CN104726728A - Method for preparing beryllium-vanadium alloy by adopting spark plasma sintering technique - Google Patents
Method for preparing beryllium-vanadium alloy by adopting spark plasma sintering technique Download PDFInfo
- Publication number
- CN104726728A CN104726728A CN201310717834.XA CN201310717834A CN104726728A CN 104726728 A CN104726728 A CN 104726728A CN 201310717834 A CN201310717834 A CN 201310717834A CN 104726728 A CN104726728 A CN 104726728A
- Authority
- CN
- China
- Prior art keywords
- sintering
- beryllium
- vanadium
- alloy
- vanadium alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 229910000756 V alloy Inorganic materials 0.000 title claims abstract description 23
- 238000002490 spark plasma sintering Methods 0.000 title abstract description 15
- 238000005245 sintering Methods 0.000 claims abstract description 47
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052790 beryllium Inorganic materials 0.000 claims abstract description 28
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- 238000000227 grinding Methods 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 5
- 229910002056 binary alloy Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000005498 polishing Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 10
- 238000002844 melting Methods 0.000 abstract description 6
- 230000008018 melting Effects 0.000 abstract description 6
- 238000002360 preparation method Methods 0.000 abstract description 6
- 230000004913 activation Effects 0.000 abstract description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 3
- 239000000956 alloy Substances 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract description 2
- 238000009826 distribution Methods 0.000 abstract description 2
- 230000002401 inhibitory effect Effects 0.000 abstract description 2
- 238000009766 low-temperature sintering Methods 0.000 abstract description 2
- 238000010998 test method Methods 0.000 abstract description 2
- 229910052722 tritium Inorganic materials 0.000 description 17
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 238000005253 cladding Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001994 activation Methods 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229910000952 Be alloy Inorganic materials 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000678 plasma activation Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 150000003649 tritium Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
本发明属于一种铍钒合金的制备方法,具体涉及一种放电等离子烧结技术制备铍钒合金的方法。它包括以下步骤,步骤一:配料;步骤二:烧结;步骤三:打磨。本发明的优点是:(1)大大缩减了烧结时间,从而大大节约了能源;(2)由于等离子体的活化作用,可以实现低温烧结,烧结温度低于铍、钒的熔点,这样就抑制了晶粒的长大,从本质上提高了合金的性能;(3)本发明在密闭环境中烧结,降低了铍防护的压力;用本发明制备的铍钒合金,用X射线衍射、电子探针等测试手段证明制备的为铍钒合金;扫描电镜表面烧结体的晶粒发育比较完善,形状比较规则,而且大小一致,排列紧密,整体上结构比较致密,分布比较均匀。The invention belongs to a method for preparing beryllium-vanadium alloy, in particular to a method for preparing beryllium-vanadium alloy by spark plasma sintering technology. It includes the following steps, step one: batching; step two: sintering; step three: grinding. The advantages of the present invention are: (1) the sintering time is greatly reduced, thereby greatly saving energy; (2) due to the activation of plasma, low-temperature sintering can be realized, and the sintering temperature is lower than the melting point of beryllium and vanadium, thus inhibiting The growth of crystal grains improves the performance of the alloy in essence; (3) the present invention is sintered in a closed environment, which reduces the pressure of beryllium protection; And other test methods prove that the preparation is beryllium vanadium alloy; the grain development of the sintered body on the surface of the scanning electron microscope is relatively complete, the shape is relatively regular, and the size is consistent, the arrangement is tight, the overall structure is relatively dense, and the distribution is relatively uniform.
Description
技术领域technical field
本发明属于一种铍钒合金的制备方法,具体涉及一种放电等离子烧结技术制备铍钒合金的方法。The invention belongs to a method for preparing beryllium-vanadium alloy, in particular to a method for preparing beryllium-vanadium alloy by spark plasma sintering technology.
背景技术Background technique
氘氚核聚变反应的原料是氘(从海水中提取)和氚,在氘氚反应中需要消耗掉大量氚,氚是一种放射性物质,在地球上没有天然氚存在,需要通过中子轰击锂材产生氚。为了维持聚变堆的持续稳定运行,需要在聚变堆产氚包层中进行氚增殖,以补充燃耗的氚。The raw materials for the deuterium-tritium fusion reaction are deuterium (extracted from seawater) and tritium. A large amount of tritium needs to be consumed in the deuterium-tritium reaction. Tritium is a radioactive substance. There is no natural tritium on the earth, and lithium needs to be bombarded by neutrons The material produces tritium. In order to maintain the continuous and stable operation of the fusion reactor, it is necessary to carry out tritium breeding in the tritium-producing cladding of the fusion reactor to supplement the tritium consumed.
产氚包层以氚增殖剂材料的形态分为固态产氚包层和液态产氚包层。在固态产氚包层内,为了增加中子轰击锂核的几率,需要在固态产氚包层内放置中子倍增材料倍增中子。由于球形中子倍增剂装卸容易、具有更大的表面积、小球间具有更多的孔道、透气性能好、有利于氚的扩散和释放、有利于缓解中子辐照引起的肿胀。因此,中子倍增剂材料一般采用球形颗粒。The tritium-producing cladding is divided into a solid tritium-producing cladding and a liquid tritium-producing cladding in the form of a tritium breeding agent material. In the solid-state tritium-producing envelope, in order to increase the probability of neutron bombardment of the lithium nucleus, it is necessary to place a neutron multiplier material in the solid-state tritium-producing envelope to multiply neutrons. Because the spherical neutron multiplier is easy to load and unload, has a larger surface area, more pores between the balls, good air permeability, is conducive to the diffusion and release of tritium, and is beneficial to relieve swelling caused by neutron irradiation. Therefore, neutron multiplier materials generally use spherical particles.
因为铍具有较大的反应截面、较高的熔点、且反应阈能较低,放在包层中用于倍增中子,也就是一个中子与铍发生反应能够产生两个中子。然而,在未来的DEMO聚变堆包层的设计中,中子倍增材料需要承受最高900℃的温度和中子高负载量,产生大约20000appm的氦和50个原子位移损伤。金属铍小球将不能承受这样的极端环境,铍合金具有更高的熔点并且在高温下具有较高的化学稳定性,铍合金小球将可能成为最有希望的中子倍增材料。从低活化和高铍含量的角度出发,铍钒合金是优先选择的一种中子倍增材料。因而,在采用旋转电极法制备铍钒合金小球之前,需要制备用作旋转电极的铍钒合金。Because beryllium has a larger reaction cross section, higher melting point, and lower reaction threshold energy, it is placed in the cladding for neutron multiplication, that is, one neutron reacts with beryllium to produce two neutrons. However, in the design of the cladding of the DEMO fusion reactor in the future, the neutron multiplier material needs to withstand a temperature of up to 900°C and a high neutron load, resulting in about 20,000 appm of helium and 50 atomic displacement damage. Metal beryllium pellets will not be able to withstand such an extreme environment. Beryllium alloys have a higher melting point and have higher chemical stability at high temperatures. Beryllium alloy pellets may become the most promising neutron multiplier material. From the perspective of low activation and high beryllium content, beryllium vanadium alloy is a preferred neutron multiplier material. Therefore, before adopting the rotating electrode method to prepare the beryllium vanadium alloy pellets, it is necessary to prepare the beryllium vanadium alloy used as the rotating electrode.
现有技术中的制作方法一般烧结时间长,能源浪费大,晶粒长大程度高,因而造成合金性能不好。基于以上不足,我们采用了放电等离子烧结技术制备铍钒合金。The production method in the prior art generally takes a long time for sintering, wastes a lot of energy, and has a high degree of grain growth, thus resulting in poor performance of the alloy. Based on the above deficiencies, we used spark plasma sintering technology to prepare beryllium vanadium alloy.
放电等离子烧结(Spark Plasma Sintering,简称SPS)技术因其升温速度快、烧结时间短、组织结构可控等优点,在材料制备领域展示出广阔的应用前景。此技术目前已成功应用于梯度功能材料、纳米材料、多孔材料、金属基复合材料、纤维增强复合材料等多种新材料的制备。其中,在制备金属间化合物方面,由于金属间化合物室温脆性和高熔点的特征,在制备过程中往往需要高能量以及高真空系统,而利用SPS技术制备金属间化合物,因为有效利用了颗粒间的自发热作用和表面活化作用,可实现低温、快速烧结,所以SPS技术是制备金属间化合物材料的一种有效方法。Spark plasma sintering (SPS) technology has shown broad application prospects in the field of material preparation due to its advantages of fast heating rate, short sintering time, and controllable structure. This technology has been successfully applied to the preparation of gradient functional materials, nanomaterials, porous materials, metal matrix composites, fiber-reinforced composites and other new materials. Among them, in the preparation of intermetallic compounds, due to the characteristics of room temperature brittleness and high melting point of intermetallic compounds, high-energy and high-vacuum systems are often required in the preparation process, and the use of SPS technology to prepare intermetallic compounds is due to the effective use of interparticles. Self-heating and surface activation can realize low-temperature and rapid sintering, so SPS technology is an effective method for preparing intermetallic compound materials.
发明内容Contents of the invention
本发明的目的是提供一种放电等离子烧结技术制备铍钒合金的方法,它能够克服现有技术的缺陷。The purpose of the present invention is to provide a method for preparing beryllium vanadium alloy by spark plasma sintering technology, which can overcome the defects of the prior art.
本发明是这样实现的,一种放电等离子烧结技术制备铍钒合金的方法,它包括以下步骤,The present invention is achieved like this, a kind of spark plasma sintering technology prepares the method for beryllium vanadium alloy, it comprises the following steps,
步骤一:配料;Step 1: Ingredients;
步骤二:烧结;Step two: sintering;
步骤三:打磨。Step three: sanding.
所述的步骤一包括Said step one includes
步骤1.1:混料Step 1.1: Mixing
根据设计要求对铍钒二元合金相进行配制,配置时以重量百分比计数,铍粉和钒粉的粒径小于70μm;Prepare the beryllium-vanadium binary alloy phase according to the design requirements, and the configuration is counted by weight percentage. The particle size of beryllium powder and vanadium powder is less than 70 μm;
步骤1.2:研磨及装料Step 1.2: Grinding and charging
将铍粉和钒粉放入研磨仪中混合研磨30~60min,然后将混合后的铍钒合金粉末置入高纯石墨模具中,在模具的外表面包裹一层石墨碳毡保温套,将其置于放电等离子烧结炉中。Put the beryllium powder and vanadium powder into the grinder and mix and grind for 30-60 minutes, then put the mixed beryllium-vanadium alloy powder into a high-purity graphite mold, wrap a layer of graphite carbon felt insulation cover on the outer surface of the mold, and place it placed in a spark plasma sintering furnace.
所述的步骤二包括The second step includes
步骤2.1:抽真空Step 2.1: Vacuum
对烧结炉抽真空,真空度应至少达到10-2Pa,对烧结模施加30~60Mpa的轴向的压力;Vacuum the sintering furnace, the vacuum degree should reach at least 10 -2 Pa, and apply an axial pressure of 30-60Mpa to the sintering mold;
步骤2.2:加脉冲Step 2.2: Pulse
保持步骤2.1中的恒定压力,并加脉冲电压,脉冲电流为350~550A,脉冲放电时间30-50ms,间隔1秒放电1次,持续30s;Keep the constant pressure in step 2.1, and add pulse voltage, the pulse current is 350-550A, the pulse discharge time is 30-50ms, discharge once every 1 second, and last for 30s;
步骤2.3:加压烧结Step 2.3: Pressure Sintering
提高压力至50~60Mpa,开始烧结,烧结温度为900~1300℃;烧结时从常温开始以100~200℃/min的速率升温,直到达到烧结温度;在烧结温度保持20~40min;Increase the pressure to 50-60Mpa, start sintering, the sintering temperature is 900-1300°C; during sintering, start from room temperature and increase the temperature at a rate of 100-200°C/min until it reaches the sintering temperature; keep at the sintering temperature for 20-40min;
步骤2.4:冷却Step 2.4: Cooling
停止加热,撤销压力,以100~200℃/min的速率降温至室温。Stop heating, remove the pressure, and cool down to room temperature at a rate of 100-200°C/min.
本发明的优点是,(1)大大缩减了烧结时间,从而大大节约了能源;(2)由于等离子体的活化作用,可以实现低温烧结,烧结温度低于铍、钒的熔点,这样就抑制了晶粒的长大,从本质上提高了合金的性能;(3)本发明在密闭环境中烧结,降低了铍防护的压力;用本发明制备的铍钒合金,用X射线衍射、电子探针等测试手段证明制备的为铍钒合金;扫描电镜表面烧结体的晶粒发育比较完善,形状比较规则,而且大小一致,排列紧密,整体上结构比较致密,分布比较均匀。表明放电等离子烧结法是可用于制备铍钒合金的一种有效、快捷的手段。The advantages of the present invention are: (1) the sintering time is greatly reduced, thereby greatly saving energy; (2) due to the activation of plasma, low-temperature sintering can be realized, and the sintering temperature is lower than the melting point of beryllium and vanadium, thus inhibiting The growth of crystal grains improves the performance of the alloy in essence; (3) the present invention is sintered in a closed environment, which reduces the pressure of beryllium protection; And other test methods prove that the preparation is beryllium vanadium alloy; the grain development of the sintered body on the surface of the scanning electron microscope is relatively complete, the shape is relatively regular, and the size is consistent, the arrangement is tight, the overall structure is relatively dense, and the distribution is relatively uniform. It shows that the spark plasma sintering method is an effective and fast method for preparing beryllium vanadium alloy.
具体实施方式Detailed ways
下面结合实施例对本发明进行详细介绍:The present invention is described in detail below in conjunction with embodiment:
一种放电等离子烧结技术制备铍钒合金的方法,它包括以下步骤:A kind of spark plasma sintering technology prepares the method for beryllium vanadium alloy, it comprises the following steps:
步骤一:配料Step 1: Ingredients
步骤1.1:混料Step 1.1: Mixing
根据设计要求对铍钒二元合金相进行配制,配置时以重量百分比计数,铍粉和钒粉的粒径小于70μm。The beryllium vanadium binary alloy phase is prepared according to the design requirements, and the beryllium powder and vanadium powder have a particle size of less than 70 μm when counted by weight percentage.
步骤1.2:研磨及装料Step 1.2: Grinding and charging
将铍粉和钒粉放入研磨仪中混合研磨30~60min,然后将混合后的铍钒合金粉末置入高纯石墨模具中,在模具的外表面包裹一层石墨碳毡保温套,将其置于放电等离子烧结炉中;Put the beryllium powder and vanadium powder into the grinder and mix and grind for 30-60 minutes, then put the mixed beryllium-vanadium alloy powder into a high-purity graphite mold, wrap a layer of graphite carbon felt insulation cover on the outer surface of the mold, and place it Placed in a spark plasma sintering furnace;
步骤二:烧结Step 2: Sintering
步骤2.1:抽真空Step 2.1: Vacuum
对烧结炉抽真空,真空度应至少达到10-2Pa,以优于10-3Pa为最佳,对烧结模施加30~60Mpa的轴向的压力;Vacuum the sintering furnace, the vacuum should be at least 10 -2 Pa, preferably better than 10 -3 Pa, and apply an axial pressure of 30-60Mpa to the sintering mold;
步骤2.2:加脉冲Step 2.2: Pulse
保持步骤2.1中的恒定压力,并加脉冲电压,脉冲电流为350~550A,脉冲放电时间30-50ms,间隔1秒放电1次,持续30s。Keep the constant pressure in step 2.1, and add pulse voltage, the pulse current is 350-550A, the pulse discharge time is 30-50ms, discharge once every 1 second, and last for 30s.
本步骤产生等离子体,对颗粒表面进行活化,伴随产生少量的热,去除覆于表面的杂质;This step generates plasma to activate the surface of the particles, accompanied by a small amount of heat, to remove impurities covering the surface;
步骤2.3:加压烧结Step 2.3: Pressure Sintering
提高压力至50~60Mpa,开始烧结,烧结温度为900~1300℃;烧结时从常温开始以100~200℃/min的速率升温,直到达到烧结温度;在烧结温度保持20~40min。Increase the pressure to 50-60Mpa, start sintering, the sintering temperature is 900-1300°C; during sintering, start from room temperature and increase the temperature at a rate of 100-200°C/min until it reaches the sintering temperature; keep at the sintering temperature for 20-40min.
步骤2.4:冷却Step 2.4: Cooling
停止加热,撤销压力,以100~200℃/min的速率降温至室温。Stop heating, remove the pressure, and cool down to room temperature at a rate of 100-200°C/min.
步骤三:打磨Step 3: Sanding
将烧结完成后的样品进行打磨,去除表面的渗碳层。The sintered samples were ground to remove the carburized layer on the surface.
下面给出两个具体烧结的例子:Two specific sintering examples are given below:
例一Example one
烧结67.92%Be-32.08%V(重量百分比)配比的粉末材料的最佳工艺条件为:脉冲电流500A,脉冲接通时间50ms等离子体活化时间30s,压力为55Mpa,在1150℃烧结20min,升温速率为180℃/min,冷却速率为200℃/min。烧结后Be12V相的含量为98.5%,其他铍钒合金(Be2V、Be17V2)相为0.9%,Be的含量为0.6%。The optimal process conditions for sintering powder materials with a ratio of 67.92%Be-32.08%V (weight percentage) are: pulse current 500A, pulse on time 50ms, plasma activation time 30s, pressure 55Mpa, sintering at 1150°C for 20min, heating The rate was 180°C/min and the cooling rate was 200°C/min. After sintering, the content of Be 12 V phase is 98.5%, that of other beryllium vanadium alloys (Be 2 V, Be 17 V 2 ) is 0.9%, and that of Be is 0.6%.
例二Example two
烧结60.0%Be-40%V(重量百分比)配比的粉末材料的最佳工艺条件为:脉冲电流550A,脉冲接通时间50ms等离子体活化时间30s,压力为60Mpa,在1280℃烧结30min,升温速率为180℃/min,冷却速率为200℃/min。烧结后Be17V2相的含量为98.2%,其他铍钒合金(Be2V、Be12V)相为1.3%,α相Be的含量为0.5%。The optimal process conditions for sintering powder materials with a ratio of 60.0%Be-40%V (weight percentage) are: pulse current 550A, pulse on time 50ms, plasma activation time 30s, pressure 60Mpa, sintering at 1280°C for 30min, heating The rate was 180°C/min and the cooling rate was 200°C/min. After sintering, the content of Be 17 V 2 phase is 98.2%, the content of other beryllium vanadium alloys (Be 2 V, Be 12 V) is 1.3%, and the content of α-phase Be is 0.5%.
上面结合实施例对本发明作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。本发明中未作详细描述的内容均可以采用现有技术。The present invention has been described in detail above in conjunction with the embodiments, but the present invention is not limited to the above embodiments, and various changes can be made within the knowledge of those skilled in the art without departing from the gist of the present invention. The content that is not described in detail in the present invention can adopt the prior art.
本申请提供的放电等离子烧结法具有以下特点:升温、降温速度快,能在较低的温度下烧结;烧结时间短,晶粒尺寸小;放电等离子除了具有热压烧结的特点外,还可以通过脉冲电流对样品加热,使样品很快烧结。一般认为放电等离子烧结可能存在以下几种致密化途径:(1)晶粒间的放电产生局部高温,在晶粒表面引起蒸发和熔化,并在颗粒接触点形成“颈部”,从而直接促进了致密化的过程;(2)在脉冲电流的作用下,晶粒表面容易活化,各种扩散作用都得到加强,从而促进了致密化的过程。放电等离子烧结体内每个颗粒均匀地自身发热使颗粒表面活化,从而具有很高的热效率,可在相当短的时间内使烧结体致密。The discharge plasma sintering method provided by this application has the following characteristics: heating and cooling speed is fast, and it can be sintered at a lower temperature; The pulse current heats the sample, so that the sample is sintered quickly. It is generally believed that spark plasma sintering may have the following densification pathways: (1) The discharge between grains generates local high temperature, causes evaporation and melting on the grain surface, and forms a "neck" at the contact point of the grains, which directly promotes Densification process; (2) Under the action of pulse current, the grain surface is easily activated, and various diffusion effects are strengthened, thereby promoting the densification process. Each particle in the spark plasma sintering body heats itself evenly to activate the surface of the particle, so it has high thermal efficiency and can make the sintered body dense in a relatively short time.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310717834.XA CN104726728A (en) | 2013-12-23 | 2013-12-23 | Method for preparing beryllium-vanadium alloy by adopting spark plasma sintering technique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310717834.XA CN104726728A (en) | 2013-12-23 | 2013-12-23 | Method for preparing beryllium-vanadium alloy by adopting spark plasma sintering technique |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104726728A true CN104726728A (en) | 2015-06-24 |
Family
ID=53451137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310717834.XA Pending CN104726728A (en) | 2013-12-23 | 2013-12-23 | Method for preparing beryllium-vanadium alloy by adopting spark plasma sintering technique |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104726728A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108486397A (en) * | 2018-04-17 | 2018-09-04 | 中国工程物理研究院材料研究所 | A kind of discharge plasma sintering preparation method of beryllium alumin(i)um alloy |
CN111570813A (en) * | 2020-05-29 | 2020-08-25 | 西藏智材新材料有限公司 | Beryllium-aluminum alloy powder and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06317684A (en) * | 1993-01-05 | 1994-11-15 | Masutaazu Shoji Kk | Takeout method of low-temperature nuclear fusion reaction energy |
US20070237279A1 (en) * | 2006-04-05 | 2007-10-11 | Sio-Hang Cheang | System and method for fusion power generation using very high electrical potential difference |
CN101567225A (en) * | 2009-05-26 | 2009-10-28 | 中国科学院等离子体物理研究所 | first wall part with wolfram coat having grid structure |
JP2010019608A (en) * | 2008-07-08 | 2010-01-28 | Japan Atomic Energy Agency | Beryllium material filling body, and molding method of beryllium material filling body |
-
2013
- 2013-12-23 CN CN201310717834.XA patent/CN104726728A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06317684A (en) * | 1993-01-05 | 1994-11-15 | Masutaazu Shoji Kk | Takeout method of low-temperature nuclear fusion reaction energy |
US20070237279A1 (en) * | 2006-04-05 | 2007-10-11 | Sio-Hang Cheang | System and method for fusion power generation using very high electrical potential difference |
JP2010019608A (en) * | 2008-07-08 | 2010-01-28 | Japan Atomic Energy Agency | Beryllium material filling body, and molding method of beryllium material filling body |
CN101567225A (en) * | 2009-05-26 | 2009-10-28 | 中国科学院等离子体物理研究所 | first wall part with wolfram coat having grid structure |
Non-Patent Citations (11)
Title |
---|
H. KAWAMURA ET AL.: "Present status of beryllide R&D as neutron multiplier", 《JOURNAL OF NUCLEAR MATERIALS》 * |
JAE-HWAN KIM ET AL.: "The effect of sintering time on synthesis of plasma sintered beryllides", 《JOURNAL OF NUCLEAR MATERIALS》 * |
JAE-HWANKIM等: "Optimizationofsynthesisconditionsforplasma-sintered", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
M. UCHIDA ET AL.: "Elementary development for beryllide pebble fabrication by", 《FUSION ENGINEERING AND DESIGN》 * |
MASARU NAKAMICHI ET AL.: "Trial fabrication of beryllides as advanced neutron multiplier", 《FUSION ENGINEERING AND DESIGN》 * |
P. KURINSKIY ET AL.: "Comparative study of fusion relevant properties of Be12V and Be12Ti", 《FUSION ENGINEERING AND DESIGN》 * |
P. KURINSKIY ET AL.: "X-ray study of surface layers of air-annealed Be12Ti and Be12V samples using", 《FUSION ENGINEERING AND DESIGN》 * |
冯勇进等: "Current status of the fabrication of Li4SiO4 and beryllium pebbles for CN HCCB TBM in SWIP", 《PLASMA SCIENCE AND TECHNOLOGY》 * |
刘万辉: "《复合材料》", 31 August 2011, 哈尔滨工业大学出版社 * |
刘阳等: "《非氧化物陶瓷及其应用》", 31 January 2011, 化学工业出版社 * |
宋希文: "《耐火制品》", 31 January 2010, 化学工业出版社 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108486397A (en) * | 2018-04-17 | 2018-09-04 | 中国工程物理研究院材料研究所 | A kind of discharge plasma sintering preparation method of beryllium alumin(i)um alloy |
CN111570813A (en) * | 2020-05-29 | 2020-08-25 | 西藏智材新材料有限公司 | Beryllium-aluminum alloy powder and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104630524A (en) | Method for preparing beryllium-titanium alloy by spark plasma sintering | |
WO2019114555A1 (en) | Lithium ion battery negative electrode material and preparation method therefor | |
CN106971765B (en) | A kind of preparation process of high TRISO content inertia base dispersion fuel pellet | |
CN106971764B (en) | A kind of quick preparation process of inertia base dispersion fuel pellet | |
CN107274936B (en) | A kind of fast preparation method of the enhanced uranium dioxide nuclear fuel of beryllium oxide | |
CN105200274A (en) | Neutron absorbing material and preparation method thereof | |
CN112813397B (en) | Preparation method of molybdenum-sodium alloy plate-shaped target | |
CN107338372A (en) | A kind of preparation and its application of the aluminum-based composite hydrogen manufacturing material of discharge plasma sintering | |
CN106077693B (en) | A kind of high thermal shock W-TiC-Y2O3Composite material and preparation method thereof | |
CN109943763B (en) | Preparation method of high-thermal-conductivity nuclear fuel pellet | |
CN104091920A (en) | A carbon-coated nano-scale lithium aluminum alloy negative electrode material and preparation method thereof | |
CN101894594B (en) | A Preparation Process of Substoichiometric UO2-x Annular Pellets | |
CN112030026A (en) | Preparation method of high-hardness and high-density composite rare earth oxide doped tungsten-based composite material | |
CN110306074B (en) | A kind of spark plasma sintering preparation method of CERMET fuel pellets | |
CN111508628B (en) | Preparation method of tungsten or molybdenum-based fuel pellets dispersed with uranium dioxide core balls | |
CN104726728A (en) | Method for preparing beryllium-vanadium alloy by adopting spark plasma sintering technique | |
CN103602868B (en) | Preparation method of high-density fine-grain W-TiC alloy material | |
CN107299269B (en) | A kind of W-Cr-Al composite material and preparation method of resistance to high temperature oxidation | |
CN117902916B (en) | A kind of porous TaC ceramic material and preparation method thereof | |
CN111634950A (en) | A kind of preparation method of perovskite-type high-emissivity spherical agglomerate powder | |
CN109437871B (en) | A kind of preparation method of porous lithium orthosilicate material | |
CN109859858A (en) | A kind of foam type tritium multiplication agent and preparation method thereof | |
CN112174196B (en) | A kind of TiN/C coated lithium titanate tritium multiplying agent and its preparation method and preparation device system | |
CN103708419A (en) | Method for preparing of high-activity LiH microspheres through wet process | |
CN112185592B (en) | C/TiN coated lithium orthosilicate tritium propagation agent, preparation method thereof and preparation device system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150624 |
|
RJ01 | Rejection of invention patent application after publication |