CN104730871A - Different-space different-size substrate alignment method - Google Patents
Different-space different-size substrate alignment method Download PDFInfo
- Publication number
- CN104730871A CN104730871A CN201310699737.2A CN201310699737A CN104730871A CN 104730871 A CN104730871 A CN 104730871A CN 201310699737 A CN201310699737 A CN 201310699737A CN 104730871 A CN104730871 A CN 104730871A
- Authority
- CN
- China
- Prior art keywords
- substrate
- space
- substrates
- different
- image acquisition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 214
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000012937 correction Methods 0.000 claims description 10
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 238000012876 topography Methods 0.000 claims 1
- 101100166427 Arabidopsis thaliana CCD4 gene Proteins 0.000 description 13
- 101100115215 Caenorhabditis elegans cul-2 gene Proteins 0.000 description 13
- 101000857682 Homo sapiens Runt-related transcription factor 2 Proteins 0.000 description 13
- 102100025368 Runt-related transcription factor 2 Human genes 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 11
- 239000004973 liquid crystal related substance Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- -1 CCD2 Proteins 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000007705 chemical test Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Landscapes
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本发明是关于一种基材对位方法,尤其是一种异空间异尺寸基材对位方法,其适用于在不同等待空间下的具有特定标记或特定外形的不同尺寸的二基板的对位。The invention relates to a base material alignment method, especially a base material alignment method in different spaces and different sizes, which is suitable for the alignment of two substrates of different sizes with specific marks or specific shapes in different waiting spaces .
背景技术Background technique
典型的双层板对位的技术应用为玻璃光罩精密对位,除此之外,应用双层板对位技术的范围甚为广泛,如半导体业、平面显示器业、印刷电路板业等领域皆为其应用领域。而光罩精密对位为上述电子产业的各类曝光机的关键技术,若能掌握其关键技术以降低制造成本,则对提高国际竞争力将有莫大的助益。The typical technical application of double-layer board alignment is the precise alignment of glass masks. In addition, the scope of application of double-layer board alignment technology is very wide, such as semiconductor industry, flat-panel display industry, printed circuit board industry, etc. all its fields of application. The precise alignment of the mask is the key technology of various exposure machines in the above-mentioned electronics industry. If the key technology can be mastered to reduce manufacturing costs, it will be of great help to improve international competitiveness.
美国专利公告US7946669号揭示一种插入式的对位装置,主要是将两个电荷耦合元件(Charge Coupled Device;CCD)同时插入双层板之中,分别撷取上下对位标记的影像,然后进行对位。两个电荷耦合元件必须先校正于单一坐标空间,因此该对位装置属于单一坐标空间取像的空间对位。U.S. Patent No. US7946669 discloses a plug-in alignment device, which mainly inserts two charge coupled devices (Charge Coupled Device; CCD) into the double-layer board at the same time, respectively captures the images of the upper and lower alignment marks, and then performs counterpoint. The two charge-coupled devices must first be calibrated in a single coordinate space, so the alignment device belongs to the spatial alignment of imaging in a single coordinate space.
台湾专利公告TWI288365号揭示一种达成高精密对位需求的双层板的对位装置,主要是将两个电荷耦合元件皆放置于双层板上方,同时撷取两组无重叠的上下对位标记的复合影像,然后经由空间运算后进行精密对位。两个电荷耦合元件亦须先校正于单一坐标空间,因此该对位装置亦属于单一坐标空间取像的空间对位。Taiwan Patent Publication No. TWI288365 discloses an alignment device for double-layer boards that meets the requirements of high-precision alignment. It mainly places two charge-coupled devices on the top of the double-layer board, and captures two sets of non-overlapping upper and lower alignments at the same time. The marked composite image is then precisely aligned after spatial operations. The two charge-coupled devices must first be calibrated in a single coordinate space, so the alignment device also belongs to the spatial alignment of imaging in a single coordinate space.
先前技术都是将对位标记合成重叠标记影像进行单一坐标空间计算对位,且仅能于同一尺寸的基材进行。In the prior art, alignment marks are synthesized into overlapping mark images to perform alignment calculations in a single coordinate space, which can only be performed on substrates of the same size.
然而,在某些高科技产业在工艺中,常因材料的特殊性,在利用影像视觉辅助进行贴合、结合或组合时常会遭遇到异尺寸的对位物件无法于同一影像撷取单元中进行影像对位的困扰。例如,在触控面板产业中,由于触控面板具有多样且异尺寸的多层贴合工艺,因此有时无法使用重叠式的对位标记设计。However, in some high-tech industries, often due to the particularity of materials, it is often encountered that alignment objects of different sizes cannot be carried out in the same image capture unit when using image visual aids for lamination, combination or combination. Trouble with image alignment. For example, in the touch panel industry, because the touch panel has various and different-sized multi-layer bonding processes, it is sometimes impossible to use the overlapping alignment mark design.
因此,便有需要提供一种异空间异尺寸基材对位方法,以解决前述的问题。Therefore, there is a need to provide a method for aligning substrates in different spaces and sizes to solve the aforementioned problems.
发明内容Contents of the invention
本发明的目的在于提供一种对位方法可适用于在不同等待空间下的具有特定标记或特定外形的不同尺寸的二基板的对位。The purpose of the present invention is to provide an alignment method applicable to the alignment of two substrates of different sizes with specific marks or specific shapes in different waiting spaces.
为达成上述目的,本发明提供一种异空间异尺寸基材对位方法,包括下列步骤:利用在第一等待空间中的校正后的二影像撷取单元及在第二等待空间中的校正后的二影像撷取单元,分别撷取在该第一及第二等待空间中的不同尺寸的二基板的至少二实际局部图像;分别比对该二基板的标准局部特征区域内的特定标记或特定外形,并取得该二基板的至少二实际局部特征区域内的特定标记或特定外形;分别建立该二基板的实际坐标系统,以合成一对位组装坐标系统;比对该二实际坐标系统中的二基板的特定标记或特定外形的坐标值以取得第一组偏移量,并比对该二基板的尺寸以取得尺寸差量;利用该第一组偏移量及该尺寸差量,修正该二基板的其中一基板的特定标记或特定外形的坐标值;比对该二实际坐标系统中的二基板的其中该基板修正后的特定标记或特定外形的坐标值与该二基板的其中另一基板的特定标记或特定外形的坐标值,以取得第二组偏移量;将二基板的其中该基板移动至该第二组偏移量所补偿的位置;利用一第一预定移动量,使二基板的其中该基板由该第一等待空间移动到一对位组装空间中;以及利用一第二预定移动量,使二基板的其中另一基板由该第二等待空间移动到该对位组装空间中。In order to achieve the above object, the present invention provides a method for aligning substrates in different spaces and sizes, which includes the following steps: using the corrected two image capture units in the first waiting space and the corrected image capture unit in the second waiting space. The two image capture units respectively capture at least two actual partial images of the two substrates of different sizes in the first and second waiting spaces; shape, and obtain the specific marks or specific shapes in at least two actual local feature areas of the two substrates; respectively establish the actual coordinate systems of the two substrates to synthesize a pair of assembly coordinate systems; compare the two actual coordinate systems The coordinate values of the specific mark or specific shape of the two substrates are used to obtain the first set of offsets, and compared with the size of the two substrates to obtain the dimensional difference; using the first set of offsets and the dimensional difference, correct the The coordinate value of a specific mark or a specific shape of one of the two substrates; compare the corrected specific mark or the coordinate value of a specific shape of the two substrates in the two actual coordinate systems with the other of the two substrates The coordinate value of a specific mark or a specific shape of the substrate to obtain a second set of offsets; the substrate of the two substrates is moved to a position compensated by the second set of offsets; using a first predetermined amount of movement, the The substrate of the two substrates is moved from the first waiting space to the alignment assembly space; and using a second predetermined movement amount, the other substrate of the two substrates is moved from the second waiting space to the alignment assembly in space.
上述的异空间异尺寸基材对位方法,还包含下列步骤:The above method for aligning substrates in different spaces and sizes also includes the following steps:
预校正在一第一等待空间中的二影像撷取单元及在一第二等待空间中的二影像撷取单元的空间位置。The spatial positions of the two image capture units in a first waiting space and the two image capture units in a second waiting space are pre-calibrated.
上述的异空间异尺寸基材对位方法,还包含下列步骤:The above method for aligning substrates in different spaces and sizes also includes the following steps:
利用在该第一等待空间中的校正后的二影像撷取单元及在该第二等待空间中的校正后的二影像撷取单元,预定义不同尺寸的二基板的标准局部特征区域内的特定标记或特定外形。Using the calibrated two image capture units in the first waiting space and the calibrated two image capture units in the second waiting space, pre-define specific areas within the standard local feature regions of two substrates with different sizes. mark or specific shape.
上述的异空间异尺寸基材对位方法,还包含下列步骤:The above method for aligning substrates in different spaces and sizes also includes the following steps:
确认该第二组偏移量是否小于欲达到的目标值。It is confirmed whether the second set of offsets is smaller than the target value to be achieved.
上述的异空间异尺寸基材对位方法,还包含下列步骤:The above method for aligning substrates in different spaces and sizes also includes the following steps:
使该二基板在对位组装空间中完成堆叠对位组装。The stacking and alignment assembly of the two substrates is completed in the alignment assembly space.
上述的异空间异尺寸基材对位方法,其中预校正在一第一等待空间中的二影像撷取单元及在一第二等待空间中的二影像撷取单元的空间位置的步骤包含下列步骤:In the above method for aligning substrates in different spaces and sizes, the step of pre-calibrating the spatial positions of the two image capture units in a first waiting space and the two image capture units in a second waiting space includes the following steps :
将两个校正片叠合,使该些校正片的特定标记重叠;Superimpose two calibration sheets so that the specific marks of these calibration sheets overlap;
将叠合后的该些校正片设置于在该第一等待空间中的第一及第二影像撷取单元上方,移动该第一及第二影像撷取单元以撷取在该第一等待空间中的叠合后的该些校正片的虚线环绕区域的第一对角线的两端的特定标记,如此以校正该第一及第二影像撷取单元在该第一等待空间的位置;The superimposed calibration sheets are placed above the first and second image capture units in the first waiting space, and the first and second image capture units are moved to capture images in the first waiting space. Specific marks on both ends of the first diagonal of the dotted line encircled area of the superimposed calibration sheets, so as to correct the positions of the first and second image capture units in the first waiting space;
将叠合后的该些校正片设置于在该第二等待空间中的第三及第四影像撷取单元下方,移动第三及第四影像撷取单元以撷取在该第二等待空间中的叠合后的该些校正片的虚线环绕区域的第二对角线的两端的特定标记,如此以校正该第三及第四影像撷取单元在该第二等待空间的位置;以及Setting the stacked calibration sheets under the third and fourth image capture units in the second waiting space, moving the third and fourth image capture units to capture images in the second waiting space Specific marks on both ends of the second diagonal of the dotted line surrounding area of the superimposed calibration sheets, so as to correct the positions of the third and fourth image capture units in the second waiting space; and
校正后的该第一至第四影像撷取单元将被固定不动。The corrected first to fourth image capturing units will be fixed.
上述的异空间异尺寸基材对位方法,其中该二基板的其中该基板的特定标记为十字形标记,且该二基板的其中另一基板的特定标记为十字管形标记。In the method for aligning substrates in different spaces and sizes, the specific mark on the substrate of the two substrates is a cross-shaped mark, and the specific mark on the other substrate of the two substrates is a cross-shaped tube mark.
上述的异空间异尺寸基材对位方法,其中该二基板的其中该基板的特定外形为直角角隅,且该二基板的其中另一基板的特定外形为直角角隅。In the above method for aligning substrates in different spaces and sizes, the specific shape of the substrate of the two substrates is a right-angled corner, and the specific shape of the other substrate of the two substrates is a right-angled corner.
上述的异空间异尺寸基材对位方法,其中该第二组偏移量用以补偿在该第一及第二等待空间中的该些影像撷取单元的视觉差异所需的X、Y轴方向位移及旋转角度。In the above method for aligning substrates in different spaces and sizes, the second set of offsets is used to compensate the X and Y axes required for the visual differences of the image capture units in the first and second waiting spaces direction displacement and rotation angle.
本发明的对位方法可适用于在不同等待空间下的具有特定标记或特定外形的不同尺寸的二基板的对位。该二基板位于不同等待空间时,利用该二基板的实际局部特征区域内的特定标记(或特定外形),以进行计算后续该二基板的特定标记的坐标(或特定外形)的坐标值。修正该二基板的其中一基板的特定标记(或特定外形)的坐标值,使该不同尺寸的二基板模拟成相同尺寸的二基板。然后,进行异空间下的异尺寸基材对位偏差修正补偿,并续进行后工艺(例如:贴合或组装),不需建立影像坐标系统与对位坐标系统的复杂转换关系,因此可有效减少大量的数学计算与减少设备调机时间,并增加对位贴合工艺的弹性。The alignment method of the present invention is applicable to the alignment of two substrates of different sizes with specific marks or specific shapes in different waiting spaces. When the two substrates are located in different waiting spaces, the specific marks (or specific shapes) in the actual local characteristic regions of the two substrates are used to calculate the coordinate values of the coordinates (or specific shapes) of the specific marks of the second substrates. Correcting the coordinate value of a specific mark (or a specific shape) of one of the two substrates, so that the two substrates with different sizes can be simulated as the second substrates with the same size. Then, correct and compensate for the alignment deviation of different-sized substrates in different spaces, and continue with the post-process (such as lamination or assembly), without the need to establish a complex conversion relationship between the image coordinate system and the alignment coordinate system, so it can be effectively Reduce a large number of mathematical calculations and reduce equipment adjustment time, and increase the flexibility of the alignment and bonding process.
为了让本发明的上述和其他目的、特征和优点能更明显,下文将配合所附附图,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more apparent, a detailed description will be given below in conjunction with the accompanying drawings.
附图说明Description of drawings
图1a及1b为本发明的一实施例的用于异空间异尺寸基材的对位方法的流程图;1a and 1b are flow charts of an alignment method for substrates of different sizes and sizes according to an embodiment of the present invention;
图2a为本发明的一实施例的两个校正片的平面示意图;Figure 2a is a schematic plan view of two calibration sheets according to an embodiment of the present invention;
图2b为本发明的一实施例的两个校正片及四个影像撷取单元的立体示意图;FIG. 2b is a perspective view of two calibration sheets and four image capture units according to an embodiment of the present invention;
图3为本发明的一实施例的用于异空间异尺寸基材的对位装置的立体示意图,其显示不同尺寸的二基板的标准局部特征区域内的特定标记(或特定外形);FIG. 3 is a schematic perspective view of an alignment device for different-space and different-size substrates according to an embodiment of the present invention, which shows specific marks (or specific shapes) in the standard local feature areas of two substrates of different sizes;
图4a为本发明的一实施例的第一标准局部图像的平面示意图;Fig. 4a is a schematic plan view of a first standard partial image according to an embodiment of the present invention;
图4b为本发明的一实施例的第二标准局部图像的平面示意图;Fig. 4b is a schematic plan view of a second standard partial image according to an embodiment of the present invention;
图5为本发明的一实施例的用于异空间异尺寸基材的对位装置的立体示意图,其显示不同等待空间的二基板的至少二实际局部图像;5 is a schematic perspective view of an alignment device for substrates of different sizes and sizes according to an embodiment of the present invention, which shows at least two actual partial images of two substrates in different waiting spaces;
图6a为本发明的一实施例的第一实际局部图像的平面示意图;Fig. 6a is a schematic plan view of a first actual partial image according to an embodiment of the present invention;
图6b为本发明的一实施例的第二实际局部图像的平面示意图;Fig. 6b is a schematic plan view of a second actual partial image according to an embodiment of the present invention;
图7a为本发明的一实施例的对位组装坐标系统的平面示意图,其显示特定标记坐标值(X1,Y1)、(X2,Y2)及特定标记坐标值(X3,Y3)、(X4,Y4);7a is a schematic plan view of an alignment assembly coordinate system according to an embodiment of the present invention, which shows specific mark coordinate values (X1, Y1), (X2, Y2) and specific mark coordinate values (X3, Y3), (X4, Y4);
图7b为本发明的一实施例的对位组装坐标系统的平面示意图,其显示特定外形坐标值(X1,Y1)、(X2,Y2)及特定外形坐标值(X3,Y3)、(X4,Y4);Fig. 7b is a schematic plan view of an alignment assembly coordinate system according to an embodiment of the present invention, which shows specific shape coordinate values (X1, Y1), (X2, Y2) and specific shape coordinate values (X3, Y3), (X4, Y4);
图8a为本发明的一实施例的对位组装坐标系统的平面示意图,其显示特定标记坐标值修正为(X1’,Y1’)、(X2’,Y2’)及特定标记坐标值(X3,Y3)、(X4,Y4);Fig. 8a is a schematic plan view of an alignment assembly coordinate system according to an embodiment of the present invention, which shows that the specific mark coordinate values are corrected as (X1', Y1'), (X2', Y2') and the specific mark coordinate values (X3, Y3), (X4, Y4);
图8b为本发明的一实施例的对位组装坐标系统的平面示意图,其显示特定外形坐标值修正为(X1’,Y1’)、(X2’,Y2’)及特定外形坐标值(X3,Y3)、(X4,Y4);Fig. 8b is a schematic plan view of an alignment assembly coordinate system according to an embodiment of the present invention, which shows that the specific shape coordinate values are corrected to (X1', Y1'), (X2', Y2') and the specific shape coordinate values (X3, Y3), (X4, Y4);
图9为本发明的一实施例的用于异空间异尺寸基材的对位装置的立体示意图,其显示将二基板的其中该基板移动至该第二组偏移量所补偿的位置;9 is a schematic perspective view of an alignment device for substrates of different sizes and different sizes according to an embodiment of the present invention, which shows that the substrate is moved to a position compensated by the second set of offsets of the second substrate;
图10为本发明的一实施例的用于异空间异尺寸基材的对位装置的立体示意图,其显示二基板由各自等待空间移动到对位组装空间中;以及FIG. 10 is a schematic perspective view of an alignment device for different-space and different-size substrates according to an embodiment of the present invention, which shows that two substrates move from their respective waiting spaces to the alignment assembly space; and
图11为本发明的一实施例的用于异空间异尺寸基材的对位装置的立体示意图,其显示该二基板在对位组装空间中完成堆叠对位组装。11 is a schematic perspective view of an alignment device for substrates of different sizes and sizes according to an embodiment of the present invention, which shows that the two substrates are stacked and assembled in the alignment assembly space.
其中,附图标记:Among them, reference signs:
11 校正片 12 校正片11 Calibration film 12 Calibration film
20 第一基板 20’ 第一基板20 First Substrate 20’ First Substrate
21 触控面板21 touch panel
22a 特定标记 22a’ 特定标记22a Specific markings 22a’ Specific markings
22b 特定外 22b’ 特定外形22b Specific shape 22b’ Specific shape
30 第二基板 30’ 第二基板30 second substrate 30’ second substrate
31 液晶面板 31’ 液晶面板31 LCD panel 31’ LCD panel
32a 特定标记 32a’ 特定标记32a Specific Marking 32a’ Specific Marking
32b 特定外形 32b’ 特定外形32b Specific shape 32b’ Specific shape
40 三轴移动机构 60 承载台40 Three-axis moving mechanism 60 Carrying platform
70 旋转台70 rotating table
100 第一等待空间 200 第二等待空间100 First waiting space 200 Second waiting space
300 对位组装空间300 alignment assembly space
510 第一标准局部图像 511 第一标准局部特征区域510 The first standard local image 511 The first standard local feature area
520 第一标准局部图像 521 第一标准局部特征区域520 The first standard local image 521 The first standard local feature area
810 第二标准局部图 811 第二标准局部特征区域810 The second standard local map 811 The second standard local feature area
820 第二标准局部图 821 第二标准局部特征区域820 The second standard local map 821 The second standard local feature area
910 第一实际局部图像 911 第一实际局部特征区域910 The first actual local image 911 The first actual local feature area
920 第一实际局部图像 921 第一实际局部特征区域920 The first actual local image 921 The first actual local feature area
930 第二实际局部图像 931 第二实际局部特征区域930 Second Actual Partial Image 931 Second Actual Partial Feature Area
940 第二实际局部图像 941 第二实际局部特征区域940 Second Actual Partial Image 941 Second Actual Partial Feature Area
CCD1 影像撷取单元 CCD2 影像撷取单元CCD1 Image Capture Unit CCD2 Image Capture Unit
CCD3 影像撷取单元 CCD4 影像撷取单元CCD3 Image Capture Unit CCD4 Image Capture Unit
S01~S13 步骤S01~S13 steps
(X1,Y1)、(X2,Y2)中心坐标值 (X1’,Y1’)、(X2’,Y2’)中心坐标值(X1, Y1), (X2, Y2) center coordinate value (X1’, Y1’), (X2’, Y2’) center coordinate value
(X3,Y3)、(X4,Y4)中心坐标值(X3, Y3), (X4, Y4) center coordinates
△X1’第一预定移动量 △X2’ 第二预定移动量△X1' the first predetermined movement amount △X2' the second predetermined movement amount
△X3、△Y3、△θ3第二组偏移量 △Z 预定移动量△X3, △Y3, △θ3 second set of offset △Z scheduled movement
具体实施方式Detailed ways
为了让本发明的上述及其他目的、特征、优点能更明显易懂,下文将特举本发明较佳实施例,并配合所附附图,作详细说明如下。再者,本发明所提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”或“侧面”等,仅是参考附加附图的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。In order to make the above and other objects, features, and advantages of the present invention more comprehensible, preferred embodiments of the present invention will be exemplified below in detail with reference to the accompanying drawings. Furthermore, the directional terms mentioned in the present invention, such as "up", "down", "front", "rear", "left", "right", "inside", "outside" or "side", etc., It is only with reference to the direction of the attached drawings. Therefore, the directional terms used are used to illustrate and understand the present invention, but not to limit the present invention.
图1a及1b为本发明的一实施例的用于异空间异尺寸基材的对位方法的流程图。该对位方法包含下列步骤:步骤(S01)、预校正在第一等待空间中的二影像撷取单元及在第二等待空间中的二影像撷取单元的空间位置;步骤(S02)、利用在该第一等待空间中的校正后的二影像撷取单元及在该第二等待空间中的校正后的二影像撷取单元,预定义不同尺寸的二基板的标准局部特征区域内的特定标记(或特定外形);步骤(S03)、利用在一第一等待空间中的校正后的二影像撷取单元及在一第二等待空间中的校正后的二影像撷取单元,分别撷取在该第一及第二等待空间的二基板的至少二实际局部图像;步骤(S04)、分别比对该二基板的标准局部特征区域内的特定标记(或特定外形),并取得该二基板的至少二实际局部特征区域内的特定标记(或特定外形);步骤(S05)、分别建立该二基板的实际坐标系统,以合成一对位组装坐标系统;步骤(S06)、比对该二实际坐标系统中的二基板的特定标记(或特定外形)的坐标值以取得第一组偏移量,并比对该二基板的尺寸以取得尺寸差量;步骤(S07)、利用该第一组偏移量及尺寸差量,修正该二基板的其中一基板的特定标记(或特定外形)的坐标值;(S08)、比对该二实际坐标系统中的二基板的其中该基板修正后的特定标记(或特定外形)的坐标值与该二基板的其中另一基板的特定标记(或特定外形)坐标值,以取得第二组偏移量;步骤(S09)、将二基板的其中该基板移动至该第二组偏移量所补偿的位置;步骤(S10)、确认该第二组偏移量是否小于欲达到的目标值;步骤(S11)、利用一第一预定移动量,使二基板的其中该基板由该第一等待空间移动到一对位组装空间中;步骤(S12)、利用一第二预定移动量,使二基板的其中另一基板由该第二等待空间移动到该对位组装空间中;以及步骤(S13)、使该二基板在对位组装空间中完成堆叠对位组装。本发明将于下文利用第1至11图逐一详细说明上述各步骤的实施细节及其原理。1a and 1b are flowcharts of an alignment method for substrates with different dimensions and dimensions according to an embodiment of the present invention. The alignment method comprises the following steps: Step (S01), pre-calibrating the spatial positions of the two image capture units in the first waiting space and the two image capture units in the second waiting space; step (S02), using The corrected two image capture units in the first waiting space and the corrected two image capture units in the second waiting space predefine the specific marks in the standard local feature regions of the two substrates of different sizes (or a specific shape); Step (S03), using the corrected two image capture units in a first waiting space and the corrected two image capture units in a second waiting space to respectively capture the At least two actual partial images of the two substrates in the first and second waiting spaces; step (S04), respectively comparing the specific marks (or specific shapes) in the standard local feature regions of the two substrates, and obtaining the images of the two substrates Specific marks (or specific shapes) in at least two actual local feature areas; step (S05), respectively establishing the actual coordinate systems of the two substrates, to synthesize a pair of assembly coordinate systems; step (S06), comparing the two actual The coordinate values of the specific marks (or specific shapes) of the two substrates in the coordinate system to obtain the first set of offsets, and compare the size of the two substrates to obtain the size difference; step (S07), using the first set Offset and size difference, correcting the coordinate value of the specific mark (or specific shape) of one of the two substrates; (S08), comparing the corrected one of the two substrates in the two actual coordinate systems The coordinate value of a specific mark (or a specific shape) and the coordinate value of a specific mark (or a specific shape) of the other substrate of the two substrates to obtain a second set of offsets; step (S09), the one of the two substrates The substrate moves to the position compensated by the second set of offsets; step (S10), confirming whether the second set of offsets is less than the target value to be achieved; step (S11), using a first predetermined amount of movement, so that The substrate of the two substrates is moved from the first waiting space to the pair-position assembly space; step (S12), using a second predetermined movement amount, moving the other substrate of the two substrates from the second waiting space to the in the alignment assembly space; and step (S13), making the two substrates complete stacking alignment assembly in the alignment assembly space. The present invention will use Figures 1 to 11 to describe in detail the implementation details and principles of the above steps one by one.
请参照图1a、2a及2b,在步骤(S01)中,预校正在第一等待空间中的二影像撷取单元及在第二等待空间中的二影像撷取单元的空间位置。在本实施例中,以叠合后的校正片11、12,预校正在第一等待空间100中的二影像撷取单元CCD1、CCD2及在第二等待空间200中的二影像撷取单元CCD3、CCD4的空间位置。举例,请参照第2a图,将两个校正片11、12叠合,使该些校正片11、12的特定标记重叠。该些校正片11、12可为透明基板,以方便该些影像撷取单元CCD1、CCD2、CCD3、CCD4撷取特定标记图像。该些校正片11、12包含一虚线环绕区域,其模拟为小尺寸的第一基板,例如该虚线环绕区域为矩形,其具有第一对角线。该些校正片11、12包含一实线环绕区域,其模拟为大尺寸的第二基板,例如该实线环绕区域为矩形,其具有第二对角线。该第二对角线大于该第一对角线。将叠合后的该些校正片11、12设置于在第一等待空间100中的该两影像撷取单元CCD1、CCD2上方,移动该两影像撷取单元CCD1、CCD2以撷取在该第一等待空间100中的叠合后的校正片11、12的虚线环绕区域的第一对角线的两端的特定标记22a,如此以校正该两影像撷取单元CCD1、CCD2在该第一等待空间100的位置。然后,将叠合后的校正片11、12设置于在第二等待空间200中的两影像撷取单元CCD3、CCD4下方,移动该两影像撷取单元CCD3、CCD4以撷取在该第二等待空间200中的叠合后的校正片11、12的虚线环绕区域的第二对角线的两端的特定标记32a,如此以校正该两影像撷取单元CCD3、CCD4在该第二等待空间200的位置。校正后的该些影像撷取单元CCD1、CCD2、CCD3、CCD4将被固定不动。1a, 2a and 2b, in step (S01), the spatial positions of the two image capture units in the first waiting space and the two image capture units in the second waiting space are pre-calibrated. In this embodiment, the two image capture units CCD1 and CCD2 in the first waiting space 100 and the two image capture units CCD3 in the second waiting space 200 are pre-calibrated with the stacked calibration sheets 11 and 12 , the spatial location of CCD4. For example, referring to Fig. 2a, two calibration sheets 11, 12 are stacked so that the specific marks on these calibration sheets 11, 12 overlap. The correction sheets 11, 12 can be transparent substrates, so as to facilitate the image capturing units CCD1, CCD2, CCD3, and CCD4 to capture images of specific marks. The calibration sheets 11 , 12 include a region surrounded by a dotted line, which is simulated as a small-sized first substrate. For example, the region surrounded by a dotted line is a rectangle with a first diagonal. The correction sheets 11 , 12 include a solid-line surrounding area, which simulates a large-sized second substrate, for example, the solid-line surrounding area is a rectangle, which has a second diagonal. The second diagonal is larger than the first diagonal. The superimposed correction sheets 11, 12 are placed above the two image capture units CCD1, CCD2 in the first waiting space 100, and the two image capture units CCD1, CCD2 are moved to capture the images in the first waiting space 100. Specific marks 22a at both ends of the first diagonal of the dotted line surrounding area of the stacked calibration sheets 11, 12 in the waiting space 100, so as to calibrate the two image capture units CCD1, CCD2 in the first waiting space 100 s position. Then, the superimposed correction sheets 11, 12 are placed under the two image capture units CCD3, CCD4 in the second waiting space 200, and the two image capture units CCD3, CCD4 are moved to capture the image in the second waiting space. In the space 200, the specific marks 32a on the two ends of the second diagonal of the dotted line surrounding the area of the stacked calibration sheets 11 and 12 are used to calibrate the two image capture units CCD3 and CCD4 in the second waiting space 200. Location. The corrected image capture units CCD1 , CCD2 , CCD3 , and CCD4 will be fixed.
请参照图1a、3、4a及4b,在步骤(S02)中,利用在第一等待空间中的校正后的二影像撷取单元及在第二等待空间中的校正后的二影像撷取单元,预定义不同尺寸的二基板的标准局部特征区域内的特定标记(或特定外形)。在本实施例中,预先利用一组三轴移动机构40以真空吸嘴或夹爪的方式将一第一基板20固定在该第一等待空间100中(但并不限固定于此)。该三轴移动机构40用以利用一第一预定移动量而移动该第一基板20至一对位组装空间300。再者,预先设置至少一组承载台60及一移载机构,该承载台60用以承载一第二基板30,并将该第二基板30固定在该第二等待空间200中的移载机构上(但并不限固定于此)。该移载机构可为一旋转台70,用以利用一第二预定移动量而沿X/Y平面水平旋转移动该承载台60及第二基板30至该对位组装空间300。在其他应用上,该移载机构也可为一滑移台,用以沿X/Y平面线性移动该承载台60及第二基板30至该对位组装空间300。Please refer to Fig. 1a, 3, 4a and 4b, in step (S02), utilize the corrected two image capture units in the first waiting space and the corrected two image capture units in the second waiting space , to predefine specific marks (or specific shapes) within standard local feature regions of two substrates of different sizes. In this embodiment, a set of three-axis moving mechanisms 40 are used to fix a first substrate 20 in the first waiting space 100 (but not limited thereto) in the form of vacuum suction nozzles or grippers. The three-axis moving mechanism 40 is used for moving the first substrate 20 to a position assembly space 300 with a first predetermined moving amount. Furthermore, at least one set of carrying platforms 60 and a transfer mechanism are preset, and the carrying platforms 60 are used to carry a second substrate 30 and fix the second substrate 30 in the transfer mechanism in the second waiting space 200 on (but not limited to) The transfer mechanism can be a rotary table 70 for horizontally rotating and moving the carrier table 60 and the second substrate 30 to the alignment assembly space 300 along the X/Y plane by a second predetermined moving amount. In other applications, the transfer mechanism can also be a sliding table for linearly moving the carrier table 60 and the second substrate 30 to the alignment assembly space 300 along the X/Y plane.
在本实施例中,该第一基板20例如可以选自:构成一多层印刷电路板的其中一片单层电路基板、构成一液晶面板模块的其中一片玻璃基板、一显示器外框、一触控面板或一液晶面板、一玻璃光罩或一晶圆、一化学试纸或一保护膜,但并不限于此。该第一基板20以一触控面板21为例,该触控面板21具有数个特定标记22a(例如十字形标记)或特定外形22b(例如直角角隅)。再者,该第二基板30可选自与上述该第一基板20相对应组配的另一元件。该第二基板30以一液晶面板31为例,该液晶面板31的尺寸大于该触控面板21的尺寸,该液晶面板31具有数个特定标记32a(例如十字管形标记)或特定外形32b(例如直角角隅)。该第二基板30(液晶面板)可以与该第一基板20(例如触控面板20’)共同组装成一触控显示器的半成品。In this embodiment, the first substrate 20 can be selected from, for example: one of the single-layer circuit substrates constituting a multilayer printed circuit board, one of the glass substrates constituting a liquid crystal panel module, a display frame, a touch panel panel or a liquid crystal panel, a glass mask or a wafer, a chemical test paper or a protective film, but not limited thereto. The first substrate 20 takes a touch panel 21 as an example, and the touch panel 21 has several specific marks 22a (such as cross-shaped marks) or specific shapes 22b (such as right-angled corners). Furthermore, the second substrate 30 can be selected from another component correspondingly assembled with the above-mentioned first substrate 20 . The second substrate 30 takes a liquid crystal panel 31 as an example, the size of the liquid crystal panel 31 is larger than the size of the touch panel 21, and the liquid crystal panel 31 has several specific marks 32a (such as cross tube marks) or specific shapes 32b ( such as a right angle corner). The second substrate 30 (liquid crystal panel) can be assembled together with the first substrate 20 (such as the touch panel 20') to form a semi-finished product of a touch display.
该两影像撷取单元CCD1、CCD2可为电荷耦合元件(CCD)或互补金属氧化物半导体(CMOS)型影像撷取单元。在本实施例中,利用电荷耦合元件(CCD)型的该些影像撷取单元CCD1、CCD2来撷取该第一基板20的第一标准局部图像510、520。例如,校正后的该些影像撷取单元CCD1、CCD2已分别设置在对应于该第一基板20的对角线两端位置下方,以便撷取该第一基板20的第一标准局部图像510、520。接着,该第一标准局部图像510、520将被传送到一近端或远端的影像处理装置(未绘示,例如电脑),并由该影像处理装置在各该第一标准局部图像510、520中分别预定义一第一标准局部特征区域511、521内的特定标记22a(或特定外形22b),并储存其形状特征数据。The two image capture units CCD1 and CCD2 can be Charge Coupled Devices (CCD) or Complementary Metal Oxide Semiconductor (CMOS) type image capture units. In this embodiment, the first standard partial images 510 , 520 of the first substrate 20 are captured by the image capture units CCD1 , CCD2 of the charge-coupled device (CCD) type. For example, the corrected image capture units CCD1, CCD2 have been respectively arranged below the two ends of the diagonal line corresponding to the first substrate 20, so as to capture the first standard partial image 510, 520. Next, the first standard partial images 510, 520 will be transmitted to a near-end or far-end image processing device (not shown, such as a computer), and the image processing device will generate the first standard partial images 510, 520 In 520, a specific mark 22a (or a specific shape 22b) in the first standard local feature area 511, 521 is predefined respectively, and its shape feature data is stored.
同时,该两影像撷取单元CCD3、CCD4亦可为电荷耦合元件(CCD)或互补金属氧化物半导体(CMOS)型影像撷取单元。在本实施例中,利用电荷耦合元件(CCD)型的该些影像撷取单元CCD3、CCD4来撷取该第二基板30的第二标准局部图像810、820。例如,校正后的该些影像撷取单元CCD3、CCD4已分别预先设置在对应于该第二基板30的对角线两端位置上方,以便撷取该第二基板30的第二标准局部图像810、820。接着,该第二标准局部图像810、820将被传送到同一影像处理装置,并由该影像处理装置在各该第二标准局部图像810、820中分别预定义第二标准局部特征区域811、821内的特定标记32a(或特定外形32b),并储存其形状特征数据。Meanwhile, the two image capture units CCD3 and CCD4 can also be charge coupled device (CCD) or complementary metal oxide semiconductor (CMOS) type image capture units. In this embodiment, the second standard partial images 810 , 820 of the second substrate 30 are captured by the image capture units CCD3 , CCD4 of the charge-coupled device (CCD) type. For example, the calibrated image capture units CCD3 and CCD4 are respectively pre-set above the two ends of the diagonal line corresponding to the second substrate 30 so as to capture the second standard partial image 810 of the second substrate 30 , 820. Next, the second standard partial images 810, 820 will be sent to the same image processing device, and the image processing device will predefine the second standard partial feature regions 811, 821 respectively in the second standard partial images 810, 820. A specific mark 32a (or a specific shape 32b) inside, and store its shape feature data.
步骤(S01)及步骤(S02)在正式开始进行组装前即需预先完成的,其目的即在于先预校正四个影像撷取单元CCD1、CCD2、CCD3、CCD4的空间位置,并储存第一标准局部特征区域511、521内的特定标记22a(或特定外形22b)及第二标准局部特征区域811、821内的特定标记32a(或特定外形32b)的形状特征数据,以供下述步骤(S03)以后正式进行对位时做为影像比对的参考基准。Steps (S01) and (S02) need to be completed before the official start of assembly. The purpose is to pre-calibrate the spatial positions of the four image capture units CCD1, CCD2, CCD3, and CCD4, and store the first standard The shape feature data of the specific mark 22a (or specific profile 22b) in the local feature area 511, 521 and the specific mark 32a (or specific profile 32b) in the second standard local feature area 811, 821, for the following steps (S03 ) will be used as a reference benchmark for image comparison in the future.
请参照图1a、5、6a及6b,在步骤(S03)中,利用在第一等待空间中的校正后的二影像撷取单元及在第二等待空间中的校正后的二影像撷取单元,分别撷取在该第一及第二等待空间的二基板的至少二实际局部图像。在本实施例中,将一片待对位的第一基板20’(例如触控面板31’)吸持或夹持放置在该三轴移动机构40下方并位于该第一等待空间100中。同时,另将一片待对位的第二基板30’(例如液晶面板31’)放置在该第二等待空间200中的旋转台70的承载台60上。该第一等待空间100与该第二等待空间200相距一段距离,且两者之间另具有该对位组装空间300。Please refer to Fig. 1a, 5, 6a and 6b, in step (S03), utilize the corrected two image capturing units in the first waiting space and the corrected two image capturing units in the second waiting space , capturing at least two actual partial images of the two substrates in the first and second waiting spaces, respectively. In this embodiment, a piece of the first substrate 20' (such as the touch panel 31') to be aligned is sucked or clamped and placed under the three-axis moving mechanism 40 and located in the first waiting space 100. At the same time, another second substrate 30' (such as a liquid crystal panel 31') to be aligned is placed on the carrying platform 60 of the rotating platform 70 in the second waiting space 200. The first waiting space 100 is at a distance from the second waiting space 200 , and there is an alignment assembly space 300 between them.
接着,利用该两影像撷取单元CCD1、CCD2来撷取该第一基板20’的两个第一实际局部图像910、920,例如在正式进行组装时,使用相同于步骤(S02)所使用的该两影像撷取单元CCD1、CCD2来撷取该待对位的第一基板20’的两个第一实际局部图像910、920。Next, use the two image capture units CCD1, CCD2 to capture two first actual partial images 910, 920 of the first substrate 20', for example, when assembling formally, use the same image as that used in step (S02). The two image capture units CCD1 and CCD2 capture two first actual partial images 910 and 920 of the first substrate 20 ′ to be aligned.
同时,也利用该两影像撷取单元CCD3、CCD4来撷取该第二基板30’的两个第二实际局部图像930、940,例如在正式进行组装时,使用相同于步骤(S02)所使用的该两影像撷取单元CCD3、CCD4来撷取该待对位的第二基板30’的两个第二实际局部图像930、940。At the same time, the two image capture units CCD3 and CCD4 are also used to capture two second actual partial images 930 and 940 of the second substrate 30 ′, for example, when assembling formally, the same method as that used in step (S02) is used. The two image capture units CCD3, CCD4 capture two second actual partial images 930, 940 of the second substrate 30' to be aligned.
请再参照图1a、4a及4b、6a及6b,在步骤(S04)中,分别比对该二基板的标准局部特征区域内的特定标记(或特定外形),并取得该二基板的至少二实际局部特征区域内的特定标记(或特定外形)。在本实施例中,该两第一实际局部图像910、920将被传送到同一影像处理装置(例如电脑),并由该影像处理装置使各该第一实际局部图像910、920与该标准局部特征区域511、521的特定标记22a或特定外形22b的形状特征数据进行比对,以取得该第一实际局部图像910、920中匹配于该第一标准局部特征区域511、521的两个第一实际局部特征区域911、921的特定标记22a’(例如十字形标记)或特定外形22b’(例如直角角隅),并储存其形状特征数据备用。Please refer to FIGS. 1a, 4a and 4b, 6a and 6b again. In step (S04), compare the specific marks (or specific shapes) in the standard local feature regions of the two substrates respectively, and obtain at least two images of the two substrates. Specific marks (or specific shapes) within the actual local feature area. In this embodiment, the two first actual partial images 910, 920 will be sent to the same image processing device (such as a computer), and the image processing device will make each of the first actual partial images 910, 920 and the standard partial image The shape feature data of the specific mark 22a or the specific shape 22b of the feature area 511, 521 are compared to obtain the two first standard partial feature areas 511, 521 in the first actual partial image 910, 920. The specific mark 22a' (such as a cross-shaped mark) or the specific shape 22b' (such as a right-angled corner) of the actual local feature area 911, 921, and store its shape feature data for future use.
同时,该两第二实际局部图像930、940将被传送到同一影像处理装置,并由该影像处理装置使各该第二实际局部图像930、940与该第二标准局部特征区域811、821的特定标记32a(或特定外形32b)的形状特征数据进行比对,以取得该第二实际局部图像930、940中匹配于该第二标准局部特征区域811、821的两第二实际局部特征区域931、941的特定标记32a’(例如十字管形标记)或特定外形32b’(例如直角角隅),并储存其形状特征数据备用。At the same time, the two second actual partial images 930, 940 will be sent to the same image processing device, and the image processing device will make each of the second actual partial images 930, 940 and the second standard partial feature region 811, 821 The shape feature data of the specific mark 32a (or the specific shape 32b) is compared to obtain two second actual partial feature areas 931 in the second actual partial images 930, 940 that match the second standard partial feature areas 811, 821 , 941 of the specific mark 32a' (such as a cross-shaped mark) or the specific shape 32b' (such as a right-angled corner), and store its shape feature data for future use.
请参照图1a、7a及7b,在步骤(S05)中,分别建立该二基板的实际坐标系统,以合成一对位组装坐标系统。请再参照图6a及7a,在本实施例中,可利用同一影像处理装置(例如电脑)进行运算,以取得各该第一实际局部特征区域911、921的特定标记22a’的中心坐标值(X1,Y1)、(X2,Y2)(亦即第一方形虚拟黑点位置),以建立该第一基板20’的第一实际坐标系统。请再参照图6a及7b,在另一实施例中,可利用同一影像处理装置(例如电脑)进行运算,以取得各该第一实际局部特征区域911、921的特定外形22b’的中心坐标值(X1,Y1)、(X2,Y2)(亦即第一方形虚拟黑点位置),以建立该第一基板20’的第一实际坐标系统。可通过二组坐标值(X1,Y1)及(X2,Y2)建立该第一基板20’的第一实际坐标系统。Please refer to FIGS. 1a, 7a and 7b. In step (S05), the actual coordinate systems of the two substrates are respectively established to synthesize a pair of assembly coordinate systems. Please refer to FIGS. 6a and 7a again. In this embodiment, the same image processing device (such as a computer) can be used to perform calculations to obtain the center coordinate values ( X1, Y1), (X2, Y2) (ie the position of the first square virtual black dot), to establish the first actual coordinate system of the first substrate 20 ′. Please refer to FIGS. 6a and 7b again. In another embodiment, the same image processing device (such as a computer) can be used to perform calculations to obtain the center coordinate values of the specific outline 22b' of each of the first actual local feature regions 911, 921. (X1, Y1), (X2, Y2) (ie the position of the first square virtual black dot), to establish the first actual coordinate system of the first substrate 20 ′. The first actual coordinate system of the first substrate 20' can be established by two sets of coordinate values (X1, Y1) and (X2, Y2).
同时,请再参照图6b及7a,在本实施例中,本发明亦可利用同一影像处理装置(例如电脑)进行运算,以取得各该第二实际局部特征区域931、941的特定标记32a’的中心坐标值(X3,Y3)、(X4,Y4)(亦即三角形虚拟黑点位置),以建立该第二基板30’的第二实际坐标系统。最后,将该第一及第二实际坐标系统合成一对位组装坐标系统。请再参照图6b及7b,在另一实施例中,可利用同一影像处理装置(例如电脑)进行运算,以取得各该第一实际局部特征区域911、921的特定外形32b’的中心坐标值(X3,Y3)、(X4,Y4)(亦即三角形虚拟黑点位置),以建立该第二基板30’的第一实际坐标系统。可通过二组坐标值(X3,Y3)及(X4,Y4)建立该第二基板30’的第二实际坐标系统。最后,将该第一及第二实际坐标系统合成一对位组装坐标系统。At the same time, please refer to Figures 6b and 7a again. In this embodiment, the present invention can also use the same image processing device (such as a computer) to perform calculations to obtain the specific marks 32a' of the second actual local feature regions 931, 941. The coordinate values (X3, Y3) and (X4, Y4) of the center (that is, the position of the virtual black point of the triangle) are used to establish the second actual coordinate system of the second substrate 30 ′. Finally, the first and second actual coordinate systems are synthesized into a pair of assembly coordinate systems. Please refer to FIGS. 6b and 7b again. In another embodiment, the same image processing device (such as a computer) can be used to perform calculations to obtain the center coordinate values of the specific outline 32b' of each of the first actual local feature regions 911, 921. (X3, Y3), (X4, Y4) (that is, the position of the virtual black point of the triangle), so as to establish the first actual coordinate system of the second substrate 30 ′. The second actual coordinate system of the second substrate 30' can be established by two sets of coordinate values (X3, Y3) and (X4, Y4). Finally, the first and second actual coordinate systems are synthesized into a pair of assembly coordinate systems.
请参照图1a、7a及7b,在步骤(S06)中,比对该二实际坐标系统中的二基板的特定标记(或特定外形)坐标值以取得第一组偏移量,并比对该二基板的尺寸以取得尺寸差量。在本实施例中,当比对该第一实际坐标系统的第一基板20’的特定标记(或特定外形)坐标值(X1,Y1)、(X2,Y2)及该第二实际坐标系统的第二基板30’的特定标记(或特定外形)坐标值(X3,Y3)、(X4,Y4)时,可以取得所需的X、Y轴方向位移及θ旋转角度的第一组偏移量△X1、△Y1、△θ1,用以补偿在该第一及第二等待空间中的该些影像撷取单元的视觉差异。Please refer to Fig. 1a, 7a and 7b, in step (S06), compare the specific mark (or specific shape) coordinate value of the two substrates in the two actual coordinate systems to obtain the first set of offsets, and compare the The size of the two substrates is used to obtain the size difference. In this embodiment, when comparing the coordinate values (X1, Y1), (X2, Y2) of the first substrate 20' of the first actual coordinate system and the coordinate values (X1, Y1) and (X2, Y2) of the second actual coordinate system When the coordinate values (X3, Y3) and (X4, Y4) of the specific mark (or specific shape) of the second substrate 30', the first set of displacements in the required X and Y axis directions and theta rotation angle can be obtained ΔX1, ΔY1, Δθ1 are used to compensate the visual difference of the image capture units in the first and second waiting spaces.
请参照图1b、6a、6b、8a及8b,在步骤(S07)中,利用该第一组偏移量及该尺寸差量,修正该二基板的其中一基板的特定标记(或特定外形)坐标值。在本实施例中,可利用同一影像处理装置(例如电脑)进行运算,利用该第一组偏移量及该尺寸差量,将第一基板20’的各该第一实际局部特征区域911、921的特定标记22a’(或特定外形22b’)的中心坐标值(X1,Y1)、(X2,Y2)修正为(X1’,Y1’)、(X2’,Y2’)(亦即第二方形虚拟黑点位置),如此使在该对位组装坐标系统中的第一基板20’的特定标记22a’(或特定外形22b’)修正后中心坐标值(X1’,Y1’)、(X2’,Y2’)接近于该第二基板30’的特定标记32a’(或特定外形32b’)中心坐标值(X1’,Y1’)、(X2’,Y2’)(亦即第二方形虚拟黑点位置)。Please refer to Fig. 1b, 6a, 6b, 8a and 8b, in step (S07), use the first set of offset and the size difference to correct the specific mark (or specific shape) of one of the two substrates coordinate value. In this embodiment, the same image processing device (such as a computer) can be used to perform calculations, and the first actual partial feature regions 911, 911, The central coordinate values (X1, Y1), (X2, Y2) of the specific mark 22a' (or specific profile 22b') of 921 are corrected as (X1', Y1'), (X2', Y2') (that is, the second square virtual black dot position), so that the specific mark 22a' (or specific shape 22b') of the first substrate 20' in the alignment assembly coordinate system is corrected after the center coordinate values (X1', Y1'), (X2 ', Y2') close to the center coordinate values (X1', Y1'), (X2', Y2') of the specific mark 32a' (or specific shape 32b') of the second substrate 30' (that is, the second square virtual position of the black dot).
请再参照图1b、8a及8b,在步骤(S08)中,比对该二实际坐标系统中的二基板的其中该基板修正后的特定标记(或特定外形)坐标值与该二基板的其中另一基板的特定标记(或特定外形)坐标值,以取得第二组偏移量。在本实施例中,当比对该第一实际坐标系统的第一基板20’的特定标记(或特定外形)修正后的中心坐标值(X1’,Y1’)、(X2’,Y2’)及该第二实际坐标系统的第二基板30’的特定标记(或特定外形)中心坐标值(X3,Y3)、(X4,Y4)时,可以取得所需的X、Y轴方向位移及旋转角度的第二组偏移量△X3、△Y3、△θ3,用以补偿在该第一及第二等待空间中的该些影像撷取单元的视觉差异。Please refer to Fig. 1b, 8a and 8b again, in step (S08), compare the specific mark (or specific shape) coordinate value after the correction of the substrate of the two substrates in the two actual coordinate systems with the coordinate value of the substrate of the two substrates. A specific mark (or a specific shape) coordinate value of another substrate to obtain a second set of offsets. In this embodiment, when comparing the corrected center coordinate values (X1', Y1'), (X2', Y2') of the specific mark (or specific shape) of the first substrate 20' of the first actual coordinate system And when the central coordinate values (X3, Y3) and (X4, Y4) of the specific mark (or specific shape) of the second substrate 30' of the second actual coordinate system, the required displacement and rotation in the X and Y axis directions can be obtained The second set of angle offsets ΔX3, ΔY3, Δθ3 are used to compensate the visual difference of the image capture units in the first and second waiting spaces.
请再参照图1b及9,在步骤(S09)中,将二基板的其中该基板移动至该第二组偏移量所补偿的位置。在本实施例中,根据步骤(S08)所得到的第二组偏移量,以该三轴移动机构40将该第一基板20’移动至该第二组偏移量所补偿的位置。本发明所指的第二组偏移量△X3、△Y3、△θ3不包含该第一基板20’由该第一等待空间100移动到该对位组装空间300所需的X轴方向的第一预定移动量△X1’以及该第二基板30’由该第二等待空间200移动到该对位组装空间300所需的X轴方向的第二预定移动量△X2’,也就是该第一基板20’的第一实际坐标系统与该第二基板30’的第二实际坐标系统在X轴方向上的差异值实际上是△X3+△X1’+△X2’,但该第一基板20’在X轴方向上由该第一实际坐标系统移动到该对位组装空间300则需使用该偏移量△X3+△X1’。Referring to FIGS. 1 b and 9 again, in step ( S09 ), one of the two substrates is moved to a position compensated by the second set of offsets. In this embodiment, according to the second set of offsets obtained in step (S08), the first substrate 20' is moved to a position compensated by the second set of offsets by the three-axis moving mechanism 40. The second set of offsets ΔX3, ΔY3, and Δθ3 referred to in the present invention do not include the first position in the X-axis direction required for the first substrate 20' to move from the first waiting space 100 to the alignment assembly space 300. A predetermined amount of movement ΔX1' and a second predetermined amount of movement ΔX2' in the X-axis direction required for the second substrate 30' to move from the second waiting space 200 to the alignment assembly space 300, that is, the first The difference between the first actual coordinate system of the substrate 20' and the second actual coordinate system of the second substrate 30' in the X-axis direction is actually ΔX3+ΔX1'+ΔX2', but the first substrate 20' To move from the first actual coordinate system to the alignment assembly space 300 in the direction of the X axis, the offset ΔX3+ΔX1' is required.
在步骤(S10)中,确认该第二组偏移量是否小于欲达到的目标值。在本实施例中,若没有小于欲达到的目标值,则回到步骤(S08);反之,若有小于欲达到的目标值,则进入下一个步骤(S11)。In step (S10), it is confirmed whether the second set of offsets is smaller than the target value to be achieved. In this embodiment, if it is not less than the target value to be achieved, then return to step (S08); otherwise, if it is less than the target value to be achieved, then enter the next step (S11).
请参照图1b及10,在步骤(S11)中,利用一第一预定移动量,使二基板的其中该基板由该第一等待空间移动到一对位组装空间中。在本实施例中,利用该三轴移动机构40移动该第一基板20’,其根据该第一预定移动量△X1’使该第一基板20’移动到该对位组装空间300中的一正确待组装位置。Referring to FIGS. 1b and 10 , in step ( S11 ), one of the two substrates is moved from the first waiting space to a position assembly space by using a first predetermined moving amount. In this embodiment, the first substrate 20' is moved by the three-axis moving mechanism 40, which moves the first substrate 20' to one of the alignment assembly spaces 300 according to the first predetermined movement amount ΔX1'. Correct position to be assembled.
请再参照图1b及10,在步骤(S12)中,利用一第二预定移动量,使二基板的其中另一基板由该第二等待空间移动到该对位组装空间中。在本实施例中,可利用该旋转台70沿X/Y平面水平旋转移动该承载台60及第二基板30’至该对位组装空间300中,其依据该第二预定移动量△X2’使该第二基板30’移动到该对位组装空间300中的另一正确待组装位置(例如位在该第一基板20’的Z轴的正下方或正上方)处,以等待组装。Referring to FIGS. 1b and 10 again, in step ( S12 ), the other one of the two substrates is moved from the second waiting space to the aligning assembly space by using a second predetermined moving amount. In this embodiment, the rotating table 70 can be used to horizontally rotate and move the carrier table 60 and the second substrate 30' along the X/Y plane into the alignment assembly space 300, which is based on the second predetermined moving amount ΔX2' The second substrate 30' is moved to another correct position to be assembled in the alignment assembly space 300 (such as directly below or directly above the Z-axis of the first substrate 20') to wait for assembly.
请再参照图1b及11,在步骤(S13)中,使该二基板在对位组装空间中完成堆叠对位组装。在本实施例中,可利用该三轴移动机构40使该第一基板20’沿Z轴移动一预定移动量△Z(例如垂直向下移动一预定距离),直到与该对位组装空间300中的承载台60上的第二基板30’完成堆叠对位组装为止。如此,即可完成该第一基板20’及第二基板30’的对位组装作业。Referring to FIGS. 1b and 11 again, in step ( S13 ), the two substrates are stacked and assembled in the alignment assembly space. In this embodiment, the three-axis moving mechanism 40 can be used to move the first substrate 20 ′ along the Z axis by a predetermined amount of movement ΔZ (for example, move vertically downward by a predetermined distance), until it is aligned with the alignment assembly space 300 The second substrate 30 ′ on the carrying platform 60 in the middle is completed until the stacking alignment assembly is completed. In this way, the alignment and assembly operation of the first substrate 20' and the second substrate 30' can be completed.
本发明的对位方法可适用于在不同等待空间下的具有标记或无标记的不同尺寸的二基板的对位。该二基板位于不同等待空间时,利用该二基板的实际局部特征区域内的特定标记(或特定外形),以进行计算后续该二基板的特定标记的坐标(或特定外形)的坐标值。修正该二基板的其中一基板的特定标记(或特定外形)的坐标值,使该不同尺寸的二基板模拟成相同尺寸的二基板。然后,进行异空间下的异尺寸基材对位偏差修正补偿,并续进行后工艺(例如:贴合或组装),不需建立影像坐标系统与对位坐标系统的复杂转换关系,因此可有效减少大量的数学计算与减少设备调机时间,并增加对位贴合工艺的弹性。The alignment method of the present invention is applicable to the alignment of two substrates of different sizes with marks or without marks in different waiting spaces. When the two substrates are located in different waiting spaces, the specific marks (or specific shapes) in the actual local characteristic regions of the two substrates are used to calculate the coordinate values of the coordinates (or specific shapes) of the specific marks of the second substrates. Correcting the coordinate value of a specific mark (or a specific shape) of one of the two substrates, so that the two substrates with different sizes can be simulated as the second substrates with the same size. Then, correct and compensate for the alignment deviation of different-sized substrates in different spaces, and continue with the post-process (such as lamination or assembly), without the need to establish a complex conversion relationship between the image coordinate system and the alignment coordinate system, so it can be effectively Reduce a large number of mathematical calculations and reduce equipment adjustment time, and increase the flexibility of the alignment and bonding process.
与公知方法不同的是,本发明的异空间异尺寸基材的对位方法提供一个解决方法,可确实解决在工艺上无法将异尺寸基材进行精密对位贴合的问题。本发明的异空间异尺寸基材的对位方法可应用于各式高科技产业中,例如触控面板产业,在其多样且异尺寸的多层贴合工艺中,此方法可解决无法在异空间下异尺寸基材进行影像对位的情况,提升工艺的生产速度与弹性。Different from the known methods, the method for aligning substrates of different sizes and sizes in the present invention provides a solution, which can truly solve the problem that the substrates of different sizes cannot be precisely aligned and bonded in the process. The method for aligning substrates in different spaces and sizes according to the present invention can be applied to various high-tech industries, such as the touch panel industry. The image alignment of different-sized substrates in space improves the production speed and flexibility of the process.
综上所述,乃仅记载本发明为呈现解决问题所采用的技术手段的实施方式或实施例而已,并非用来限定本发明专利实施的范围。即凡与本发明专利申请范围文义相符,或依本发明专利范围所做的均等变化与修饰,皆为本发明专利范围所涵盖。To sum up, what is described above is only the description of the implementation or examples of the technical means adopted by the present invention to solve the problems, and is not intended to limit the scope of the patent implementation of the present invention. That is, all equivalent changes and modifications that are consistent with the scope of the patent application of the present invention, or made according to the scope of the patent of the present invention, are covered by the scope of the patent of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310699737.2A CN104730871B (en) | 2013-12-18 | 2013-12-18 | Different space and different size substrate alignment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310699737.2A CN104730871B (en) | 2013-12-18 | 2013-12-18 | Different space and different size substrate alignment method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104730871A true CN104730871A (en) | 2015-06-24 |
CN104730871B CN104730871B (en) | 2017-07-21 |
Family
ID=53454903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310699737.2A Active CN104730871B (en) | 2013-12-18 | 2013-12-18 | Different space and different size substrate alignment method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104730871B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109341594A (en) * | 2018-09-13 | 2019-02-15 | 深圳市卓精微智能机器人设备有限公司 | A method of socket burnt-in seat orientation angles are judged automatically based on CCD vision |
CN110610891A (en) * | 2019-05-31 | 2019-12-24 | 索尔思光电股份有限公司 | Alignment system and method of operating the same |
CN113043738A (en) * | 2021-03-15 | 2021-06-29 | 广东拓斯达科技股份有限公司 | Glass silk-screen deviation calculation method and device and visual positioning method |
CN113175880A (en) * | 2021-03-31 | 2021-07-27 | 深圳宝新创科技股份有限公司 | Detection equipment |
CN115031626A (en) * | 2022-05-05 | 2022-09-09 | 智慧星空(上海)工程技术有限公司 | Substrate coordinate measuring method |
CN115097664A (en) * | 2022-07-11 | 2022-09-23 | 河南省华锐光电产业有限公司 | Method and device for bonding substrates |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200723166A (en) * | 2005-12-07 | 2007-06-16 | Metal Ind Res & Dev Ct | Design and image processing method of fiducial marks for the motion control system of two plates alignment |
CN101114135A (en) * | 2007-07-24 | 2008-01-30 | 上海微电子装备有限公司 | Aligning system photolithography equipment |
CN102156392A (en) * | 2010-02-11 | 2011-08-17 | 中芯国际集成电路制造(上海)有限公司 | Device and method for detecting alignment parameter of photoetching machine |
JP2012220923A (en) * | 2011-04-14 | 2012-11-12 | Ushio Inc | Method for alignment between mask and work |
CN103167792A (en) * | 2011-12-08 | 2013-06-19 | 财团法人金属工业研究发展中心 | Method and system for assembly and alignment of non-marking different-space substrates |
-
2013
- 2013-12-18 CN CN201310699737.2A patent/CN104730871B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200723166A (en) * | 2005-12-07 | 2007-06-16 | Metal Ind Res & Dev Ct | Design and image processing method of fiducial marks for the motion control system of two plates alignment |
CN101114135A (en) * | 2007-07-24 | 2008-01-30 | 上海微电子装备有限公司 | Aligning system photolithography equipment |
CN102156392A (en) * | 2010-02-11 | 2011-08-17 | 中芯国际集成电路制造(上海)有限公司 | Device and method for detecting alignment parameter of photoetching machine |
JP2012220923A (en) * | 2011-04-14 | 2012-11-12 | Ushio Inc | Method for alignment between mask and work |
CN103167792A (en) * | 2011-12-08 | 2013-06-19 | 财团法人金属工业研究发展中心 | Method and system for assembly and alignment of non-marking different-space substrates |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109341594A (en) * | 2018-09-13 | 2019-02-15 | 深圳市卓精微智能机器人设备有限公司 | A method of socket burnt-in seat orientation angles are judged automatically based on CCD vision |
CN110610891A (en) * | 2019-05-31 | 2019-12-24 | 索尔思光电股份有限公司 | Alignment system and method of operating the same |
CN113043738A (en) * | 2021-03-15 | 2021-06-29 | 广东拓斯达科技股份有限公司 | Glass silk-screen deviation calculation method and device and visual positioning method |
CN113175880A (en) * | 2021-03-31 | 2021-07-27 | 深圳宝新创科技股份有限公司 | Detection equipment |
CN113175880B (en) * | 2021-03-31 | 2023-09-29 | 深圳宝新创科技股份有限公司 | Detection equipment |
CN115031626A (en) * | 2022-05-05 | 2022-09-09 | 智慧星空(上海)工程技术有限公司 | Substrate coordinate measuring method |
CN115031626B (en) * | 2022-05-05 | 2023-08-18 | 智慧星空(上海)工程技术有限公司 | Substrate coordinate measuring method |
CN115097664A (en) * | 2022-07-11 | 2022-09-23 | 河南省华锐光电产业有限公司 | Method and device for bonding substrates |
Also Published As
Publication number | Publication date |
---|---|
CN104730871B (en) | 2017-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8854450B2 (en) | Alignment method for assembling substrates in different spaces without fiducial mark and its system | |
CN104730871B (en) | Different space and different size substrate alignment method | |
US8644591B2 (en) | Alignment method for assembling substrates without fiducial mark | |
JP6296699B2 (en) | Printing device | |
WO2009122529A1 (en) | Alignment device for planar element, manufacturing equipment for the same, alignment method for the same, and manufacturing method for the same | |
US20170039715A1 (en) | Image processing apparatus, calibration method, and calibration program | |
CN103733138B (en) | Be exposed positioning correction method and the exposure device of substrate | |
CN101026952A (en) | Electronic component mounting method and device | |
CN103165501A (en) | Alignment method for unmarked substrate assembly | |
CN103167792B (en) | Method and system for assembly and alignment of non-marking different-space substrates | |
CN105118042A (en) | Aligned adhering method and device | |
TWI489224B (en) | Different Position Method of Different Diameter Substrate | |
KR101597352B1 (en) | Stage 4 axis parallel alignment device | |
CN109219339B (en) | Component mounting device and storage medium | |
CN101384133B (en) | Contraposition method | |
TWI600542B (en) | Laminating equipment and bonding method | |
CN115097664A (en) | Method and device for bonding substrates | |
JP5629540B2 (en) | Alignment unit, substrate processing apparatus, and alignment method | |
JP2002217552A (en) | Method and device for manufacturing of multilayer substrate | |
JPS63197953A (en) | Automatic positioning method for mask film and work substrate | |
JP2003029230A (en) | Substrate, substrate superposition mechanism, and substrate superposition method | |
JP4802909B2 (en) | Alignment method and alignment apparatus | |
JP2008004657A (en) | Surface mount equipment | |
CN118764714A (en) | A machine vision deflection correction and anti-shake method, device and computer-readable storage medium | |
JP2004118073A (en) | Substrate bonding device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |