CN104698970A - signal processing device applied to time-varying signal - Google Patents
signal processing device applied to time-varying signal Download PDFInfo
- Publication number
- CN104698970A CN104698970A CN201310659888.5A CN201310659888A CN104698970A CN 104698970 A CN104698970 A CN 104698970A CN 201310659888 A CN201310659888 A CN 201310659888A CN 104698970 A CN104698970 A CN 104698970A
- Authority
- CN
- China
- Prior art keywords
- signal
- output signal
- processing device
- input
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 claims description 13
- 238000005070 sampling Methods 0.000 claims description 8
- 230000010354 integration Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000009987 spinning Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37151—Handling encoder signal, compensation for light variation, stray light
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Amplifiers (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种信号处理装置,且特别涉及一种伺服马达系统(servomotor system)中运用于时变信号的信号处理装置。The present invention relates to a signal processing device, and in particular to a signal processing device used in a servo motor system (servomotor system) for time-varying signals.
背景技术Background technique
众所周知,伺服马达系统能够精准的控制伺服马达的转速,并具备反应快速的加速、减速、反转的能力。亦即,由于伺服马达系统具备精确的位置控制和速度控制的能力,因此已经广泛的运用于各种自动化工业以及精密加工领域。例如,机械手臂、或者机械工作平台等等。As we all know, the servo motor system can accurately control the rotation speed of the servo motor, and has the ability to accelerate, decelerate, and reverse quickly. That is, since the servo motor system has the capability of precise position control and speed control, it has been widely used in various automation industries and precision machining fields. For example, a robotic arm, or a mechanical working platform, etc.
请参照图1A,其所示出为伺服马达系统示意图。伺服马达系统包括:指令装置110、微控制器(micro controller)120、伺服马达130、光电编码器(optical encoder)140。Please refer to FIG. 1A , which shows a schematic diagram of a servo motor system. The servo motor system includes: a command device 110 , a micro controller (micro controller) 120 , a servo motor 130 , and an optical encoder (optical encoder) 140 .
指令装置110是根据使用者的操作,而输出指令脉冲(command pulses),用以进行伺服马达130的转速与转向控制。再者,光电编码器140是根据伺服马达130的转速与转向产生反馈脉冲(feedback pulses)至微控制器120。微控制器120根据指令脉冲以及反馈脉冲来产生驱动脉冲至伺服马达130。The command device 110 outputs command pulses according to the user's operation to control the rotation speed and steering of the servo motor 130 . Furthermore, the photoelectric encoder 140 generates feedback pulses to the microcontroller 120 according to the rotation speed and direction of the servo motor 130 . The microcontroller 120 generates a driving pulse to the servo motor 130 according to the command pulse and the feedback pulse.
其中,光电编码器140可将伺服马达130转轴上的位移量转换成为反馈脉冲,而根据光电编码器140输出的反馈脉冲,微控制器120可以得知伺服马达130的转速、转向、以及位置。Wherein, the photoelectric encoder 140 can convert the displacement on the shaft of the servo motor 130 into a feedback pulse, and according to the feedback pulse output by the photoelectric encoder 140 , the microcontroller 120 can know the rotation speed, direction, and position of the servo motor 130 .
以光学旋转式编码器(rotary optical encoder)为例,此种光电编码器140中包括光发射器(light source)142、光检测器(photo detector)146、与转盘(Disk)148。转盘148耦接至伺服马达130的转轴,可随着伺服马达130转动。再者,光发射器142的光经过转盘148上的光栅(grating)后被光检测器146所接收。根据转盘148上光栅的形状,可使得光检测器146产生两个光电信号(photoelectronic signal)A、B。而光电编码器140内部的电路还可以根据两个光电信号A、B产生反馈脉冲至微控制器120。Taking a rotary optical encoder as an example, the photoelectric encoder 140 includes a light source 142 , a photo detector 146 , and a disk 148 . The turntable 148 is coupled to the rotating shaft of the servo motor 130 and can rotate with the servo motor 130 . Furthermore, light from the light emitter 142 is received by the light detector 146 after passing through a grating on the turntable 148 . According to the shape of the grating on the turntable 148, the photodetector 146 can generate two photoelectronic signals (photoelectronic signal) A, B. The internal circuit of the photoelectric encoder 140 can also generate a feedback pulse to the microcontroller 120 according to the two photoelectric signals A and B.
请参照图1B,其所示出为光电信号A、B的示意图。一般来说,两个光电信号A、B的频率越高,伺服马达130的转速越快;并且两个光电信号A、B之间会维持90度的相位差。举例来说,B光电信号的相位超前A光电信号的相位90度时,伺服马达以第一方向旋转(例如顺时针旋转);A光电信号的相位超前B光电信号的相位90度时,伺服马达以第二方向旋转(例如逆时针旋转)。Please refer to FIG. 1B , which shows a schematic diagram of photoelectric signals A and B. Referring to FIG. Generally speaking, the higher the frequency of the two photoelectric signals A, B, the faster the rotation speed of the servo motor 130; and the phase difference of 90 degrees will be maintained between the two photoelectric signals A, B. For example, when the phase of the B photoelectric signal is 90 degrees ahead of the phase of the A photoelectric signal, the servo motor rotates in the first direction (for example, clockwise); when the phase of the A photoelectric signal is 90 degrees ahead of the phase of the B photoelectric signal, the servo motor Rotate in a second direction (eg, counterclockwise).
如图1B所示,在时间区间I时,两个光电信号A、B的频率越来越高,且B光电信号的相位超前A光电信号的相位90度,因此伺服马达130以第一方向旋转且转速越来越快。在时间区间II时,两个光电信号A、B的频率越来越低,且B光电信号的相位超前A光电信号的相位90度,因此伺服马达130以第一方向旋转且转速越来越慢直到停止旋转。As shown in FIG. 1B , during the time interval I, the frequencies of the two photoelectric signals A and B are getting higher and higher, and the phase of the B photoelectric signal is ahead of the phase of the A photoelectric signal by 90 degrees, so the servo motor 130 rotates in the first direction And the speed is getting faster and faster. In the time interval II, the frequencies of the two photoelectric signals A and B are getting lower and lower, and the phase of the B photoelectric signal is ahead of the phase of the A photoelectric signal by 90 degrees, so the servo motor 130 rotates in the first direction and the speed becomes slower and slower until it stops spinning.
在时间区间III时,两个光电信号A、B的频率越来越高,且A光电信号的相位超前B光电信号的相位90度,因此伺服马达130以第二方向旋转且转速越来越快。在时间区间IV时,两个光电信号A、B的频率越来越低,且A光电信号的相位超前B光电信号的相位90度,因此伺服马达130以第二方向旋转且转速越来越慢直到停止旋转。In time interval III, the frequency of the two photoelectric signals A and B is getting higher and higher, and the phase of the A photoelectric signal is 90 degrees ahead of the phase of the B photoelectric signal, so the servo motor 130 rotates in the second direction and the speed becomes faster and faster . In the time interval IV, the frequencies of the two photoelectric signals A and B are getting lower and lower, and the phase of the A photoelectric signal is ahead of the phase of the B photoelectric signal by 90 degrees, so the servo motor 130 rotates in the second direction and the speed becomes slower and slower until it stops spinning.
由于伺服马达130的加减速或者反向旋转都会造成两个光电信号A、B的频率与相位的变化,因此两个光电信号A、B都属于时变信号。再者,在光电转换的过程中由于温度或者环境的因素,两个光电信号A、B将会产生直流偏移(DC offset)、振幅(amplitude)衰减、且相位差不会维持在90度的问题,使得反馈脉冲无法表示出伺服马达130正确的位置以及转速。Since the acceleration, deceleration or reverse rotation of the servo motor 130 will cause changes in the frequency and phase of the two photoelectric signals A and B, the two photoelectric signals A and B are both time-varying signals. Furthermore, due to temperature or environmental factors during the photoelectric conversion process, the two photoelectric signals A and B will have a DC offset (DC offset), amplitude attenuation, and the phase difference will not be maintained at 90 degrees. The problem is that the feedback pulse cannot represent the correct position and rotational speed of the servo motor 130 .
发明内容Contents of the invention
针对现有技术存在的问题,本发明的目的在于提供一种运用于时变信号的信号处理装置,包括:一第一加法器,接收一第一输入信号以及一第一积分信号,并产生一第一输出信号,其中该第一输出信号等于该第一输入信号减去该第一积分信号;以及一第一权重积分器,接收该第一输出信号并产生该第一积分信号;其中,该第一权重积分器还包括:一第一权重函数产生器,接收该第一输出信号,并在该第一输出信号通过一零交叉点附近时产生一第一权重函数;一第一乘法器,将该第一权重函数乘以该第一输出信号;以及一第一累加器,连接至该第一乘法器,用以累加该第一权重函数乘以该第一输出信号的结果,并据以产生该第一积分信号。In view of the problems existing in the prior art, the object of the present invention is to provide a signal processing device applied to time-varying signals, including: a first adder, receiving a first input signal and a first integrated signal, and generating a a first output signal, wherein the first output signal is equal to the first input signal minus the first integrated signal; and a first weighted integrator, receiving the first output signal and generating the first integrated signal; wherein, the The first weight integrator also includes: a first weight function generator that receives the first output signal and generates a first weight function when the first output signal passes through a zero-crossing point; a first multiplier, multiplying the first weight function by the first output signal; and a first accumulator connected to the first multiplier for accumulating the result of multiplying the first weight function by the first output signal, and according to The first integrated signal is generated.
本发明的目的在于还提供一种运用于时变信号的信号处理装置,接收一第一输入信号以及一第二输入信号,并将该第一输入信号直接作为一第一输出信号,该信号处理装置包括:一第一可调增益放大器,根据一第一积分信号来调整该第一可调增益放大器的增益,接收该第一输入信号并产生增益调整后的该第一输入信号;一第一加法器,将该第二输入信号减去增益调整后的该第一输入信号产生一第二输出信号;以及一权重相关器,接收该第一输出信号与该第二输出信号并产生该第一积分信号;其中,该权重相关器包括:一权重函数产生器,接收该第一输出信号及该第二输出信号,并在该第一输出信号与该第二输出信号通过一零交叉点附近时产生一权重函数;一第一乘法器,将该第一输出信号乘以该第二输出信号,产生一第一结果;一第二乘法器,将该权重函数乘以该第一结果,产生一第二结果;以及一第一累加器,连接至该第二乘法器,用以累加该第二结果,并据以产生该第一积分信号。The object of the present invention is to also provide a signal processing device applied to time-varying signals, which receives a first input signal and a second input signal, and directly uses the first input signal as a first output signal, and the signal processing The device includes: a first adjustable gain amplifier, adjusting the gain of the first adjustable gain amplifier according to a first integral signal, receiving the first input signal and generating the first input signal after gain adjustment; a first an adder that subtracts the gain-adjusted first input signal from the second input signal to generate a second output signal; and a weight correlator that receives the first output signal and the second output signal and generates the first Integral signal; wherein, the weight correlator includes: a weight function generator, receiving the first output signal and the second output signal, and when the first output signal and the second output signal pass through a zero-crossing point A weight function is generated; a first multiplier multiplies the first output signal by the second output signal to generate a first result; a second multiplier multiplies the weight function by the first result to generate a a second result; and a first accumulator connected to the second multiplier for accumulating the second result and generating the first integral signal accordingly.
本发明的目的在于还提供一种运用于时变信号的信号处理装置,接收一第一输入信号以及一第二输入信号,该信号处理装置包括:一第一可调增益放大器,根据一第一积分信号来调整该第一可调增益放大器的增益,接收该第一输入信号并产生一第一输出信号;一第一大小检测器,接收该第一输出信号,产生一第一大小信号;一第一加法器,将一参考数值减去该第一大小信号,产生一第一取样信号;以及一第一权重积分器,接收该第一输入信号、该第二输入信号与该第一取样信号,并产生该第一积分信号;其中,该第一权重积分器包括:一第一权重函数产生器,接收该第一输入信号与该第二输入信号,并在该第一输入信号与该第二输入信号通过一零交叉点附近时产生一第一权重函数;一第一乘法器,将该第一取样信号乘以该第一权重函数;以及一第一累加器,连接至该第一乘法器,用以累加该第一权重函数乘以该第一取样信号的结果,并据以产生该第一积分信号。The purpose of the present invention is to also provide a signal processing device applied to time-varying signals, which receives a first input signal and a second input signal. The signal processing device includes: a first adjustable gain amplifier, according to a first Integrating the signal to adjust the gain of the first adjustable gain amplifier, receiving the first input signal and generating a first output signal; a first magnitude detector, receiving the first output signal, generating a first magnitude signal; The first adder subtracts the first magnitude signal from a reference value to generate a first sampled signal; and a first weighted integrator receives the first input signal, the second input signal and the first sampled signal , and generate the first integral signal; wherein, the first weight integrator includes: a first weight function generator that receives the first input signal and the second input signal, and generates the first input signal and the second input signal A first weight function is generated when two input signals pass through a zero-crossing point; a first multiplier multiplies the first sampled signal by the first weight function; and a first accumulator is connected to the first multiplier The device is used for accumulating the result of multiplying the first sampling signal by the first weighting function, and generating the first integrated signal accordingly.
本发明的有益效果在于,本发明的一种运用于时变信号的信号处理装置,运用于伺服马达系统中光电编码器输出的时变的两个光电信号。并且,运用本发明,可将光电信号中的直流偏移消除、且固定两个光电信号之间的相位差,以及维持两个光电信号的振幅。The beneficial effect of the present invention is that a signal processing device applied to time-varying signals of the present invention is applied to two time-varying photoelectric signals output by a photoelectric encoder in a servo motor system. Moreover, using the present invention, the DC offset in the photoelectric signal can be eliminated, the phase difference between the two photoelectric signals can be fixed, and the amplitude of the two photoelectric signals can be maintained.
为了对本发明的上述及其他方面有更佳的了解,下文特举较佳实施例,并配合附图,作详细说明如下:In order to have a better understanding of the above-mentioned and other aspects of the present invention, the preferred embodiments are specifically cited below, together with the accompanying drawings, and are described in detail as follows:
附图说明Description of drawings
图1A所示出为伺服马达系统示意图。FIG. 1A shows a schematic diagram of a servo motor system.
图1B所示出为光电信号A、B的示意图。FIG. 1B shows a schematic diagram of photoelectric signals A and B.
图2所示出为本发明运用于时变信号的信号处理装置。FIG. 2 shows a signal processing device of the present invention applied to time-varying signals.
图3A至图3C所示出为直流偏移调整电路及其相关信号示意图。3A to 3C are schematic diagrams of the DC offset adjustment circuit and related signals.
图4A至图4C所示出为相位调整电路及其相关信号示意图。4A to 4C are schematic diagrams of the phase adjustment circuit and its related signals.
图5A至图5B所示出为振幅调整电路及其相关信号示意图。5A to 5B are schematic diagrams of the amplitude adjustment circuit and its related signals.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
110:指令装置110: command device
120:微控制器120: microcontroller
130:伺服马达130: Servo motor
140:光电编码器140: Photoelectric encoder
142:光发射器142: Optical transmitter
146:光检测器146: Light detector
148:转盘148: turntable
210:直流偏移调整单元210: DC offset adjustment unit
220:相位调整单元220: Phase adjustment unit
230:振幅调整单元230: Amplitude adjustment unit
300:直流偏移调整电路300: DC offset adjustment circuit
310:第一型权重积分器310: Type 1 Weighted Integrator
312、482、561:累加器312, 482, 561: Accumulator
316、471~472、541:乘法器316, 471~472, 541: multiplier
318、461、551:权重函数产生器318, 461, 551: Weight function generator
320、420、531:加法器320, 420, 531: adder
410、511:可调增益放大器410, 511: adjustable gain amplifier
450:权重相关器450: Weight Correlator
500:振幅调整电路500: Amplitude adjustment circuit
521:大小检测器521: Size detector
580:第二型权重积分器580: Type II Weighted Integrator
具体实施方式Detailed ways
请参照图2,其所示出为本发明运用于时变信号的信号处理装置。本发明的信号处理装置可运用于光电编码器中,用来接收光检测器所输出时变的光电信号Ain、Bin。信号处理装置包括:直流偏移(DC offset)调整单元210、相位调整单元220、以及振幅调整单元230。其中,DC偏移调整单元210接收第一光电信号Ain与第二光电信号Bin,并消除第一光电信号Ain与第二光电信号Bin中的直流偏移后,输出第一调整信号A1与第二调整信号B1。再者,相位调整单元220接收第一调整信号A1与第二调整信号B1,并控制第一调整信号A1与第二调整信号B1之间的相位差维持在固定的90度后,输出第三调整信号A2与第四调整信号B2。再者,振幅调整单元230接收第三调整信号A2与第四调整信号B2,并控制第三调整信号A2与第四调整信号B2的振幅为一固定值后,输出第一输出信号Aout与第二输出信号Bout。以下依序介绍所有调整单元的动作原理。Please refer to FIG. 2 , which shows a signal processing device applied to time-varying signals according to the present invention. The signal processing device of the present invention can be used in a photoelectric encoder to receive the time-varying photoelectric signals Ain and Bin output by the photodetector. The signal processing device includes: a DC offset (DC offset) adjustment unit 210 , a phase adjustment unit 220 , and an amplitude adjustment unit 230 . Wherein, the DC offset adjustment unit 210 receives the first photoelectric signal Ain and the second photoelectric signal Bin, and after eliminating the DC offset in the first photoelectric signal Ain and the second photoelectric signal Bin, outputs the first adjustment signal A1 and the second photoelectric signal A1. Adjust signal B1. Furthermore, the phase adjustment unit 220 receives the first adjustment signal A1 and the second adjustment signal B1, and controls the phase difference between the first adjustment signal A1 and the second adjustment signal B1 to be maintained at a fixed 90 degrees, and then outputs the third adjustment. The signal A2 and the fourth adjustment signal B2. Moreover, the amplitude adjustment unit 230 receives the third adjustment signal A2 and the fourth adjustment signal B2, and controls the amplitudes of the third adjustment signal A2 and the fourth adjustment signal B2 to be a fixed value, and outputs the first output signal Aout and the second output signal Aout. Output signal Bout. The action principles of all adjustment units are introduced in sequence below.
请参照图3A至图3C,其所示出为直流偏移调整电路及其相关信号示意图。其中,直流偏移调整单元210可由两个直流偏移调整电路300所组成,分别以第一光电信号Ain以及第二光电信号Bin为输入信号Xin。Please refer to FIG. 3A to FIG. 3C , which are schematic diagrams of the DC offset adjustment circuit and related signals. Wherein, the DC offset adjustment unit 210 may be composed of two DC offset adjustment circuits 300, which respectively use the first photoelectric signal Ain and the second photoelectric signal Bin as the input signal Xin.
如图3A所示,直流偏移调整电路300包括一加法器320以及一第一型权重积分器(first type weighting integrator)310。加法器320将输入信号Xin减去积分信号Xw后产生输出信号Xo。再者,输出信号Xo输入第一型权重积分器310后产生该积分信号Xw。As shown in FIG. 3A , the DC offset adjustment circuit 300 includes an adder 320 and a first type weighting integrator (first type weighting integrator) 310 . The adder 320 subtracts the integral signal Xw from the input signal Xin to generate an output signal Xo. Furthermore, the output signal Xo is input to the first-type weight integrator 310 to generate the integrated signal Xw.
第一型权重积分器310包括一乘法器316、一权重函数产生器(weightingfunction generator)318以及一累加器(accumulator)312。根据本发明的实施例,当输出信号Xo经过零交叉点(zero crossing point)附近时,权重函数产生器318会输出一权重函数。再者,乘法器316将输出信号Xo与权重函数相乘后的结果输入累加器312。而累加器312累积乘法器316的结果,并成为积分信号Xw。The first type weight integrator 310 includes a multiplier 316 , a weighting function generator 318 and an accumulator 312 . According to an embodiment of the present invention, when the output signal Xo passes near a zero crossing point, the weight function generator 318 outputs a weight function. Furthermore, the multiplier 316 inputs the result of multiplying the output signal Xo by the weight function into the accumulator 312 . The accumulator 312 accumulates the result of the multiplier 316 and becomes the integrated signal Xw.
再者,由直流偏移调整单元210系由二个直流偏移调整电路所组成,所以权重函数产生器318输入的另一实施例可由另一个直流偏移调整电路的输出信号来提供。Furthermore, since the DC offset adjustment unit 210 is composed of two DC offset adjustment circuits, another embodiment of the input of the weight function generator 318 can be provided by the output signal of another DC offset adjustment circuit.
再者,权重函数产生器318输入的另一实施例可同时由二个直流偏移调整电路的输出信号来提供。Furthermore, another embodiment of the input of the weight function generator 318 can be provided by output signals of two DC offset adjustment circuits simultaneously.
根据本发明的实施例,权重函数可为一脉冲序列函数(pulse trainfunction)。而以下图3B与图3C是以脉冲序列函数作为权重函数来说明直流偏移调整单元210的动作原理。According to an embodiment of the present invention, the weighting function may be a pulse train function. 3B and 3C below use the pulse sequence function as the weight function to illustrate the operating principle of the DC offset adjustment unit 210 .
如图3B所示,于输出信号Xo的每个零交叉点,权重函数产生器318会输出一脉冲序列函数。再者,乘法器316将脉冲序列函数与输出信号Xo的值相乘,即如图3B中虚线所示的面积。亦即,输出信号Xo的负周期乘上脉冲序列函数的结果为负值的n1、n2、n3…;输出信号Xo的正周期乘上脉冲序列函数的结果为正值的p1、p2、p3…。As shown in FIG. 3B , at each zero-crossing point of the output signal Xo, the weight function generator 318 outputs a pulse sequence function. Furthermore, the multiplier 316 multiplies the value of the output signal Xo by the pulse train function, that is, the area shown by the dotted line in FIG. 3B . That is, the negative period of the output signal Xo multiplied by the pulse sequence function results in negative values of n1, n2, n3...; the positive period of the output signal Xo multiplied by the pulse sequence function results in positive values of p1, p2, p3... .
在实际的运用上,该乘法器316可以由可编程计数器(programmablecounter)来达成,即于直流偏移调整电路输出信号Xo的每个零交叉点开始计数到一预定的数目即停止累加器312的累加。In practical application, the multiplier 316 can be implemented by a programmable counter (programmable counter), that is, when each zero-cross point of the output signal Xo of the DC offset adjustment circuit starts counting to a predetermined number, the accumulator 312 stops. add up.
假设输入信号Xin具有正值的直流偏移,所以输出信号Xo也有正值的直流偏移dc。由于输出信号Xo有正值的直流偏移dc,所以p1、p2、p3的面积会大于n1、n2、n3的面积。因此,累加器312累积乘法器316输出的结果后,会产生正值的积分信号Xw。因此,如图3B所示,输出信号Xo正值的直流偏移dc会越来越小。Assume that the input signal Xin has a positive DC offset, so the output signal Xo also has a positive DC offset dc. Since the output signal Xo has a positive DC offset dc, the areas of p1, p2, p3 are greater than the areas of n1, n2, n3. Therefore, after the accumulator 312 accumulates the result output from the multiplier 316 , a positive integrated signal Xw is generated. Therefore, as shown in FIG. 3B , the DC offset dc of the positive value of the output signal Xo will become smaller and smaller.
如图3C所示,当输出信号Xo的直流偏移dc被消除(亦即,直流偏移dc降低至0)时,p1、p2、p3的面积会等于n1、n2、n3的面积。此时,加法器320将输入信号Xin减去积分信号Xw后,会产生直流偏移dc被消除的输出信号Xo。As shown in FIG. 3C , when the DC offset dc of the output signal Xo is eliminated (ie, the DC offset dc is reduced to 0), the areas of p1 , p2 , p3 are equal to the areas of n1 , n2 , n3 . At this time, after the adder 320 subtracts the integral signal Xw from the input signal Xin, an output signal Xo with the DC offset dc eliminated will be generated.
同理,当输入信号Xin具有负值的直流偏移,输出信号Xo也有负值的直流偏移dc。此时,累加器312会产生负的积分信号Xw,并使得输出信号Xo的直流偏移dc由负值逐渐升高至零。Similarly, when the input signal Xin has a negative DC offset, the output signal Xo also has a negative DC offset dc. At this time, the accumulator 312 will generate a negative integration signal Xw, and make the DC offset dc of the output signal Xo gradually increase from a negative value to zero.
换句话说,将第一光电信号Ain输入直流偏移调整电路300后,其输出信号Xo即为直流偏移dc被消除的第一调整信号A1;同理,将第二光电信号Bin输入直流偏移调整电路300,其输出信号Xo即为直流偏移dc被消除的第二调整信号B1。In other words, after the first photoelectric signal Ain is input to the DC offset adjustment circuit 300, its output signal Xo is the first adjustment signal A1 with the DC offset dc eliminated; similarly, the second photoelectric signal Bin is input to the DC offset The shift adjustment circuit 300, the output signal Xo is the second adjustment signal B1 with the DC offset dc eliminated.
再者,根据本发明的另一实施例,权重函数也可为一自然指数衰减函数(exponential decay function)。再者,本领域的技术人员当知道减法运算也是加法运算的一种。亦即,加法器也可以进行减法运算。Furthermore, according to another embodiment of the present invention, the weight function may also be a natural exponential decay function. Furthermore, those skilled in the art should know that subtraction is also a kind of addition. That is, the adder can also perform subtraction.
请参照图4A,其所示出为相位调整单元示意图。相位调整单元220包括一可调增益放大器410、一加法器420、以及一权重相关器(weightingcorrelator)450。其中,第一输入信号Pin与第二输入信号Qin相位相差约为90度。再者,第一输入信号Pin相同于第一输出信号Po,且第一输出信号Po与第二输出信号Qo相位相差为90度。其中,前述直流偏移调整单元210输出的第一调整信号A1以及第二调整信号B1可作为相位调整单元220的第一输入信号Pin与第二输入信号Qin。或者,第二调整信号B1以及第一调整信号A1可作为相位调整单元220的第一输入信号Pin与第二输入信号Qin。而相位调整单元220的第一输出信号Po与第二输出信号Qo即可为视为第三调整信号A2以及第四调整信号B2。Please refer to FIG. 4A , which is a schematic diagram of the phase adjustment unit. The phase adjustment unit 220 includes an adjustable gain amplifier 410 , an adder 420 , and a weighting correlator 450 . Wherein, the phase difference between the first input signal Pin and the second input signal Qin is about 90 degrees. Moreover, the first input signal Pin is identical to the first output signal Po, and the phase difference between the first output signal Po and the second output signal Qo is 90 degrees. Wherein, the first adjustment signal A1 and the second adjustment signal B1 output by the aforementioned DC offset adjustment unit 210 can be used as the first input signal Pin and the second input signal Qin of the phase adjustment unit 220 . Alternatively, the second adjustment signal B1 and the first adjustment signal A1 can serve as the first input signal Pin and the second input signal Qin of the phase adjustment unit 220 . The first output signal Po and the second output signal Qo of the phase adjustment unit 220 can be regarded as the third adjustment signal A2 and the fourth adjustment signal B2 .
再者,权重相关器450输出一积分信号Iw用以调整可调增益放大器410的增益值(gain)。可调增益放大器410接收第一输入信号Pin后,产生增益调整后的第一输入信号Pin;并且,加法器420将第二输入信号Qin减去增益调整后的第一输入信号Pin后成为第二输出信号Qo。Furthermore, the weight correlator 450 outputs an integral signal Iw for adjusting the gain value (gain) of the adjustable gain amplifier 410 . After receiving the first input signal Pin, the adjustable gain amplifier 410 generates a gain-adjusted first input signal Pin; and, the adder 420 subtracts the gain-adjusted first input signal Pin from the second input signal Qin to form a second Output signal Qo.
权重相关器450中包括一权重函数产生器461、两个乘法器471、472、以及一累加器482。The weight correlator 450 includes a weight function generator 461 , two multipliers 471 , 472 , and an accumulator 482 .
根据本发明的实施例,当第一输出信号Po与第二输出信号Qo经过零交叉点附近时,权重函数产生器461会输出一权重函数。再者,第一乘法器471可产生第一输出信号Po与第二输出信号Qo相乘后的第一结果;第二乘法器472可产生第一结果与该权重函数相乘后的第二结果,累加器482累积第二乘法器472输出的第二结果,并成为积分信号Iw。According to an embodiment of the present invention, when the first output signal Po and the second output signal Qo pass near the zero crossing point, the weight function generator 461 outputs a weight function. Furthermore, the first multiplier 471 can generate a first result of multiplying the first output signal Po by the second output signal Qo; the second multiplier 472 can generate a second result of multiplying the first result by the weight function , the accumulator 482 accumulates the second result output by the second multiplier 472 and becomes the integrated signal Iw.
举例来说,假设第一输入信号Pin与第二输入信号Qin之间的相位差不是90度,则第一输入信号Pin与第二输入信号Qin可表示为Asin(ωt)以及Bcos(ωt+θ)。亦即,第一输入信号Pin与第二输入信号Qin之间相差(90+θ)度。再者,第二输入信号Qin可表示为:Qin=Bcos(ωt+θ)=Bcosθcos(ωt)-Bsinθsin(ωt)。很明显地,将第二输入信号Qin中的分量[Bsinθsin(ωt)]消除之后的第二输出信号Qo与第一输出信号Po之间的相位差即为90度。For example, assuming that the phase difference between the first input signal Pin and the second input signal Qin is not 90 degrees, the first input signal Pin and the second input signal Qin can be expressed as Asin(ωt) and Bcos(ωt+θ ). That is, the difference between the first input signal Pin and the second input signal Qin is (90+θ) degrees. Furthermore, the second input signal Qin can be expressed as: Qin=Bcos(ωt+θ)=Bcosθcos(ωt)−Bsinθsin(ωt). Obviously, after the component [Bsinθsin(ωt)] in the second input signal Qin is eliminated, the phase difference between the second output signal Qo and the first output signal Po is 90 degrees.
因此,权重相关器450即根据第一输出信号Po与第二输出信号Qo之间的相位关系,获得积分信号Iw用以控制可调增益放大器410的增益值(gain)。再者,第一加法器420将第二输入信号Qin减去增益调整后的第一输入信号Pin成为第二输出信号Qo,并且第二输出信号Qo与第一输出信号Po之间的相位差即为90度。Therefore, the weight correlator 450 obtains the integral signal Iw for controlling the gain of the adjustable gain amplifier 410 according to the phase relationship between the first output signal Po and the second output signal Qo. Moreover, the first adder 420 subtracts the gain-adjusted first input signal Pin from the second input signal Qin to become the second output signal Qo, and the phase difference between the second output signal Qo and the first output signal Po is is 90 degrees.
以下图4B的实施例是以脉冲序列函数作为权重函数来说明相位调整单元220的动作原理。如图4B所示,于第一输出信号Po与第二输出信号Qo的每个零交叉点附近,权重函数产生器461会输出一脉冲序列函数。再者,第二乘法器472将脉冲序列函数与第一结果相乘后的第二结果即如图4B中阴影部份所示的面积。The following embodiment in FIG. 4B uses the pulse sequence function as the weight function to illustrate the operation principle of the phase adjustment unit 220 . As shown in FIG. 4B , the weight function generator 461 outputs a pulse sequence function near each zero-crossing point of the first output signal Po and the second output signal Qo. Furthermore, the second result after the second multiplier 472 multiplies the pulse sequence function by the first result is the area shown by the shaded part in FIG. 4B .
再者,累加器482累积第二乘法器472输出的第二结果,并成为积分信号Iw用以控制可调增益放大器410的增益值(gain)。因此,可逐渐调整第二输出信号Qo的相位,达成第二输出信号Qo与第一输出信号Po之间的相位差为90度。Moreover, the accumulator 482 accumulates the second result output by the second multiplier 472 and becomes the integral signal Iw for controlling the gain value (gain) of the adjustable gain amplifier 410 . Therefore, the phase of the second output signal Qo can be gradually adjusted to achieve a phase difference of 90 degrees between the second output signal Qo and the first output signal Po.
同理,在实际的运用上,上述第二乘法器472可由可编程计数器来达成,即于第一输出信号Po与第二输出信号Qo的每个零交叉点开始计数到一预定的数目即停止累加器482的累加。亦即,控制该第一结果输入至该累加器的个数。再者,将二乘法器471及472前后对调不影响本发明的精神。Similarly, in practical applications, the above-mentioned second multiplier 472 can be realized by a programmable counter, that is, it starts counting at each zero-crossing point of the first output signal Po and the second output signal Qo to a predetermined number, and then stops The accumulator 482 accumulates. That is, the number of the first result input to the accumulator is controlled. Furthermore, switching the front and back of the square multipliers 471 and 472 does not affect the spirit of the present invention.
再者,根据本发明的另一实施例,权重函数也可如图4C所示的一自然指数衰减函数。同样也可以达到本发明的目的。Moreover, according to another embodiment of the present invention, the weight function may also be a natural exponential decay function as shown in FIG. 4C . The object of the present invention can also be achieved.
请参照图5A,其所示出为振幅调整电路示意图。其中,振幅调整单元230可由两个振幅调整电路500所组成。振幅调整电路500包括可调增益放大器511、大小检测器(magnitude detector)521、加法器531以及一第二型权重积分器(second type weighting integrator)580。再者,振幅调整电路500的输出信号Mo可将第一输入信号Min的振幅调整到一固定值。Please refer to FIG. 5A , which is a schematic diagram of an amplitude adjustment circuit. Wherein, the amplitude adjustment unit 230 may be composed of two amplitude adjustment circuits 500 . The amplitude adjustment circuit 500 includes an adjustable gain amplifier 511 , a magnitude detector 521 , an adder 531 and a second type weighting integrator 580 . Moreover, the output signal Mo of the amplitude adjustment circuit 500 can adjust the amplitude of the first input signal Min to a fixed value.
换句话说,当前述相位偏移调整单元220输出的第三调整信号A2以及第四调整信号B2作为振幅调整电路500的第一输入信号Min与第二输入信号Nin时,第三调整信号A2的振幅会被调整到该固定值。或者,当第四调整信号B2以及第三调整信号A2可作为振幅调整电路500的第一输入信号Min与第二输入信号Nin时,第四调整信号B2的振幅会被调整到该固定值。In other words, when the third adjustment signal A2 and the fourth adjustment signal B2 output by the phase offset adjustment unit 220 are used as the first input signal Min and the second input signal Nin of the amplitude adjustment circuit 500 , the third adjustment signal A2 The amplitude will be adjusted to this fixed value. Alternatively, when the fourth adjustment signal B2 and the third adjustment signal A2 can serve as the first input signal Min and the second input signal Nin of the amplitude adjustment circuit 500 , the amplitude of the fourth adjustment signal B2 will be adjusted to the fixed value.
再者,第二型权重积分器580输出积分信号Ix以用以调整可调增益放大器511的增益值(gain)。因此,可调增益放大器511接收第一输入信号Min后,产生一输出信号Mo。Furthermore, the second-type weight integrator 580 outputs the integrated signal Ix for adjusting the gain value (gain) of the adjustable gain amplifier 511 . Therefore, the adjustable gain amplifier 511 generates an output signal Mo after receiving the first input signal Min.
再者,输出信号Mo经由大小检测器521,输出大小信号m1,加法器531将一参考值ref1减去该大小信号m1后产生取样信号m2输入第二型权重积分器580。Moreover, the output signal Mo passes through the magnitude detector 521 to output a magnitude signal m1 , and the adder 531 subtracts the magnitude signal m1 from a reference value ref1 to generate a sampled signal m2 and input it to the second-type weight integrator 580 .
第二型权重积分器580中包括一权重函数产生器551、一个乘法器541以及一累加器561。The second-type weight integrator 580 includes a weight function generator 551 , a multiplier 541 and an accumulator 561 .
根据本发明的实施例,当第一输入信号Min与第二输入信号Nin经过零交叉点附近时,权重函数产生器551会输出一权重函数W。再者,乘法器541可产生该取样信号m2与该权重函数W相乘后的结果;而累加器561累加该乘法器541的输出结果,使得该累加器561输出积分信号Ix。According to an embodiment of the present invention, the weight function generator 551 outputs a weight function W when the first input signal Min and the second input signal Nin pass near the zero crossing point. Moreover, the multiplier 541 can generate the result of multiplying the sampled signal m2 by the weight function W; and the accumulator 561 accumulates the output result of the multiplier 541, so that the accumulator 561 outputs the integrated signal Ix.
根据本发明的实施例,大小检测器521可以利用平方器或者绝对值器来实现。其中,平方器是对输出信号Mo进行平方计算,绝对值器是对输出信号Mo取绝对值。According to an embodiment of the present invention, the size detector 521 may be implemented by using a squarer or an absolute valuer. Wherein, the squarer calculates the square of the output signal Mo, and the absolute valuer calculates the absolute value of the output signal Mo.
以下图5B的实施例是以脉冲序列函数作为权重函数来说明振幅调整单元230的动作原理。如图5B所示,于第一输入信号Min与第二输入信号Nin的每个零交叉点,权重函数产生器551会输出一脉冲序列函数W。再者,一乘法器541将该脉冲序列函数W乘上取样信号m2的值,即为该大小信号m1跟参考值ref1的距离。The following embodiment in FIG. 5B uses the pulse sequence function as the weight function to illustrate the operating principle of the amplitude adjustment unit 230 . As shown in FIG. 5B , the weight function generator 551 outputs a pulse sequence function W at each zero-crossing point of the first input signal Min and the second input signal Nin. Furthermore, a multiplier 541 multiplies the pulse sequence function W by the value of the sampled signal m2, which is the distance between the magnitude signal m1 and the reference value ref1.
再者,累加器561累积乘法器541输出的结果,并成为一积分信号Ix用以控制一可调增益放大器511的增益值(gain)。因此,可逐渐调整输出信号Mo的振幅,并维持在该固定值。Moreover, the accumulator 561 accumulates the result output by the multiplier 541 and becomes an integrated signal Ix for controlling the gain value (gain) of an adjustable gain amplifier 511 . Therefore, the amplitude of the output signal Mo can be gradually adjusted and maintained at the fixed value.
再者,根据本发明的另一实施例,权重函数也可由一自然指数衰减函数来取代,也可以达到本发明的目的。Moreover, according to another embodiment of the present invention, the weight function can also be replaced by a natural exponential decay function, which can also achieve the purpose of the present invention.
换句话说,振幅调整单元230输出的第一输出信号Aout其振幅可维持在该固定值,同理第二输出信号Bout的振幅也可以维持在该固定值。In other words, the amplitude of the first output signal Aout output by the amplitude adjustment unit 230 can be maintained at the fixed value, and similarly the amplitude of the second output signal Bout can also be maintained at the fixed value.
再者,根据本发明的另一实施例,权重函数产生器的输入也可由第一输出信号Aout与第二输出信号Bout来取代。Moreover, according to another embodiment of the present invention, the input of the weight function generator can also be replaced by the first output signal Aout and the second output signal Bout.
再者,本发明的还可根据第一光电信号Ain与第二光电信号Bin的信号品质,来选择直流偏移调整单元210、相位调整单元220、以及振幅调整单元230其中之一,或者其中之二来作为信号处理装置。Furthermore, the present invention can also select one of the DC offset adjustment unit 210, the phase adjustment unit 220, and the amplitude adjustment unit 230, or one of them according to the signal quality of the first photoelectric signal Ain and the second photoelectric signal Bin. Second, as a signal processing device.
举例来说,假设光电信号Ain与第二光电信号Bin中并没有直流偏移时,则以相位调整单元220与振幅调整单元230组成信号处理装置即可。或者,光电信号Ain与第二光电信号Bin中的相位以及振幅都不需要再调整,则仅利用直流偏移调整单元210来组成信号处理装置即可。当然,本发明的信号处理装置也可以有其他的组合,此处不再赘述。For example, assuming that there is no DC offset between the photoelectric signal Ain and the second photoelectric signal Bin, the signal processing device can be composed of the phase adjustment unit 220 and the amplitude adjustment unit 230 . Alternatively, the phase and amplitude of the photoelectric signal Ain and the second photoelectric signal Bin do not need to be adjusted again, and only the DC offset adjustment unit 210 is used to form the signal processing device. Certainly, the signal processing device of the present invention may also have other combinations, which will not be repeated here.
再者,本发明中权重函数是在信号通过零交叉点时产生,但是本发明并不定于此。在此领域的技术人员,可以利用相同的方式,在信号通过零交叉点后,延迟短暂的一固定时间之后再产生权重函数,也可以达成本发明的效果。亦即,权重函数仅需要在信号的零交叉点附近产生即可。Furthermore, in the present invention, the weight function is generated when the signal passes through the zero-crossing point, but the present invention is not limited to this. Those skilled in this field can use the same method to generate the weight function after a short fixed time delay after the signal passes through the zero-crossing point, and the effect of the present invention can also be achieved. That is, the weight function only needs to be generated around the zero-crossing point of the signal.
以上说明可知,本发明的优点在于提供一信号处理装置,运用于伺服马达系统中光电编码器输出的时变的两个光电信号。并且,运用本发明,可将光电信号中的直流偏移消除、且固定两个光电信号之间的相位差,以及维持两个光电信号的振幅。It can be seen from the above description that the advantage of the present invention is to provide a signal processing device for the two time-varying photoelectric signals output by the photoelectric encoder in the servo motor system. Moreover, using the present invention, the DC offset in the photoelectric signal can be eliminated, the phase difference between the two photoelectric signals can be fixed, and the amplitude of the two photoelectric signals can be maintained.
综上所述,虽然本发明已以较佳实施例公开如上,然其并非用以限定本发明。本发明所属技术领域中的技术人员,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视所附的权利要求范围所界定者为准。In summary, although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art to which the present invention belongs may make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the appended claims.
Claims (30)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310659888.5A CN104698970B (en) | 2013-12-06 | 2013-12-06 | signal processing device applied to time-varying signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310659888.5A CN104698970B (en) | 2013-12-06 | 2013-12-06 | signal processing device applied to time-varying signal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104698970A true CN104698970A (en) | 2015-06-10 |
CN104698970B CN104698970B (en) | 2017-06-16 |
Family
ID=53346205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310659888.5A Active CN104698970B (en) | 2013-12-06 | 2013-12-06 | signal processing device applied to time-varying signal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104698970B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110998296A (en) * | 2017-06-16 | 2020-04-10 | 住友化学株式会社 | Analysis testing device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1139998A (en) * | 1994-11-30 | 1997-01-08 | 松下电器产业株式会社 | Receiving circuit |
US5936787A (en) * | 1993-11-09 | 1999-08-10 | Kabushiki Kaisha Toshiba | Method and apparatus for reducing vibration on a disk spindle motor by detecting the vibrations and correcting the motor driving signal according to the detected vibration |
CN1447556A (en) * | 2002-03-22 | 2003-10-08 | 印芬龙科技股份有限公司 | Calculating circuit for calculating sampling phase error |
CN1729628A (en) * | 2002-10-11 | 2006-02-01 | 米特公司 | System for direct acquisition of received signals |
US20060158358A1 (en) * | 2004-12-24 | 2006-07-20 | Seo Il-Won | Timing recovery methods and apparatuses |
CN102969971A (en) * | 2011-09-01 | 2013-03-13 | 株式会社安川电机 | Motor control apparatus |
TW201322616A (en) * | 2011-11-22 | 2013-06-01 | Mitsubishi Electric Corp | Motor control device |
TW201325067A (en) * | 2011-12-07 | 2013-06-16 | Ind Tech Res Inst | Method and apparatus for automatically positioning encoder |
CN103270692A (en) * | 2010-12-20 | 2013-08-28 | 三菱电机株式会社 | Motor control device |
-
2013
- 2013-12-06 CN CN201310659888.5A patent/CN104698970B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5936787A (en) * | 1993-11-09 | 1999-08-10 | Kabushiki Kaisha Toshiba | Method and apparatus for reducing vibration on a disk spindle motor by detecting the vibrations and correcting the motor driving signal according to the detected vibration |
CN1139998A (en) * | 1994-11-30 | 1997-01-08 | 松下电器产业株式会社 | Receiving circuit |
CN1447556A (en) * | 2002-03-22 | 2003-10-08 | 印芬龙科技股份有限公司 | Calculating circuit for calculating sampling phase error |
CN1729628A (en) * | 2002-10-11 | 2006-02-01 | 米特公司 | System for direct acquisition of received signals |
US20060158358A1 (en) * | 2004-12-24 | 2006-07-20 | Seo Il-Won | Timing recovery methods and apparatuses |
CN103270692A (en) * | 2010-12-20 | 2013-08-28 | 三菱电机株式会社 | Motor control device |
CN102969971A (en) * | 2011-09-01 | 2013-03-13 | 株式会社安川电机 | Motor control apparatus |
TW201322616A (en) * | 2011-11-22 | 2013-06-01 | Mitsubishi Electric Corp | Motor control device |
TW201325067A (en) * | 2011-12-07 | 2013-06-16 | Ind Tech Res Inst | Method and apparatus for automatically positioning encoder |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110998296A (en) * | 2017-06-16 | 2020-04-10 | 住友化学株式会社 | Analysis testing device |
Also Published As
Publication number | Publication date |
---|---|
CN104698970B (en) | 2017-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014155559A1 (en) | Notch filter, external force estimator, motor controller, and robot system | |
Anuchin et al. | Speed estimation algorithm with specified bandwidth for incremental position encoder | |
CN102723921B (en) | Digital lock phase amplification implementation method and system based on field programmable gate array | |
CN104698970B (en) | signal processing device applied to time-varying signal | |
CN102545760A (en) | Control system | |
CN104460409B (en) | A kind of laser self-mixing interference system adjusted with feedback light Self-adaptive strength | |
KR20080041693A (en) | System identification devices | |
WO2014196653A1 (en) | Signal control apparatus | |
TWI506943B (en) | Signal processing apparatus for time variant signal | |
CN104133409B (en) | A kind of symmetry adjustable triangular wave synthesizer | |
US3808543A (en) | Apparatus and method to accomplish turbine meter output pulse multiplication | |
Nguyen et al. | Auto-calibration and noise reduction for the sinusoidal signals of magnetic encoders | |
CN105406761B (en) | Rotating speed control system and method based on input voltage non-identical amplitudes | |
JP2016090244A (en) | Resolver angle position detection device | |
CN107831661A (en) | A kind of high-precision Industrial robots Mechanical's vibration signal tracking | |
CN108227541B (en) | Discontinuous analog differential signal frequency and phase acquisition method | |
CN108931939B (en) | Phase correction circuit and phase correction method | |
JP2018031704A (en) | Modulation wave resolver device | |
TWI494720B (en) | Pulse processing device applied to servo motor system | |
TWI646772B (en) | Phase calibrating circuit and method | |
CN103986312A (en) | Variable current control module with harmonic suppression function | |
Yu | A high performance microchip control system design for DC motor | |
RU65699U1 (en) | VIBRATION PHASE CONTROL DEVICE | |
RU2537256C1 (en) | Inertial object guidance control system | |
JPS6025068A (en) | Optical disk device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |