[go: up one dir, main page]

CN104714700A - Reflective structure for optical touch - Google Patents

Reflective structure for optical touch Download PDF

Info

Publication number
CN104714700A
CN104714700A CN201310684327.0A CN201310684327A CN104714700A CN 104714700 A CN104714700 A CN 104714700A CN 201310684327 A CN201310684327 A CN 201310684327A CN 104714700 A CN104714700 A CN 104714700A
Authority
CN
China
Prior art keywords
microstructures
optical touch
light
microstructure
touch reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310684327.0A
Other languages
Chinese (zh)
Inventor
杨明辉
郑琮达
陈品诚
徐煜灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unimicron Technology Corp
Original Assignee
Unimicron Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unimicron Technology Corp filed Critical Unimicron Technology Corp
Priority to CN201310684327.0A priority Critical patent/CN104714700A/en
Publication of CN104714700A publication Critical patent/CN104714700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

本发明公开一种光学触控用反射结构,包括透明基底、多个微结构以及透光反射膜层。透明基底具有表面。微结构配置于透明基底上,且暴露出部分表面以让可见光穿透。透光反射膜层配置于微结构上且至少覆盖微结构的一部分。

The present invention discloses a reflective structure for optical touch control, comprising a transparent substrate, a plurality of microstructures and a light-transmitting reflective film layer. The transparent substrate has a surface. The microstructure is disposed on the transparent substrate and exposes a portion of the surface to allow visible light to penetrate. The light-transmitting reflective film layer is disposed on the microstructure and covers at least a portion of the microstructure.

Description

光学触控用反射结构Reflective structure for optical touch

技术领域technical field

本发明涉及一种反射结构,更特别本发明涉及一种光学触控用反射结构。The present invention relates to a reflective structure, and more particularly, the present invention relates to a reflective structure for optical touch control.

背景技术Background technique

已知的一种光学触控结构是由浅色纸基底以及多个印刷在浅色纸基底上的黑色油墨图案所组成。当光笔所发出的红外光照射光学触控结构时,黑色油墨图案会吸收红外光,而浅色纸基底会反射及散射红外光,这些反射或散射的红外光被同样设置于光笔内的红外光摄影机所检测,因而形成对应于黑色油墨图案的红外光反射影像。当光笔接触光学触控结构并且在光学触控结构的表面移动时,处理器根据红外光摄影机所摄得的红外光影像变化来判断触碰点的位置与触碰点的移动。A known optical touch structure is composed of a light-colored paper substrate and a plurality of black ink patterns printed on the light-colored paper substrate. When the infrared light emitted by the light pen illuminates the optical touch structure, the black ink pattern will absorb the infrared light, while the light-colored paper substrate will reflect and scatter the infrared light. The camera detects, thus forming an infrared light reflection image corresponding to the black ink pattern. When the light pen touches the optical touch structure and moves on the surface of the optical touch structure, the processor judges the position and movement of the touch point according to the change of the infrared light image captured by the infrared camera.

由于浅色纸基底具有粗糙表面,因此光笔所产生的红外光可朝多个方向反射及散射,故红外光摄影机很容易摄得反射影像。也就是说,光笔即使在相当大的倾斜角度仍然可读取到触控点的位置信号。然而,浅色纸基底本身非透明,意即不具有光穿透性,因此这种光学触控结构无法普遍应用于常见的显示器上。再者,即使使用极薄的浅色纸基底达成透光的效果,浅色纸基底除了会反射及散射红外光之外,亦会反射及散射显示器所发出的光和外界的环境光,而使得显示器影像有白雾化的现象,进而降低影像的对比度与清晰度。Because the light-colored paper substrate has a rough surface, the infrared light generated by the light pen can be reflected and scattered in multiple directions, so the infrared camera can easily capture reflected images. That is to say, the light pen can still read the position signal of the touch point even at a relatively large tilt angle. However, the light-colored paper substrate itself is non-transparent, which means it does not have light penetration, so this optical touch structure cannot be generally applied to common displays. Furthermore, even if an extremely thin light-colored paper substrate is used to achieve the light-transmitting effect, the light-colored paper substrate will not only reflect and scatter infrared light, but also reflect and scatter the light emitted by the display and the external ambient light, making the The image on the display has white fogging phenomenon, which reduces the contrast and clarity of the image.

发明内容Contents of the invention

本发明提供一种光学触控用反射结构,其通过至少覆盖部分微结构的透光反射膜层来反射红外光,同时透光反射膜层亦具有透光的本质,因此可以取代前述的纸基底。进一步地,若将其中的透光反射膜层图案化,即可取代原有的黑色油墨图案,则本发明可直接提供无需黑色油墨图案的光学触控结构。The present invention provides a reflective structure for optical touch, which reflects infrared light through a light-transmitting reflective film layer covering at least part of the microstructure. At the same time, the light-transmitting reflective film layer also has the nature of light transmission, so it can replace the aforementioned paper substrate . Furthermore, if the light-transmitting and reflective film layer is patterned to replace the original black ink pattern, the present invention can directly provide an optical touch structure without black ink pattern.

本发明的光学触控用反射结构,其包括透明基底、多个微结构以及透光反射膜层。透明基底具有表面。这些微结构配置于透明基底上,其中这些微结构暴露出部分表面以让可见光穿透而增加光学触控结构整体的可见光穿透率。透光反射膜层配置于这些微结构上,且至少覆盖这些微结构的一部分。当红外光入射至这些微结构时,这些微结构的部分通过透光反射膜层反射红外光。由于透光反射膜层极薄,可见光仍可部分穿透,也能增加光学触控结构整体的可见光穿透率。The reflective structure for optical touch control of the present invention includes a transparent base, a plurality of microstructures and a light-transmitting reflective film layer. The transparent substrate has a surface. These microstructures are configured on a transparent substrate, wherein the microstructures expose part of the surface to allow visible light to penetrate and increase the visible light transmittance of the entire optical touch structure. The light-transmitting reflective film layer is disposed on the microstructures and at least covers a part of the microstructures. When infrared light is incident on these microstructures, parts of these microstructures reflect infrared light through the light-transmitting reflective film layer. Since the light-transmitting reflective film layer is extremely thin, visible light can still partially penetrate, which can also increase the visible light transmittance of the overall optical touch structure.

在本发明的实施例中,上述的这些微结构的折射率与透明基底的折射率相同或相近。In an embodiment of the present invention, the refractive index of the aforementioned microstructures is the same or similar to that of the transparent substrate.

在本发明的实施例中,上述的这些微结构与透明基底之间为一体成形。In an embodiment of the present invention, the aforementioned microstructures are integrally formed with the transparent substrate.

在本发明的实施例中,上述的每一微结构于透明基底上的正投影的形状包括圆形、椭圆形或多边形。In an embodiment of the present invention, the shape of the orthographic projection of each of the aforementioned microstructures on the transparent substrate includes a circle, an ellipse or a polygon.

在本发明的实施例中,上述的这些微结构配置于透明基底的表面上,且这些微结构之间呈阵列或非阵列排列,其中阵列排列的图形包括圆形或多边形。In an embodiment of the present invention, the above-mentioned microstructures are arranged on the surface of the transparent substrate, and the microstructures are arranged in an array or in a non-array arrangement, wherein the pattern arranged in the array includes a circle or a polygon.

在本发明的实施例中,上述的这些微结构内凹于透明基底的表面,且这些微结构之间呈阵列或非阵列排列,其中阵列排列的图形包括圆形或多边形。In an embodiment of the present invention, the above-mentioned microstructures are recessed on the surface of the transparent substrate, and the microstructures are arranged in an array or in a non-array arrangement, wherein the pattern arranged in the array includes a circle or a polygon.

在本发明的实施例中,上述的透光反射膜层的厚度小于或等于40纳米。In an embodiment of the present invention, the thickness of the above-mentioned light-transmitting and reflecting film layer is less than or equal to 40 nanometers.

在本发明的实施例中,上述的透光反射膜层完全包覆这些微结构的表面。In an embodiment of the present invention, the above-mentioned light-transmitting and reflecting film layer completely covers the surfaces of these microstructures.

在本发明的实施例中,上述的当红外光入射至透光反射膜层所覆盖的这些微结构的一部分时,这些微结构的部分通过透光反射膜层反射红外光。In an embodiment of the present invention, when the above-mentioned infrared light is incident on a part of the microstructures covered by the light-transmitting reflective film layer, the parts of these microstructures reflect the infrared light through the light-transmissive reflective film layer.

在本发明的实施例中,上述的未被透光反射膜层所覆盖的这些微结构的另一部分,当红外光入射至这些微结构时,这些微结构的另一部分会散射该红外光。In an embodiment of the present invention, when the infrared light is incident on the other part of the microstructures not covered by the light-transmitting reflective film layer, the other part of the microstructures will scatter the infrared light.

在本发明的实施例中,上述的透光反射膜层为单层反射膜或多层反射膜。In an embodiment of the present invention, the above-mentioned light-transmitting reflective film layer is a single-layer reflective film or a multi-layer reflective film.

在本发明的实施例中,上述的光学触控结构还包括透明保护层,覆盖透明基底被这些微结构所暴露出的部分表面、这些微结构以及透光反射膜层。In an embodiment of the present invention, the above-mentioned optical touch structure further includes a transparent protective layer covering the part of the surface of the transparent substrate exposed by the microstructures, the microstructures and the light-transmitting reflective film layer.

在本发明的实施例中,上述的透明保护层的折射率介于空气的折射率与透光反射膜层的折射率之间。In an embodiment of the present invention, the above-mentioned transparent protective layer has a refractive index between that of air and that of the light-transmitting reflective film layer.

在本发明的实施例中,上述的光学触控结构包括多个光吸收部,配置于透明保护层上,且暴露出部分透明保护层。In an embodiment of the present invention, the above-mentioned optical touch structure includes a plurality of light absorbing portions disposed on the transparent protective layer and exposing part of the transparent protective layer.

在本发明的实施例中,上述的每一微结构的宽度介于10微米至100微米之间。In an embodiment of the present invention, the width of each of the aforementioned microstructures is between 10 micrometers and 100 micrometers.

在本发明的实施例中,上述的每一微结构的高度介于5微米至50微米之间。In an embodiment of the present invention, the height of each of the aforementioned microstructures is between 5 microns and 50 microns.

基于上述,由于本发明的光学触控用反射结构包括透明基底、微结构以及透光反射膜层,因此当触控元件(如光学触控笔)发出红外光照射至此光学触控用反射结构时,被微结构所暴露出的透明基底的表面可以让可见光穿透,而被透光反射膜层所覆盖的微结构可通过透光反射膜层来反射红外光至触控元件内的红外光摄影机,进而可推算出触控点的位置。此外,后续将本发明的光学触控结构应用于例如是常见的显示器(例如是液晶显示器、阴极射线管显示器或等离子体显示器)上时,其透明基底的设置亦可让显示器的光大部分穿透,并且可避免影像明显白雾化的情形产生。故,本发明的光学触控结构具有较广泛的应用范围。Based on the above, since the reflective structure for optical touch of the present invention includes a transparent substrate, a microstructure, and a light-transmitting reflective film layer, when a touch element (such as an optical stylus) emits infrared light and irradiates the reflective structure for optical touch , the surface of the transparent substrate exposed by the microstructure can allow visible light to penetrate, and the microstructure covered by the light-transmitting reflective film layer can reflect infrared light to the infrared camera in the touch element through the light-transmitting reflective film layer , and then the position of the touch point can be deduced. In addition, when the optical touch structure of the present invention is subsequently applied to a common display (such as a liquid crystal display, a cathode ray tube display, or a plasma display), the setting of the transparent substrate can also allow most of the light of the display to pass through , and can avoid the situation where the image is obviously white and fogged. Therefore, the optical touch structure of the present invention has a wider range of applications.

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.

附图说明Description of drawings

图1A绘示为本发明的实施例的一种光学触控用反射结构的剖面示意图。FIG. 1A is a schematic cross-sectional view of a reflective structure for optical touch control according to an embodiment of the present invention.

图1B至图1E绘示图1A的光学触控用反射结构的微结构的局部俯视示意图。1B to 1E are schematic partial top views of the microstructure of the reflective structure for optical touch control shown in FIG. 1A .

图2绘示为本发明的另一实施例的一种光学触控用反射结构的剖面示意图。FIG. 2 is a schematic cross-sectional view of a reflective structure for optical touch according to another embodiment of the present invention.

图3绘示为本发明的另一实施例的一种光学触控用反射结构的剖面示意图。FIG. 3 is a schematic cross-sectional view of a reflective structure for optical touch according to another embodiment of the present invention.

图4A绘示为本发明的另一实施例的一种光学触控用反射结构的剖面示意图。FIG. 4A is a schematic cross-sectional view of a reflective structure for optical touch according to another embodiment of the present invention.

图4B绘示图4A的光学触控用反射结构的单一微结构的立体示意图。FIG. 4B is a schematic perspective view of a single microstructure of the reflective structure for optical touch in FIG. 4A .

图5绘示为本发明的光学触控用反射结构加上光吸收部所组成的一种光学触控结构的剖面示意图。5 is a schematic cross-sectional view of an optical touch structure composed of the reflective structure for optical touch and the light absorbing part of the present invention.

附图标记说明Explanation of reference signs

100a、100b、100c、100d、100e:光学触控用反射结构100a, 100b, 100c, 100d, 100e: reflective structures for optical touch

110:透明基底110: Transparent base

112:表面112: surface

120a、120a1、120a2、120a3、120a4、120b、120d:微结构120a, 120a1, 120a2, 120a3, 120a4, 120b, 120d: Microstructure

130a、130b、130c、130d:透光反射膜层130a, 130b, 130c, 130d: light-transmitting reflective film layer

132c、132d:反射图案132c, 132d: reflective pattern

140:透明保护层140: transparent protective layer

150:光吸收部150: light absorbing part

L1:可见光L1: visible light

L2、L3、L4:红外光L2, L3, L4: infrared light

R:光线R: light

H:高度H: height

W:宽度W: width

具体实施方式Detailed ways

图1A绘示为本发明的实施例的一种光学触控用反射结构的剖面示意图。图1B至图1E绘示图1A的光学触控用反射结构的微结构的局部俯视示意图。请先参考图1A,在本实施例中,光学触控用反射结构100a包括透明基底110、多个微结构120a以及透光反射膜层130a。透明基底110具有表面112。这些微结构120a配置于透明基底110上,其中这些微结构120a暴露出部分表面112以让可见光L1穿透。透光反射膜层130a配置于这些微结构120a上,且至少覆盖这些微结构120a的一部分。当红外光L2入射至这些微结构120a时,这些微结构120a的部分通过透光反射膜层130a反射红外光L2,成为反射的红外光L3。由于实务上入射红外光L2是具有宽度的光束,加上微结构120a的几何形状特性,所以反射的红外光L3是朝多个方向反射,因此虽然图1A中并未明示,但有一部分红外光L3是朝红外光L2的入射方向反射,造成回归反射的效果。因此,当红外光摄影机(未绘示)是安装在红外光光源(未绘示)旁时,一如一般光笔的作法时,即使红外光L2的入射角度改变,红外光摄影机仍可拍摄到反射的红外光L3,也就是说,无论光笔是垂直于透明基底110或倾斜至相当大的角度,都可拍摄到红外光的反射影像。FIG. 1A is a schematic cross-sectional view of a reflective structure for optical touch control according to an embodiment of the present invention. 1B to 1E are schematic partial top views of the microstructure of the reflective structure for optical touch control shown in FIG. 1A . Please refer to FIG. 1A first. In this embodiment, the reflective structure 100 a for optical touch includes a transparent substrate 110 , a plurality of microstructures 120 a and a light-transmitting reflective film layer 130 a. Transparent substrate 110 has surface 112 . The microstructures 120a are disposed on the transparent substrate 110, wherein the microstructures 120a expose part of the surface 112 to allow the visible light L1 to pass through. The light-transmitting reflective film layer 130a is disposed on the microstructures 120a and at least covers a part of the microstructures 120a. When the infrared light L2 is incident on the microstructures 120a, parts of the microstructures 120a reflect the infrared light L2 through the light-transmitting reflective film layer 130a to become reflected infrared light L3. In practice, since the incident infrared light L2 is a beam with a wide width and the geometrical characteristics of the microstructure 120a, the reflected infrared light L3 is reflected in multiple directions. Therefore, although it is not explicitly shown in FIG. L3 is reflected toward the incident direction of the infrared light L2, resulting in the effect of retroreflection. Therefore, when the infrared camera (not shown) is installed next to the infrared light source (not shown), like a general light pen, even if the incident angle of the infrared light L2 changes, the infrared camera can still capture the reflection Infrared light L3, that is to say, no matter whether the light pen is perpendicular to the transparent substrate 110 or tilted to a relatively large angle, the reflected image of the infrared light can be captured.

详细来说,本实施例的透明基底110的材料例如是玻璃、塑胶、聚甲基丙烯甲酯(Polymethylmethacrylate,PMMA)或其他具有高穿透性的材料。优选地,这些微结构120a与透明基底110之间为无接缝连接,即这些微结构120a与透明基底110一体成形,且这些微结构120a的折射率与透明基底110的折射率相同。当然,在其他未绘示的实施例中,这些微结构120a与透明基底110亦可为两各自独立的结构,但这些微结构120a的折射率必须与透明基底110的折射率相同或相近,此仍属于本发明可采用的技术方案,不脱离本发明所欲保护的范围。此处,如图1A所示,本实施例的这些微结构120a在剖面图上来看是呈弧形。In detail, the material of the transparent substrate 110 in this embodiment is, for example, glass, plastic, polymethylmethacrylate (PMMA) or other materials with high permeability. Preferably, the microstructures 120a are seamlessly connected to the transparent substrate 110 , that is, the microstructures 120a are integrally formed with the transparent substrate 110 , and the refractive index of the microstructures 120a is the same as that of the transparent substrate 110 . Of course, in other unillustrated embodiments, these microstructures 120a and the transparent substrate 110 can also be two independent structures, but the refractive index of these microstructures 120a must be the same or close to the refractive index of the transparent substrate 110. It still belongs to the applicable technical solution of the present invention, and does not depart from the intended protection scope of the present invention. Here, as shown in FIG. 1A , the microstructures 120 a of this embodiment are arc-shaped in a cross-sectional view.

更具体来说,请参考图1B,每一微结构120a1于透明基底110上的正投影的形状为多边形,如六边形;或者是,请参考图1C,每一微结构120a2于透明基底110上的正投影的形状为正六边形;或者是,请参考图1D,每一微结构120a3于透明基底110上的正投影的形状为圆形;或者是,请参考图1E,每一微结构120a4于透明基底110上的正投影的形状为椭圆形,或者是其他适当的形状。More specifically, please refer to FIG. 1B, the shape of the orthographic projection of each microstructure 120a1 on the transparent substrate 110 is a polygon, such as a hexagon; or, please refer to FIG. 1C, each microstructure 120a2 on the transparent substrate 110 The shape of the orthographic projection on it is a regular hexagon; or, please refer to FIG. 1D, the shape of the orthographic projection of each microstructure 120a3 on the transparent substrate 110 is a circle; or, please refer to FIG. 1E, each microstructure The shape of the orthographic projection of 120a4 on the transparent substrate 110 is an ellipse, or other suitable shapes.

上述微结构120a1~120a4于透明基底110上的正投影的形状皆属于本发明可采用的技术方案,不脱离本发明所欲保护的范围。一般来说,已知的黑色油墨图案的宽度大约为100微米,因此本实施例的用来取代已知黑色油墨图案的每一微结构120a的宽度亦不宜超过100微米,以免造成过度的光散射现象。另外,每一微结构120a的高宽比也不宜太大,以利于透光反射膜层130a的制作,同时避免造成过度的光散射。此处,每一微结构120a的高宽比设定于不超过1/2。优选地,每一微结构120a的宽度W介于10微米至100微米之间,而每一微结构120a的高度H介于5微米至50微米之间。The shapes of the above-mentioned orthographic projections of the microstructures 120a1-120a4 on the transparent substrate 110 all belong to the applicable technical solutions of the present invention, and do not depart from the protection scope of the present invention. Generally, the width of the known black ink pattern is about 100 microns, so the width of each microstructure 120a used to replace the known black ink pattern in this embodiment should not exceed 100 microns, so as not to cause excessive light scattering Phenomenon. In addition, the aspect ratio of each microstructure 120a should not be too large, so as to facilitate the fabrication of the light-transmitting and reflecting film layer 130a, while avoiding excessive light scattering. Here, the aspect ratio of each microstructure 120a is set to not exceed 1/2. Preferably, the width W of each microstructure 120a is between 10 micrometers and 100 micrometers, and the height H of each microstructure 120a is between 5 micrometers and 50 micrometers.

如图1A所示,这些微结构120a配置于透明基底110的表面112上,此处,透明基底110的表面112实质上为平坦表面,而这些微结构120a之间呈阵列或非阵列排列且暴露出此平坦表面(即表面112),其中若为阵列排列,则阵列排列的图形可例如是圆形或多边形,在此并不加以限制。透光反射膜层130a完全包覆这些微结构120a的表面,故当红外光L2入射至这些微结构120a时,这些微结构120a可通过覆盖于其上的透光反射膜层130a来反射红外光L2(即图1A中的红外光L3)。优选地,透光反射膜层130a的厚度小于或等于40纳米,除了具有透光的能力外,亦可具有反射红外光L2的功能。需说明的是,虽然图1A中所绘示的透光反射膜层130a具体化为单层反射膜,但于其他未绘示的实施例中,透光反射膜层亦可为多层反射膜,皆属于本发明可采用的技术方案,不脱离本发明所欲保护的范围。As shown in FIG. 1A, these microstructures 120a are disposed on the surface 112 of the transparent substrate 110, where the surface 112 of the transparent substrate 110 is substantially a flat surface, and these microstructures 120a are arranged in an array or non-array and exposed If it is a flat surface (namely the surface 112 ), if it is arranged in an array, the pattern of the array arrangement can be, for example, a circle or a polygon, which is not limited here. The light-transmitting reflective film layer 130a completely covers the surface of these microstructures 120a, so when the infrared light L2 is incident on these microstructures 120a, these microstructures 120a can reflect the infrared light through the light-transmitting reflective film layer 130a covered thereon L2 (ie, infrared light L3 in FIG. 1A ). Preferably, the thickness of the light-transmitting reflective film layer 130a is less than or equal to 40 nanometers. In addition to having the ability to transmit light, it may also have the function of reflecting infrared light L2. It should be noted that although the light-transmitting reflective film layer 130a shown in FIG. 1A is embodied as a single-layer reflective film, in other unillustrated embodiments, the light-transmissive reflective film layer can also be a multi-layer reflective film , all belong to the technical solutions that can be adopted in the present invention, and do not depart from the intended protection scope of the present invention.

此外,本实施例的光学触控用反射结构100a可还包括透明保护层140,其中透明保护层140覆盖透明基底110被这些微结构120a所暴露出的部分表面112、这些微结构120a以及透光反射膜层130a。优选地,透明保护层140的折射率介于空气的折射率与透光反射膜层130a的折射率之间,如折射率介于1到2之间,可提升整体光学触控用反射结构100a的可见光L1的穿透率。In addition, the reflective structure 100a for optical touch control of this embodiment may further include a transparent protective layer 140, wherein the transparent protective layer 140 covers the part of the surface 112 of the transparent substrate 110 exposed by these microstructures 120a, these microstructures 120a and the light-transmitting Reflective film layer 130a. Preferably, the refractive index of the transparent protective layer 140 is between the refractive index of air and the refractive index of the light-transmitting reflective film layer 130a. If the refractive index is between 1 and 2, the overall optical touch reflective structure 100a can be improved. The transmittance of visible light L1.

由于本实施例配置于透明基底110上的微结构120a的表面完全被透光反射膜层130a所包覆,且该透光反射膜层130a对红外光L2有强烈的反射效应,而透明基底110对红外光L2的反射较弱。因此,当触控元件(如光学触控笔,未绘示)发出红外光L2照射至光学触控结构100a时,被这些微结构120a所暴露出的透明基底110的表面112可以让可见光L1穿透,而被透光反射膜层130a所覆盖的这些微结构120a可通过透光反射膜层130a来反射红外光L2至触控元件内的红外光摄影机,以取代原有浅色纸基底的红外光反射功能。由于可见光L1可直接穿透透明保护层140及透明基底110,因此于后续将光学触控用反射结构100a安装于例如是显示器(未绘示)之前时,除了可成为红外光L2的有效反射体之外,其透明基底110的设置也可有效维持显示器的光的穿透率,并可以降低影像的白雾化现象。故,本实施例的光学触控用反射结构100a可具有较广泛的应用范围。Since the surface of the microstructure 120a configured on the transparent substrate 110 in this embodiment is completely covered by the light-transmitting reflective film layer 130a, and the light-transmitting reflective film layer 130a has a strong reflection effect on the infrared light L2, and the transparent substrate 110 The reflection of infrared light L2 is weak. Therefore, when a touch element (such as an optical stylus, not shown) emits infrared light L2 to irradiate the optical touch structure 100a, the surface 112 of the transparent substrate 110 exposed by these microstructures 120a can allow the visible light L1 to pass through. These microstructures 120a covered by the light-transmitting reflective film layer 130a can reflect the infrared light L2 to the infrared light camera in the touch element through the light-transmitting reflective film layer 130a, so as to replace the original light-colored paper substrate. Light reflection function. Since the visible light L1 can directly pass through the transparent protective layer 140 and the transparent substrate 110, when the reflective structure 100a for optical touch is subsequently installed in front of a display (not shown), for example, it can be an effective reflector of the infrared light L2. In addition, the arrangement of the transparent substrate 110 can also effectively maintain the light transmittance of the display, and can reduce the white fogging phenomenon of the image. Therefore, the reflective structure 100 a for optical touch control of this embodiment can have a wider range of applications.

在此必须说明的是,下述实施例沿用前述实施例的元件标号与部分内容,其中采用相同的标号来表示相同或近似的元件,并且省略了相同技术内容的说明。关于省略部分的说明可参考前述实施例,下述实施例不再重复赘述。It must be noted here that the following embodiments use the component numbers and part of the content of the previous embodiments, wherein the same numbers are used to denote the same or similar components, and descriptions of the same technical content are omitted. For the description of omitted parts, reference may be made to the foregoing embodiments, and the following embodiments will not be repeated.

图2绘示为本发明的另一实施例的一种光学触控用反射结构的剖面示意图。请参考图2,本实施例的光学触控用反射结构100b与图1A的光学触控用反射结构100a相似,二者主要差异之处在于:本实施例的光学触控用反射结构100b的透光反射膜层130b并未完全包覆这些微结构120b,而这些配置于透明基底110的表面112上的微结构120b之间呈阵列排列且暴露出部分表面112。更具体来说,透光反射膜层130b仅直接覆盖这些微结构120b的一部分以及被透光反射膜层130b所覆盖的这些微结构120b之间的透明基底110的表面112。换言之,透光反射膜层130b暴露出这些微结构120b的另一部分,故当红外光L2入射至这些微结构120b时,这些微结构120b被透光反射膜层130b所覆盖的部分可通过透光反射膜层130b来反射红外光L2(即图2中的红外光L3),而未被透光反射膜层130b所覆盖的这些微结构120b的另一部分则会散射红外光L2(即图2中的红外光L4)。FIG. 2 is a schematic cross-sectional view of a reflective structure for optical touch according to another embodiment of the present invention. Please refer to FIG. 2, the reflective structure 100b for optical touch control of this embodiment is similar to the reflective structure 100a for optical touch control of FIG. The light reflective film layer 130b does not completely cover the microstructures 120b, but the microstructures 120b disposed on the surface 112 of the transparent substrate 110 are arranged in an array and part of the surface 112 is exposed. More specifically, the light-transmitting reflective film layer 130b only directly covers a part of the microstructures 120b and the surface 112 of the transparent substrate 110 between the microstructures 120b covered by the light-transmitting reflective film layer 130b. In other words, the light-transmitting reflective film layer 130b exposes another part of these microstructures 120b, so when the infrared light L2 is incident on these microstructures 120b, the parts of these microstructures 120b covered by the light-transmitting reflective film layer 130b can pass through the light-transmitting reflective film layer 130b to reflect infrared light L2 (that is, infrared light L3 in FIG. Infrared light L4).

由于本实施例的透光反射膜层130b可视为图案化的透光反射膜层,其可取代已知的黑色油墨图案,也可造成红外光反射图案,使光学触控用反射结构100b可直接成为光学触控结构而无需黑色油墨图案,整体的可见光穿透率亦可提升。Since the light-transmitting reflective film layer 130b of this embodiment can be regarded as a patterned light-transmitting reflective film layer, it can replace the known black ink pattern, and can also form an infrared light reflective pattern, so that the reflective structure 100b for optical touch can be used It directly becomes an optical touch structure without black ink patterns, and the overall visible light transmittance can also be improved.

图3绘示为本发明的另一实施例的一种光学触控用反射结构的剖面示意图。请参考图3,本实施例的光学触控用反射结构100c与图2的光学触控用反射结构100b相似,二者主要差异之处在于:本实施例的光学触控用反射结构100c的透光反射膜层130c是由多个透光反射图案132c所组成,其中这些透光反射图案132c分别配置这些微结构120b上且彼此不相连。如图3所示,这些透光反射图案132c是位于这些微结构120b的弧形顶面上。FIG. 3 is a schematic cross-sectional view of a reflective structure for optical touch according to another embodiment of the present invention. Please refer to FIG. 3 , the reflective structure 100c for optical touch control in this embodiment is similar to the reflective structure 100b for optical touch control in FIG. The light-reflecting film layer 130c is composed of a plurality of light-transmitting reflective patterns 132c, wherein the light-transmitting reflective patterns 132c are respectively disposed on the microstructures 120b and are not connected to each other. As shown in FIG. 3 , the light-transmitting and reflective patterns 132c are located on the arc-shaped top surfaces of the microstructures 120b.

图4A绘示为本发明的另一实施例的一种光学触控用反射结构的剖面示意图。图4B绘示图4A的光学触控用反射结构的单一微结构的立体示意图。请参考图4A,本实施例的光学触控用反射结构100d与图3的光学触控用反射结构100c相似,二者主要差异之处在于:本实施例的光学触控用反射结构100d的这些微结构120d内凹于透明基底110的表面112,且这些微结构120d之间呈阵列排列或非阵列排列并暴露出部分表面112,其中若为阵列排列,则阵列排列的图形可例如是圆形或多边形,在此并不加以限制。透光反射膜层130d的这些透光反射图案132d分别配置这些微结构120d上且彼此不相连。如图4A所示,这些透光反射图案132d是位于这些微结构120d的弧形凹面内。FIG. 4A is a schematic cross-sectional view of a reflective structure for optical touch according to another embodiment of the present invention. FIG. 4B is a schematic perspective view of a single microstructure of the reflective structure for optical touch in FIG. 4A . Please refer to FIG. 4A, the reflective structure 100d for optical touch control of this embodiment is similar to the reflective structure 100c for optical touch control of FIG. The microstructures 120d are recessed on the surface 112 of the transparent substrate 110, and these microstructures 120d are arranged in an array or not arranged in an array and expose part of the surface 112. If it is arranged in an array, the pattern of the array arrangement can be, for example, a circle or polygons, without limitation. The light-transmitting and reflecting patterns 132d of the light-transmitting and reflecting film layer 130d are respectively disposed on the microstructures 120d and are not connected to each other. As shown in FIG. 4A , the light-transmitting and reflective patterns 132d are located in the arc-shaped concave surfaces of the microstructures 120d.

更详细来说,请参考图4B,每一微结构120d为凹陷的角立方体(cornercube),其是利用三个相互垂直的面所构成的结构,可以使入射的光线R反射三次后才循原本方向返回,造成回归反射的效果。因此,当红外光摄影机(未绘示)是安装在红外光光源(未绘示)旁时,一如一般光笔的作法时,即使红外光(如图2的红外光L2)的入射角度改变,红外光摄影机仍可拍摄到反射的红外光(如图2的红外光L3),也就是说,无论光笔是垂直于透明基底110或倾斜至相当大的角度,都可拍摄到红外光的反射影像。In more detail, please refer to FIG. 4B, each microstructure 120d is a concave corner cube (cornercube), which is a structure formed by three mutually perpendicular surfaces, which can make the incident light R reflected three times before following the original path. The direction returns, causing a retroreflection effect. Therefore, when the infrared camera (not shown) is installed next to the infrared light source (not shown), like a general light pen, even if the incident angle of the infrared light (such as the infrared light L2 in FIG. 2 ) changes, The infrared light camera can still capture reflected infrared light (such as infrared light L3 in FIG. 2 ), that is to say, no matter whether the light pen is perpendicular to the transparent substrate 110 or tilted to a considerable angle, the reflected image of infrared light can be captured. .

图5绘示为本发明的另一实施例的一种光学触控用反射结构的剖面示意图。请参考图5,本实施例的光学触控用反射结构100e与图1A的光学触控用反射结构100a相似,二者主要差异之处在于:本实施例的光学触控用反射结构100e还包括多个光吸收部150,其中光吸收部150配置于透明保护层140上,且暴露出部分透明保护层140。此处,光吸收部150可视为不反射可见光也不反射红外光的暗点,其材料例如是黑色油墨,但并不以此为限。当触控元件(如光学触控笔,未绘示)发出红外光L2照射至光学触控用反射结构100e时,可见光L1与红外光L2皆会被光吸收部150所吸收,进而使红外光L2在光学触控用反射结构100e上产生较大的反射率差异。如此一来,在后续将光学触控用反射结构100e安装于例如是显示器(未绘示)之前时,除了可成为红外光L2的有效反射体之外,也可有效维持显示器的光的穿透率,并可以减轻影像产生白雾化的情形。故,本实施例的光学触控用反射结构100e可具有较广泛的应用范围。FIG. 5 is a schematic cross-sectional view of a reflective structure for optical touch according to another embodiment of the present invention. Please refer to FIG. 5 , the reflective structure 100 e for optical touch control in this embodiment is similar to the reflective structure 100 a for optical touch control in FIG. A plurality of light absorbing parts 150 , wherein the light absorbing part 150 is disposed on the transparent protective layer 140 and exposes part of the transparent protective layer 140 . Here, the light absorbing portion 150 can be regarded as a dark spot that does not reflect visible light or infrared light, and its material is, for example, black ink, but not limited thereto. When the touch element (such as an optical stylus, not shown) emits infrared light L2 to irradiate the reflective structure 100e for optical touch, both the visible light L1 and the infrared light L2 will be absorbed by the light absorbing part 150, thereby making the infrared light L2 produces a large reflectivity difference on the reflective structure 100e for optical touch control. In this way, when the reflective structure 100e for optical touch control is installed in front of, for example, a display (not shown), in addition to being an effective reflector of infrared light L2, it can also effectively maintain the light penetration of the display. efficiency, and can reduce the white fog of the image. Therefore, the reflective structure 100 e for optical touch control of this embodiment can have a wider range of applications.

综上所述,本发明的光学触控用反射结构包括透明基底、微结构以及透光反射膜层,因此当触控元件(如光学触控笔)发出红外光照射至此光学触控用反射结构时,被微结构所暴露出的透明基底的表面可以让可见光穿透,而被透光反射膜层所覆盖的微结构可通过透光反射膜层来反射红外光至触控元件内的红外光摄影机,进而可推算出触控点的位置。此外,后续将本发明的光学触控用反射结构应用于例如是常见的显示器(例如是液晶显示器、阴极射线管显示器或等离子体显示器)上时,其透明基底的设置亦可让显示器的光大部分穿透,并且可避免影像明显白雾化的情形产生。故,本发明的光学触控用反射结构具有较广泛的应用范围。To sum up, the reflective structure for optical touch of the present invention includes a transparent substrate, a microstructure, and a light-transmitting reflective film layer. At the same time, the surface of the transparent substrate exposed by the microstructure can allow visible light to penetrate, and the microstructure covered by the light-transmitting reflective film layer can reflect infrared light to the infrared light in the touch element through the light-transmitting reflective film layer camera, and then the position of the touch point can be deduced. In addition, when the reflective structure for optical touch control of the present invention is subsequently applied to a common display (such as a liquid crystal display, a cathode ray tube display or a plasma display), the setting of the transparent substrate can also make most of the light of the display Penetration, and can avoid the situation of obvious white fogging of the image. Therefore, the reflective structure for optical touch control of the present invention has a wider range of applications.

虽然结合以上实施例披露了本发明,然而其并非用以限定本发明,任何所属技术领域中普通技术人员,在不脱离本发明的精神和范围内,可作些许的更动与润饰,故本发明的保护范围应以所附的权利要求所界定的为准。Although the present invention has been disclosed in conjunction with the above embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the invention should be defined by the appended claims.

Claims (16)

1. an optical touch reflection configuration, comprising:
Transparent substrates, has surface;
Multiple microstructure, is configured in this transparent substrates, wherein this microstructure expose part this surface penetrate to allow visible ray; And
Printing opacity reflective coating, is configured in these microstructures, and at least covers a part for these microstructures.
2. optical touch reflection configuration as claimed in claim 1, wherein the refractive index of these microstructures is identical with the refractive index of this transparent substrates or close.
3. optical touch reflection configuration as claimed in claim 1, is wherein one of the forming between these microstructures and this transparent substrates.
4. optical touch reflection configuration as claimed in claim 1, the shape of the wherein respectively orthogonal projection of this microstructure in this transparent substrates comprises circle, ellipse or polygon.
5. optical touch reflection configuration as claimed in claim 1, wherein these micro-structure configuration in this transparent substrates this on the surface, and in array or non-array arrangement between these microstructures, and the figure of this arrayed comprises circle or polygon.
6. optical touch reflection configuration as claimed in claim 1, wherein these microstructure indents are in this surface of this transparent substrates, and are array or non-array arrangement between these microstructures, and the figure of this arrayed comprises circle or polygon.
7. optical touch reflection configuration as claimed in claim 1, wherein the thickness of this printing opacity reflective coating is less than or equal to 40 nanometers.
8. optical touch reflection configuration, the wherein surface of this printing opacity reflective coating these microstructures completely coated as claimed in claim 1.
9. optical touch reflection configuration as claimed in claim 1, wherein when infrared light is incident to these microstructures that this printing opacity reflective coating covers a part of, this part of these microstructures reflects this infrared light by this printing opacity reflective coating.
10. optical touch reflection configuration as claimed in claim 9, wherein not another part of these microstructures of covering by this printing opacity reflective coating, when this infrared light is incident to these microstructures, another part of these microstructures can this infrared light of scattering.
11. optical touch reflection configurations as claimed in claim 1, wherein this printing opacity reflective coating is individual layer reflectance coating or laminated reflective film.
12. optical touch reflection configurations as claimed in claim 1, also comprise:
Protective clear layer, cover this transparent substrates expose by these microstructures this surface of part, these microstructures and this printing opacity reflective coating.
13. optical touch reflection configurations as claimed in claim 12, wherein the refractive index of this protective clear layer is between the refractive index and the refractive index of this printing opacity reflective coating of air.
14. optical touch reflection configurations as claimed in claim 12, also comprise:
Multiple light absorption department, is configured on this protective clear layer, and exposes this protective clear layer of part.
15. optical touch reflection configurations as claimed in claim 1, wherein respectively the width of this microstructure between 10 microns to 100 microns.
16. optical touch reflection configurations as claimed in claim 1, wherein respectively the height of this microstructure between 5 microns to 50 microns.
CN201310684327.0A 2013-12-12 2013-12-12 Reflective structure for optical touch Pending CN104714700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310684327.0A CN104714700A (en) 2013-12-12 2013-12-12 Reflective structure for optical touch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310684327.0A CN104714700A (en) 2013-12-12 2013-12-12 Reflective structure for optical touch

Publications (1)

Publication Number Publication Date
CN104714700A true CN104714700A (en) 2015-06-17

Family

ID=53414097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310684327.0A Pending CN104714700A (en) 2013-12-12 2013-12-12 Reflective structure for optical touch

Country Status (1)

Country Link
CN (1) CN104714700A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107273821A (en) * 2017-05-26 2017-10-20 上海箩箕技术有限公司 Optical fingerprint sensor module
CN109656423A (en) * 2018-09-07 2019-04-19 友达光电股份有限公司 Sense display device and the display module using it
CN114766261A (en) * 2022-05-06 2022-07-22 浙江天源网业有限公司 Special heat insulation membrane net for maintaining activity of tea leaves by adopting nanotechnology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085532A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Infrared-reflective-pattern forming sheet and method for manufacturing the same
CN101819730B (en) * 2009-02-26 2012-11-28 旭丽电子(广州)有限公司 Display device and light sensing system
CN102841393A (en) * 2011-06-23 2012-12-26 原相科技股份有限公司 Reflective sheet and optical touch device of the reflective sheet
US20130107246A1 (en) * 2011-10-28 2013-05-02 Subtron Technology Co., Ltd. Optical touch sensing structure and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085532A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Infrared-reflective-pattern forming sheet and method for manufacturing the same
CN101819730B (en) * 2009-02-26 2012-11-28 旭丽电子(广州)有限公司 Display device and light sensing system
CN102841393A (en) * 2011-06-23 2012-12-26 原相科技股份有限公司 Reflective sheet and optical touch device of the reflective sheet
US20130107246A1 (en) * 2011-10-28 2013-05-02 Subtron Technology Co., Ltd. Optical touch sensing structure and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107273821A (en) * 2017-05-26 2017-10-20 上海箩箕技术有限公司 Optical fingerprint sensor module
CN109656423A (en) * 2018-09-07 2019-04-19 友达光电股份有限公司 Sense display device and the display module using it
CN109656423B (en) * 2018-09-07 2022-03-29 友达光电股份有限公司 Sensing display device and display module using same
CN114766261A (en) * 2022-05-06 2022-07-22 浙江天源网业有限公司 Special heat insulation membrane net for maintaining activity of tea leaves by adopting nanotechnology
CN114766261B (en) * 2022-05-06 2023-05-23 浙江天源网业有限公司 A special insulation film net with nanotechnology to maintain the activity of tea tree leaves

Similar Documents

Publication Publication Date Title
TWI581049B (en) Projection screen
JP5036898B2 (en) Optical imaging device
JP6405462B2 (en) Image display device
TW201933073A (en) Thin couplers and reflectors for sensing waveguides
CN110412825B (en) Projection screen and projection system
WO2018223726A1 (en) Display panel and display apparatus
WO2011162013A1 (en) Display device and production method thereof
JP2020129630A (en) Proximity sensor and electronic device using the same
KR20220004709A (en) Screen fingerprint recognition assembly and terminal equipment
CN104714700A (en) Reflective structure for optical touch
TWI539332B (en) Reflective structure for optical touch sensing
JP2014153513A (en) Angle-dependent light transmission film
JP2014211596A (en) Angle-dependent light transmission film
CN111742256B (en) Optical imaging device
JPWO2018139141A1 (en) Optical element and image display device using the same
CN109656423B (en) Sensing display device and display module using same
US9348433B2 (en) Optical touch sensing structure
JP2013023088A (en) Rearview mirror with monitor
JP5422863B2 (en) Lighting device
JP2624462B2 (en) Shade plate
JP2021001936A (en) Dimmer member and dimmer device
JP2015069919A (en) Light guide plate, surface light source device, video source unit, liquid crystal display device, and method of manufacturing light guide plate
JP2023007257A (en) Transmission screen and display system
JP2007065563A (en) Antireflective optical structure
KR20150108214A (en) Optical device and lighting device using the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150617