CN104708239A - Large-scale marine pipeline initial point recognition and location method and system based on CCD - Google Patents
Large-scale marine pipeline initial point recognition and location method and system based on CCD Download PDFInfo
- Publication number
- CN104708239A CN104708239A CN201510077096.6A CN201510077096A CN104708239A CN 104708239 A CN104708239 A CN 104708239A CN 201510077096 A CN201510077096 A CN 201510077096A CN 104708239 A CN104708239 A CN 104708239A
- Authority
- CN
- China
- Prior art keywords
- welding
- robot
- starting point
- main control
- coordinate system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000003466 welding Methods 0.000 claims abstract description 151
- 238000012545 processing Methods 0.000 claims abstract description 26
- 239000000284 extract Substances 0.000 claims abstract description 16
- 229910000679 solder Inorganic materials 0.000 claims abstract description 10
- 239000011159 matrix material Substances 0.000 claims description 24
- 230000009466 transformation Effects 0.000 claims description 16
- 230000000007 visual effect Effects 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000002474 experimental method Methods 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Landscapes
- Manipulator (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种基于CCD的大型海洋管道起始点识别与定位方法及系统。步骤1,初步定位焊缝位置:CCD工业数字摄像机采集焊缝图片,主控计算机计算焊枪中心与焊缝中心线像素偏差的实时变化,使焊接机器人初步定位到焊缝上方;步骤2,提取起始点像素坐标:识别定位焊中的一个焊点,变位机带动管道作回转运动,实时采集图像,对包含焊枪的矩形感兴趣区域进行图像处理,若检测到焊点,变位机停止转动,提取焊点质心的像素坐标;步骤3,定位起始点:焊接机器人沿基座标系Y方向水平移动一小段距离,采集焊缝图片,再次提取焊点质心的像素坐标,利用立体视觉,计算起始点的三维坐标,焊接机器人定位到起始点。
The invention discloses a CCD-based method and system for identifying and locating the starting point of a large ocean pipeline. Step 1. Preliminary positioning of the weld seam position: CCD industrial digital camera collects weld seam pictures, and the main control computer calculates the real-time change of the pixel deviation between the center of the welding torch and the center line of the weld seam, so that the welding robot is initially positioned above the weld seam; Step 2, extracts the Pixel coordinates of the starting point: identify a welding spot in the positioning welding, the positioner drives the pipeline to make a rotary motion, collects images in real time, and performs image processing on the rectangular area of interest including the welding torch. If a welding spot is detected, the positioner stops rotating. Extract the pixel coordinates of the centroid of the solder joint; step 3, locate the starting point: the welding robot moves horizontally for a short distance along the Y direction of the base coordinate system, collects the picture of the weld seam, extracts the pixel coordinates of the centroid of the solder joint again, and uses stereo vision to calculate the starting point The three-dimensional coordinates of the starting point, the welding robot is positioned to the starting point.
Description
技术领域:Technical field:
本发明涉及一种基于CCD的大型海洋管道起始点识别与定位方法及系统,其属于自动化焊接技术领域。The invention relates to a CCD-based method and system for identifying and locating the starting point of a large ocean pipeline, which belongs to the technical field of automatic welding.
背景技术:Background technique:
对于大型海洋管道的焊接,我国还停留在半自动焊的水平上。在实际的焊接过程中,由于管道长度较长,而且管道直径可达1000mm甚至更大,因此,车间作业时,都先进行定位焊,暂时固定管道,之后采用焊枪位置基本不动,变位机带动管道作圆弧回转运动的方式完成焊接。由于一般都采用定位焊中的一个焊点作为起始点,管道被装夹后,每次焊点的位置都不固定,因此,一般都进行人工定位焊接起始点,即先利用变位机带动管道作回转运动,当操作人员观察到有焊点出现在上方时,手动停止变位机,操作人员利用示教盒或其他方式手动使机器人运动到起始点,因此操作人员的水平要求高,劳动强度大,定位精度也得不到保证,更重要的是严重降低了焊接效率低,制约了海洋管道建设的发展。For the welding of large ocean pipelines, our country is still at the level of semi-automatic welding. In the actual welding process, due to the long length of the pipeline and the diameter of the pipeline can reach 1000mm or even larger, when working in the workshop, the positioning welding is carried out first, and the pipeline is temporarily fixed, and then the position of the welding torch is basically fixed, and the positioner The welding is completed by driving the pipeline to make a circular arc rotary motion. Since a welding point in the positioning welding is generally used as the starting point, after the pipe is clamped, the position of the welding point is not fixed each time. For rotary motion, when the operator observes that there are welding spots appearing on the top, the positioner is manually stopped, and the operator uses the teaching box or other methods to manually move the robot to the starting point, so the level of the operator is high and the labor intensity is high. Large, the positioning accuracy cannot be guaranteed, and more importantly, the welding efficiency is seriously reduced, which restricts the development of marine pipeline construction.
由于海洋管道的需求量大,利用手动定位起始点将大大提高时间成本。因此,把信息传感技术与现有的焊接机器人相结合,开发出自动化的管道焊接系统,实现起始点的自动定位,提高整个管道焊接系统的效率,是目前自动化焊接技术的必然趋势,也是技术创新的必然需求。Due to the high demand of marine pipelines, using manual positioning of the starting point will greatly increase the time cost. Therefore, combining information sensing technology with existing welding robots to develop an automated pipeline welding system to realize automatic positioning of the starting point and improve the efficiency of the entire pipeline welding system is an inevitable trend of current automated welding technology, and it is also a technology The inevitable need for innovation.
目前,视觉传感技术作为焊接领域的研究热点,已取得了一些显著的成果,但是应用较多的是一些结构件,关于把视觉传感应用于大型管道焊接方面的研究和应用却不多见。目前,在可见的报道中,名称为“基于单目视觉传感的机器人初始焊位识别系统及方法”(申请号201110224808.4)为了使机器人能够准确的移动到焊接路径的起始点,提供了一种基于单目视觉传感器的机器人初始焊位识别方法,但是该方法中待焊工件的焊缝时水平的,视觉传感器的高度固定不变,并不适用于大型的管道焊接起始点的精确定位。文献“陈海永,方灶军,徐德,等.基于视觉的薄钢板焊接机器人起始点识别与定位控制[(期刊)机器人],2013,第35卷第1期,90-97”提出了一种起始点识别和焊枪精确对中焊缝起始点的视觉控制方法,自动确定包含焊枪特征点的圆形感兴趣区域,但是该应用针对的是薄钢板焊接,也不适用于大型管道焊接。At present, as a research hotspot in the field of welding, visual sensing technology has achieved some remarkable results, but it is mostly applied to some structural parts, and there are few researches and applications on the application of visual sensing to large-scale pipeline welding. . At present, in visible reports, the title is "Robot Initial Welding Position Recognition System and Method Based on Monocular Vision Sensing" (application number 201110224808.4) in order to enable the robot to accurately move to the starting point of the welding path, providing a The initial welding position recognition method of the robot based on the monocular vision sensor, but the weld seam of the workpiece to be welded in this method is horizontal, and the height of the vision sensor is fixed, which is not suitable for the precise positioning of the starting point of large-scale pipeline welding. The document "Chen Haiyong, Fang Zaojun, Xu De, et al. Vision-based start point recognition and positioning control of thin steel plate welding robot [(Journal) Robotics], 2013, Volume 35, Issue 1, 90-97" proposed a The visual control method of starting point recognition and welding torch precise centering of welding seam starting point automatically determines a circular region of interest containing welding torch feature points, but this application is aimed at thin steel plate welding and is not suitable for large pipe welding.
因此,确有必要对现有技术进行改进以解决现有技术之不足。Therefore, it is necessary to improve the prior art to solve the deficiencies of the prior art.
发明内容:Invention content:
针对上述现有技术中的不足和生产需要,提供一种基于CCD的大型海洋管道起始点识别与定位方法及系统,能够自动提取管道焊缝在定位焊中的一个焊点,实现焊接起始点的精确定位以及控制机器人运动到起始点,从而解决在大型管道焊接中机器人自动定位到焊接起始点的技术问题。Aiming at the deficiencies in the above existing technologies and production needs, a CCD-based method and system for identifying and locating the starting point of large-scale ocean pipelines is provided, which can automatically extract a welding spot of the pipeline weld in the positioning welding, and realize the location of the welding starting point. Accurate positioning and control of the robot to move to the starting point, thereby solving the technical problem of the robot automatically positioning to the welding starting point in large-scale pipeline welding.
本发明采用如下技术方案:一种基于CCD的大型海洋管道起始点识别与定位方法,其包括如下步骤:The present invention adopts the following technical scheme: a CCD-based method for identifying and locating the starting point of a large ocean pipeline, which includes the following steps:
步骤1:焊缝位置的初步定位Step 1: Preliminary positioning of the weld position
(a)保持待焊的管道不动,焊接机器人移动到预先设定的位置,由CCD工业数字摄像机采集待焊管道的焊缝图像,主控计算机通过USB线接收图片并进行图像处理,初步识别焊缝,提取焊缝中心线,对图片的中间行进行扫描,得到焊缝中心线上的一点,计算焊枪中心与该点的横坐标方向的像素偏差,并反馈给焊接机器人;(a) Keep the pipeline to be welded still, the welding robot moves to the preset position, and the weld seam image of the pipeline to be welded is collected by the CCD industrial digital camera, and the main control computer receives the picture through the USB cable and performs image processing for preliminary identification Weld seam, extract the center line of the weld seam, scan the middle row of the picture, get a point on the center line of the weld seam, calculate the pixel deviation between the center of the welding torch and the abscissa direction of this point, and feed it back to the welding robot;
(b)焊接机器人向焊缝中心移动,移动过程中CCD实时采集图像,主控计算机实时接收并提取焊缝中心线,扫描图片的中间行,得到焊缝中心线上的一点,计算焊枪中心与该点的横坐标方向像素偏差的实时变化,当像素偏差为零时,主控计算机发送停止信号给焊接机器人,焊接机器人停止移动,从而使焊接机器人初步定位到焊缝上方;(b) The welding robot moves to the center of the weld. During the movement, the CCD collects images in real time. The main control computer receives and extracts the center line of the weld in real time, scans the middle row of the picture, and obtains a point on the center line of the weld. Calculate the distance between the welding torch center and The real-time change of the pixel deviation in the abscissa direction of the point. When the pixel deviation is zero, the main control computer sends a stop signal to the welding robot, and the welding robot stops moving, so that the welding robot is initially positioned above the weld seam;
步骤2:焊接起始点像素坐标的提取Step 2: Extraction of pixel coordinates of welding starting point
(a)主控计算机发送开始信号给变位机,变位机带动管道作回转运动,CCD实时采集图像,主控计算机实时接收并对包含焊枪的矩形感兴趣区域进行图像处理,当检测到有管道定位焊中的焊点出现在感兴趣区域内时,发送停止信号给变位机,管道停止作回转运动;(a) The main control computer sends a start signal to the positioner, the positioner drives the pipeline to make a rotary motion, the CCD collects images in real time, and the main control computer receives and processes the image of the rectangular region of interest including the welding torch in real time. When the welding spot in the positioning welding of the pipeline appears in the area of interest, a stop signal is sent to the positioner, and the pipeline stops rotating;
(b)主控计算机对包含焊点的矩形感兴趣区域进行图像处理,提取焊点的外轮廓和质心,质心的像素坐标就作为管道起始点的像素坐标;(b) The main control computer carries out image processing to the rectangular region of interest comprising the solder joint, extracts the outer contour and the centroid of the solder joint, and the pixel coordinates of the centroid are just used as the pixel coordinates of the starting point of the pipeline;
步骤3:焊接起始点的定位Step 3: Positioning of welding starting point
(a)主控计算机发送运动信号给焊接机器人,焊接机器人沿基坐标系Y方向水平移动一小段距离,CCD工业数字摄像机采集焊缝图像,主控计算机接收图片并对包含焊点的矩形感兴趣区域进行图像处理,利用图像处理再次提取该焊点质心的像素坐标;(a) The main control computer sends a motion signal to the welding robot, and the welding robot moves horizontally for a short distance along the Y direction of the base coordinate system. The CCD industrial digital camera collects the image of the weld seam, and the main control computer receives the picture and is interested in the rectangle containing the welding spot Image processing is performed on the area, and the pixel coordinates of the centroid of the solder joint are extracted again by image processing;
(b)利用通用双目视觉计算起始点在相机坐标系下的三维坐标,并根据工具坐标系和机器人基座标系之间的转换矩阵以及工具坐标系和相机坐标系之间的转换矩阵,把得到的起始点在相机坐标系下的三维坐标转化到机器人基座标系下的三维坐标。(b) Use the general binocular vision to calculate the three-dimensional coordinates of the starting point in the camera coordinate system, and according to the transformation matrix between the tool coordinate system and the robot base coordinate system and the transformation matrix between the tool coordinate system and the camera coordinate system, Transform the obtained three-dimensional coordinates of the starting point in the camera coordinate system to the three-dimensional coordinates in the robot base coordinate system.
进一步地,步骤1(a)中像素偏差的计算具体步骤为:Further, the specific steps for calculating the pixel deviation in step 1(a) are:
(1)根据工业数字摄像机内部参数矩阵、工具坐标系和机器人基座标系之间的转换矩阵以及工具坐标系和相机坐标系之间的转换矩阵,计算焊枪中心在图片中的像素坐标(u,v);(1) Calculate the pixel coordinates (u ,v);
(2)对采集的图片进行图像处理,提取焊缝边缘和焊缝中心线,对焊缝图片的中间行从左边开始扫描,得到焊缝中心线上的一点,记为(uk,vk),计算焊枪中心到焊缝中心线的像素偏差Δu=u-uk。(2) Perform image processing on the collected pictures, extract the edge of the weld and the center line of the weld, scan the middle row of the weld picture from the left, and obtain a point on the center line of the weld, denoted as (u k , v k ), calculate the pixel deviation Δu=uu k from the center of the welding torch to the center line of the weld.
进一步地,步骤1(b)中焊接机器人的移动方向,由像素距离Δu的正负决定,机器只沿基座标系的Y方向水平移动。Further, the moving direction of the welding robot in step 1(b) is determined by the positive or negative of the pixel distance Δu, and the machine only moves horizontally along the Y direction of the base coordinate system.
进一步地,所述步骤3(b)中的工具坐标系和机器人基座标系之间的变换矩阵由主控计算机从机器人控制柜中读取焊接机器人的位姿换算得到,所述工具坐标系和相机坐标系之间的变换矩阵由手眼标定实验得到。Further, the transformation matrix between the tool coordinate system and the robot base coordinate system in step 3 (b) is obtained by the main control computer reading the pose conversion of the welding robot from the robot control cabinet, and the tool coordinate system The transformation matrix between and the camera coordinate system is obtained from the hand-eye calibration experiment.
本发明采用如下技术方案:一种基于CCD的大型海洋管道起始点识别与定位系统,其包括变位机,视觉传感器,焊接机器人,机器人控制柜,焊接电源和主控计算机;所述视觉传感器包括刚性固定在焊接机器人末端焊枪上的CCD工业数字摄像机,工业数字摄像机与焊接机器人一起运动;所述变位机、焊接电源与机器人控制柜相连接,所述主控计算机通过以太网与机器人控制柜连接,主控计算机发送信号给机器人控制柜进而控制变位机的运动;所述主控计算机和视觉传感器通过USB连接;所述主控计算机包括图像采集模块、图像处理模块和信息反馈及控制模块,所述图像采集模块通过USB线控制CCD工业数字摄像机采集焊缝图片并发送给主控计算机,所述图像处理模块包括焊缝位置初步定位、焊接起始点像素坐标的提取和焊缝起始点三维坐标的定位三个图像处理子模块,所述信息反馈及控制模块反馈图像处理的结果给机器人控制柜,控制变位机的回转运动以及机器人的运动,最终控制焊接机器人运动到焊接起始点。The present invention adopts the following technical solutions: a CCD-based large-scale marine pipeline starting point identification and positioning system, which includes a positioner, a visual sensor, a welding robot, a robot control cabinet, a welding power supply and a main control computer; the visual sensor includes The CCD industrial digital camera rigidly fixed on the welding torch at the end of the welding robot, the industrial digital camera moves together with the welding robot; the positioner, the welding power supply are connected to the robot control cabinet, and the main control computer is connected to the robot control cabinet through Ethernet connection, the main control computer sends a signal to the robot control cabinet and then controls the movement of the positioner; the main control computer and the visual sensor are connected through a USB; the main control computer includes an image acquisition module, an image processing module and an information feedback and control module , the image acquisition module controls the CCD industrial digital camera through the USB line to collect the weld picture and sends it to the main control computer. Coordinate positioning has three image processing sub-modules. The information feedback and control module feeds back the results of image processing to the robot control cabinet, controls the rotary motion of the positioner and the motion of the robot, and finally controls the welding robot to move to the welding starting point.
本发明具有如下有益效果:本发明提供了一种基于CCD的大型海洋管道起始点识别与定位方法及系统,满足了目前机器人管道焊接自动化的要求。只需添加视觉传感系统,不影响焊枪的灵活性和可达性,利用主控计算机作为控制中心,自动采集焊缝图片,实现了焊接起始点的自动识别,从而使焊接机器人自动定位到焊接起始点,避免了人工定位的过程,节省了时间成本,而且降低了人工定位误差,减轻了工人的劳动强度,提高了管道焊接的自动化水平和焊接效率,保证了起始点的定位精度,为后续的自动化焊接奠定了良好的基础。The invention has the following beneficial effects: the invention provides a CCD-based method and system for identifying and locating the starting point of a large-scale ocean pipeline, which meets the current requirements of robot pipeline welding automation. Only need to add the visual sensor system, without affecting the flexibility and accessibility of the welding torch, use the main control computer as the control center, automatically collect the welding seam pictures, realize the automatic identification of the welding starting point, so that the welding robot can automatically locate the welding seam The starting point avoids the process of manual positioning, saves time and cost, reduces manual positioning errors, reduces the labor intensity of workers, improves the automation level and welding efficiency of pipeline welding, and ensures the positioning accuracy of the starting point. The automatic welding has laid a good foundation.
附图说明:Description of drawings:
图1是本发明的一个具体实施例的工作流程图。Fig. 1 is a working flow diagram of a specific embodiment of the present invention.
图2是识别与定位过程中焊接机器人的运动过程图。Figure 2 is a diagram of the motion process of the welding robot during the identification and positioning process.
图3是焊接过程中系统中各坐标系的位姿示意图。Figure 3 is a schematic diagram of the poses of each coordinate system in the system during the welding process.
图4是本发明的基于CCD的管道焊接机器人平台示意图。Fig. 4 is a schematic diagram of the CCD-based pipeline welding robot platform of the present invention.
图5是本发明中主控计算机的功能模块图。Fig. 5 is a functional block diagram of the main control computer in the present invention.
其中:in:
1-变位机;2-管道;3-视觉传感器;4-焊接机器人;5-机器人控制柜;6-焊接电源;7-主控计算机。1-Positioner; 2-Pipeline; 3-Vision sensor; 4-Welding robot; 5-Robot control cabinet; 6-Welding power supply; 7-Main control computer.
具体实施方式:Detailed ways:
为使本发明的目的、技术方案和有益效果更加清楚,下面结合具体实施例,并参照附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。In order to make the purpose, technical solutions and beneficial effects of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings, but the implementation of the present invention is not limited thereto.
请参照图1所示,本发明基于CCD的大型海洋管道焊接起始点识别与定位方法,其包括如下步骤:Please refer to shown in Fig. 1, the present invention is based on CCD large ocean pipeline welding start point identification and location method, and it comprises the following steps:
步骤1:焊缝位置的初步定位Step 1: Preliminary positioning of the weld position
(a)保持待焊的管道不动,焊接机器人移动到预先设定好的位置,由CCD工业数字摄像机采集待焊管道的焊缝图像,主控计算机通过USB线接收图片并进行图像处理,初步识别焊缝,提取焊缝中心线,对图片的中间行进行扫描,得到焊缝中心线上的一点,计算焊枪中心与该点的横坐标方向的像素偏差Δu,并反馈给焊接机器人;(a) Keep the pipeline to be welded still, the welding robot moves to the preset position, and the weld seam image of the pipeline to be welded is collected by the CCD industrial digital camera, and the main control computer receives the picture through the USB line and performs image processing. Preliminary Identify the weld, extract the center line of the weld, scan the middle row of the picture, get a point on the center line of the weld, calculate the pixel deviation Δu between the center of the welding torch and the abscissa direction of this point, and feed it back to the welding robot;
(b)焊接机器人向焊缝中心移动,移动过程中CCD实时采集图像,主控计算机实时接收并提取焊缝中心线,扫描图片的中间行,得到焊缝中心线上的一点,计算焊枪中心与该点的横坐标方向像素偏差Δu的实时变化,当像素偏差为零时,主控计算机发送停止信号给焊接机器人,焊接机器人停止移动,从而使焊接机器人初步定位到焊缝上方。如图2所示,当焊接机器人运动到位置1时,Δu=0。焊接机器人的移动方向,由像素距离Δu的正负决定,焊接机器人只沿焊接机器人基座标系Y方向水平移动,焊接机器人的基座标系的位置如图3所示。(b) The welding robot moves to the center of the weld. During the movement, the CCD collects images in real time. The main control computer receives and extracts the center line of the weld in real time, scans the middle row of the picture, and obtains a point on the center line of the weld. Calculate the distance between the welding torch center and The real-time change of the pixel deviation Δu in the abscissa direction of the point. When the pixel deviation is zero, the main control computer sends a stop signal to the welding robot, and the welding robot stops moving, so that the welding robot is initially positioned above the weld. As shown in Figure 2, when the welding robot moves to position 1, Δu=0. The moving direction of the welding robot is determined by the positive or negative of the pixel distance Δu. The welding robot only moves horizontally along the Y direction of the base frame of the welding robot. The position of the base frame of the welding robot is shown in Figure 3.
步骤2:焊接起始点像素坐标的提取Step 2: Extraction of pixel coordinates of welding starting point
(a)主控计算机发送开始信号给变位机,变位机带动管道作回转运动,CCD实时采集图像,主控计算机实时接收并对包含焊枪的矩形感兴趣区域进行图像处理,当检测到有管道定位焊中的焊点出现在感兴趣区域内时,发送停止信号给变位机,管道停止作回转运动;(a) The main control computer sends a start signal to the positioner, the positioner drives the pipeline to make a rotary motion, the CCD collects images in real time, and the main control computer receives and processes the image of the rectangular region of interest including the welding torch in real time. When the welding spot in the positioning welding of the pipeline appears in the area of interest, a stop signal is sent to the positioner, and the pipeline stops rotating;
(b)主控计算机对包含焊点的矩形感兴趣区域进行图像处理,提取焊点的外轮廓和质心,质心的像素坐标就作为管道焊接起始点的像素坐标。(b) The main control computer performs image processing on the rectangular region of interest including the welding spot, extracts the outer contour and centroid of the welding spot, and the pixel coordinates of the centroid are used as the pixel coordinates of the starting point of pipeline welding.
步骤3:焊接起始点的定位Step 3: Positioning of welding starting point
(a)主控计算机发送运动信号给焊接机器人,焊接机器人沿基座标系Y方向水平移动一小段距离,移动到图2中的位置2,CCD摄像机采集焊缝图像,主控计算机接收图片并对包含焊点的矩形感兴趣区域进行图像处理,利用图像处理再次提取该焊点质心的像素坐标;(a) The main control computer sends motion signals to the welding robot, and the welding robot moves horizontally for a short distance along the Y direction of the base coordinate system to position 2 in Figure 2. The CCD camera collects images of weld seams, and the main control computer receives the pictures and Perform image processing on the rectangular region of interest containing the solder joint, and use the image processing to extract the pixel coordinates of the solder joint centroid again;
(b)利用通用双目视觉计算起始点在相机坐标系下的三维坐标,并根据工具坐标系和机器人基座标系之间的转换矩阵以及工具坐标系和相机坐标系之间的转换矩阵,把得到的起始点在相机坐标系下的三维坐标转化到机器人基座标系下的三维坐标。其中工具坐标系和机器人基座标系之间的变换矩阵可由主控计算机从机器人控制柜中读取机器人末端执行件的位姿计算得到,所述工具坐标系和相机坐标系之间的变换矩阵可由手眼标定实验得到。(b) Use the general binocular vision to calculate the three-dimensional coordinates of the starting point in the camera coordinate system, and according to the transformation matrix between the tool coordinate system and the robot base coordinate system and the transformation matrix between the tool coordinate system and the camera coordinate system, Transform the obtained three-dimensional coordinates of the starting point in the camera coordinate system to the three-dimensional coordinates in the robot base coordinate system. The transformation matrix between the tool coordinate system and the robot base coordinate system can be calculated by the main control computer reading the pose of the robot end effector from the robot control cabinet, and the transformation matrix between the tool coordinate system and the camera coordinate system It can be obtained from the hand-eye calibration experiment.
步骤1(a)中像素偏差Δu的具体计算步骤为:The specific calculation steps of the pixel deviation Δu in step 1(a) are:
(1)根据CCD工业数字摄像机内部参数矩阵、工具坐标系和焊接机器人基座标系之间的转换矩阵以及工具坐标系和相机坐标系之间的转换矩阵,利用式(1)和式(2)计算焊枪中心在图片中的像素坐标(u,v);(1) According to the internal parameter matrix of the CCD industrial digital camera, the conversion matrix between the tool coordinate system and the base coordinate system of the welding robot, and the conversion matrix between the tool coordinate system and the camera coordinate system, use formula (1) and formula (2) ) Calculate the pixel coordinates (u, v) of the welding torch center in the picture;
其中,(XW,YW,ZW)是焊枪中心在机器人基座标系下的三维坐标;(u,v)是焊枪中心在图像中的像素坐标;M是CCD内部参数矩阵,由相机标定实验得到;H是手眼转换矩阵(工具坐标系到相机坐标系的转换矩阵),可由手眼标定实验得到,工具坐标系的原点就为焊枪中心;B是机器人基坐标系到工具坐标系的转换矩阵,可由主控计算机从机器人控制柜中读取的工具坐标计算得到;RH是3×3的旋转矩阵,tH是3×1的平移矩阵,O=(0,0,0)T。如图3为工具坐标系Ot-XtYtZt、相机坐标系Oc-XcYcZc和焊接机器人基座标系O-XYZ之间的相对位置关系图。Among them, (X W , Y W , Z W ) are the three-dimensional coordinates of the center of the welding torch in the coordinate system of the robot base; (u, v) are the pixel coordinates of the center of the welding torch in the image; M is the internal parameter matrix of the CCD, determined by the camera Obtained from the calibration experiment; H is the hand-eye transformation matrix (the transformation matrix from the tool coordinate system to the camera coordinate system), which can be obtained from the hand-eye calibration experiment. The origin of the tool coordinate system is the center of the welding torch; B is the transformation from the robot base coordinate system to the tool coordinate system The matrix can be calculated by the main control computer from the tool coordinates read from the robot control cabinet; R H is a 3×3 rotation matrix, t H is a 3×1 translation matrix, O=(0,0,0) T . Figure 3 shows the relative position relationship between the tool coordinate system O t -X t Y t Z t , the camera coordinate system O c -X c Y c Z c and the welding robot base frame O-XYZ.
(2)对采集的图片进行图像处理,提取焊缝边缘和焊缝中心线,对焊缝图片的中间行从左边开始进行扫描,得到焊缝中心线上一点的像素坐标,记为(uk,vk),计算焊枪中心到焊缝中心线的像素偏差Δu=u-uk。(2) Perform image processing on the collected pictures, extract the edge of the weld and the center line of the weld, scan the middle row of the weld picture from the left, and obtain the pixel coordinates of a point on the center line of the weld, denoted as (u k ,v k ), calculate the pixel deviation Δu=uu k from the center of the welding torch to the center line of the weld.
步骤3(b)中起始点三维坐标的定位的具体计算步骤为:设在位置1和位置2提取的质心的像素坐标分别为(u1,v1)和(u2,v2),在位置1时,质心在相机坐标系下的三维坐标为(x1,y1,z1),在位置2时,质心在相机坐标系下的三维坐标为(x2,y2,z2),设CCD工业数字摄像机在位置1和位置2时的相对位置关系为M12=[R|T],R为3×3的旋转矩阵,T为3×1的平移矩阵。设CCD工业数字摄像机的焦距为f,根据针孔相机模型,有式(3)和式(4),The specific calculation steps for the positioning of the three-dimensional coordinates of the starting point in step 3(b) are as follows: set the pixel coordinates of the centroids extracted at position 1 and position 2 to be (u 1 , v 1 ) and (u 2 , v 2 ), respectively. At position 1, the three-dimensional coordinates of the center of mass in the camera coordinate system are (x 1 , y 1 , z 1 ), and at position 2, the three-dimensional coordinates of the center of mass in the camera coordinate system are (x 2 , y 2 , z 2 ) , assuming that the relative position relationship of the CCD industrial digital camera at position 1 and position 2 is M 12 =[R|T], R is a 3×3 rotation matrix, and T is a 3×1 translation matrix. Assuming that the focal length of the CCD industrial digital camera is f, according to the pinhole camera model, there are equations (3) and (4),
式(5)为位置1和位置2中,质心在相机坐标系下的三维坐标的转换关系,Equation (5) is the conversion relationship of the three-dimensional coordinates of the center of mass in the camera coordinate system in position 1 and position 2,
因此可得到在位置1时,起始点在相机坐标系下的三维坐标:Therefore, at position 1, the three-dimensional coordinates of the starting point in the camera coordinate system can be obtained:
其中,CCD工业数字摄像机在位置1和位置2时的相对位置关系M12计算的具体步骤为:设在位置1和位置2时机器人基坐标系到工具坐标系的转换关系分别为B1和B2,可以从机器人控制柜中读取的工具坐标计算得到,H是手眼转换矩阵,因此可得到下式:Among them, the specific steps for calculating the relative position relationship M12 of the CCD industrial digital camera at position 1 and position 2 are as follows: set the conversion relationship from the robot base coordinate system to the tool coordinate system at position 1 and position 2 as B1 and B respectively 2 , can be calculated from the tool coordinates read in the robot control cabinet, H is the hand-eye transformation matrix, so the following formula can be obtained:
其中,I=(0,0,0,1)T。得到起始点在相机坐标系下的三维坐标(x1,y1,z1)后,根据式(8)可转换到机器人基座标系下:where I=(0,0,0,1) T . After obtaining the three-dimensional coordinates (x 1 , y 1 , z 1 ) of the starting point in the camera coordinate system, it can be converted to the robot base coordinate system according to formula (8):
(X,Y,Z)就为起始点在机器人基座标系下的三维坐标。本具体实施例中所述的待焊工件的焊缝的是管管对接的V形海洋管道焊缝。(X, Y, Z) are the three-dimensional coordinates of the starting point in the coordinate system of the robot base. The weld seam of the workpiece to be welded described in this specific embodiment is a V-shaped ocean pipeline weld seam where pipes are butt-jointed.
请参照图4所示,本发明基于CCD的大型海洋管道起始点识别与定位系统包括变位机1,视觉传感器3,焊接机器人4,机器人控制柜5,焊接电源6和主控计算机7;其中视觉传感器3包括刚性固定在焊接机器人4末端焊枪上的CCD工业数字摄像机,摄像机与焊接机器人4一起运动;变位机1、焊接电源6与机器人控制柜5相连接,主控计算机7通过以太网与机器人控制柜5连接,主控计算机7发送信号给机器人控制柜5进而控制变位机1的运动;主控计算机7和视觉传感器3通过USB连接。如图5所示,主控计算机7包括图像采集模块、图像处理模块和信息反馈及控制模块。Please refer to shown in Fig. 4, the present invention is based on the large-scale ocean pipeline starting point identification and positioning system of CCD and comprises positioner 1, visual sensor 3, welding robot 4, robot control cabinet 5, welding power supply 6 and main control computer 7; Wherein The visual sensor 3 includes a CCD industrial digital camera rigidly fixed on the welding torch at the end of the welding robot 4, and the camera moves together with the welding robot 4; the positioner 1, the welding power supply 6 are connected with the robot control cabinet 5, and the main control computer 7 is connected via Ethernet Connected with the robot control cabinet 5, the main control computer 7 sends a signal to the robot control cabinet 5 to control the movement of the positioner 1; the main control computer 7 and the visual sensor 3 are connected through USB. As shown in FIG. 5 , the main control computer 7 includes an image acquisition module, an image processing module, and an information feedback and control module.
图像采集模块:通过USB线控制CCD采集焊缝图片并发送给主控计算机;Image acquisition module: control the CCD to collect weld seam pictures through the USB cable and send them to the main control computer;
图像处理模块:包括焊缝位置初步定位、焊接起始点像素坐标的提取和焊缝起始点三维坐标的定位三个图像处理子模块;Image processing module: including three image processing sub-modules including preliminary positioning of the welding seam position, extraction of pixel coordinates of the starting point of welding, and positioning of the three-dimensional coordinates of the starting point of the welding seam;
信息反馈及控制模块:反馈图像处理的结果给机器人控制柜,控制变位机的回转运动以及机器人的运动,最终控制焊接机器人运动到焊接起始点。Information feedback and control module: Feedback the results of image processing to the robot control cabinet, control the rotary motion of the positioner and the motion of the robot, and finally control the movement of the welding robot to the starting point of welding.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, some improvements can also be made without departing from the principle of the present invention, and these improvements should also be regarded as the invention. protected range.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510077096.6A CN104708239B (en) | 2015-02-12 | 2015-02-12 | CCD-based large-scale marine pipeline initial point identification and positioning method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510077096.6A CN104708239B (en) | 2015-02-12 | 2015-02-12 | CCD-based large-scale marine pipeline initial point identification and positioning method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104708239A true CN104708239A (en) | 2015-06-17 |
CN104708239B CN104708239B (en) | 2017-01-04 |
Family
ID=53408237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510077096.6A Active CN104708239B (en) | 2015-02-12 | 2015-02-12 | CCD-based large-scale marine pipeline initial point identification and positioning method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104708239B (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106002014A (en) * | 2016-07-15 | 2016-10-12 | 上海发那科机器人有限公司 | Welding system suitable for right-angled welding line laser tracking and welding method thereof |
CN106392230A (en) * | 2016-10-19 | 2017-02-15 | 珠海格力电器股份有限公司 | Induction brazing system and welding method |
CN106964921A (en) * | 2017-03-13 | 2017-07-21 | 靳佃会 | A kind of full-automatic wall-hanging solar inner bag grouping machine |
CN107356245A (en) * | 2017-07-21 | 2017-11-17 | 中国海洋石油总公司 | The auxiliary locator of submarine pipeline wiper based on weld seam recognition |
CN109079356A (en) * | 2018-10-25 | 2018-12-25 | 山东瓦鲁智能科技股份有限公司 | A kind of robot automatic air gouging welding steel ring work station and its application method |
CN109129477A (en) * | 2018-08-21 | 2019-01-04 | 上海理工大学 | A kind of 3 D positioning system based on binocular welding manipulator |
CN109332957A (en) * | 2018-11-28 | 2019-02-15 | 合肥常青机械股份有限公司 | Welding Robot Welding Automation Control System |
CN110082359A (en) * | 2019-05-10 | 2019-08-02 | 宝山钢铁股份有限公司 | The location structure mechanical device of steel tube screw thread detection system based on image detection |
WO2019153090A1 (en) | 2018-02-08 | 2019-08-15 | Novarc Technologies Inc. | Systems and methods for seam tracking in pipe welding |
CN110142533A (en) * | 2019-05-23 | 2019-08-20 | 深圳市科瑞悦电气设备有限公司 | An automatic welding method and welding device based on machine vision and AI algorithm |
CN110328461A (en) * | 2019-03-19 | 2019-10-15 | 重庆金康动力新能源有限公司 | Pad localization method and welding spot positioning device |
CN110434516A (en) * | 2019-08-28 | 2019-11-12 | 浙江大学城市学院 | A kind of Intelligent welding robot system and welding method |
CN110524580A (en) * | 2019-09-16 | 2019-12-03 | 西安中科光电精密工程有限公司 | A kind of welding robot visual component and its measurement method |
CN111036863A (en) * | 2018-10-15 | 2020-04-21 | 宝钢工程技术集团有限公司 | Device and method of using machine vision for locating water outlet of large bag |
CN111390351A (en) * | 2020-01-15 | 2020-07-10 | 吉林大学 | Automatic welding device and welding method with real-time change of welding torch pose |
CN111451673A (en) * | 2020-03-31 | 2020-07-28 | 北京博清科技有限公司 | Method and device for searching initial position of welding seam and welding system |
CN111730245A (en) * | 2020-06-22 | 2020-10-02 | 共享智能铸造产业创新中心有限公司 | Welding system and casting defect repair welding method |
CN111922567A (en) * | 2020-08-13 | 2020-11-13 | 北京博清科技有限公司 | Welding control method and device, computer readable storage medium and welding system |
CN112238304A (en) * | 2019-07-18 | 2021-01-19 | 山东淄博环宇桥梁模板有限公司 | Method for automatically welding small-batch customized special-shaped bridge steel templates by mechanical arm based on image visual recognition of welding seams |
CN112828878A (en) * | 2019-11-22 | 2021-05-25 | 中国科学院沈阳自动化研究所 | A three-dimensional measurement and tracking method for large-scale equipment docking process |
CN113695714A (en) * | 2020-05-20 | 2021-11-26 | 唐山英莱科技有限公司 | Laser visual tracking correction method for welding of non-body external shaft of robot |
CN114227095A (en) * | 2021-12-28 | 2022-03-25 | 安徽省安工机械制造有限公司 | An intelligent robotic arm for welding of wear strips of stirring arms |
CN114571153A (en) * | 2022-04-07 | 2022-06-03 | 福州大学 | Weld joint identification and robot weld joint tracking method based on 3D point cloud |
CN115026480A (en) * | 2022-07-08 | 2022-09-09 | 天津大学 | A fully automatic assembly and welding device and method for an offshore platform jacket |
CN115805394A (en) * | 2022-12-28 | 2023-03-17 | 上海市机械施工集团有限公司 | Steel bar welding positioning method and device, electronic equipment and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020090636A (en) * | 2001-05-29 | 2002-12-05 | 신사문 | Pipe Fitting's Welding Method Using Laser Vision Sensor and the Apparatus thereof |
CN101327547A (en) * | 2007-06-18 | 2008-12-24 | 发那科株式会社 | Positioning method of spot welding robot |
CN102284769A (en) * | 2011-08-05 | 2011-12-21 | 上海交通大学 | System and method for initial welding position identification of robot based on monocular vision sensing |
CN102513751A (en) * | 2011-12-31 | 2012-06-27 | 长春大正博凯汽车设备有限公司 | Welding robot and welding method thereof |
CN103170767A (en) * | 2011-12-20 | 2013-06-26 | 徐州工程学院 | Welding robot control method |
-
2015
- 2015-02-12 CN CN201510077096.6A patent/CN104708239B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020090636A (en) * | 2001-05-29 | 2002-12-05 | 신사문 | Pipe Fitting's Welding Method Using Laser Vision Sensor and the Apparatus thereof |
CN101327547A (en) * | 2007-06-18 | 2008-12-24 | 发那科株式会社 | Positioning method of spot welding robot |
CN102284769A (en) * | 2011-08-05 | 2011-12-21 | 上海交通大学 | System and method for initial welding position identification of robot based on monocular vision sensing |
CN103170767A (en) * | 2011-12-20 | 2013-06-26 | 徐州工程学院 | Welding robot control method |
CN102513751A (en) * | 2011-12-31 | 2012-06-27 | 长春大正博凯汽车设备有限公司 | Welding robot and welding method thereof |
Non-Patent Citations (1)
Title |
---|
许琳: "基于结构光技术的焊接机器人焊点定位系统研究", 《中国硕士学位论文全文数据库》 * |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106002014B (en) * | 2016-07-15 | 2019-04-02 | 上海发那科机器人有限公司 | A kind of welding system and its welding method suitable for the tracking of right angle welding seam laser |
CN106002014A (en) * | 2016-07-15 | 2016-10-12 | 上海发那科机器人有限公司 | Welding system suitable for right-angled welding line laser tracking and welding method thereof |
CN106392230A (en) * | 2016-10-19 | 2017-02-15 | 珠海格力电器股份有限公司 | Induction brazing system and welding method |
CN106964921A (en) * | 2017-03-13 | 2017-07-21 | 靳佃会 | A kind of full-automatic wall-hanging solar inner bag grouping machine |
CN107356245A (en) * | 2017-07-21 | 2017-11-17 | 中国海洋石油总公司 | The auxiliary locator of submarine pipeline wiper based on weld seam recognition |
EP3749475A4 (en) * | 2018-02-08 | 2021-12-08 | Novarc Technologies Inc. | SYSTEMS AND PROCESSES FOR SEAM FOLLOWING IN PIPE WELDING |
US20210069813A1 (en) * | 2018-02-08 | 2021-03-11 | Novarc Technologies Inc. | Systems and methods for seam tracking in pipe welding |
WO2019153090A1 (en) | 2018-02-08 | 2019-08-15 | Novarc Technologies Inc. | Systems and methods for seam tracking in pipe welding |
CN111683779A (en) * | 2018-02-08 | 2020-09-18 | 诺瓦克技术公司 | System and method for seam tracking in pipe welding |
CN109129477A (en) * | 2018-08-21 | 2019-01-04 | 上海理工大学 | A kind of 3 D positioning system based on binocular welding manipulator |
CN111036863A (en) * | 2018-10-15 | 2020-04-21 | 宝钢工程技术集团有限公司 | Device and method of using machine vision for locating water outlet of large bag |
CN109079356B (en) * | 2018-10-25 | 2023-09-19 | 山东瓦鲁智能科技股份有限公司 | Robot automatic gouging welding steel ring workstation and use method thereof |
CN109079356A (en) * | 2018-10-25 | 2018-12-25 | 山东瓦鲁智能科技股份有限公司 | A kind of robot automatic air gouging welding steel ring work station and its application method |
CN109332957A (en) * | 2018-11-28 | 2019-02-15 | 合肥常青机械股份有限公司 | Welding Robot Welding Automation Control System |
CN110328461A (en) * | 2019-03-19 | 2019-10-15 | 重庆金康动力新能源有限公司 | Pad localization method and welding spot positioning device |
CN110328461B (en) * | 2019-03-19 | 2021-07-23 | 重庆金康动力新能源有限公司 | Welding spot positioning method and welding spot positioning device |
CN110082359A (en) * | 2019-05-10 | 2019-08-02 | 宝山钢铁股份有限公司 | The location structure mechanical device of steel tube screw thread detection system based on image detection |
CN110142533A (en) * | 2019-05-23 | 2019-08-20 | 深圳市科瑞悦电气设备有限公司 | An automatic welding method and welding device based on machine vision and AI algorithm |
CN112238304A (en) * | 2019-07-18 | 2021-01-19 | 山东淄博环宇桥梁模板有限公司 | Method for automatically welding small-batch customized special-shaped bridge steel templates by mechanical arm based on image visual recognition of welding seams |
CN112238304B (en) * | 2019-07-18 | 2023-01-06 | 山东淄博环宇桥梁模板有限公司 | Method for automatically welding small-batch customized special-shaped bridge steel templates by mechanical arm based on image visual recognition of welding seams |
CN110434516A (en) * | 2019-08-28 | 2019-11-12 | 浙江大学城市学院 | A kind of Intelligent welding robot system and welding method |
CN110524580A (en) * | 2019-09-16 | 2019-12-03 | 西安中科光电精密工程有限公司 | A kind of welding robot visual component and its measurement method |
CN110524580B (en) * | 2019-09-16 | 2023-06-02 | 西安中科光电精密工程有限公司 | Welding robot vision assembly and measuring method thereof |
CN112828878A (en) * | 2019-11-22 | 2021-05-25 | 中国科学院沈阳自动化研究所 | A three-dimensional measurement and tracking method for large-scale equipment docking process |
CN111390351A (en) * | 2020-01-15 | 2020-07-10 | 吉林大学 | Automatic welding device and welding method with real-time change of welding torch pose |
CN111451673A (en) * | 2020-03-31 | 2020-07-28 | 北京博清科技有限公司 | Method and device for searching initial position of welding seam and welding system |
CN113695714A (en) * | 2020-05-20 | 2021-11-26 | 唐山英莱科技有限公司 | Laser visual tracking correction method for welding of non-body external shaft of robot |
CN111730245A (en) * | 2020-06-22 | 2020-10-02 | 共享智能铸造产业创新中心有限公司 | Welding system and casting defect repair welding method |
CN111922567B (en) * | 2020-08-13 | 2022-06-21 | 北京博清科技有限公司 | Welding control method and device, computer readable storage medium and welding system |
CN111922567A (en) * | 2020-08-13 | 2020-11-13 | 北京博清科技有限公司 | Welding control method and device, computer readable storage medium and welding system |
CN114227095A (en) * | 2021-12-28 | 2022-03-25 | 安徽省安工机械制造有限公司 | An intelligent robotic arm for welding of wear strips of stirring arms |
CN114571153A (en) * | 2022-04-07 | 2022-06-03 | 福州大学 | Weld joint identification and robot weld joint tracking method based on 3D point cloud |
CN114571153B (en) * | 2022-04-07 | 2023-10-10 | 福州大学 | A method of weld seam identification and robot weld seam tracking based on 3D point cloud |
CN115026480A (en) * | 2022-07-08 | 2022-09-09 | 天津大学 | A fully automatic assembly and welding device and method for an offshore platform jacket |
CN115805394A (en) * | 2022-12-28 | 2023-03-17 | 上海市机械施工集团有限公司 | Steel bar welding positioning method and device, electronic equipment and storage medium |
CN115805394B (en) * | 2022-12-28 | 2023-11-21 | 上海市机械施工集团有限公司 | Steel bar welding positioning method and device, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN104708239B (en) | 2017-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104708239B (en) | CCD-based large-scale marine pipeline initial point identification and positioning method | |
CN204414117U (en) | A kind of vision positioning welding machine people | |
CN104400279B (en) | Pipeline space weld seam based on CCD identifies the method with trajectory planning automatically | |
CN102303190B (en) | Method for visually tracking plane abut-jointed weld beam by linear laser | |
CN105562973B (en) | A kind of laser identification axle robot space curve welding system of weld seam 8 and method | |
CN104384765B (en) | Based on the automatic soldering method of threedimensional model and machine vision | |
CN109702290B (en) | Steel plate groove cutting method based on visual identification | |
CN101486124B (en) | Multi-structured light binocular composite vision weld joint tracking method and device | |
Nele et al. | An image acquisition system for real-time seam tracking | |
CN205393782U (en) | 8 robot space curve welding system of laser discernment welding seam | |
CN106271081B (en) | Three coordinate rectangular robot line laser seam tracking systems and its tracking | |
CN103480991B (en) | Thin steel plate narrow welding joint online visual inspection and control device | |
CN112238304B (en) | Method for automatically welding small-batch customized special-shaped bridge steel templates by mechanical arm based on image visual recognition of welding seams | |
CN107414253A (en) | Weld Seam Tracking Control device and control method based on cross laser | |
CN105458462A (en) | Variable gap trapezoidal welding line multi-parameter synchronous visual inspection tracking method | |
CN104384762A (en) | Control system and control method for movement of welding machine | |
CN102284769A (en) | System and method for initial welding position identification of robot based on monocular vision sensing | |
CN108344693B (en) | Automatic welding-oriented visual measurement method for misalignment of sheet welding seam | |
CN101081455A (en) | Microvision servo-system of platinum aurum fiber drawing bushing nozzle arc welding robot and the method thereof | |
CN111687515A (en) | Intelligent welding guide system for large steel structure | |
CN106378514A (en) | Stainless steel non-uniform tiny multi-weld-joint visual inspection system and method based on machine vision | |
CN205496812U (en) | Unsmooth deformation angle welding self -adaptation tracking control device | |
CN206105156U (en) | Three -dimensional rectangular robot line laser welding seam automatic tracking system | |
CN217167072U (en) | Robot welding and real-time monitoring system based on line laser and binocular vision | |
CN210677336U (en) | Welding seam track automatic identification device based on vision technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |