CN104692466A - A non-template method for preparing α-Fe2O3 hollow tubular nanofilms - Google Patents
A non-template method for preparing α-Fe2O3 hollow tubular nanofilms Download PDFInfo
- Publication number
- CN104692466A CN104692466A CN201510044711.3A CN201510044711A CN104692466A CN 104692466 A CN104692466 A CN 104692466A CN 201510044711 A CN201510044711 A CN 201510044711A CN 104692466 A CN104692466 A CN 104692466A
- Authority
- CN
- China
- Prior art keywords
- conductive substrate
- hollow tubular
- film
- take out
- conductive substrates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000002120 nanofilm Substances 0.000 title abstract description 21
- 229910003145 α-Fe2O3 Inorganic materials 0.000 title 1
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000002243 precursor Substances 0.000 claims abstract description 15
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims abstract description 14
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000012153 distilled water Substances 0.000 claims abstract description 13
- 229910052573 porcelain Inorganic materials 0.000 claims abstract description 10
- 238000002360 preparation method Methods 0.000 claims abstract description 8
- 235000013024 sodium fluoride Nutrition 0.000 claims abstract description 7
- 239000011775 sodium fluoride Substances 0.000 claims abstract description 7
- 235000010344 sodium nitrate Nutrition 0.000 claims abstract description 7
- 239000004317 sodium nitrate Substances 0.000 claims abstract description 7
- 238000003756 stirring Methods 0.000 claims abstract description 7
- 239000011521 glass Substances 0.000 claims description 17
- 239000012456 homogeneous solution Substances 0.000 claims description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims 2
- 239000010408 film Substances 0.000 claims 2
- 239000010409 thin film Substances 0.000 claims 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 1
- 238000005516 engineering process Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 229940001516 sodium nitrate Drugs 0.000 claims 1
- 238000004506 ultrasonic cleaning Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- -1 polytetrafluoroethylene Polymers 0.000 abstract description 17
- 229920001343 polytetrafluoroethylene Polymers 0.000 abstract description 17
- 239000004810 polytetrafluoroethylene Substances 0.000 abstract description 17
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract description 7
- 239000002086 nanomaterial Substances 0.000 abstract description 7
- 239000004065 semiconductor Substances 0.000 abstract description 7
- 238000012546 transfer Methods 0.000 abstract description 7
- 229910021578 Iron(III) chloride Inorganic materials 0.000 abstract description 6
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 238000004321 preservation Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 5
- 239000003599 detergent Substances 0.000 description 4
- 229910052595 hematite Inorganic materials 0.000 description 4
- 239000011019 hematite Substances 0.000 description 4
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 4
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000002077 nanosphere Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- 238000006303 photolysis reaction Methods 0.000 description 2
- 230000015843 photosynthesis, light reaction Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Compounds Of Iron (AREA)
- Hybrid Cells (AREA)
Abstract
本发明属于半导体纳米材料制备技术领域,涉及一种非模板制备α-Fe2O3中空管状纳米薄膜的方法,先将氯化铁、硝酸钠和氟化钠分别加入烧杯,再加入蒸馏水搅拌配制成均匀溶液后转入聚四氟乙烯内胆反应器中,再将洁净的导电基底放入聚四氟乙烯内胆反应器中后密封转移到高压反应釜中,并放入烘箱中反应后、将高压反应釜取出,自然冷却至室温后取出导电基底,用蒸馏水洗涤、晾干,然后得到的含有α-Fe2O3前驱体膜的导电基底放入瓷舟后再放入马弗炉中加热保温;最后将瓷舟取出,自然冷却,在导电基底上制备得到α-Fe2O3中空管状纳米薄膜;其制备方法简单,原理科学,制备的纳米薄膜稳定性高,应用广泛。The invention belongs to the technical field of semiconductor nanomaterial preparation, and relates to a non-template method for preparing α- Fe2O3 hollow tubular nanofilm. Firstly, ferric chloride, sodium nitrate and sodium fluoride are respectively added into a beaker, and then distilled water is added to stir to prepare After forming a uniform solution, transfer it to a polytetrafluoroethylene liner reactor, then put the clean conductive substrate into the polytetrafluoroethylene liner reactor, seal it and transfer it to a high-pressure reactor, and put it in an oven for reaction. Take out the autoclave, cool it down to room temperature naturally, take out the conductive substrate, wash it with distilled water and dry it, then put the conductive substrate containing α-Fe 2 O 3 precursor film into the porcelain boat and put it into the muffle furnace Heating and heat preservation; finally take out the porcelain boat, cool naturally, and prepare α-Fe 2 O 3 hollow tubular nano-film on the conductive substrate; the preparation method is simple, the principle is scientific, the prepared nano-film has high stability, and is widely used.
Description
技术领域: Technical field:
本发明属于半导体纳米材料制备技术领域,涉及一种中空管状结构的纳米薄膜的制备方法,特别是一种非模板制备α-Fe2O3中空管状纳米薄膜的方法。 The invention belongs to the technical field of semiconductor nanomaterial preparation, and relates to a method for preparing a hollow tubular nanofilm, in particular to a method for preparing an α- Fe2O3 hollow tubular nanofilm without a template.
背景技术: Background technique:
自1839年E.Becquerel发现半导体的光电效应以来,近几十年利用半导体的光电效应使太阳光转换为电能和化学能,引起了研究者的广泛关注。在众多半导体材料中,二氧化钛(TiO2)作为标准材料,在光化学方面得到广泛的研究和应用。但是,TiO2的能带间隙为3.2eV,只能吸收太阳光中的紫外线部分,大大降低了太阳光的吸收率,导致太阳能的利用率和转化效率降低。因此,越来越多的半导体纳米材料被广泛研究,其中三氧化铁(赤铁矿,α-Fe2O3)具有合适的能带间隙(2.2eV),这一能级可以吸收太阳光中的可见光部分,拓宽光的吸收范围,增大可见光区的吸收效率;合适的导带和价带位置使其作为光解水材料;此外,它的化学性质稳定,储存量丰富,价廉易得,相对其他半导体,三氧化铁(赤铁矿,α-Fe2O3)在光电应用方面更具优势,如太阳能电池、光化学电池和光解水等方面。但是,三氧化铁(赤铁矿,α-Fe2O3)材料本身也存在着光生电子和空穴易复合、载流子的扩散距离短(2-4纳米)易复合、室温下较低的空穴迁移率(0.01cm2V-1s-1)、存在一定的过电势等缺点,这些缺点使得α-Fe2O3的应用受到了很大的限制。 Since E. Becquerel discovered the photoelectric effect of semiconductors in 1839, the use of photoelectric effects of semiconductors to convert sunlight into electrical and chemical energy has aroused widespread concern among researchers in recent decades. Among many semiconductor materials, titanium dioxide (TiO 2 ), as a standard material, has been extensively studied and applied in photochemistry. However, the energy band gap of TiO 2 is 3.2eV, which can only absorb the ultraviolet part of sunlight, which greatly reduces the absorption rate of sunlight, resulting in a decrease in the utilization rate and conversion efficiency of solar energy. Therefore, more and more semiconducting nanomaterials have been extensively studied, among which iron trioxide (hematite, α-Fe 2 O 3 ) has a suitable energy band gap (2.2eV), which can absorb sunlight The visible part of the light can broaden the absorption range of light and increase the absorption efficiency in the visible region; the appropriate conduction band and valence band positions make it a photo-splitting water material; in addition, its chemical properties are stable, the storage capacity is abundant, and it is cheap and easy to obtain Compared with other semiconductors, iron trioxide (hematite, α-Fe 2 O 3 ) has more advantages in optoelectronic applications, such as solar cells, photochemical cells and photolysis of water. However, the iron trioxide (hematite, α-Fe 2 O 3 ) material itself also has the characteristics of easy recombination of photogenerated electrons and holes, short diffusion distance of carriers (2-4 nanometers) and easy recombination, low temperature at room temperature. The hole mobility (0.01cm 2 V -1 s -1 ) and the existence of a certain overpotential, etc., these shortcomings greatly limit the application of α-Fe 2 O 3 .
目前,对α-Fe2O3的改性方法有很多种,一般分为两类:一是通过元素掺杂改善材料的晶体结构;二是对α-Fe2O3进行尺寸、形态等方面的调控,通过改性有效提高材料的光电性质。对第一种方法,研究者已经成功的将Co、Pt、Ni、Ti和Si等元素掺杂于α-Fe2O3晶格之中,研究发现,通过异种元素的掺杂,可有效增大载流子的迁移速率,改善光活性;然而最活跃的吸收层是在半导体-溶液表面至10纳米的晶体内,此外,在这个厚度的载流子可有效的达到半导体材料的表面,降低其复合的几率。因此,控制一定的厚度和尺寸是对赤铁矿形态调控的关键。在众多结构形态中,中空的纳米结构,如纳米管、纳米球和其他形态, 先后被制备出来,相对于其他纳米形态,中空结构薄的纳米壁结构可有效提高其光活性,显示了较好的光电转换效率。 At present, there are many ways to modify α-Fe 2 O 3 , which are generally divided into two categories: one is to improve the crystal structure of the material through element doping; the other is to modify the size and shape of α-Fe 2 O 3 The control of the material can effectively improve the photoelectric properties of the material through modification. For the first method, researchers have successfully doped elements such as Co, Pt, Ni, Ti and Si into the α-Fe 2 O 3 lattice, and found that the doping of different elements can effectively increase the Large carrier mobility, improving photoactivity; however, the most active absorbing layer is in the semiconductor-solution surface to 10 nm in the crystal, in addition, carriers at this thickness can effectively reach the surface of the semiconductor material, reducing the probability of its compounding. Therefore, controlling a certain thickness and size is the key to regulating the morphology of hematite. Among many structural forms, hollow nanostructures, such as nanotubes, nanospheres and other forms, have been prepared successively. Compared with other nanoforms, hollow nanostructures with thinner walls can effectively improve their photoactivity, showing better photoelectric conversion efficiency.
目前,现有技术中制备中空结构纳米α-Fe2O3的方法包括模板法、自组装法和电化学氧化法等,其中,模板法是最直接的方法,其中一种方法是利用氧化锌(ZnO)作为模板制备中空α-Fe2O3,但是其制备的纳米壁厚超过了10纳米,后续过程中需要去除模板;另一种制备方法,首先合成一定尺寸的纳米碳球或其他有机化合物纳米球,然后对其进行包裹,最后得到具有一定厚度的α-Fe2O3中空纳米球,该方法制备方法简单,但需要高温煅烧,且合成的材料结晶性差,影响光电转换效率。电化学方法是通过控制一定的电压和电流密度制备一定厚度的α-Fe2O3的纳米管,但不能形成中空结构,其纳米材料的结晶性较差,而且会影响材料的化学稳定性。因此,寻求一种非模板制备α-Fe2O3中空管状纳米薄膜的方法,采用简单的合成路线,不使用任何模板,在导电玻璃(FTO)上利用竖直排列的α-Fe2O3中空纳米管状材料。 At present, the methods for preparing hollow structure nano-α-Fe 2 O 3 in the prior art include template method, self-assembly method and electrochemical oxidation method, etc. Among them, the template method is the most direct method, and one of the methods is to use zinc oxide (ZnO) is used as a template to prepare hollow α-Fe 2 O 3 , but the nanometer wall thickness of its preparation exceeds 10 nanometers, and the template needs to be removed in the subsequent process; another preparation method first synthesizes nano-carbon spheres of a certain size or other organic compound nanospheres, and then wrap them to obtain α-Fe 2 O 3 hollow nanospheres with a certain thickness. This method is simple to prepare, but requires high-temperature calcination, and the synthesized materials have poor crystallinity, which affects the photoelectric conversion efficiency. The electrochemical method is to prepare a certain thickness of α-Fe 2 O 3 nanotubes by controlling a certain voltage and current density, but it cannot form a hollow structure, and the crystallinity of the nanomaterials is poor, and it will affect the chemical stability of the material. Therefore, a non-template method for preparing α-Fe 2 O 3 hollow tubular nanofilms is sought, using a simple synthetic route without using any template, and using vertically arranged α-Fe 2 O 3 on conductive glass (FTO) Hollow nanotubular materials.
发明内容: Invention content:
本发明的目的在于克服现有技术存在的缺点,寻求设计一种不使用任何模板,在导电玻璃上制备α-Fe2O3中空管状纳米薄膜的简单可行的方法,先通过对不同添加剂的选择与控制制备前驱体材料,然后进行热处理,最终合成出管壁为10纳米,在FTO导电玻璃表面竖直排列的α-Fe2O3中空管状纳米薄膜。 The purpose of the present invention is to overcome the shortcomings of the prior art, to seek to design a simple and feasible method for preparing α-Fe 2 O 3 hollow tubular nano-films on conductive glass without using any template, first through the selection of different additives Precursor materials were prepared under control, followed by heat treatment, and finally a α-Fe 2 O 3 hollow tubular nanofilm with a tube wall of 10 nanometers and vertically arranged on the surface of the FTO conductive glass was synthesized.
为了实现上述目的,本发明的制备工艺包括下列步骤: In order to achieve the above object, the preparation process of the present invention comprises the following steps:
(1)、先切割尺寸为2cm×2cm的FTO导电玻璃,对FTO导电玻璃采用现有技术依次用洗涤剂、去离子水、丙酮、去离子水和异醇进行超声清洗后自然晾干,形成洁净的导电基底; (1), first cut the FTO conductive glass with a size of 2cm×2cm, and use the prior art to clean the FTO conductive glass sequentially with detergent, deionized water, acetone, deionized water and isoalcohol, and then dry it naturally to form clean conductive substrate;
(2)、将0.324g氯化铁、0.170g硝酸钠和0.016g氟化钠分别加入烧杯,再加入20ml蒸馏水在磁力搅拌机的搅拌下配制成均匀溶液; (2), 0.324g ferric chloride, 0.170g sodium nitrate and 0.016g sodium fluoride are added to beaker respectively, then add 20ml distilled water and be mixed with homogeneous solution under the stirring of magnetic stirrer;
(3)、将步骤(2)得到的均匀溶液转入聚四氟乙烯内胆反应器中; (3), the homogeneous solution that step (2) obtains is transferred in the polytetrafluoroethylene liner reactor;
(4)、再将洁净的导电基底正面朝上放入聚四氟乙烯内胆反应器中,然后将聚四氟乙烯内胆反应器密封转移到高压反应釜中,并放入烘箱中在95℃条件下反应6小时; (4), then put the clean conductive substrate face up into the polytetrafluoroethylene liner reactor, then seal the polytetrafluoroethylene liner reactor and transfer it to the high-pressure reactor, and put it in an oven at 95 Reaction at ℃ for 6 hours;
(5)、将高压反应釜从烘箱中取出,自然冷却至室温后,打开高压反应釜用镊子取出导电基底,用蒸馏水洗涤、晾干,得到含有α-Fe2O3前驱体膜的导电基底; (5) Take out the autoclave from the oven, cool it down to room temperature naturally, open the autoclave, take out the conductive substrate with tweezers, wash it with distilled water, and dry it to obtain a conductive substrate containing the α- Fe2O3 precursor film ;
(6)、将含有α-Fe2O3前驱体膜的导电基底放入瓷舟后再放入马弗炉中,以每分钟5℃的速率升温,在空气中加热到550℃,保温2小时; (6) Put the conductive substrate containing the α-Fe 2 O 3 precursor film into the porcelain boat and then put it into the muffle furnace, raise the temperature at a rate of 5°C per minute, heat it to 550°C in the air, and keep it warm for 2 Hour;
(7)、最后将瓷舟取出,在空气中自然冷却,在导电基底上制备得到深红色、竖向排列的α-Fe2O3中空管状纳米薄膜。 (7) Finally, the porcelain boat was taken out, cooled naturally in the air, and dark red, vertically arranged α-Fe 2 O 3 hollow tubular nano-films were prepared on the conductive substrate.
本发明与现有技术相比,采用简单的合成路线,不使用任何模板,在导电玻璃(FTO)上合成了竖直排列的α-Fe2O3中空纳米管状纳米薄膜,其制备方法简单,原理科学,制备的纳米薄膜稳定性高,应用广泛,在光催化、无机太阳能电池和光解水等诸多领域具有潜在的应用前景。 Compared with the prior art, the present invention adopts a simple synthesis route and synthesizes vertically arranged α-Fe 2 O 3 hollow nanotubular nano-films on conductive glass (FTO) without using any template. The preparation method is simple, The principle is scientific, the prepared nano-film has high stability and is widely used, and has potential application prospects in many fields such as photocatalysis, inorganic solar cells and photolysis of water.
附图说明: Description of drawings:
图1为本发明实施例1所述α-Fe2O3前驱体膜(左图)和α-Fe2O3中空管状纳米薄膜(右图)的电子照片。 Fig. 1 is an electron photograph of the α-Fe 2 O 3 precursor film (left picture) and the α-Fe 2 O 3 hollow tubular nanofilm (right picture) described in Example 1 of the present invention.
图2本发明制备的α-Fe2O3中空管状纳米薄膜的透射电镜(TEM)照片,插图显示其管壁厚度大约为10纳米。 Fig. 2 is a transmission electron microscope (TEM) photo of the α-Fe 2 O 3 hollow tubular nano-film prepared by the present invention, the inset shows that the thickness of the tube wall is about 10 nanometers.
图3为本发明制备的α-Fe2O3前驱体膜和α-Fe2O3中空管状纳米薄膜(图中2)的X射线衍射图,其中1为α-Fe2O3前驱体膜(高温处理前的样品),2为α-Fe2O3中空管状纳米薄膜(高温处理后的样品),﹟表示FTO表面的SnO2衍射峰,◆表示生成的α-Fe2O3衍射峰。 Figure 3 is the X-ray diffraction pattern of the α-Fe 2 O 3 precursor film and α-Fe 2 O 3 hollow tubular nanofilm (2 in the figure) prepared by the present invention, wherein 1 is the α-Fe 2 O 3 precursor film (sample before high temperature treatment), 2 is α-Fe 2 O 3 hollow tubular nano film (sample after high temperature treatment), ﹟ represents the SnO 2 diffraction peak on the FTO surface, ◆ represents the generated α-Fe 2 O 3 diffraction peak .
图4为本发明涉及的Sn、Fe和O元素的X射线能谱图(EDX)。 Fig. 4 is an X-ray energy spectrum (EDX) of Sn, Fe and O elements involved in the present invention.
图5为本发明实施例4制备的α-Fe2O3粉末的透射电镜(TEM)照片。 Fig. 5 is a transmission electron microscope (TEM) photo of the α-Fe 2 O 3 powder prepared in Example 4 of the present invention.
具体实施方式: Detailed ways:
下面通过具体实施例,并结合附图对本发明作进一步阐述。 The present invention will be further elaborated below through specific embodiments and in conjunction with the accompanying drawings.
实施例1: Example 1:
本实施例制备α-Fe2O3中空管状纳米薄膜的具体工艺包括下列步骤: The specific process for preparing α-Fe 2 O 3 hollow tubular nano-films in this example includes the following steps:
(1)、先切割尺寸为2cm×2cm的FTO导电玻璃,对FTO导电玻璃采用现有技术依次用洗涤剂、去离子水、丙酮、去离子水和异醇进行超声清洗后自然晾干,形成洁净的导电基底; (1), first cut the FTO conductive glass with a size of 2cm×2cm, and use the prior art to clean the FTO conductive glass sequentially with detergent, deionized water, acetone, deionized water and isoalcohol, and then dry it naturally to form clean conductive substrate;
(2)、将0.324g氯化铁、0.170g硝酸钠和0.016g氟化钠分别加入烧杯,再加入20ml蒸馏水在磁力搅拌机的搅拌下配制成均匀溶液,得到的均匀溶液为铁红色,且有微小颗粒存在; (2), 0.324g ferric chloride, 0.170g sodium nitrate and 0.016g sodium fluoride are added to the beaker respectively, then add 20ml distilled water and be mixed with a homogeneous solution under the stirring of a magnetic stirrer, the homogeneous solution obtained is iron red, and has presence of tiny particles;
(3)、将步骤(2)得到的均匀溶液迅速转入聚四氟乙烯内胆反应器中; (3), the homogeneous solution that step (2) is obtained is rapidly transferred in the polytetrafluoroethylene liner reactor;
(4)、再将洁净的导电基底正面朝上放入聚四氟乙烯内胆反应器中,然后将聚四氟乙烯内胆反应器密封转移到高压反应釜中,并放入烘箱中在95℃条件下反应6小时; (4), then put the clean conductive substrate face up into the polytetrafluoroethylene liner reactor, then seal the polytetrafluoroethylene liner reactor and transfer it to the high-pressure reactor, and put it in an oven at 95 Reaction at ℃ for 6 hours;
(5)、将高压反应釜从烘箱中取出,自然冷却至室温后,打开高压反应釜用镊子取出导电基底,用蒸馏水洗涤、晾干,得到含有α-Fe2O3前驱体膜的导电基底;由图1左图可以看到,导电基底上有淡黄色薄膜; (5) Take out the autoclave from the oven, cool it down to room temperature naturally, open the autoclave, take out the conductive substrate with tweezers, wash it with distilled water, and dry it to obtain a conductive substrate containing the α- Fe2O3 precursor film ; As can be seen from the left figure of Figure 1, there is a light yellow film on the conductive substrate;
(6)、将含有α-Fe2O3前驱体膜的导电基底放入瓷舟后再放入马弗炉中,以每分钟5℃的速率升温,在空气中加热到550℃,保温2小时; (6) Put the conductive substrate containing the α-Fe 2 O 3 precursor film into the porcelain boat and then put it into the muffle furnace, raise the temperature at a rate of 5°C per minute, heat it to 550°C in the air, and keep it warm for 2 Hour;
(7)、最后将瓷舟取出,在空气中自然冷却,即在导电基底上制备得到深红色竖向排列的α-Fe2O3中空管状纳米薄膜,如图1右图所示。 (7) Finally, the porcelain boat was taken out and cooled naturally in the air, that is, deep red vertically arranged α-Fe 2 O 3 hollow tubular nano-films were prepared on the conductive substrate, as shown in the right figure of Figure 1.
本实施例制备的α-Fe2O3中空管状纳米薄膜透射电镜(TEM)照片如图2所示,由图中可以看出,α-Fe2O3中空管状纳米薄膜的管壁厚度小于10纳米。 The α-Fe 2 O 3 hollow tubular nano-film transmission electron microscope (TEM) photos prepared in this embodiment are shown in Figure 2, as can be seen from the figure, the wall thickness of α-Fe 2 O 3 hollow tubular nano-film is less than 10 Nano.
实施例2: Example 2:
本实施例与实施例1中的步骤(1)-(5)相同,仅在步骤(2)得到的均匀溶液中加入慢慢滴加重量百分比浓度为10%的稀盐酸10毫升,以溶解产生的沉淀,其具体步骤如下: This embodiment is the same as steps (1)-(5) in Example 1, only adding slowly in the homogeneous solution obtained in step (2) is 10 milliliters of dilute hydrochloric acid that is 10% by weight percent concentration, to dissolve and produce The precipitation, its specific steps are as follows:
(1)、先切割尺寸为2cm×2cm的FTO导电玻璃,对FTO导电玻璃采用现有技术依次用洗涤剂、去离子水、丙酮、去离子水和异醇进行超声清洗后自然晾干,形成洁净的导电基底; (1), first cut the FTO conductive glass with a size of 2cm×2cm, and use the prior art to clean the FTO conductive glass sequentially with detergent, deionized water, acetone, deionized water and isoalcohol, and then dry it naturally to form clean conductive substrate;
(2)、将0.324g氯化铁、0.170g硝酸钠和0.016g氟化钠分别加入烧杯,再加入20ml蒸馏水在磁力搅拌机的搅拌下配制成均匀溶液,得到的均匀溶液为铁红色,且有微小颗粒存在;然后慢慢滴加10%的稀盐酸10毫升,使沉淀溶解; (2), 0.324g ferric chloride, 0.170g sodium nitrate and 0.016g sodium fluoride are added to the beaker respectively, then add 20ml distilled water and be mixed with a homogeneous solution under the stirring of a magnetic stirrer, the homogeneous solution obtained is iron red, and has Tiny particles exist; then slowly add 10 ml of 10% dilute hydrochloric acid dropwise to dissolve the precipitate;
(3)、将步骤(2)得到的均匀溶液迅速转入聚四氟乙烯内胆反应器中; (3), the homogeneous solution that step (2) is obtained is rapidly transferred in the polytetrafluoroethylene liner reactor;
(4)、再将洁净的导电基底正面朝上放入聚四氟乙烯内胆反应器中,然后将聚四氟乙烯内胆反应器密封转移到高压反应釜中,并放入烘箱中在95℃条件下反应6小时; (4), then put the clean conductive substrate face up into the polytetrafluoroethylene liner reactor, then seal the polytetrafluoroethylene liner reactor and transfer it to the high-pressure reactor, and put it in an oven at 95 Reaction at ℃ for 6 hours;
(5)、将高压反应釜从烘箱中取出,自然冷却至室温后,打开高压反应釜用镊子取出导电基底,用蒸馏水洗涤、晾干,在导电基底上没有形成任何物质,这说明加入稀盐酸后,在FTO导电玻璃的表面不能生成α-Fe2O3前驱体膜。 (5) Take out the autoclave from the oven, cool it down to room temperature naturally, open the autoclave and take out the conductive substrate with tweezers, wash it with distilled water, and dry it in the air. There is no substance formed on the conductive substrate, which means adding dilute hydrochloric acid After that, the α-Fe 2 O 3 precursor film cannot be formed on the surface of the FTO conductive glass.
实施例3: Example 3:
本实施例只进行实施例1的步骤(1)-(5),不再进行高温处理,具体过程为: The present embodiment only carries out the step (1)-(5) of embodiment 1, does not carry out high-temperature treatment again, and concrete process is:
(1)、先切割尺寸为2cm×2cm的FTO导电玻璃,对FTO导电玻璃采用现有技术依次用洗涤剂、去离子水、丙酮、去离子水和异醇进行超声清洗后自然晾干,形成洁净的导电基底; (1), first cut the FTO conductive glass with a size of 2cm×2cm, and use the prior art to clean the FTO conductive glass sequentially with detergent, deionized water, acetone, deionized water and isoalcohol, and then dry it naturally to form clean conductive substrate;
(2)、将0.324g氯化铁、0.170g硝酸钠和0.016g氟化钠分别加入烧杯,再加入20ml蒸馏水在磁力搅拌机的搅拌下配制成均匀溶液,得到的均匀溶液为铁红色,且有微小颗粒存在; (2), 0.324g ferric chloride, 0.170g sodium nitrate and 0.016g sodium fluoride are added to the beaker respectively, then add 20ml distilled water and be mixed with a homogeneous solution under the stirring of a magnetic stirrer, the homogeneous solution obtained is iron red, and has presence of tiny particles;
(3)、将步骤(2)得到的均匀溶液迅速转入聚四氟乙烯内胆反应器中; (3), the homogeneous solution that step (2) is obtained is rapidly transferred in the polytetrafluoroethylene liner reactor;
(4)、再将洁净的导电基底正面朝上放入聚四氟乙烯内胆反应器中,然后将聚四氟乙烯内胆反应器密封转移到高压反应釜中,并放入烘箱中在95℃条件下反应6小时; (4), then put the clean conductive substrate face up into the polytetrafluoroethylene liner reactor, then seal the polytetrafluoroethylene liner reactor and transfer it to the high-pressure reactor, and put it in an oven at 95 Reaction at ℃ for 6 hours;
(5)、将高压反应釜从烘箱中取出,自然冷却至室温后,打开高压反应釜用镊子取出导电基底,用蒸馏水洗涤、晾干,在导电基底的表面生成一层浅黄色的薄膜,经过XRD分析,其表面没有生成α-Fe2O3中空管状纳米薄膜。 (5), the autoclave is taken out from the oven, after naturally cooling to room temperature, the autoclave is opened and the conductive substrate is taken out with tweezers, washed with distilled water and dried to form a light yellow film on the surface of the conductive substrate. According to XRD analysis, there is no α-Fe 2 O 3 hollow tubular nanofilm formed on the surface.
实施例4: Example 4:
本实施例不在FTO导电玻璃表面生成α-Fe2O3纳米薄膜,其他步骤与实施例步骤(2)-(7)相同,具体过程为 In this embodiment, α-Fe 2 O 3 nanometer films are not generated on the surface of the FTO conductive glass, and other steps are the same as in the embodiment steps (2)-(7), and the specific process is
(1)、将0.324g氯化铁、0.170g硝酸钠和0.016g氟化钠分别加入烧杯,再加入20ml蒸馏水在磁力搅拌机的搅拌下配制成均匀溶液,得到的均匀溶液为铁红色,且有微小颗粒存在; (1), 0.324g ferric chloride, 0.170g sodium nitrate and 0.016g sodium fluoride are added to the beaker respectively, then add 20ml distilled water and be mixed with a homogeneous solution under the stirring of a magnetic stirrer, the homogeneous solution obtained is iron red, and has presence of tiny particles;
(2)、将步骤(2)得到的均匀溶液迅速转入聚四氟乙烯内胆反应器中; (2), the homogeneous solution that step (2) obtains is transferred rapidly in the polytetrafluoroethylene liner reactor;
(3)、再将洁净的导电基底正面朝上放入聚四氟乙烯内胆反应器中,然后将聚四氟乙烯内胆反应器密封转移到高压反应釜中,并放入烘箱中在95℃条件下反应6小时; (3), then put the clean conductive substrate face up into the polytetrafluoroethylene liner reactor, then transfer the polytetrafluoroethylene liner reactor to the high-pressure reactor, and put it into the oven at 95 Reaction at ℃ for 6 hours;
(4)、将高压反应釜从烘箱中取出,自然冷却至室温后,得到α-Fe2O3前驱体粉末,将α-Fe2O3前驱体粉末分别用5毫升水和乙醇,各洗三次备用; (4), take out the autoclave from the oven, cool down to room temperature naturally, and obtain the α-Fe 2 O 3 precursor powder, wash the α-Fe 2 O 3 precursor powder with 5 ml of water and ethanol, respectively three spares;
(5)、将步骤(4)制备的α-Fe2O3前驱体粉末放入瓷舟中,一并放入马弗炉中,以每分钟5℃的速率升温,在空气中加热到550℃,保温2小时; (5) Put the α-Fe 2 O 3 precursor powder prepared in step (4) into a porcelain boat, put them into a muffle furnace together, raise the temperature at a rate of 5°C per minute, and heat it to 550°C in air ℃, keep warm for 2 hours;
(6)、将瓷舟取出,在空气中自然冷却,可观察到生成了红色的α-Fe2O3粉末,如图5所示;经过测试,在没有FTO导电玻璃存在的情况下,其样品团簇的比较厉害,样品的形态也没有呈现出中空的纳米结构。 (6) Take out the porcelain boat and cool it naturally in the air. It can be observed that red α-Fe 2 O 3 powder is generated, as shown in Figure 5; after testing, in the absence of FTO conductive glass, its The sample clusters are relatively strong, and the shape of the sample does not show a hollow nanostructure.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510044711.3A CN104692466B (en) | 2015-01-29 | 2015-01-29 | A non-template method for preparing α-Fe2O3 hollow tubular nanofilms |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510044711.3A CN104692466B (en) | 2015-01-29 | 2015-01-29 | A non-template method for preparing α-Fe2O3 hollow tubular nanofilms |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104692466A true CN104692466A (en) | 2015-06-10 |
CN104692466B CN104692466B (en) | 2016-07-20 |
Family
ID=53340085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510044711.3A Expired - Fee Related CN104692466B (en) | 2015-01-29 | 2015-01-29 | A non-template method for preparing α-Fe2O3 hollow tubular nanofilms |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104692466B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105220221A (en) * | 2015-11-12 | 2016-01-06 | 华东理工大学 | A kind of preparation method of mesoporous single crystals ferric oxide and photoelectrochemistry water splitting device thereof |
CN106006756A (en) * | 2016-05-19 | 2016-10-12 | 青岛大学 | A kind of preparation method of Fe2O3 nano-film crimp tube |
CN116510731A (en) * | 2023-03-07 | 2023-08-01 | 西北工业大学 | Ligand-free nanocrystalline inlaid hematite film and preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104282847A (en) * | 2014-09-05 | 2015-01-14 | 石家庄铁道大学 | Interruptible perovskite type organic halide thin-film solar cell photo-anode preparing method |
-
2015
- 2015-01-29 CN CN201510044711.3A patent/CN104692466B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104282847A (en) * | 2014-09-05 | 2015-01-14 | 石家庄铁道大学 | Interruptible perovskite type organic halide thin-film solar cell photo-anode preparing method |
Non-Patent Citations (5)
Title |
---|
H.K. MULMUDI等: "Controlled growth of hematite (α-Fe2O3) nanorod array on fluorine doped tin oxide:Synthesis and photoelectrochemical properties", 《ELECTROCHEMISTRY COMMUNICATIONS》, 15 June 2011 (2011-06-15), pages 951 - 954 * |
LINLIN PENG等: "Surface photovoltage characterization of an oriented α-Fe2O3 nanorod array", 《CHEMICAL PHYSICS LETTERS》, 20 May 2008 (2008-05-20), pages 159 - 163 * |
刘甲甲等: "α-Fe2O3纳米管制备方法的研究进展", 《功能材料》, vol. 45, no. 9, 31 December 2014 (2014-12-31), pages 9001 - 9007 * |
台玉萍等: "单晶态α-Fe2O3纳米管的制备及其形成机理探讨", 《河北化工》, vol. 32, no. 10, 31 October 2009 (2009-10-31) * |
叶芸等: "Fe2O3微纳米管阵列的制备及场发射性能研究", 《功能材料》, vol. 44, no. 5, 31 December 2013 (2013-12-31), pages 673 - 676 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105220221A (en) * | 2015-11-12 | 2016-01-06 | 华东理工大学 | A kind of preparation method of mesoporous single crystals ferric oxide and photoelectrochemistry water splitting device thereof |
CN105220221B (en) * | 2015-11-12 | 2018-06-19 | 华东理工大学 | A kind of preparation method of mesoporous single crystals iron oxide and its optical electro-chemistry water splitting device |
CN106006756A (en) * | 2016-05-19 | 2016-10-12 | 青岛大学 | A kind of preparation method of Fe2O3 nano-film crimp tube |
CN116510731A (en) * | 2023-03-07 | 2023-08-01 | 西北工业大学 | Ligand-free nanocrystalline inlaid hematite film and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104692466B (en) | 2016-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105384358B (en) | A kind of WO3Nano-chip arrays method for manufacturing thin film and its application study | |
CN105044180B (en) | A kind of preparation method and purposes of heterojunction photovoltaic pole | |
CN104148047B (en) | Macro preparation method for carbon doped zinc oxide-based visible-light catalyst | |
CN105669045B (en) | A kind of Cu2ZnSnS4The preparation method and applications of/graphene composite semiconductor films | |
CN106563442B (en) | A kind of preparation method and applications of ultra-thin two water tungstic trioxide nano-slice | |
CN107089683A (en) | A kind of preparation method of molybdenum disulfide/copper sulfide/cuprous nano composite | |
CN106391055A (en) | ZnO/CdS/CuS nanometer array composite material preparation method | |
CN109748327B (en) | A method for preparing CuCoO2 nanocrystalline materials at low temperature based on MOFs materials | |
CN105498773A (en) | Preparation method for doped iron oxide nanorod catalyst | |
CN110344029A (en) | A kind of preparation method of surface hydroxylation sull optical anode material | |
CN104001494B (en) | The synthetic method of the graphite modified nano-zinc stannate of one kind | |
CN107051545A (en) | A kind of nano titanium oxide/copper sulfide nano nano composite material | |
CN106622202A (en) | Preparation method of graphene-TiO2 nanotube/FTO bilayer composite film | |
CN103274443A (en) | A kind of Cu2O-ZnO composite nano-structure semiconductor material of tetragonal leaf shape and preparation method thereof | |
CN106315660A (en) | Preparation method of copper oxide nanowire | |
CN103058265A (en) | Preparation method of mesoporous nano flaky zinc oxide powder with high specific surface area | |
CN108560035A (en) | A kind of low cost preparation ZnO&TiO2The method of hetero-junction thin-film | |
CN104692466B (en) | A non-template method for preparing α-Fe2O3 hollow tubular nanofilms | |
CN105261483A (en) | Cu2ZnSnS4 sensitized TiO2 photoanode and its in-situ preparation method and application | |
CN104576074A (en) | A preparation method of ultra-long TiO2 nanowire array thin film photoanode | |
CN106929830B (en) | A kind of preparation method of metal oxide semiconductor thin film electrode material with controllable nanostructure at high temperature | |
CN106975497A (en) | Titanium dioxide nanoplate and copper-zinc-tin-sulfur nano particle hetero-junctions preparation method and application | |
CN105664921B (en) | A kind of nanometer W0.4Mo0.6O3The preparation method of high-performance optical catalyst | |
CN106111107B (en) | A kind of Zinc oxide nano sheet catalyst of titania additive | |
CN105702756B (en) | A photoelectrode with a two-dimensional photonic crystal structure and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160720 Termination date: 20200129 |