[go: up one dir, main page]

CN104694907B - 一种制备镍‑氮掺杂金刚石的射频放电气相沉积方法 - Google Patents

一种制备镍‑氮掺杂金刚石的射频放电气相沉积方法 Download PDF

Info

Publication number
CN104694907B
CN104694907B CN201510097097.7A CN201510097097A CN104694907B CN 104694907 B CN104694907 B CN 104694907B CN 201510097097 A CN201510097097 A CN 201510097097A CN 104694907 B CN104694907 B CN 104694907B
Authority
CN
China
Prior art keywords
plasma
substrate
diamond
nickel
frequency discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510097097.7A
Other languages
English (en)
Other versions
CN104694907A (zh
Inventor
陈广超
石彦超
李佳君
刘浩
左勇刚
白旸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chinese Academy of Sciences
Original Assignee
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Chinese Academy of Sciences filed Critical University of Chinese Academy of Sciences
Priority to CN201510097097.7A priority Critical patent/CN104694907B/zh
Publication of CN104694907A publication Critical patent/CN104694907A/zh
Application granted granted Critical
Publication of CN104694907B publication Critical patent/CN104694907B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种制备镍‑氮掺杂金刚石的射频放电气相沉积方法,属于金刚石气相沉积制备技术领域。利用喷射的射频放电等离子体来增强化学气相沉积,实现镍‑氮掺杂金刚石制备。将射频放电激发的等离子体以喷射的方式掠射衬底,通过调整工艺参数构建出稳定的等离子体边界层,实现掺杂原子浓度的可控沉积;另一方面,利用射频放电等离子体电场温和的特点,来保证多原子组态构型的稳定性以及保持衬底上掩模材料规则花样的完整性,从而实现掺杂原子的定位沉积。本方法可以满足多原子组态掺杂的要求。优点在于,实现了镍‑氮掺杂金刚石的规则分布生长,使掺杂金刚石的分布间距达到50μm的规则化分布。

Description

一种制备镍-氮掺杂金刚石的射频放电气相沉积方法
技术领域
本发明属于金刚石气相沉积制备技术领域,特别是提供了一种制备镍-氮掺杂金刚石的射频放电气相沉积方法,利用喷射的射频放电等离子体来增强化学气相沉积实现镍-氮掺杂金刚石制备。
背景技术
随着社会的发展,人们对信息量和处理速度提出了更多、更快的要求。利用量子纠缠效应进行信息传递和计算的量子通讯和量子计算由于其数据量大、保密性好、运算速度快的特点正成为新型的通讯和计算方式(周正威,陈巍,孙方稳,等,量子信息技术纵览,科学通报,57(17)(2012):1498-1525)。量子通讯和量子计算的基础是对相干叠加或者纠缠的量子态实现编码、传输和计算的控制和操纵的量子信息处理[李承祖,等,《量子通信和量子计算》,国防科技大学出版社,长沙,2000年]。金刚石正是能够承担量子信息处理的理想材料,因为当金刚石中包含原子尺度的掺杂结构时,在外激励的作用下能够表现出特殊的量子效应,比如可调控的单量子比特和多量子比特,可寄存的量子态,可按逻辑门操作的双量子比特,以及纠缠态三量子比特等等(I.Aharonovich,E.Neu,Diamond Nanophotonics,Advanced Optical Materials,2(2014):911–928),而且这些结构在室温下具有很长的电子自旋退相干时间、纯净的自旋环境和与周围核自旋丰富的超精细相互作用,因此,这种具有原子尺度掺杂结构的金刚石在量子信息处理中具有广阔的前景(F.C.Waldermann,P.Olivero,J.Nunn等,Creating diamond color centers for quantum opticalapplications,Diamond&Related Materials,16(2007):1887–1895)。当前在金刚石中被利用来进行量子信息处理的掺杂结构是氮原子-空位组态(L.Childress,M.V.GurudevDutt,J.M.Taylor,等,Coherent Dynamics of Coupled Electronand Nuclear Spin Qubits inDiamond,Science,314(2006):281-285),其自1997年被报导以来(J.I.Cirac,P.Zoller,H.J.Kimble,等,Quantum state transfer and entanglement distribution amongdistant nodes in a quantum network.Phys.Rev.Lett.78(1997):3221-3224),主要的制备技术是离子注入技术(D.P.Ertchak,V.G.Efimov,V.F.Stelmakh,等,The Origin ofDominating ESR Absorption in Ion Implanted Diamond,PHYSICA STATUS SOLIDI B-BASIC RESEARCH,203(2)(1997):529-547),该技术是利用把掺杂的氮原子离化加速后引入到金刚石中的一种材料改性方法。除了离子注入技术之外,化学气相沉积技术也成为一种候选的制备氮原子-空位组态掺杂结构的技术(Michl,Julia;Teraji,Tokuyuki;Zaiser,Sebastian;等,Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on(111)surfaces,APPLIED PHYSICS LETTERS,104(10)(2014):102407)。化学气相沉积技术是将要掺杂的原子(或者多原子组态)作为沉积反应的前驱体导入到反应区,在沉积过程中凝聚到金刚石的晶格中,形成原子尺度的掺杂结构。近来,金刚石中一种原子尺度的镍-氮组态掺杂结构被发现在量子性能上有很多优点,是提供量子比特最理想的单光子源(T.Gaebel和J.Wrachtrup,Stable single-photon source in the near infrared,New Journal ofPhysics,6(2004):98-104)。但是,到目前为止,只有国外一个研究组报道了采用微波法制备的结果(J.R.Rabeau,Y.L.Chin,S.Prawer,等,Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,APPLIED PHYSICSLETTERS 86(2005):131926)。
目前离子注入技术仅限于制作金刚石中的氮原子-空位掺杂,对于多原子掺杂却很难实现,比如采用该技术进行镍-氮掺杂的制备就没有成功。分析其失败的原因,从其原理上可以看出:离子注入的过程是利用经过加速的、要掺杂的原子的离子照射(注入)金刚石中,从而在所选择的(即被注入的)区域形成一个具有特殊性质的表面层(注入层)。所以该技术的特长是进行单原子的掺杂,很难进行多原子的掺杂,这正是该技术的局限。相比之下,化学气相沉积技术较适合在金刚石中进行多原子的掺杂,但是,目前所采用的化学气相沉积技术都是采用微波等离子体增强的化学气相沉积,不能保证掺杂金刚石的规则分布生长,不满足进行下一步的量子信息处理的要求;并且由于微波等离子体离化率较高,很难保证多原子组态掺杂的实现。为了拓展掺杂金刚石的制备种类,满足多原子组态掺杂的要求,急需提供新的制备技术。
发明内容
本发明的目的在于提供一种制备镍-氮掺杂金刚石的射频放电气相沉积方法,利用喷射的射频放电等离子体来增强化学气相沉积,实现镍-氮掺杂金刚石制备。将射频放电激发的等离子体以喷射的方式掠射衬底,通过调整工艺参数构建出稳定的等离子体边界层,实现掺杂原子浓度的可控沉积;另一方面,利用射频放电等离子体电场温和的特点,来保证多原子组态构型的稳定性以及保持衬底上掩模材料规则花样的完整性,从而实现掺杂原子的定位沉积。本方法可以满足多原子组态掺杂的要求。
本发明镍-氮掺杂金刚石是在射频放电等离子体喷射化学气相沉积系统中进行的。其中采用射频电感耦合放电激发方法产生等离子体,等离子体的成分含有激发态碳原子、碳氢分子、氢原子以及掺杂的镍原子和氮原子,等离子体的电子温度在0.7-2eV。等离子体的喷口几何形状为圆形,面积为3-20厘米2。等离子体的运动轴线平行于水平方向,雷诺数为1200-2400,等离子体以运动轴线与衬底法线夹角为60°~90°的角度掠射衬底表面。衬底为单晶金刚石,其表面具有由难熔金属形成的掩模,衬底的曝露晶面是(100)晶面,以机械镶嵌或者真空钎焊的方式固定在具有水冷功能的难熔金属衬底托架上,衬底的尺寸为1~6厘米2,衬底距等离子体喷口的距离为0.5~1.5厘米,衬底温度在650℃~1300℃之间。反应腔压强在6000~18000Pa之间。
本发明的优点和积极效果:
本方法提供了一条除了微波法之外的、可以实现了镍-氮掺杂金刚石制备的喷射射频放电等离子体增强化学气相沉积技术途径,实现了镍-氮掺杂金刚石的规则分布生长,使掺杂金刚石的分布间距达到50μm的规则化分布。
附图说明
图1是射频放电等离子体喷射沉积系统的示意图,其中,石英管1、射频线圈2、沉积腔3、等离子体4、水冷的衬底与支座5、真空泵组6。
图2是等离子体的成份随掠射距离的变化结果。
图3是衬底表面Au掩模的扫描电子显微镜照片。
图4是QD-1样品的扫描电子显微镜照片。
图5是QD-2样品的扫描电子显微镜照片。
图6是QD-1样品的能谱结果。
图7是QD-2样品的能谱结果。
图8是QD-1样品的拉曼谱结果。
图9是QD-2样品的拉曼谱结果。
具体实施方式
在图1所示的喷射射频放电等离子体沉积系统中,利用光发射谱测试了等离子体的成份随掠射距离的变化情况,得到了图2的结果,从中可见等离子体成分主要为碳、氢、氩、镍和氮,各激发态原子以及原子组态在金刚石的生长区域中浓度稳定。在(100)晶面为曝露晶面的单晶金刚石表面,采用光刻技术和磁控溅射技术制备了Au掩模,得到了图3的结果,从结果中可以看到掩模上排布了间距为50μm的圆形沉积孔。进行掺杂金刚石制备的沉积工艺参数见表1,所得到的掺杂金刚石的电子显微形貌、能谱成分以及和拉曼(Raman)谱结果分别见图4到图9。
表1制备掺杂金刚石的沉积参数。
表1制备掺杂金刚石的沉积参数。

Claims (1)

1.一种制备镍-氮掺杂金刚石的射频放电气相沉积方法,其特征在于,镍-氮掺杂金刚石是在射频放电等离子体喷射化学气相沉积系统中进行的;其中采用射频电感耦合放电激发方法产生等离子体,等离子体的成分含有激发态碳原子、碳氢分子、氢原子以及掺杂的镍原子和氮原子,等离子体的电子温度在0.7-2eV;等离子体的喷口几何形状为圆形,面积为3-20厘米2;等离子体的运动轴线平行于水平方向,雷诺数为1200-2400,等离子体以运动轴线与衬底法线夹角为60°~90°的角度掠射衬底表面;衬底为单晶金刚石,其表面具有由难熔金属形成的掩模,衬底的曝露晶面是(100)晶面,以机械镶嵌或者真空钎焊的方式固定在具有水冷功能的难熔金属衬底托架上,衬底的尺寸为1~6厘米2,衬底距等离子体喷口的距离为0.5~1.5厘米,衬底温度在650℃~1300℃之间,反应腔压强在6000~18000Pa之间。
CN201510097097.7A 2015-03-04 2015-03-04 一种制备镍‑氮掺杂金刚石的射频放电气相沉积方法 Expired - Fee Related CN104694907B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510097097.7A CN104694907B (zh) 2015-03-04 2015-03-04 一种制备镍‑氮掺杂金刚石的射频放电气相沉积方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510097097.7A CN104694907B (zh) 2015-03-04 2015-03-04 一种制备镍‑氮掺杂金刚石的射频放电气相沉积方法

Publications (2)

Publication Number Publication Date
CN104694907A CN104694907A (zh) 2015-06-10
CN104694907B true CN104694907B (zh) 2017-01-25

Family

ID=53342443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510097097.7A Expired - Fee Related CN104694907B (zh) 2015-03-04 2015-03-04 一种制备镍‑氮掺杂金刚石的射频放电气相沉积方法

Country Status (1)

Country Link
CN (1) CN104694907B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109518159B (zh) * 2018-11-21 2020-12-04 中国科学院大学 一种过渡族金属元素与氮共掺杂生长金刚石的方法
CN110835741B (zh) * 2019-10-28 2020-09-18 北京科技大学 一种通过离子注入制备金刚石氮镍复合色心的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174983A (en) * 1990-09-24 1992-12-29 The United States Of America, As Represented By The Secretary Of The Navy Flame or plasma synthesis of diamond under turbulent and transition flow conditions
CN103370765A (zh) * 2010-12-23 2013-10-23 六号元素有限公司 控制合成金刚石材料的掺杂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5174983A (en) * 1990-09-24 1992-12-29 The United States Of America, As Represented By The Secretary Of The Navy Flame or plasma synthesis of diamond under turbulent and transition flow conditions
CN103370765A (zh) * 2010-12-23 2013-10-23 六号元素有限公司 控制合成金刚石材料的掺杂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition";J.R. Rabeau et al.;《APPLIED PHYSICS LETTERS》;20051231;第86卷;第131926-1页右栏第2-4段 *

Also Published As

Publication number Publication date
CN104694907A (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
US8747963B2 (en) Apparatus and method for diamond film growth
CN101949006B (zh) 氮化铜薄膜、氮化铜/铜以及铜二维有序阵列的制备方法
CN104694907B (zh) 一种制备镍‑氮掺杂金刚石的射频放电气相沉积方法
CN102677019B (zh) 一种运动磁场辅助增强化学气相沉积方法及装置
KR101252333B1 (ko) 열플라즈마 화학기상증착법을 이용한 제어 가능한 그래핀 시트 제조방법
Liu et al. The uniform and robust 8-inch CVD diamond plate generated by dual-magnetic field controlled DC Jet CVD
CN102728414A (zh) 用于制备单壁碳纳米管的催化剂的制备方法及其运用
Liu et al. Morphologies and growth mechanisms of zirconium carbide films by chemical vapor deposition
Wang et al. The impacts of operating pressure on the structural and magnetic properties of HfCo7 nanoparticles synthesized by inert gas condensation
Singh et al. Low‐pressure, low‐temperature, and remote‐plasma deposition of diamond thin films from water‐methanol mixtures
CN116219544B (zh) 一种基于激光干涉技术制备单晶硅薄膜的方法
Tang et al. Two possible emission mechanisms involved in the arc discharge method of carbon nanotube preparation
Hemawan et al. Hot spot formation in microwave plasma CVD diamond synthesis
CN115332051A (zh) 一种新型的氮化镓镍氮空位色心及其制备方法
CN102260908A (zh) 一种生长纳米晶硅粉体的装置
Yang et al. An easy way to controllably synthesize one-dimensional SmB6 topological insulator nanostructures and exploration of their field emission applications
Hirate et al. Control of diameter of ZnO nanorods grown by chemical vapor deposition with laser ablation of ZnO
Singh et al. Field-enhanced chemical vapor deposition: new perspectives for thin film growth
US20180327324A1 (en) Structure of micropowder
Penkov et al. Effect of ion beam irradiation on the structure of ZnO films deposited by a dc arc plasmatron
CN103498191A (zh) 高纯度短棒状结晶FeWO4/FeS核壳纳米结构的制备方法
CN108529617A (zh) 一种纳米金刚石的制备方法
Leong et al. Low temperature synthesis of silicon carbide nanowires on cathode for thermionic energy converter
郝慧明 et al. Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μm quantum dot lasers
CN100562975C (zh) 采用硼掺杂在金刚石表面制备半导体导电膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170125

Termination date: 20180304

CF01 Termination of patent right due to non-payment of annual fee