CN104717306A - Greenhouse Internet-of-Things measurement and control system, and data synchronization method thereof - Google Patents
Greenhouse Internet-of-Things measurement and control system, and data synchronization method thereof Download PDFInfo
- Publication number
- CN104717306A CN104717306A CN201510152821.1A CN201510152821A CN104717306A CN 104717306 A CN104717306 A CN 104717306A CN 201510152821 A CN201510152821 A CN 201510152821A CN 104717306 A CN104717306 A CN 104717306A
- Authority
- CN
- China
- Prior art keywords
- data
- acquisition unit
- data acquisition
- monitoring parameter
- intelligent gateway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/4185—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
- G05B19/41855—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication by local area network [LAN], network structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明公开了一种温室物联网测控系统及其数据同步方法,系统由数据采集单元网络群、汇聚节点、智能网关、远程服务器和远程监控设备浏览器等模块组成。针对数据采集单元和传感器易受温室环境多变的影响经常需要变更,或者用户需要另外增加同类型的传感器数量进行监测温室内的环境差异等需求,为实现温室环境监测信息处理、传输过程的自适应,设计的数据同步方法为:智能网关通过查询预先设置好的数据采集单元配置表自适应地解析数据流的监测参数数值,实现数据采集单元网络群与智能网关的数据同步。智能网关使用XML数据结构对数据采集单元配置、监测参数数值等信息进行封装,通过Http Post传输通信机制实现与远程服务器的数据同步。本发明可应用于基于物联网的温室环境测控系统的数据传输。
The invention discloses a greenhouse Internet of things measurement and control system and a data synchronization method thereof. The system is composed of modules such as a data acquisition unit network group, a convergence node, an intelligent gateway, a remote server, and a remote monitoring device browser. In view of the need for data acquisition units and sensors to be easily changed due to changes in the greenhouse environment, or users need to increase the number of sensors of the same type to monitor environmental differences in the greenhouse, in order to realize the automatic processing and transmission of greenhouse environment monitoring information To adapt, the data synchronization method designed is as follows: the intelligent gateway adaptively analyzes the monitoring parameter values of the data flow by querying the pre-set data acquisition unit configuration table, and realizes the data synchronization between the data acquisition unit network group and the intelligent gateway. The intelligent gateway uses the XML data structure to encapsulate information such as data acquisition unit configuration and monitoring parameter values, and realizes data synchronization with the remote server through the Http Post transmission communication mechanism. The invention can be applied to the data transmission of the greenhouse environment measurement and control system based on the internet of things.
Description
技术领域technical field
本发明属于农业物联网技术领域,具体涉及一种基于物联网的温室测控系统及其数据同步方法。The invention belongs to the technical field of the agricultural internet of things, and in particular relates to a greenhouse measurement and control system based on the internet of things and a data synchronization method thereof.
背景技术Background technique
物联网技术随着信息技术的快速发展越来越多的在设施农业中得到了应用。传感器技术、无线网络、微型计算机技术、互联网的发展,进一步促进了温室环境信息的监测管理。典型的温室物联网系统包括感知、传输、应用三种层次。感知层利用传感器技术进行环境信息获取,主要包括温室内的温度、光照、湿度、CO2浓度等气候信息,土壤湿度、pH值、EC值等环境信息,以及室外的气象信息。传输层通过无线网络技术,主要以Zigbee技术传输至物联网的网关,网关实现信息的统一汇聚和计算处理,并传输至互联网。远程应用服务器实现温室监测数据的存储,实现面向用户的门户网站或者以客户端的形式实现温室环境监测。考虑到数据采集单元和传感器易受温室环境多变等因素的影响经常需要变更,或者用户需要另外增加同类型的传感器数量进行监测温室内的环境差异等情况。如何实现传感器和数据采集单元的变更所带来的智能网关的信息处理与传输以及远程服务器信息处理与传输的自适应,是温室物联网智能化运行的一个核心。With the rapid development of information technology, Internet of Things technology has been more and more applied in facility agriculture. The development of sensor technology, wireless network, microcomputer technology and Internet has further promoted the monitoring and management of greenhouse environmental information. A typical greenhouse IoT system includes three levels: perception, transmission, and application. The perception layer uses sensor technology to obtain environmental information, mainly including climate information such as temperature, light, humidity, and CO2 concentration in the greenhouse, environmental information such as soil moisture, pH value, and EC value, and outdoor meteorological information. The transport layer transmits to the gateway of the Internet of Things through wireless network technology, mainly Zigbee technology. The gateway realizes the unified aggregation and calculation processing of information, and transmits it to the Internet. The remote application server realizes the storage of the greenhouse monitoring data, realizes the user-oriented portal website or realizes the greenhouse environment monitoring in the form of the client. Considering that the data acquisition unit and sensors are susceptible to factors such as changes in the greenhouse environment and often need to be changed, or the user needs to increase the number of sensors of the same type to monitor environmental differences in the greenhouse. How to realize the information processing and transmission of the intelligent gateway brought about by the change of the sensor and the data acquisition unit and the self-adaptation of the information processing and transmission of the remote server is a core of the intelligent operation of the greenhouse IoT.
发明内容Contents of the invention
本发明的目的在于提供一种温室物联网测控系统及其数据同步方法,以实现传感器和数据采集单元的变更所带来的智能网关信息处理与传输以及远程服务器信息处理与传输的自适应。The purpose of the present invention is to provide a greenhouse IoT measurement and control system and its data synchronization method to realize the self-adaptation of intelligent gateway information processing and transmission and remote server information processing and transmission brought about by the change of sensors and data acquisition units.
为了解决以上技术问题,本发明所采用的具体技术方案如下:In order to solve the above technical problems, the specific technical scheme adopted in the present invention is as follows:
一种温室物联网测控系统,包括数据采集单元网络群(1)、汇聚节点(2)、智能网关(3)、远程服务器(4)、远程监控设备浏览器(5);其特征在于:所述数据采集单元网络群(1)采用太阳能和蓄电池系统进行供电,通过Zigbee数据采集单元连接传感器,分别采集温室内光照、温度、湿度、CO2浓度和温室外气象信息;采用星型的Zigbee通信协议自组织方式形成无线传输网络群与汇聚节点(2)进行无线通信;汇聚节点(2)将Zigbee协议数据流与串口通信数据流进行转换后同步至智能网关(3);智能网关(3)通过3G或Wi-Fi模块接入互联网,建立与远程服务器(4)基于HttpPost传输通信机制(6)的数据同步;远程服务器(4)采用B/S结构构建用户监控设备浏览器(5)的WEB访问。A greenhouse Internet of things measurement and control system, comprising a data acquisition unit network group (1), a convergence node (2), an intelligent gateway (3), a remote server (4), and a remote monitoring device browser (5); it is characterized in that: The data acquisition unit network group (1) adopts solar energy and storage battery system for power supply, connects sensors through Zigbee data acquisition unit, and collects light, temperature, humidity, CO2 concentration and meteorological information outside the greenhouse respectively; adopts star-shaped Zigbee communication The protocol self-organization forms a wireless transmission network group and conducts wireless communication with the convergence node (2); the convergence node (2) converts the Zigbee protocol data flow and the serial communication data flow and then synchronizes them to the intelligent gateway (3); the intelligent gateway (3) Access the Internet through 3G or Wi-Fi module, and establish data synchronization with the remote server (4) based on the HttpPost transmission communication mechanism (6); the remote server (4) adopts B/S structure to construct the user monitoring device browser (5) WEB access.
所述的一种温室物联网测控系统的数据同步方法,其特征在于包括以下步骤:The data synchronization method of the described a kind of greenhouse Internet of Things measurement and control system is characterized in that comprising the following steps:
步骤一,智能网关(3)定义了数据采集单元配置表,所述表中包含:数据采集单元ID、监测参数名称、监测参数ID、单位、地点、监测参数数值在数据流的始字节、监测参数在数据流的终字节、偏移量、数值转换系数、监测参数最小值、监测参数最大值信息;Step 1, the intelligent gateway (3) defines the data acquisition unit configuration table, which includes: data acquisition unit ID, monitoring parameter name, monitoring parameter ID, unit, location, monitoring parameter value in the initial byte of the data stream, Monitoring parameters in the final byte of the data stream, offset, numerical conversion coefficient, minimum value of monitoring parameters, maximum value of monitoring parameters;
步骤二,智能网关(3)通过汇聚节点(2)获得数据采集单元网络群(1)中各数据采集单元所采集16进制数据流,根据通信数据流首字节对应的数据采集单元ID,查询数据采集单元配置表格获取各监测参数数值在数据流中始字节、终字节、监测参数ID等描述信息;根据始字节、终字节的数值,将通信数据流中的16进制监测参数数值进行提取并转化成10进制后,再根据偏移量、数值换算系数计算出实际值,生成以监测参数ID为列描述名的监测参数数值表;Step 2, the intelligent gateway (3) obtains the hexadecimal data stream collected by each data acquisition unit in the data acquisition unit network group (1) through the convergence node (2), and according to the data acquisition unit ID corresponding to the first byte of the communication data stream, Query the configuration table of the data acquisition unit to obtain the descriptive information such as the first byte, the last byte, and the monitoring parameter ID of each monitoring parameter value in the data stream; After the monitoring parameter value is extracted and converted into decimal, the actual value is calculated according to the offset and numerical conversion coefficient, and a monitoring parameter value table with the monitoring parameter ID as the column description name is generated;
步骤三,智能网关(3)采用XML数据结构描述标准对数据采集单元配置信息、监测参数数值进行封装,存储至本地XML文件库;Step 3, the intelligent gateway (3) uses the XML data structure description standard to encapsulate the data acquisition unit configuration information and monitoring parameter values, and store them in the local XML file library;
步骤四,智能网关(3)通过HttpPost传输通信机制(6)向远程服务器(4)发起XML数据结构描述的数据采集单元配置信息、“心跳”计数值、监测参数数值,远程服务器(4)根据XML封装协议进行据采集单元配置信息、监测参数数值的解析并更新数据库。远程服务器(4)解析“心跳”连接过程中,判断监控设备浏览器(5)的同步命令标志,如果有效则用XML数据结构描述标准对远程服务器(4)的数据采集单元配置信息进行封装向智能网关(3)同步。Step 4, the intelligent gateway (3) initiates the data acquisition unit configuration information, "heartbeat" count value, monitoring parameter value described in the XML data structure to the remote server (4) through the HttpPost transmission communication mechanism (6), and the remote server (4) according to The XML encapsulation protocol analyzes the configuration information of the data collection unit and the value of monitoring parameters and updates the database. Remote server (4) parses the "heartbeat" connection process, judges the synchronous command sign of monitoring equipment browser (5), if effective then uses the XML data structure description standard to carry out encapsulation to the data acquisition unit configuration information of remote server (4) The intelligent gateway (3) is synchronized.
本发明具有有益效果The present invention has beneficial effects
本发明通过对数据采集单元配置表进行定义,实现了数据采集单元数据流的监测参数数值的自适应解析以及同步数据的XML数据结构描述标准的自适应封装,并通过HttpPost传输通信机制进行数据传输,实现了智能网关与服务器数据同步的方法,有利于物联网测控系统的快速部署和应用,并有效地解决了温室物联网应用中,动态增减传感器或者数据采集单元而造成物联网测控系统的二次开发,为农业信息的监测和管理提供了通用的方法。By defining the configuration table of the data acquisition unit, the present invention realizes the adaptive analysis of the monitoring parameter value of the data stream of the data acquisition unit and the adaptive encapsulation of the XML data structure description standard of the synchronous data, and performs data transmission through the HttpPost transmission communication mechanism , realizing the data synchronization method between the intelligent gateway and the server, which is conducive to the rapid deployment and application of the Internet of Things measurement and control system, and effectively solves the problem of the Internet of Things measurement and control system caused by the dynamic increase or decrease of sensors or data acquisition units in the greenhouse Internet of Things application. The secondary development provides a general method for the monitoring and management of agricultural information.
附图说明Description of drawings
图1是本发明系统结构图;Fig. 1 is a system structure diagram of the present invention;
图2是本发明系统的数据同步工作流程图。Fig. 2 is a flow chart of the data synchronization work of the system of the present invention.
图中:1、数据采集单元网络群,2、汇聚节点,3、智能网关,4、远程服务器,5、远程监控设备浏览器,6、HttpPost传输通信机制。In the figure: 1. Data acquisition unit network group, 2. Convergence node, 3. Intelligent gateway, 4. Remote server, 5. Remote monitoring device browser, 6. HttpPost transmission communication mechanism.
具体实施方式Detailed ways
为了使本发明的内容更容易被清楚地理解,下面结合附图和具体实例,对本发明的技术方案做进一步详细说明。In order to make the content of the present invention more clearly understood, the technical solution of the present invention will be further described in detail below in conjunction with the accompanying drawings and specific examples.
本发明的系统结构如图1所示。The system structure of the present invention is shown in Figure 1.
1.数据采集单元配置:用户通过智能网关3设定数据采集单元的基本信息,包括数据采集单元ID、监测参数名称、监测参数ID、单位、地点、监测参数数值在数据流的始字节、监测参数在数据流的终字节、偏移量、数值转换系数、监测参数最小值、监测参数最大值,进行该节点的配置和注册,建立数据采集单元配置表,并存储在智能网关3的数据库中。1. Data acquisition unit configuration: the user sets the basic information of the data acquisition unit through the intelligent gateway 3, including the data acquisition unit ID, monitoring parameter name, monitoring parameter ID, unit, location, and monitoring parameter value in the first byte of the data stream, The monitoring parameters are configured and registered at the end byte of the data stream, the offset, the numerical conversion coefficient, the minimum value of the monitoring parameter, and the maximum value of the monitoring parameter, and the configuration table of the data acquisition unit is established, and stored in the intelligent gateway 3 in the database.
2.Zigbee网络数据同步:Zigbee网络数据同步主要是实现温室中的数据采集单元组建的Zigbee网络群1通过汇聚节点2发送至智能网关3的数据流提取出由传感器采集的监测参数实际值。具体方法是:首先,取出串口通信数据流首字节对应的数据采集单元ID,查询数据库中的数据采集单元配置表格获取各监测参数数值在数据流中始字节、终字节、监测参数ID等描述信息。然后,根据始字节、终字节的数值,将通信协议数据流中的16进制监测参数初始数值进行提取,转化成10进制,减去偏移量,乘于数值换算系数,计算出实际值。最终,生成以监测参数ID为列描述名的监测参数数值表,存储至智能网关3的数据库中。例如,空气湿度采集的16进制数据流为(F1 0302 03 11 78 51),空气湿度数值为该数据流的第4至5字节,偏移量为0,转换系数为0.1。首先根据第4至5字节,提取出初始数值为0311(hex),换算成10进制后,减去0,再乘于转换系数0.1,可知空气湿度的数值为78.5。2. Zigbee network data synchronization: Zigbee network data synchronization is mainly to realize the Zigbee network group 1 formed by the data acquisition unit in the greenhouse to extract the actual value of the monitoring parameters collected by the sensor from the data stream sent to the intelligent gateway 3 through the convergence node 2. The specific method is: first, take out the data acquisition unit ID corresponding to the first byte of the serial communication data stream, query the data acquisition unit configuration table in the database to obtain the first byte, the last byte, and the monitoring parameter ID of each monitoring parameter value in the data stream and other description information. Then, according to the values of the first byte and the last byte, the initial value of the hexadecimal monitoring parameters in the communication protocol data stream is extracted, converted into decimal, subtracted the offset, multiplied by the numerical conversion coefficient, and calculated actual value. Finally, a monitoring parameter value table with the monitoring parameter ID as the column description name is generated and stored in the database of the intelligent gateway 3 . For example, the hexadecimal data stream of air humidity collection is (F1 0302 03 11 78 51), the air humidity value is the 4th to 5th bytes of the data stream, the offset is 0, and the conversion factor is 0.1. Firstly, according to the 4th to 5th bytes, the initial value is extracted as 0311 (hex). After converting it into decimal, subtract 0, and then multiply it by the conversion factor 0.1. It can be known that the value of air humidity is 78.5.
3.传输数据封装:智能网关3将数据采集单元的配置信息进行XML数据结构的描述封装,如表1所示。3. Encapsulation of transmission data: the intelligent gateway 3 encapsulates the configuration information of the data acquisition unit by describing and encapsulating the XML data structure, as shown in Table 1.
表1基于XML的数据采集单元配置信息封装Table 1 XML-based encapsulation of data acquisition unit configuration information
将Zigbee网络数据解析出的监测参数数值进行XML数据结构的描述封装,如表2示,存储于本地XML文件。The monitoring parameter values parsed from Zigbee network data are described and encapsulated in XML data structure, as shown in Table 2, and stored in local XML files.
表2基于XML的监测参数数值封装Table 2 XML-based monitoring parameter numerical encapsulation
4.互联网数据同步:智能网关3向远程服务器4发起HttpPost传输通信机制6请求并处理远程服务器4的回应信息以实现数据同步,工作流程如图2所示,包括3种类型的数据通信:4. Internet data synchronization: the intelligent gateway 3 initiates the HttpPost transmission communication mechanism 6 request to the remote server 4 and processes the response information of the remote server 4 to realize data synchronization. The workflow is shown in Figure 2, including 3 types of data communication:
a.用户点击控件触发智能网关3向远程服务器4同步XML描述封装的数据采集单元配置信息的消息内容。远程服务器4对消息内容进行解析出数据采集单元配置的各个描述信息,更新数据库中数据采集单元配置表格,向智能网关3回应数据同步的情况。智能网关3接收并判断回应信息进行提示。a. The user clicks on the control to trigger the smart gateway 3 to synchronize the message content of the XML-encapsulated data acquisition unit configuration information to the remote server 4 . The remote server 4 parses the message content to obtain various description information of the configuration of the data acquisition unit, updates the configuration table of the data acquisition unit in the database, and responds to the intelligent gateway 3 about data synchronization. The intelligent gateway 3 receives and judges the response information to prompt.
b.智能网关3以20秒为周期发起数据量较少的“心跳”计数连接到远程服务器4。远程服务器4判断远程监控设备浏览器5是否有同步智能网关3数据采集单元配置的命令标志:如果有,则远程服务器4查询数据库将数据采集单元配置信息进行XML数据结构的描述封装,并结合“心跳”确认消息回应给智能网关3。智能网关3接收并更新数据库中数据采集单元配置表格,并设置通信状态为通信正常;如果无,则发起数据量较少的“心跳”确认回应给智能网关3,智能网关3接收并设置通信状态为通信正常。智能网关3在6秒时间内未接收到远程服务器4回应消息,则设置通信状态为通信异常。b. The intelligent gateway 3 initiates a "heartbeat" count with a small amount of data to connect to the remote server 4 at a period of 20 seconds. The remote server 4 judges whether the remote monitoring device browser 5 has the command flag for synchronizing the intelligent gateway 3 data acquisition unit configuration: if there is, the remote server 4 queries the database and carries out the description encapsulation of the XML data structure of the data acquisition unit configuration information, and combines " Heartbeat" confirmation message is responded to the intelligent gateway 3. The intelligent gateway 3 receives and updates the configuration form of the data acquisition unit in the database, and sets the communication status as normal communication; if not, initiates a "heartbeat" confirmation response with a small amount of data to the intelligent gateway 3, and the intelligent gateway 3 receives and sets the communication status For normal communication. If the intelligent gateway 3 does not receive a response message from the remote server 4 within 6 seconds, the communication status is set as abnormal communication.
c.智能网关3以1分钟为周期同步监测参数数值信息。首先,读取用于存储监测参数数值的本地XML文件的内容。每当传输周期到达时,判断通信是否正常:如果通信正常,将本次监测参数数值的XML封装描述写入到本地XML文件的根节点末尾,再读取本地XML文件的内容(之前通信异常则有多条记录,之前通信正常则有一条记录),通过HttpPost传输通信机制6上传至远程服务器4。远程服务器4判断封装监测参数数据的记录数,从上到下对逐条数据内容解析出各个监测参数ID和数值,更新到数据库的监测参数数值表格,向智能网关3回应数据同步的情况。智能网关3进行数据同步情况的判断:正确响应,则清空本地XML文件中的记录;否则,保留记录。如果智能网关3与远程服务器4通信状态为失败,则将本次监测参数数值的XML封装描述写入到本地XML文件的根节点末尾,不发起HttpPost传输通信机制6请求。c. The intelligent gateway 3 synchronously monitors the parameter value information with a period of 1 minute. First, read the content of the local XML file used to store the monitoring parameter values. Whenever the transmission cycle arrives, judge whether the communication is normal: if the communication is normal, write the XML encapsulation description of the monitoring parameter value to the end of the root node of the local XML file, and then read the content of the local XML file (if the communication is abnormal before There are multiple records, and there is one record if the communication was normal before), and uploaded to the remote server 4 through the HttpPost transmission communication mechanism 6. The remote server 4 judges the number of records of the encapsulated monitoring parameter data, analyzes each monitoring parameter ID and value from top to bottom, updates the monitoring parameter value table in the database, and responds to the intelligent gateway 3 about data synchronization. The intelligent gateway 3 judges the data synchronization situation: if the response is correct, the record in the local XML file will be cleared; otherwise, the record will be kept. If the communication status between the intelligent gateway 3 and the remote server 4 is failure, the XML encapsulation description of the monitoring parameter value is written to the end of the root node of the local XML file, and the HttpPost transmission communication mechanism 6 request is not initiated.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510152821.1A CN104717306A (en) | 2015-04-02 | 2015-04-02 | Greenhouse Internet-of-Things measurement and control system, and data synchronization method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510152821.1A CN104717306A (en) | 2015-04-02 | 2015-04-02 | Greenhouse Internet-of-Things measurement and control system, and data synchronization method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104717306A true CN104717306A (en) | 2015-06-17 |
Family
ID=53416253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510152821.1A Pending CN104717306A (en) | 2015-04-02 | 2015-04-02 | Greenhouse Internet-of-Things measurement and control system, and data synchronization method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104717306A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105245410A (en) * | 2015-11-18 | 2016-01-13 | 四川神琥科技有限公司 | Data encoding and transmitting method |
CN105488974A (en) * | 2015-11-18 | 2016-04-13 | 四川神琥科技有限公司 | Method for acquiring data and performing wireless transmission |
CN105516235A (en) * | 2015-11-18 | 2016-04-20 | 四川神琥科技有限公司 | Wireless transmission method for sensor data |
CN105629790A (en) * | 2016-01-29 | 2016-06-01 | 广州能迪能源科技股份有限公司 | Data management platform and method based on industrial IOT (Internet of Things) |
CN105656722A (en) * | 2016-01-29 | 2016-06-08 | 广州能迪能源科技股份有限公司 | Data uploading method and system based on industrial Internet of Things |
CN105911971A (en) * | 2016-06-08 | 2016-08-31 | 韩立 | ZigBee network-based greenhouse environment remote monitoring system |
CN106020090A (en) * | 2016-07-28 | 2016-10-12 | 普奥云信息科技(北京)有限公司 | Data packet generation device and Internet of things system |
CN106506619A (en) * | 2016-10-31 | 2017-03-15 | 成都加华科技有限责任公司 | A kind of things-internet gateway and its control method |
CN106899497A (en) * | 2015-12-18 | 2017-06-27 | 阿基米德自动控制公司 | Intelligent multi-channel wireless data obtains gateway |
CN107360217A (en) * | 2017-06-21 | 2017-11-17 | 深圳市盛路物联通讯技术有限公司 | A kind of data reporting method and system based on geographical position and time |
CN107991998A (en) * | 2017-05-24 | 2018-05-04 | 合肥万合科技信息服务有限公司 | A kind of greenhouse intelligent monitoring system based on Internet of Things |
CN109194617A (en) * | 2018-08-01 | 2019-01-11 | 杭州电子科技大学 | The automatically parsing of XML message, packaging method and device |
CN109413606A (en) * | 2018-10-29 | 2019-03-01 | 天津市农业科学院信息研究所 | Greenhouse System multipoint acquisition data-updating method, device, medium and electronic equipment |
CN109739163A (en) * | 2018-12-27 | 2019-05-10 | 长春市竹子科技有限公司 | A kind of facility agricultural environment intelligent control system of Internet of Things |
CN113110251A (en) * | 2021-05-19 | 2021-07-13 | 重庆忽米网络科技有限公司 | Data configuration method for data acquisition of Internet of things equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101534470A (en) * | 2009-04-10 | 2009-09-16 | 华南理工大学 | System and method for tracking moving target based on wireless sensor network |
CN102307222A (en) * | 2011-05-07 | 2012-01-04 | 合肥工业大学 | Intelligent greenhouse demonstration measurement and control system based on Internet of things technology |
CN102638560A (en) * | 2011-12-14 | 2012-08-15 | 中兴通讯股份有限公司 | Gateway of internet of things and method for connecting gateway with sensing equipment |
CN103175575A (en) * | 2011-12-20 | 2013-06-26 | 西安迅腾科技有限责任公司 | Bridge structure health monitoring system based on ZIGBEE network |
CN103501291A (en) * | 2013-09-24 | 2014-01-08 | 上海汉乾信息科技发展有限公司 | Multi-protocol data collection system and method of various equipment sensors |
CN104184785A (en) * | 2013-09-12 | 2014-12-03 | 中国林业科学研究院资源信息研究所 | Forest Internet of Things system based on cloud platform |
-
2015
- 2015-04-02 CN CN201510152821.1A patent/CN104717306A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101534470A (en) * | 2009-04-10 | 2009-09-16 | 华南理工大学 | System and method for tracking moving target based on wireless sensor network |
CN102307222A (en) * | 2011-05-07 | 2012-01-04 | 合肥工业大学 | Intelligent greenhouse demonstration measurement and control system based on Internet of things technology |
CN102638560A (en) * | 2011-12-14 | 2012-08-15 | 中兴通讯股份有限公司 | Gateway of internet of things and method for connecting gateway with sensing equipment |
CN103175575A (en) * | 2011-12-20 | 2013-06-26 | 西安迅腾科技有限责任公司 | Bridge structure health monitoring system based on ZIGBEE network |
CN104184785A (en) * | 2013-09-12 | 2014-12-03 | 中国林业科学研究院资源信息研究所 | Forest Internet of Things system based on cloud platform |
CN103501291A (en) * | 2013-09-24 | 2014-01-08 | 上海汉乾信息科技发展有限公司 | Multi-protocol data collection system and method of various equipment sensors |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105245410A (en) * | 2015-11-18 | 2016-01-13 | 四川神琥科技有限公司 | Data encoding and transmitting method |
CN105488974A (en) * | 2015-11-18 | 2016-04-13 | 四川神琥科技有限公司 | Method for acquiring data and performing wireless transmission |
CN105516235A (en) * | 2015-11-18 | 2016-04-20 | 四川神琥科技有限公司 | Wireless transmission method for sensor data |
CN106899497A (en) * | 2015-12-18 | 2017-06-27 | 阿基米德自动控制公司 | Intelligent multi-channel wireless data obtains gateway |
CN105656722A (en) * | 2016-01-29 | 2016-06-08 | 广州能迪能源科技股份有限公司 | Data uploading method and system based on industrial Internet of Things |
CN105629790A (en) * | 2016-01-29 | 2016-06-01 | 广州能迪能源科技股份有限公司 | Data management platform and method based on industrial IOT (Internet of Things) |
CN105656722B (en) * | 2016-01-29 | 2019-02-05 | 广州能迪云服务科技有限公司 | A kind of data uploading method and its system based on industrial Internet of Things |
CN105911971A (en) * | 2016-06-08 | 2016-08-31 | 韩立 | ZigBee network-based greenhouse environment remote monitoring system |
CN106020090A (en) * | 2016-07-28 | 2016-10-12 | 普奥云信息科技(北京)有限公司 | Data packet generation device and Internet of things system |
CN106020090B (en) * | 2016-07-28 | 2019-02-05 | 普奥云信息科技(北京)有限公司 | Data packet generating device and Internet of things system |
CN106506619A (en) * | 2016-10-31 | 2017-03-15 | 成都加华科技有限责任公司 | A kind of things-internet gateway and its control method |
CN107991998A (en) * | 2017-05-24 | 2018-05-04 | 合肥万合科技信息服务有限公司 | A kind of greenhouse intelligent monitoring system based on Internet of Things |
CN107360217A (en) * | 2017-06-21 | 2017-11-17 | 深圳市盛路物联通讯技术有限公司 | A kind of data reporting method and system based on geographical position and time |
CN109194617A (en) * | 2018-08-01 | 2019-01-11 | 杭州电子科技大学 | The automatically parsing of XML message, packaging method and device |
CN109413606A (en) * | 2018-10-29 | 2019-03-01 | 天津市农业科学院信息研究所 | Greenhouse System multipoint acquisition data-updating method, device, medium and electronic equipment |
CN109739163A (en) * | 2018-12-27 | 2019-05-10 | 长春市竹子科技有限公司 | A kind of facility agricultural environment intelligent control system of Internet of Things |
CN113110251A (en) * | 2021-05-19 | 2021-07-13 | 重庆忽米网络科技有限公司 | Data configuration method for data acquisition of Internet of things equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104717306A (en) | Greenhouse Internet-of-Things measurement and control system, and data synchronization method thereof | |
CN204517863U (en) | A kind of greenhouse Internet of Things TT&C system | |
CN102307222B (en) | Intelligent greenhouse demonstration measurement and control system based on Internet of things technology | |
CN102761941B (en) | A kind of method utilizing ultra-low power consumption wireless smart sensor's network protocol transmission | |
CN104779904A (en) | Solar photovoltaic monitoring system based on Internet of Things | |
CN106199768A (en) | A kind of distributed intelligence meteorological sensor monitoring system and control method thereof | |
CN104185307B (en) | A kind of integrated WSN intelligence sensors unified interface system of facing agricultural greenhouse | |
CN105893629A (en) | Energy monitoring system and software based on Internet of Things and cloud computing | |
CN103543718A (en) | Internet of Things based intelligent IDC (Internet data center) computer room monitoring system | |
CN205920428U (en) | Wisdom agricultural monitored control system based on integration detects sensor | |
CN103945179A (en) | Intelligent video monitoring system based on distributed wireless sensor network | |
CN105843147A (en) | Smart agriculture monitoring and management system | |
CN101937611A (en) | Agricultural-greenhouse temperature and humidity monitoring system and method based on Zigbee network | |
CN102932846A (en) | Data management system for distributed heterogeneous sensing network and data management method for data management system | |
CN103365286A (en) | Integrated communication control system for intelligent building | |
CN105208016A (en) | Agricultural internet of things multi-data transmission and processing method | |
CN105116846A (en) | Wireless sensor network-based silkworm rearing room environment intelligent monitoring system and method | |
CN104657832A (en) | Whole-process monitoring and traceability tracking method for quality safety of agricultural products | |
CN102262814A (en) | Environment monitoring device | |
CN102546831A (en) | Dynamic display method for wireless sensor network topological diagram | |
CN104183101A (en) | Wireless photovoltaic power station monitoring apparatus | |
CN113099404A (en) | Medical image transmission method based on 5G network | |
Li et al. | Key technology implementation of poultry breeding system for 5G intelligent IOT | |
WO2018120907A1 (en) | Electricity generation data acquisition internet-of-things uploading circuit and system | |
CN105486345A (en) | ZigBee technology based wireless intelligent control terminal of greenhouse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150617 |
|
RJ01 | Rejection of invention patent application after publication |