[go: up one dir, main page]

CN104701435A - Light emitting element and manufacturing method thereof - Google Patents

Light emitting element and manufacturing method thereof Download PDF

Info

Publication number
CN104701435A
CN104701435A CN201310653460.XA CN201310653460A CN104701435A CN 104701435 A CN104701435 A CN 104701435A CN 201310653460 A CN201310653460 A CN 201310653460A CN 104701435 A CN104701435 A CN 104701435A
Authority
CN
China
Prior art keywords
metal
layer
light
connecting structure
emitting component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310653460.XA
Other languages
Chinese (zh)
Inventor
蔡富钧
廖文禄
陈世益
许嘉良
吕志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to CN201310653460.XA priority Critical patent/CN104701435A/en
Publication of CN104701435A publication Critical patent/CN104701435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

The invention discloses a light-emitting element and a manufacturing method thereof. The disclosed light-emitting element includes: a metal connection structure; the barrier layer is positioned on the metal connecting structure and comprises a first multi-layer metal layer positioned on the metal connecting structure and a second multi-layer metal layer positioned on the first multi-layer metal layer; the metal reflecting layer is positioned on the barrier layer; and the light-emitting laminated layer is electrically connected with the metal reflecting layer; the first multi-layer metal layer comprises a first metal layer made of a first metal material and a second metal layer made of a second metal material, the first metal layer is closer to the metal connecting structure than the second metal layer, the second multi-layer metal layer comprises a third metal layer made of a third metal material and a fourth metal layer made of a fourth metal material, the third metal layer is closer to the second metal layer than the fourth metal layer, the first metal material is different from the second metal material, and the third metal material is different from the fourth metal material.

Description

发光元件及其制造方法Light emitting element and manufacturing method thereof

技术领域technical field

本发明涉及一种发光元件及其制造方法;特别是涉及一种具有孔洞的发光元件及其制造方法。The invention relates to a light-emitting element and a manufacturing method thereof; in particular, to a light-emitting element with holes and a manufacturing method thereof.

背景技术Background technique

图1所示为一现有的发光二极管结构,包含一永久基板109,于其上方由上往下依序有一发光叠层102,一金属反射层106,一阻障层107,及一金属连接结构108。此外,一第一电极110E1及其延伸电极110E1’设置于发光叠层102上,及一第二电极110E2设置于永久基板109上用以传递电流。Figure 1 shows a conventional light emitting diode structure, including a permanent substrate 109, above which there is a light emitting stack 102, a metal reflective layer 106, a barrier layer 107, and a metal connection Structure 108. In addition, a first electrode 110E1 and its extension electrode 110E1' are disposed on the light emitting stack 102, and a second electrode 110E2 is disposed on the permanent substrate 109 for transmitting current.

其中金属反射层106用以反射发光叠层102所发出的光线,金属连接结构108是由两层材料相接合形成合金以使永久基板109与阻障层107相接合。而阻障层107位于金属反射层106与金属连接结构108间,用以阻止金属反射层106与金属连接结构108间的金属扩散(diffusion)。然而,金属连接结构108一般是用高温接合,即接合温度高于300℃,故金属连接结构108的材料成分通常与金属反射层106的材料成分不同,即金属连接结构108的材料成分与金属反射层106不具有相同的金属元素。例如现有的金属反射层106采用银(Ag);而金属连接结构108采用锌(Zn)为主要含量的合金,例如锌(Zn)与铝(Al)的合金,以利高温接合。当金属反射层106的材料与金属连接结构108不具有相同的金属元素时,现有的阻障层107的设计采薄阻障层(小于100nm)的设计均能达成阻止金属反射层106与金属连接结构108间的金属扩散的效果。The metal reflective layer 106 is used to reflect the light emitted by the light-emitting stack 102 , and the metal connection structure 108 is formed by bonding two layers of materials to form an alloy so that the permanent substrate 109 and the barrier layer 107 are bonded. The barrier layer 107 is located between the metal reflective layer 106 and the metal connection structure 108 to prevent metal diffusion between the metal reflective layer 106 and the metal connection structure 108 . However, the metal connecting structure 108 is generally bonded at high temperature, that is, the bonding temperature is higher than 300° C., so the material composition of the metal connecting structure 108 is usually different from that of the metal reflective layer 106, that is, the material composition of the metal connecting structure 108 is different from that of the metal reflective layer 106. Layers 106 do not have the same metal element. For example, the existing metal reflective layer 106 adopts silver (Ag); and the metal connection structure 108 adopts an alloy mainly containing zinc (Zn), such as an alloy of zinc (Zn) and aluminum (Al), to facilitate high-temperature bonding. When the material of the metal reflective layer 106 and the metal connection structure 108 do not have the same metal element, the design of the existing barrier layer 107 adopts the design of a thin barrier layer (less than 100nm) to prevent the metal reflective layer 106 from contacting the metal. The effect of metal diffusion between the connecting structures 108 .

然而,随着发光二极管应用的发展,对于性能的要求渐渐提高,例如当发光二极管应用于汽车领域时,因为汽车与人身安全息息相关,因此对于车用的发光二极管的可靠度要求也比一般应用如显示屏(display)等来得高,故需使用稳定性较佳的反射镜材料。而相较于银金属恐有银金属电致迁移(migration)的疑虑,以其他金属材料制作金属反射层106有其优势。另外,随着金属连接结构108往低温接合的方向发展,金属连接结构108的材料同样需要更多的选择变化。故当金属反射层106的材料与金属连接结构108选择具有相同的金属元素时,因为阻障层107的两侧所具有相同的金属元素,使得金属连接结构108合金中的其他元素在阻障层107的两侧均特别容易结合,故薄阻障层的设计将无法有效阻止金属反射层106与金属连接结构108间的金属扩散,当发光二极管因为经过制作工艺中的高温处理步骤后,容易出现金属连接结构108合金中的金属扩散至金属反射层106,导致金属反射层106反射率降低,而使发光二极管亮度降低。However, with the development of light-emitting diode applications, the performance requirements are gradually increasing. For example, when light-emitting diodes are used in the automotive field, because cars are closely related to personal safety, the reliability requirements for automotive light-emitting diodes are also higher than general applications such as The display is high, so it is necessary to use a reflector material with better stability. Compared with silver metal, which may cause silver metal migration, making the metal reflective layer 106 with other metal materials has its advantages. In addition, as the metal connection structure 108 develops towards low-temperature bonding, the material of the metal connection structure 108 also requires more selection changes. Therefore, when the material of the metal reflective layer 106 and the metal connection structure 108 are selected to have the same metal element, because the two sides of the barrier layer 107 have the same metal element, other elements in the alloy of the metal connection structure 108 are in the barrier layer. The two sides of 107 are particularly easy to combine, so the design of the thin barrier layer will not be able to effectively prevent the metal diffusion between the metal reflective layer 106 and the metal connecting structure 108. The metal in the alloy of the metal connection structure 108 diffuses into the metal reflective layer 106 , which reduces the reflectivity of the metal reflective layer 106 and reduces the brightness of the LED.

发明内容Contents of the invention

本发明的目的在于提供一种发光元件及其制造方法,以解决上述问题。The object of the present invention is to provide a light-emitting element and a manufacturing method thereof, so as to solve the above-mentioned problems.

为达上述目的,本发明所公开的发光元件包含:一金属连接结构;一阻障层位于上述金属连接结构之上,包含一第一多层金属层位于上述金属连接结构之上及一第二多层金属层位于上述第一多层金属层之上;一金属反射层位于上述阻障层之上;以及一发光叠层电连接上述金属反射层;其中上述第一多层金属层包含由一第一金属材料构成的一第一金属层及由一第二金属材料构成的一第二金属层,上述第一金属层较上述第二金属层接近上述金属连接结构,且上述第二多层金属层包含由一第三金属材料构成的一第三金属层及由一第四金属材料构成的一第四金属层,上述第三金属层较上述第四金属层接近上述第二金属层,且上述第一金属材料和上述第二金属材料不同,上述第三金属材料和上述第四金属材料不同。To achieve the above purpose, the light-emitting element disclosed in the present invention includes: a metal connection structure; a barrier layer located on the above metal connection structure, including a first multi-layer metal layer located on the above metal connection structure and a second A multi-layer metal layer is located on the above-mentioned first multi-layer metal layer; a metal reflective layer is located on the above-mentioned barrier layer; and a light-emitting laminate is electrically connected to the above-mentioned metal reflective layer; wherein the above-mentioned first multi-layer metal layer is composed of a A first metal layer made of a first metal material and a second metal layer made of a second metal material, the first metal layer is closer to the metal connection structure than the second metal layer, and the second multilayer metal The layers include a third metal layer made of a third metal material and a fourth metal layer made of a fourth metal material, the third metal layer being closer to the second metal layer than the fourth metal layer, and the The first metal material is different from the second metal material, and the third metal material is different from the fourth metal material.

本发明还公开一种发光元件包含:一金属连接结构;一阻障层位于上述金属连接结构之上,包含一第一多层金属层位于上述金属连接结构之上及一第二多层金属层位于上述第一多层金属层之上;一金属反射层位于上述阻障层之上;以及一发光叠层电连接上述金属反射层;其中上述金属连接结构与上述金属反射层包含一相同的金属元素,且上述阻障层包含与上述金属反射层相异的金属元素。The present invention also discloses a light-emitting element comprising: a metal connection structure; a barrier layer located on the metal connection structure, including a first multi-layer metal layer located on the metal connection structure and a second multi-layer metal layer Located on the above-mentioned first multi-layer metal layer; a metal reflective layer is located on the above-mentioned barrier layer; and a light emitting stack is electrically connected to the above-mentioned metal reflective layer; wherein the above-mentioned metal connection structure and the above-mentioned metal reflective layer include a same metal element, and the barrier layer includes a metal element different from the metal reflective layer.

附图说明Description of drawings

图1为一现有的发光二极管结构;Fig. 1 is an existing light-emitting diode structure;

图2A至图2I为本发明第一实施例的发光元件及其制造方法;2A to 2I are the light-emitting element and its manufacturing method according to the first embodiment of the present invention;

图3A及图3B用以说明第一实施例中的阻障层。3A and 3B are used to illustrate the barrier layer in the first embodiment.

符号说明Symbol Description

102 发光叠层102 Luminous Laminations

106 金属反射层106 metal reflective layer

107 阻障层107 barrier layer

108 金属连接结构108 metal connection structure

109 永久基板109 permanent substrate

110E1 第一电极110E1 first electrode

110E1’ 延伸电极110E1’ Extended electrode

110E2 第二电极110E2 Second electrode

201 成长基板201 growth substrate

202 发光叠层202 Luminous Lamination

202a 第一电性半导体层202a first electrical semiconductor layer

202b 发光层202b luminescent layer

202c 第二电性半导体层202c Second electrical semiconductor layer

203 介电层203 dielectric layer

2031 穿孔2031 piercing

204 第一透明导电氧化层204 The first transparent conductive oxide layer

205 第二透明导电氧化层205 Second transparent conductive oxide layer

206 金属反射层206 metal reflective layer

207 阻障层207 barrier layer

2071a,2071a’ 第一金属层2071a, 2071a' first metal layer

2071b 第二金属层2071b second metal layer

2072a 第三金属层2072a third metal layer

2072b 第四金属层2072b fourth metal layer

207i 抗氧化层207i anti-oxidation layer

208 金属连接结构208 metal connection structure

2081 第一接合层2081 First bonding layer

2082 第二接合层2082 Second bonding layer

2083 第三接合层2083 third bonding layer

209 永久基板209 permanent substrate

210E1 第一电极210E1 first electrode

210E1’ 延伸电极210E1’ Extended electrode

210E2 第二电极210E2 Second Electrode

211 保护层211 protective layer

212r 粗化结构212r Coarsening structure

具体实施方式Detailed ways

图2A-图2I为本发明第一实施例的发光元件及其制造方法,如图2A所示,首先提供一成长基板201,并于其上形成一发光叠层202,发光叠层202包括一半导体叠层,由下而上依序包括一第一电性半导体层202a;一发光层202b位于第一电性半导体层202a之上;以及一第二电性半导体层202c位于发光层202b之上。第一电性半导体层202a和第二电性半导体层202c电性相异,例如第一电性半导体层202a是n型半导体层,而第二电性半导体层202c是p型半导体层。第一电性半导体层202a、发光层202b、及第二电性半导体层202c为III-V族材料所形成,例如为磷化铝镓铟(AlGaInP)系列材料。2A-FIG. 2I are the light-emitting element and its manufacturing method according to the first embodiment of the present invention. As shown in FIG. The semiconductor stack includes a first electrical type semiconductor layer 202a from bottom to top; a light emitting layer 202b located on the first electrical type semiconductor layer 202a; and a second electrical type semiconductor layer 202c located on the light emitting layer 202b . The first electrical type semiconductor layer 202a and the second electrical type semiconductor layer 202c are electrically different, for example, the first electrical type semiconductor layer 202a is an n-type semiconductor layer, while the second electrical type semiconductor layer 202c is a p-type semiconductor layer. The first electrical type semiconductor layer 202a, the light emitting layer 202b, and the second electrical type semiconductor layer 202c are formed of III-V group materials, such as aluminum gallium indium phosphide (AlGaInP) series materials.

接着,如图2B所示,形成一介电层203于发光叠层202上,介电层203具有一折射率小于与发光叠层202的折射率。介电层203的材料例如包含一材料选自氧化硅(SiOx)、氟化镁(MgF2),及氮化硅(SiNx)所构成的群组,介电层203的厚度约为50nm至150nm之间,本实施例的介电层203的厚度为100nm。接着,如图2C所示,以黄光及蚀刻制作工艺,在介电层203中形成多个的穿孔2031穿透介电层203,穿孔2031由上视大致为圆形(图未示)并具有一直径D,直径D约介于5μm至15μm之间,在本实施例中,直径D约为10μm。Next, as shown in FIG. 2B , a dielectric layer 203 is formed on the light emitting stack 202 , and the dielectric layer 203 has a refractive index lower than that of the light emitting stack 202 . The material of the dielectric layer 203 includes, for example, a material selected from the group consisting of silicon oxide (SiO x ), magnesium fluoride (MgF 2 ), and silicon nitride (SiN x ), and the thickness of the dielectric layer 203 is about 50 nm. The thickness of the dielectric layer 203 in this embodiment is 100 nm. Next, as shown in FIG. 2C, a plurality of through-holes 2031 are formed in the dielectric layer 203 to penetrate the dielectric layer 203 by photolithography and etching processes. The through-holes 2031 are approximately circular (not shown) from the top It has a diameter D, and the diameter D is approximately between 5 μm and 15 μm. In this embodiment, the diameter D is approximately 10 μm.

接着,如图2D所示,形成一第一透明导电氧化层204位于介电层203上并填入穿孔2031中,以使第一透明导电氧化层204与发光叠层202形成欧姆接触,第一透明导电氧化层204的厚度约为之间,本实施例的第一透明导电氧化层204的厚度为然后,形成一第二透明导电氧化层205位于第一透明导电氧化层204上,其中第二透明导电氧化层205主要用以提供横向(与各层堆叠方向相垂直的方向)电流扩散的功能,其材料与第一透明导电氧化层204的材料不同。第二透明导电氧化层205的厚度约为0.5μm至3μm之间,本实施例的第二透明导电氧化层205的厚度为1.0μm。值得注意的是,第二透明导电氧化层205的厚度相较于第一透明导电氧化层204及介电层203的厚度明显较厚,故如图所示意,第二透明导电氧化层205形成后,可填平穿孔2031,并使因为穿孔2031造成的高低差不平整回到一较平整的表面。第一透明导电氧化层204与第二透明导电氧化层205包含一材料选自氧化铟锡(Indium Tin Oxide,ITO)、氧化铝锌(Aluminum Zinc Oxide,AZO)、氧化镉锡、氧化锑锡、氧化锌(ZnO)、氧化锌锡、及氧化铟锌(IndiumZinc Oxide,IZO)所构成的群组。在本实施例中,第一透明导电氧化层204的材料为氧化铟锡(Indium Tin Oxide,ITO),第二透明导电氧化层205的材料为氧化铟锌(Indium Zinc Oxide,IZO)。Next, as shown in FIG. 2D, a first transparent conductive oxide layer 204 is formed on the dielectric layer 203 and filled into the through hole 2031, so that the first transparent conductive oxide layer 204 forms an ohmic contact with the light emitting stack 202, the first The thickness of the transparent conductive oxide layer 204 is about to Between, the thickness of the first transparent conductive oxide layer 204 in this embodiment is Then, a second transparent conductive oxide layer 205 is formed on the first transparent conductive oxide layer 204, wherein the second transparent conductive oxide layer 205 is mainly used to provide the function of lateral (perpendicular to the stacking direction of each layer) current diffusion, Its material is different from that of the first transparent conductive oxide layer 204 . The thickness of the second transparent conductive oxide layer 205 is about 0.5 μm to 3 μm, and the thickness of the second transparent conductive oxide layer 205 in this embodiment is 1.0 μm. It should be noted that the thickness of the second transparent conductive oxide layer 205 is significantly thicker than the thickness of the first transparent conductive oxide layer 204 and the dielectric layer 203, so as shown in the figure, after the second transparent conductive oxide layer 205 is formed , the perforation 2031 can be filled up, and the uneven height difference caused by the perforation 2031 can be returned to a relatively flat surface. The first transparent conductive oxide layer 204 and the second transparent conductive oxide layer 205 comprise a material selected from the group consisting of indium tin oxide (Indium Tin Oxide, ITO), aluminum zinc oxide (Aluminum Zinc Oxide, AZO), cadmium tin oxide, antimony tin oxide, A group consisting of zinc oxide (ZnO), zinc tin oxide, and indium zinc oxide (Indium Zinc Oxide, IZO). In this embodiment, the material of the first transparent conductive oxide layer 204 is Indium Tin Oxide (ITO), and the material of the second transparent conductive oxide layer 205 is Indium Zinc Oxide (IZO).

接着,如图2E所示,形成一金属反射层206位于第二透明导电氧化层205之上,金属反射层206包含一金属材料用以反射发光叠层202所发出的光线。在本实施例中,金属反射层206可对发光叠层所发出的光线有大于90%的反射率,例如为金(Au)。Next, as shown in FIG. 2E , a metal reflective layer 206 is formed on the second transparent conductive oxide layer 205 , and the metal reflective layer 206 includes a metal material for reflecting the light emitted by the light emitting stack 202 . In this embodiment, the metal reflective layer 206 may have a reflectivity greater than 90% for the light emitted by the light emitting stack, such as gold (Au).

接着,如图2F所示,形成一阻障层207位于金属反射层206上,阻障层207用以阻止金属反射层206与金属连接结构208(将于后续说明)间的金属扩散(diffusion)。阻障层207的实施例如图3A或图3B所示,也将于后续详细说明。接着,形成第一接合层2081位于阻障层207上,及第二接合层2082位于第一接合层2081上。接着,如图2G所示,提供一永久基板209,并形成一第三接合层2083位于永久基板209上,并使第三接合层2083与第二接合层2082对接(bonding),且接合后将成长基板201移除,其情形如图2H所示。第一接合层2081,第二接合层2082,及第三接合层2083形成一金属连接结构208。金属连接结构208包含一熔点小于或等于300℃的低温熔合材料。低温熔合材料例如包含铟(In)或锡(Sn),在本实施例中,低温熔合材料包含铟(In),例如当第一接合层2081的材料为金(Au),第二接合层2082的材料为铟(In),第三接合层2083的材料为金(Au)时,此第一接合层2081,第二接合层2082,及第三接合层2083可在一低温下,例如温度小于或等于300℃下,因共晶(eutectic)效应而形成合金并接合,形成一金属连接结构208,而金属连接结构208包含铟(In)及金(Au)的合金。在另一实施例中,第二接合层2082可以是形成在第一接合层2081上,并与永久基板209上的第三接合层2083接合形成金属连接结构208。Next, as shown in FIG. 2F, a barrier layer 207 is formed on the metal reflective layer 206. The barrier layer 207 is used to prevent metal diffusion between the metal reflective layer 206 and the metal connection structure 208 (to be described later). . An embodiment of the barrier layer 207 is shown in FIG. 3A or FIG. 3B , which will be described in detail later. Next, a first bonding layer 2081 is formed on the barrier layer 207 , and a second bonding layer 2082 is formed on the first bonding layer 2081 . Next, as shown in FIG. 2G , a permanent substrate 209 is provided, and a third bonding layer 2083 is formed on the permanent substrate 209, and the third bonding layer 2083 is bonded to the second bonding layer 2082, and after bonding, the The growth substrate 201 is removed, as shown in FIG. 2H . The first bonding layer 2081 , the second bonding layer 2082 , and the third bonding layer 2083 form a metal connection structure 208 . The metal connection structure 208 includes a low-temperature fusion material with a melting point less than or equal to 300° C. The low-temperature fusion material includes indium (In) or tin (Sn), for example. In this embodiment, the low-temperature fusion material contains indium (In). For example, when the material of the first bonding layer 2081 is gold (Au), the second bonding layer 2082 When the material of the third bonding layer 2083 is indium (In) and the material of the third bonding layer 2083 is gold (Au), the first bonding layer 2081, the second bonding layer 2082, and the third bonding layer 2083 can be made at a low temperature, for example, the temperature is less than At or equal to 300° C., due to the eutectic effect, an alloy is formed and bonded to form a metal connection structure 208 , and the metal connection structure 208 includes an alloy of indium (In) and gold (Au). In another embodiment, the second bonding layer 2082 may be formed on the first bonding layer 2081 and bonded with the third bonding layer 2083 on the permanent substrate 209 to form the metal connection structure 208 .

接着,如图2I所示,形成第一电极210E1及其延伸电极210E1’于发光叠层202上。然后,通过一黄光及蚀刻制作工艺将发光叠层202的外围一部分移除并曝露部分的介电层203,并可选择性地实施一发光叠层202表面的粗化制作工艺,以于第一电性半导体层202a上形成粗化结构212r,然后形成保护层211于发光叠层202及曝露的介电层203上,保护层211未覆盖第一电极210E1及其延伸电极210E1’。最后形成第二电极210E2于永久基板209上。Next, as shown in FIG. 2I , the first electrode 210E1 and its extension electrode 210E1' are formed on the light emitting stack 202 . Then, a part of the periphery of the light-emitting stack 202 is removed and part of the dielectric layer 203 is exposed through a photolithography and etching process, and a process of roughening the surface of the light-emitting stack 202 can be selectively implemented, so that in the second A roughened structure 212r is formed on the electrical semiconductor layer 202a, and then a protection layer 211 is formed on the light emitting stack 202 and the exposed dielectric layer 203, the protection layer 211 not covering the first electrode 210E1 and its extension electrode 210E1'. Finally, the second electrode 210E2 is formed on the permanent substrate 209 .

图3A用以说明上述实施例中阻障层207。图3A例示图2I的阻障层207,请同时参看图3A及图2I。如前所提及,阻障层207位于金属反射层206与金属连接结构208间,用以阻止两者间的金属扩散。本实施例的阻障层207包含一第一多层金属层2071位于金属连接结构208之上及一第二多层金属层2072位于第一多层金属层2071之上;其中第一多层金属层2071包含由一第一金属材料构成的一第一金属层2071a及由一第二金属材料构成的一第二金属层2071b,第一金属层2071a较第二金属层2071b接近金属连接结构208;而第二多层金属层2072包含由一第三金属材料构成的一第三金属层2072a及由一第四金属材料构成的一第四金属层2072b,第三金属层2072a较第四金属层2072b接近第二金属层2071b。在材料选择上,第一金属材料和第二金属材料不同,第三金属材料和第四金属材料不同,且上述各金属材料的材料选择使阻障层207包含与金属反射层206相异的金属元素。在本实施例中,第一金属层2071a及第三金属层2072a的材料包含铂(Pt),第二金属层2071b及第四金属层2072b的材料包含钛(Ti)。第一金属层2071a及第三金属层2072a的铂(Pt)用为主要阻止金属反射层206与金属连接结构208间金属扩散的材料,而第二金属层2071b及第四金属层2072b的材料采用钛(Ti)则可增加黏接力(adhesion),特别是第四金属层2072b的钛(Ti)与金属反射层206相接提供了整体阻障层207与金属反射层206间良好的黏接,亦即材料的选择排列上,较佳的选择为第四金属层2072b的材料与金属反射层206的粘接力大于第三金属层2072a与金属反射层206的黏接力,以加强第三金属层2072a与金属反射层206之间的粘接力。在厚度上,第一金属层2071a及第三金属层2072a的厚度约为之间,第二金属层2071b及第四金属层2072b的厚度约为之间。在本实施例中,第一金属层2071a及第三金属层2072a的厚度约为之间,第二金属层2071b及第四金属层2072b的厚度约为之间。上述厚度范围所构成的第一多层金属层2071及第二多层金属层2072结构可以有效地阻止金属反射层206与金属连接结构208间的金属扩散,并且不至于因厚度过厚造成应力,而影响前述提及的后续金属连接结构208中接合层间的接合制作工艺。FIG. 3A is used to illustrate the barrier layer 207 in the above embodiment. FIG. 3A illustrates the barrier layer 207 in FIG. 2I , please refer to FIG. 3A and FIG. 2I at the same time. As mentioned above, the barrier layer 207 is located between the metal reflective layer 206 and the metal connection structure 208 to prevent metal diffusion between the two. The barrier layer 207 of this embodiment includes a first multilayer metal layer 2071 located on the metal connection structure 208 and a second multilayer metal layer 2072 located on the first multilayer metal layer 2071; wherein the first multilayer metal layer The layer 2071 includes a first metal layer 2071a made of a first metal material and a second metal layer 2071b made of a second metal material, the first metal layer 2071a is closer to the metal connection structure 208 than the second metal layer 2071b; The second multilayer metal layer 2072 includes a third metal layer 2072a made of a third metal material and a fourth metal layer 2072b made of a fourth metal material, the third metal layer 2072a is larger than the fourth metal layer 2072b close to the second metal layer 2071b. In terms of material selection, the first metal material is different from the second metal material, the third metal material is different from the fourth metal material, and the material selection of the above metal materials makes the barrier layer 207 contain a metal different from the metal reflective layer 206. element. In this embodiment, the materials of the first metal layer 2071 a and the third metal layer 2072 a include platinum (Pt), and the materials of the second metal layer 2071 b and the fourth metal layer 2072 b include titanium (Ti). Platinum (Pt) in the first metal layer 2071a and the third metal layer 2072a is used as a material that mainly prevents metal diffusion between the metal reflective layer 206 and the metal connection structure 208, while the material of the second metal layer 2071b and the fourth metal layer 2072b adopts Titanium (Ti) can increase the adhesion (adhesion), especially the titanium (Ti) of the fourth metal layer 2072b is in contact with the metal reflective layer 206 to provide good adhesion between the overall barrier layer 207 and the metal reflective layer 206, That is to say, in terms of the selection and arrangement of materials, it is better to choose that the adhesion force between the material of the fourth metal layer 2072b and the metal reflection layer 206 is greater than the adhesion force between the third metal layer 2072a and the metal reflection layer 206, so as to strengthen the third metal layer 2072a and the adhesion between the metal reflective layer 206. In terms of thickness, the thickness of the first metal layer 2071a and the third metal layer 2072a is about to Between, the thickness of the second metal layer 2071b and the fourth metal layer 2072b is about to between. In this embodiment, the thicknesses of the first metal layer 2071a and the third metal layer 2072a are about to Between, the thickness of the second metal layer 2071b and the fourth metal layer 2072b is about to between. The structure of the first multilayer metal layer 2071 and the second multilayer metal layer 2072 formed by the above thickness range can effectively prevent metal diffusion between the metal reflective layer 206 and the metal connection structure 208, and will not cause stress due to excessive thickness, However, the above-mentioned bonding process between the bonding layers in the subsequent metal connection structure 208 is affected.

故而以图2I的最终结构,并配合参看图3A,则本发明第一实施例的发光元件至少包含一金属连接结构208;一阻障层207位于金属连接结构208之上,包含一第一多层金属层2071位于金属连接结构208之上及一第二多层金属层2072位于第一多层金属层2071之上;一金属反射层206位于阻障层207之上;以及一发光叠层203电连接金属反射层206;其中第一多层金属层2071包含由第一金属材料铂(Pt)构成的第一金属层2071a及由第二金属材料钛(Ti)构成的一第二金属层2071b,第一金属层2071a较第二金属层2071b接近金属连接结构208,且第二多层金属层2072包含由第三金属材料铂(Pt)构成的第三金属层2072a及由第四金属材料钛(Ti)构成的第四金属层2072b,第三金属层2072a较第四金属层2072b接近第二金属层2071b。第一金属材料和第二金属材料不同,第三金属材料和第四金属材料不同。另外,如前所述,在本实施例中,金属连接结构208包含铟(In)及金(Au)的合金,而金属反射层206包含金(Au),故金属连接结构208与金属反射层206包含一相同的金属元素金(Au)。如同先前技术中所述,因为阻障层207的两侧所具有相同的金属元素,使得金属连接结构208合金中的其他元素(在本实施例为铟(In))在阻障层207的两侧均容易结合,故若采先前技术的薄阻障层的设计将无法有效阻止铟(In)在金属反射层206与金属连接结构208间的金属扩散。对于上述实施例图2I的结构,若阻障层207改采薄阻障层的结构,例如以单层的铂(Pt)作为阻障层207,以能谱分析仪-线扫描(EDS linescan)进行元素分析,量测到金属反射层206中的铟(In)的含量与金属连接结构208中铟(In)的含量接近,两者皆约5至10个A.U.(Arbitrary Unit)(平均值约7.5个A.U.),证明了采薄阻障层的设计无法有效阻止铟(In)在金属反射层206与金属连接结构208间的金属扩散。而当阻障层207采上述图3A的结构时,由于上述图3A的阻障层207包含第一多层金属层2071及第二多层金属层2072的多组多层结构,且阻障层207包含与金属反射层206相异的金属元素,故可以有效阻止铟(In)在金属反射层206与金属连接结构208间的金属扩散,并且相较于单纯以增加厚度企图提高阻障层阻止金属扩散能力的方法而言,可以免去阻障层厚度加厚产生应力的问题。故当同样以能谱分析仪-线扫描进行元素分析时,可量测到金属反射层206中的铟(In)的含量明显降低,与金属连接结构208中铟(In)的含量已不同,而金属反射层206中的铟(In)的含量与发光叠层202中的铟(In)的含量大致相同,两者皆约小于5个A.U.(Arbitrary Unit),平均值约仅2个A.U.(Arbitrary Unit)。亦即铟(In)在金属反射层206中的含量(平均值约2个A.U.)相较于其在金属连接结构208中的含量(平均值约7.5个A.U.),约小于其二分之一。证明了采用本发明实施例的阻障层的设计能有效阻止铟(In)在金属反射层206与金属连接结构208间的金属扩散。Therefore, with the final structure of FIG. 2I and referring to FIG. 3A, the light-emitting element of the first embodiment of the present invention includes at least one metal connection structure 208; a barrier layer 207 is located on the metal connection structure 208, including a first multiple A metal layer 2071 is located on the metal connection structure 208 and a second multi-layer metal layer 2072 is located on the first multi-layer metal layer 2071; a metal reflective layer 206 is located on the barrier layer 207; and a light emitting stack 203 Electrically connected to the metal reflective layer 206; wherein the first multilayer metal layer 2071 includes a first metal layer 2071a made of the first metal material platinum (Pt) and a second metal layer 2071b made of the second metal material titanium (Ti) , the first metal layer 2071a is closer to the metal connection structure 208 than the second metal layer 2071b, and the second multilayer metal layer 2072 includes a third metal layer 2072a made of a third metal material platinum (Pt) and a fourth metal material titanium (Ti) constitutes the fourth metal layer 2072b, and the third metal layer 2072a is closer to the second metal layer 2071b than the fourth metal layer 2072b. The first metal material is different from the second metal material, and the third metal material is different from the fourth metal material. In addition, as mentioned above, in this embodiment, the metal connecting structure 208 includes an alloy of indium (In) and gold (Au), and the metal reflective layer 206 includes gold (Au), so the metal connecting structure 208 and the metal reflective layer 206 contains an identical metallic element gold (Au). As described in the prior art, since both sides of the barrier layer 207 have the same metal element, other elements in the alloy of the metal connection structure 208 (indium (In) in this embodiment) are on both sides of the barrier layer 207. Both sides are easy to bond, so the design of the thin barrier layer in the prior art cannot effectively prevent the metal diffusion of indium (In) between the metal reflective layer 206 and the metal connection structure 208 . For the structure of FIG. 2I in the above-mentioned embodiment, if the barrier layer 207 is changed to a thin barrier layer structure, such as a single layer Platinum (Pt) is used as the barrier layer 207, and the elemental analysis is carried out by energy spectrum analyzer-line scanning (EDS linescan), and the content of indium (In) in the metal reflective layer 206 and the indium (In) in the metal connection structure 208 are measured. The content of In) is close, both are about 5 to 10 AU (Arbitrary Unit) (the average value is about 7.5 AU), which proves that the design of the thin barrier layer cannot effectively prevent indium (In) from being formed between the metal reflective layer 206 and the metal reflective layer 206. Metal diffusion between metal connection structures 208 . And when the barrier layer 207 adopts the structure of the above-mentioned FIG. 3A, since the barrier layer 207 of the above-mentioned FIG. 207 contains a metal element different from the metal reflective layer 206, so it can effectively prevent the metal diffusion of indium (In) between the metal reflective layer 206 and the metal connection structure 208, and compared with simply increasing the thickness in an attempt to improve the barrier layer to prevent In terms of the method of metal diffusion ability, the problem of stress caused by the thickening of the barrier layer can be avoided. Therefore, when the elemental analysis is also performed with the energy spectrum analyzer-line scanning, it can be measured that the content of indium (In) in the metal reflective layer 206 is significantly reduced, which is different from the content of indium (In) in the metal connection structure 208. The content of indium (In) in the metal reflective layer 206 is approximately the same as the content of indium (In) in the light-emitting laminated layer 202, both are less than about 5 AU (Arbitrary Unit), and the average value is only about 2 AU ( Arbitrary Unit). That is, the content of indium (In) in the metal reflective layer 206 (average value is about 2 AU) is less than half of its content in the metal connection structure 208 (average value is about 7.5 AU). . It is proved that the design of the barrier layer adopted in the embodiment of the present invention can effectively prevent the metal diffusion of indium (In) between the metal reflective layer 206 and the metal connection structure 208 .

需注意的是,上述图3A阻障层207的说明是以图2I,即发光元件的最终结构进行说明,然图2I是经过前述将成长基板201翻转并与永久基板209接合而形成,故在形成方法上,例如以中间过程的图2F来看,则为第四金属层2072b,第三金属层2072a,第二金属层2071b,以及第一金属层2071a依序形成于金属反射层206上。It should be noted that the description of the barrier layer 207 in FIG. 3A is based on FIG. 2I, that is, the final structure of the light-emitting element. However, FIG. 2I is formed by turning the growth substrate 201 over and bonding it to the permanent substrate 209. In terms of the formation method, for example, according to FIG. 2F in the middle process, the fourth metal layer 2072b, the third metal layer 2072a, the second metal layer 2071b, and the first metal layer 2071a are sequentially formed on the metal reflective layer 206.

图3B为本发明的另一阻障层的实施例。图3B为图3A的变化型,图3B同样例示图2I的阻障层207,请同时参看图3A及图2I。同样地,阻障层207位于金属反射层206与金属连接结构208间,用以阻止两者间的金属扩散。在本实施例的阻障层207与图3A的阻障层207大致相同,但第一金属层2071a'的材料在本实施例包含镍(Ni),并且在第一多层金属层2071与第二多层金属层2072位于第一多层金属层2071间增加了一抗氧化层207i,用以防止第二多层金属层2072在制作工艺中被氧化,抗氧化层207i的材料例如包含金(Au),厚度约为之间。其余关于材料或厚度等,则与上述图3A相同,不再赘述。同样须注意的是,在形成方法上,例如以中间过程的图2F来看,则为第四金属层2072b,第三金属层2072a,抗氧化层207i,第二金属层2071b,以及第一金属层2071a依序形成于金属反射层206上。抗氧化层207i在第二多层金属层2072与第一多层金属层2071非于相同机台中连续形成时,能有效地防止第二多层金属层2072在制作工艺中被氧化。FIG. 3B is an embodiment of another barrier layer of the present invention. FIG. 3B is a modification of FIG. 3A , and FIG. 3B also illustrates the barrier layer 207 of FIG. 2I . Please refer to FIG. 3A and FIG. 2I at the same time. Likewise, the barrier layer 207 is located between the metal reflective layer 206 and the metal connection structure 208 to prevent metal diffusion between the two. The barrier layer 207 in this embodiment is substantially the same as the barrier layer 207 in FIG. The second multi-layer metal layer 2072 is located between the first multi-layer metal layer 2071 and an anti-oxidation layer 207i is added to prevent the second multi-layer metal layer 2072 from being oxidized during the manufacturing process. The material of the anti-oxidation layer 207i includes gold ( Au), with a thickness of approx. to between. The rest about the material or thickness etc. are the same as those in FIG. 3A above, and will not be repeated here. It should also be noted that in terms of formation methods, for example, as seen in Figure 2F in the middle process, the fourth metal layer 2072b, the third metal layer 2072a, the anti-oxidation layer 207i, the second metal layer 2071b, and the first metal layer A layer 2071a is sequentially formed on the metal reflective layer 206 . The anti-oxidation layer 207i can effectively prevent the second multilayer metal layer 2072 from being oxidized during the manufacturing process when the second multilayer metal layer 2072 and the first multilayer metal layer 2071 are not formed continuously in the same machine.

上述实施例仅为例示性说明本发明的原理及其功效,而非用于限制本发明。任何本发明所属技术领域中具有通常知识者均可在不违背本发明的技术原理及精神的情况下,对上述实施例进行修改及变化。因此本发明的权利保护范围如上述的权利要求所列。The above-mentioned embodiments are only illustrative to illustrate the principles and effects of the present invention, and are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field of the present invention can modify and change the above-mentioned embodiments without violating the technical principle and spirit of the present invention. Therefore, the protection scope of the present invention is as listed in the above claims.

Claims (10)

1. a light-emitting component, comprises:
Metal connecting structure;
Barrier layer, is positioned on this metal connecting structure, comprises the first more metal layers, is positioned on this metal connecting structure, and the second more metal layers, is positioned on this first more metal layers;
Metallic reflector, is positioned on this barrier layer; And
Luminous lamination, is electrically connected this metallic reflector;
Wherein this first more metal layers comprises the first metal layer be made up of one first metal material and the second metal level be made up of one second metal material, this the first metal layer comparatively this second metal level close to this metal connecting structure, and this second more metal layers comprises the 3rd metal level be made up of one the 3rd metal material and the 4th metal level be made up of one the 4th metal material, 3rd metal level comparatively the 4th metal level close to this second metal level, and this first metal material is different with this second metal material, the 3rd metal material is different with the 4th metal material.
2. light-emitting component as claimed in claim 1, wherein this metal connecting structure comprises a fusing point, is less than or equal to the low temperature fusing material of 300 DEG C.
3. light-emitting component as claimed in claim 2, wherein this low temperature fusing material comprises indium (In).
4. light-emitting component as claimed in claim 1, wherein this metallic reflector comprises gold (Au).
5. light-emitting component as claimed in claim 1, wherein this metal connecting structure comprises the alloy of indium (In) and gold.
6. light-emitting component as claimed in claim 1, wherein this first metal material and the 3rd metal material comprise nickel (Ni) or platinum (Pt), and this second metal material and the 4th metal material comprise titanium (Ti).
7. light-emitting component as claimed in claim 1, also comprise dielectric layer, between this metallic reflector and this luminous lamination, this dielectric layer has a refractive index, is less than the refractive index of luminous lamination with this.
8. light-emitting component as claimed in claim 7, wherein this dielectric layer comprises a material and is selected from silica (SiO x), magnesium fluoride (MgF 2), and silicon nitride (SiN x) group that forms.
9. light-emitting component as claimed in claim 3, wherein the content of this low temperature fusing material in this metallic reflector is roughly the same at the content of this luminous lamination with this low temperature fusing material, or the content of this low temperature fusing material in this metallic reflector is less than 1/2nd of the content of this low temperature fusing material in this metal connecting structure.
10. a light-emitting component, comprises:
Metal connecting structure;
Barrier layer, is positioned on this metal connecting structure, comprises the first more metal layers, is positioned on this metal connecting structure, and the second more metal layers, is positioned on this first more metal layers;
Metallic reflector, is positioned on this barrier layer; And
Luminous lamination, is electrically connected this metallic reflector;
Wherein this metal connecting structure and this metallic reflector comprise an identical metallic element, and this barrier layer comprises the metallic element different with this metallic reflector.
CN201310653460.XA 2013-12-06 2013-12-06 Light emitting element and manufacturing method thereof Pending CN104701435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310653460.XA CN104701435A (en) 2013-12-06 2013-12-06 Light emitting element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310653460.XA CN104701435A (en) 2013-12-06 2013-12-06 Light emitting element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN104701435A true CN104701435A (en) 2015-06-10

Family

ID=53348356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310653460.XA Pending CN104701435A (en) 2013-12-06 2013-12-06 Light emitting element and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN104701435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107346798A (en) * 2016-05-06 2017-11-14 鼎元光电科技股份有限公司 Metal bonding light emitting diode and method for forming metal bonding light emitting diode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283948A (en) * 1991-03-13 1992-10-08 Mitsubishi Electric Corp Submount for optical semiconductor device
US20040135166A1 (en) * 2002-10-23 2004-07-15 Shin-Etsu Handotai Co., Ltd. Light-emitting device and method of fabricating the same
CN101188265A (en) * 2006-11-21 2008-05-28 夏普株式会社 Semiconductor light emitting element and manufacturing method thereof
CN102044613A (en) * 2009-10-15 2011-05-04 Lg伊诺特有限公司 Semiconductor light-emitting device and method for fabricating the same
CN102222760A (en) * 2011-06-20 2011-10-19 厦门市三安光电科技有限公司 Deep ultraviolet semiconductor luminescent device
US20130032810A1 (en) * 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US20130153920A1 (en) * 2011-12-16 2013-06-20 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283948A (en) * 1991-03-13 1992-10-08 Mitsubishi Electric Corp Submount for optical semiconductor device
US20040135166A1 (en) * 2002-10-23 2004-07-15 Shin-Etsu Handotai Co., Ltd. Light-emitting device and method of fabricating the same
CN101188265A (en) * 2006-11-21 2008-05-28 夏普株式会社 Semiconductor light emitting element and manufacturing method thereof
CN102044613A (en) * 2009-10-15 2011-05-04 Lg伊诺特有限公司 Semiconductor light-emitting device and method for fabricating the same
CN102222760A (en) * 2011-06-20 2011-10-19 厦门市三安光电科技有限公司 Deep ultraviolet semiconductor luminescent device
US20130032810A1 (en) * 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US20130153920A1 (en) * 2011-12-16 2013-06-20 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107346798A (en) * 2016-05-06 2017-11-14 鼎元光电科技股份有限公司 Metal bonding light emitting diode and method for forming metal bonding light emitting diode

Similar Documents

Publication Publication Date Title
US10553761B2 (en) Light-emitting device and manufacturing method thereof
CN102214755B (en) Light emitting element
JP5637210B2 (en) Semiconductor light emitting device
KR101240011B1 (en) Semiconductor light emitting element and illuminating apparatus using the same
JP5915504B2 (en) Semiconductor light emitting device
CN103125028B (en) For the manufacture of the method for group iii nitride semiconductor light-emitting device
CN104103733B (en) A kind of upside-down mounting LED chip and its manufacturing method
WO2011071100A1 (en) Semiconductor light emitting element, light emitting device using semiconductor light emitting element, and electronic apparatus
WO2013046419A1 (en) Nitride semiconductor element and method for producing same
US9153747B2 (en) Light-emitting element
CN106159043B (en) Flip LED chip and forming method thereof
JP2007258323A (en) Semiconductor light emitting device
US8884323B2 (en) Semiconductor light-emitting device
CN103000777B (en) Light emitting element
CN113903841B (en) Flip-chip light emitting diode
CN107017321B (en) Light emitting element
JP5745250B2 (en) Light emitting device
CN104701435A (en) Light emitting element and manufacturing method thereof
TWI633680B (en) Light-emitting device and manufacturing method thereof
CN114038964A (en) Flip light-emitting chip and preparation method thereof
CN113363373A (en) Semiconductor light-emitting element and light-emitting device
CN1971951A (en) Light-emitting element with high light extraction efficiency
CN104600161B (en) Light emitting element and method for manufacturing the same
CN113380940A (en) Light emitting diode chip and preparation method thereof
JP2014099434A (en) Semiconductor light-emitting element

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150610

RJ01 Rejection of invention patent application after publication