequence; 对所述线性方程组进行求解,以获取p位K阶的负荷时域等值参数,其中,K为所述求解阶数,K≥2,p=1,2,…,N,N为采样点数;Solve the linear equations to obtain the load time-domain equivalent parameters of p-bit K order, where K is the solution order, K≥2, p=1,2,...,N, N is the sampling points; 根据所述p位K阶的负荷时域等值参数生成所述负荷时域等值参数序列,并计算所述负荷时域等值参数序列的标准差。generating the load time-domain equivalent parameter sequence according to the p-bit K-order load time-domain equivalent parameter sequence, and calculating the standard deviation of the load time-domain equivalent parameter sequence. 5.如权利要求4所述的基于参数辨识的谐波发射水平估计方法,其特征在于,所述线性方程组为:5. the harmonic emission level estimation method based on parameter identification as claimed in claim 4, is characterized in that, described linear equation group is: ii pp ii modmod (( (( pp ++ 11 )) -- 11 ,, NN )) ++ 11 ii modmod (( (( pp ++ 22 )) -- 11 ,, NN )) ++ 11 .. .. .. ii modmod (( (( pp ++ KK -- 11 )) -- 11 ,, NN )) ++ 11 == uu pp ythe y pp uu modmod (( (( pp ++ 11 )) -- 11 ,, NN )) ++ 11 ythe y modmod (( (( pp ++ 11 )) -- 11 ,, NN )) ++ 11 uu modmod (( (( pp ++ 22 )) -- 11 ,, NN )) ++ 11 ythe y modmod (( (( pp ++ 22 )) -- 11 ,, NN )) ++ 11 .. .. .. .. .. .. uu modmod (( (( pp ++ KK -- 11 )) -- 11 ,, NN )) ++ 11 ythe y modmod (( (( pp ++ KK -- 11 )) -- 11 ,, NN )) ++ 11 ×× rr pp ll pp ,, 其中,up为所述第二电压采样序列u1,u2,…,uN中第p个元素,ip为所述第二电流采样序列i1,i2,…,iN中第p个元素,yp为所述电压修正积分序列y1,y2,…,yN中第p个元素,rp和lp为所述p位K阶的负荷时域等值参数,K为所述求解阶数,N为所述采样点数,a除以b的余数mod(a,b)定义为: 为小于或者等于的最大整数。Wherein, u p is the pth element in the second voltage sampling sequence u 1 , u 2 ,...,u N , and i p is the second current sampling sequence i 1 , i 2 ,..., i N p elements, y p is the pth element in the voltage correction integral sequence y 1 , y 2 ,...,y N , r p and l p are the load time-domain equivalent parameters of the p-bit K-order, K For the solution order, N is the number of sampling points, and the remainder mod (a, b) of a divided by b is defined as: is less than or equal to largest integer of . 6.如权利要求5所述的基于参数辨识的谐波发射水平估计方法,其特征在于,根据下述公式计算所述负荷时域等值参数序列的标准差:6. the harmonic emission level estimation method based on parameter identification as claimed in claim 5, is characterized in that, calculates the standard deviation of described load time-domain equivalent parameter sequence according to following formula: σσ rr == 11 NN ΣΣ ii == 11 NN (( rr ii -- rr ‾‾ )) 22 σσ ll == 11 NN ΣΣ ii == 11 NN (( ll ii -- ll ‾‾ )) 22 ,, 其中,分别为所述负荷时域等值参数序列r1,r2,…,rN和l1,l2,…,lN的算术平均值,σr和σl分别为所述负荷时域等值参数序列r1,r2,…,rN和l1,l2,…,lN的标准差,N为所述采样点数。in, with are the arithmetic mean values of the load time-domain equivalent parameter sequences r 1 , r 2 ,...,r N and l 1 , l 2 ,...,l N , respectively, and σ r and σ l are the load time domain, etc. The standard deviation of the value parameter sequence r 1 , r 2 ,...,r N and l 1 , l 2 ,...,l N , where N is the number of sampling points. 7.如权利要求6所述的基于参数辨识的谐波发射水平估计方法,其特征在于,根据下述公式计算所述主动h次谐波电流有效值和所述主动h次谐波电流畸变率:7. The harmonic emission level estimation method based on parameter identification as claimed in claim 6, wherein the effective value of the active hth harmonic current and the distortion rate of the active hth harmonic current are calculated according to the following formula : II hh aa == Uu 11 (( σσ rr ++ σσ ll 22 πfπf 11 )) hh 22 ++ 11 ,, CHDha=Iha/I1CHD ha = I ha /I 1 , 其中,Iha为所述主动h次谐波电流有效值,U1为所述电压基波幅值,σr和σl分别为所述负荷时域等值参数序列r1,r2,…,rN和l1,l2,…,lN的标准差,N为所述采样点数,f1为所述基波实际频率,h为所述谐波分量的次数,CHDha为所述主动h次谐波电流畸变率,I1为所述电流基波幅值。Wherein, I ha is the effective value of the active hth harmonic current, U 1 is the amplitude of the fundamental voltage wave, σ r and σ l are the load time-domain equivalent parameter sequences r 1 , r 2 ,… , r N and the standard deviation of l 1 , l 2 ,...,l N , N is the number of sampling points, f 1 is the actual frequency of the fundamental wave, h is the order of the harmonic component, CHD ha is the Active h-order harmonic current distortion rate, I 1 is the amplitude of the current fundamental wave. 8.如权利要求3所述的基于参数辨识的谐波发射水平估计方法,其特征在于,根据下述公式获取所述第二电压采样序列的基波相位零点:8. the harmonic emission level estimation method based on parameter identification as claimed in claim 3, is characterized in that, obtains the fundamental wave phase zero point of described second voltage sampling sequence according to following formula: SS == modmod (( rr oo uu nno dd (( -- θθ uu 11 22 ππ LL )) ,, NN )) ++ 11 ,, 其中,S为所述基波相位零点,θu1为所述电压基波相位,L为每个工频基波周期内对所述待估计的电气端口上的电压和电流进行采样的采样点数,N为采样点数,round(a)定义为最接近a的整数,a除以b的余数mod(a,b)定义为: 为小于或者等于的最大整数。Wherein, S is the zero point of the fundamental wave phase, θ u1 is the phase of the fundamental wave of the voltage, and L is the number of sampling points for sampling the voltage and current on the electrical port to be estimated in each power frequency fundamental wave period, N is the number of sampling points, round(a) is defined as the integer closest to a, and the remainder mod(a,b) of a divided by b is defined as: is less than or equal to largest integer of . 9.如权利要求8所述的基于参数辨识的谐波发射水平估计方法,其特征在于,根据下述公式获取所述电压修正积分序列:9. The harmonic emission level estimation method based on parameter identification as claimed in claim 8, wherein the voltage correction integral sequence is obtained according to the following formula: yk=ysk-ysS,k=1,2,…,N,y k =y sk -y sS , k=1,2,...,N, 其中,yk为所述电压修正积分序列的第k个元素,ysk为所述电压原始积分序列的第k个元素,ysS为所述电压原始积分序列的第S个元素,S为所述基波相位零点,N为所述采样点数。Wherein, y k is the kth element of the voltage correction integration sequence, y sk is the kth element of the voltage original integration sequence, y sS is the Sth element of the voltage original integration sequence, and S is the The fundamental wave phase zero point, N is the number of sampling points. 10.如权利要求8所述的基于参数辨识的谐波发射水平估计方法,其特征在于,所述N和所述L满足以下关系:N=mL,其中,m为正整数。10. The method for estimating harmonic emission levels based on parameter identification according to claim 8, wherein said N and said L satisfy the following relationship: N=mL, wherein m is a positive integer.
CN201510103513.XA 2015-03-10 2015-03-10 Harmonic emission level estimation method based on parameter identification Active CN104749434B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510103513.XA CN104749434B (en) 2015-03-10 2015-03-10 Harmonic emission level estimation method based on parameter identification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510103513.XA CN104749434B (en) 2015-03-10 2015-03-10 Harmonic emission level estimation method based on parameter identification

Publications (2)

Publication Number Publication Date
CN104749434A CN104749434A (en) 2015-07-01
CN104749434B true CN104749434B (en) 2017-07-28

Family

ID=53589416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510103513.XA Active CN104749434B (en) 2015-03-10 2015-03-10 Harmonic emission level estimation method based on parameter identification

Country Status (1)

Country Link
CN (1) CN104749434B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703488A (en) * 2017-09-26 2018-02-16 中国舰船研究设计中心 A kind of humorous clutter emission analysis method of phased array
CN108169561B (en) * 2017-12-26 2020-06-09 哈尔滨工业大学 Multi-harmonic signal undersampling method and system based on feedback structure
CN114253301B (en) * 2021-11-29 2024-03-22 天津津航技术物理研究所 Method for testing stability and precision of two-axis four-frame platform

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232255A (en) * 1997-02-19 1998-09-02 Meidensha Corp Method for measuring characteristics of power system
CN101661059A (en) * 2008-08-29 2010-03-03 西门子公司 Quantitative analysis method of harmonic voltage transmission level of nonlinear load of user terminal and device
CN102135569A (en) * 2011-01-21 2011-07-27 清华大学 Fluctuation quantity method-based user side harmonic emission level practicality estimation method
CN202256496U (en) * 2011-10-11 2012-05-30 深圳市亚特尔科技有限公司 Power harmonic analysis apparatus based on FFT (fast Fourier transform)
CN103344828A (en) * 2013-07-12 2013-10-09 重庆大学 Novel harmonic emission level assessment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232255A (en) * 1997-02-19 1998-09-02 Meidensha Corp Method for measuring characteristics of power system
CN101661059A (en) * 2008-08-29 2010-03-03 西门子公司 Quantitative analysis method of harmonic voltage transmission level of nonlinear load of user terminal and device
CN102135569A (en) * 2011-01-21 2011-07-27 清华大学 Fluctuation quantity method-based user side harmonic emission level practicality estimation method
CN202256496U (en) * 2011-10-11 2012-05-30 深圳市亚特尔科技有限公司 Power harmonic analysis apparatus based on FFT (fast Fourier transform)
CN103344828A (en) * 2013-07-12 2013-10-09 重庆大学 Novel harmonic emission level assessment method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fast Harmonic Estimation of Stationary and Time-Varying Signals Using EA-AWNN;Sachin K. Jain等;《IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT》;20130228;第62卷(第2期);第335-343页 *
基于参数辨识方法的谐波源定位;蔡明等;《电网技术》;20110630;第35卷(第6期);第134-138页 *
基于预估的用户谐波评估方法;孔飘红等;《电力电容器与无功补偿》;20120630;第33卷(第3期);第23-28、39页 *

Also Published As

Publication number Publication date
CN104749434A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
Zhan et al. A Clarke transformation-based DFT phasor and frequency algorithm for wide frequency range
CN102662106B (en) Method for measuring electric energy of harmonic power network
Zeng et al. Harmonic phasor analysis based on improved FFT algorithm
CN102539915B (en) Method for accurately calculating power harmonic wave parameters through adopting time delay Fourier transform frequency measurement method
Borkowski et al. Frequency estimation in interpolated discrete fourier transform with generalized maximum sidelobe decay windows for the control of power
CN103575984A (en) Harmonic analysis method based on Kaiser window double-spectral-line interpolation FFT
CN106526317B (en) Phasor measurement accuracy evaluation method and evaluation device of synchrophasor measurement unit
CN102288804B (en) Method for calculating resistive current of arrester based on orthogonal transformation
CN106324340B (en) A kind of method of synchronized phasor and frequency measurement dynamic property
CN102508026B (en) Harmonic wave analysis method for electric energy quality harmonic wave analyzer
Štremfelj et al. Nonparametric estimation of power quantities in the frequency domain using Rife-Vincent windows
Yang et al. A novel algorithm for accurate frequency measurement using transformed consecutive points of DFT
CN104749434B (en) Harmonic emission level estimation method based on parameter identification
CN103399204A (en) Rife-Vincent (II) window interpolation FFT (Fast Fourier Transform)-based harmonic and inter-harmonic detection method
Hernández et al. Bootstrap-based frequency estimation method
CN102253282A (en) Method for obtaining continuous frequency spectrum interpolation power harmonic parameter of Nuttall window function
CN105606900A (en) Single-phase harmonic impedance measuring method based on square wave signals
Zhan et al. Improved WLS-TF algorithm for dynamic synchronized angle and frequency estimation
CN109444539A (en) A kind of synchronous phasor measuring method based on Clarke transform
CN102928713A (en) Background noise measuring method of magnetic antennas
CN103575979A (en) Method for digital measuring of alternating current frequency
de la Rosa et al. An application of the spectral kurtosis to characterize power quality events
CN103941093B (en) A kind of two-way DFT symmetrical compensations Method for Phase Difference Measurement and its device
CN106772193B (en) Measuring method using current transformer frequency characteristic measuring device
CN109030957A (en) dielectric loss measuring method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant