CN104681542A - Semiconductor electrostatic discharge protection device - Google Patents
Semiconductor electrostatic discharge protection device Download PDFInfo
- Publication number
- CN104681542A CN104681542A CN201310628550.3A CN201310628550A CN104681542A CN 104681542 A CN104681542 A CN 104681542A CN 201310628550 A CN201310628550 A CN 201310628550A CN 104681542 A CN104681542 A CN 104681542A
- Authority
- CN
- China
- Prior art keywords
- electrical
- semiconductor
- transistor
- electrostatic discharge
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 153
- 125000006850 spacer group Chemical group 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims description 30
- 238000002955 isolation Methods 0.000 claims description 15
- 230000001012 protector Effects 0.000 claims 14
- 239000013078 crystal Substances 0.000 claims 7
- 239000002019 doping agent Substances 0.000 claims 2
- 230000003071 parasitic effect Effects 0.000 description 17
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种半导体集成电路元件,且特别是涉及一种半导体静电放电保护装置。The invention relates to a semiconductor integrated circuit element, and in particular to a semiconductor electrostatic discharge protection device.
背景技术Background technique
静电放电是一种位于非导电表面上的静电电荷通过导电材料而迁移的现象。由于静电电压通常相当高,静电放电可以轻易地损毁一集成电路的基板与其他元件。为了保护集成电路免于遭受静电放电的损害,具有传导静电放电电流至地面功能的装置被整合进入集成电路内。Electrostatic discharge is the migration of electrostatic charges on non-conductive surfaces through conductive materials. Since electrostatic voltage is usually quite high, electrostatic discharge can easily damage the substrate and other components of an integrated circuit. In order to protect the integrated circuit from being damaged by ESD, a device with the function of conducting the ESD current to the ground is integrated into the integrated circuit.
以接地栅n型金属-氧化物-半导体导体Gate Grounded n-typeMetal-Oxide-Semiconductor,GGNMOS)晶体管单元为例,其栅极、源极和元件基底接地,当静电放电发生(ESD zapping)时,骤回崩溃(snapback)致使接地栅n型金属-氧化物-半导体晶体管单元会导通,以将一个大静电放电电流(ESD current)传导于其漏极结构与源极结构之间,再将静电放电电流传导至地面,达到静电放电的保护功能。Take the grounded gate n-type metal-oxide-semiconductor conductor Gate Grounded n-typeMetal-Oxide-Semiconductor (GGNMOS) transistor unit as an example, its gate, source and element substrate are grounded, when electrostatic discharge occurs (ESD zapping), The snapback causes the ground gate n-type metal-oxide-semiconductor transistor unit to be turned on, so as to conduct a large electrostatic discharge current (ESD current) between its drain structure and source structure, and then discharge the static electricity The discharge current is conducted to the ground to achieve the protection function of electrostatic discharge.
然而传统的接地栅n型金属-氧化物-半导体导体晶体管单元,容易因受到寄生NPN双载流子接面晶体管外扩效应(base push-out effect)的影响,发生二次骤回崩溃现象,至使过大的漏电流通过寄生双载流子接面晶体管由的射极和接地基极,再由的元件基底(寄生基极)传导至地面,造成接地栅n型金属-氧化物-半导体导体晶体管单元永久性失效。However, the traditional grounded gate n-type metal-oxide-semiconductor transistor unit is prone to secondary snapback collapse due to the base push-out effect of the parasitic NPN bicarrier junction transistor. To make the excessive leakage current pass through the emitter and ground base of the parasitic double carrier junction transistor, and then conduct to the ground from the element substrate (parasitic base) of the parasitic double carrier junction transistor, resulting in a ground gate n-type metal-oxide-semiconductor Conductor transistor unit permanently fails.
因此,如何防止半导体静电放电保护装置的寄生双载流子接面晶体管漏电,已成为静电放电防护设计上的一大挑战。Therefore, how to prevent the leakage of the parasitic bicarrier junction transistor of the semiconductor ESD protection device has become a major challenge in the ESD protection design.
发明内容Contents of the invention
为解决上述问题,本发明一方面在于提供一种半导体静电放电保护装置,包括:具有第一电性的第一晶体管、第二电性阱区、第二电性保护环以及半导体间隔区。第一晶体管形成于第二电性阱区之中。第二电性保护环,围绕第一晶体管。半导体间隔区,位于第一晶体管和第二电性保护环之间,且围绕第一晶体管。其中,半导体间隔区为无掺杂区、第一电性掺杂区或掺杂浓度小于第二电性阱区的第二电性掺杂区。In order to solve the above problems, one aspect of the present invention is to provide a semiconductor electrostatic discharge protection device, comprising: a first transistor with a first electrical property, a second electrical property well region, a second electrical property guard ring, and a semiconductor spacer. The first transistor is formed in the second electrical well region. The second electrical protection ring surrounds the first transistor. The semiconductor spacer is located between the first transistor and the second electrical protection ring and surrounds the first transistor. Wherein, the semiconductor spacer region is an undoped region, a doped region of the first electrical type or a doped region of the second electrical type whose doping concentration is lower than that of the well area of the second electrical type.
在本发明的一实施例之中,半导体静电放电保护装置,还包括一浅沟隔离结构,位于第一晶体管和第二电性保护环之间。其中,半导体间隔区,是位于浅沟隔离结构的下方。In an embodiment of the present invention, the semiconductor electrostatic discharge protection device further includes a shallow trench isolation structure located between the first transistor and the second electrical protection ring. Wherein, the semiconductor spacer is located under the shallow trench isolation structure.
在本发明的一实施例之中,半导体静电放电保护装置,还包括一浅沟隔离结构,位于第一晶体管和第二电性保护环之间。其中,半导体间隔区,是位于浅沟隔离结构和第二电性保护环之间。In an embodiment of the present invention, the semiconductor electrostatic discharge protection device further includes a shallow trench isolation structure located between the first transistor and the second electrical protection ring. Wherein, the semiconductor spacer is located between the shallow trench isolation structure and the second electrical protection ring.
在本发明的一实施例之中,第一电性为N型电性,且第二电性为P型电性。在本发明的一实施例之中,第一电性为P型电性,且第二电性为N型电性。In an embodiment of the present invention, the first electrical property is N-type electrical property, and the second electrical property is P-type electrical property. In an embodiment of the present invention, the first electrical property is a P-type electrical property, and the second electrical property is an N-type electrical property.
在本发明的一实施例之中,第一晶体管包含栅极结构、源极、漏极以及第二电性高浓度掺杂区。栅极结构形成于第二电性阱区之上。源极形成于第二电性阱区之中,且邻接栅极结构。漏极形成于第二电性阱区之中,且邻接栅极结构。第二电性高浓度掺杂区,位于漏极下方的第二电性阱区之中,并且具有高于第二电性阱区的掺杂浓度。In an embodiment of the present invention, the first transistor includes a gate structure, a source, a drain, and a second electrical high-concentration doped region. The gate structure is formed on the second electrical well region. The source is formed in the second electrical well region and adjacent to the gate structure. The drain is formed in the second electrical well region and adjacent to the gate structure. The second electrical high-concentration doped region is located in the second electrical well region under the drain, and has a higher doping concentration than the second electrical well region.
在本发明的一实施例之中,其中半导体静电放电保护装置还包括一基底接触区,邻接于第二电性阱区和第二电性保护环。其中,基底接触区与源极共同接地,且漏极与一输入/输出垫(I/O pad)电连接。In an embodiment of the present invention, the semiconductor electrostatic discharge protection device further includes a base contact region adjacent to the second electrical well region and the second electrical protection ring. Wherein, the base contact area and the source are commonly grounded, and the drain is electrically connected to an I/O pad.
在本发明的一实施例之中,半导体静电放电保护装置还包括具有第一电性的第二晶体管和第三晶体管。其中第一晶体管、第二晶体管和第三晶体管具有一个共同漏极。In an embodiment of the present invention, the semiconductor electrostatic discharge protection device further includes a second transistor and a third transistor having a first electrical property. Wherein the first transistor, the second transistor and the third transistor have a common drain.
在本发明的一实施例之中,半导体静电放电保护装置,还包括阱接触区(Well Pick-Up)以及具有第一电性的第二晶体管和第三晶体管。其中,第一晶体管、第二晶体管和第三晶体管具有一共同源极,围绕阱接触区。In an embodiment of the present invention, the semiconductor electrostatic discharge protection device further includes a well contact region (Well Pick-Up) and a second transistor and a third transistor having a first electrical property. Wherein, the first transistor, the second transistor and the third transistor have a common source and surround the well contact region.
本发明另一方面是在提供一种半导体静电放电保护装置,包括:多个第一电性晶体管、第二电性保护环以及阱接触区。其中,第二电性保护环,围绕该些个第一电性晶体管;且该些个第一电性晶体管,围绕阱接触区。Another aspect of the present invention is to provide a semiconductor electrostatic discharge protection device, including: a plurality of first electrical transistors, a second electrical protection ring, and a well contact area. Wherein, the second electrical protection ring surrounds the transistors of the first electrical type; and the transistors of the first electrical type surround the well contact region.
在本发明的一实施例之中,半导体静电放电保护装置还包括,第一电性保护环,位于该些个第一电性晶体管和第二电性保护环之间,且围绕该些个第一电性晶体管。In an embodiment of the present invention, the semiconductor electrostatic discharge protection device further includes a first electrical protection ring, located between the first electrical transistors and the second electrical protection ring, and surrounding the first electrical protection rings. An electrical transistor.
在本发明的一实施例之中,每一个第一晶体管包含一栅极结构、一源极以及一漏极。栅极结构形成于一第二电性阱区之上。漏极形成于第二电性阱区之中,且邻接栅极结构远离阱接触区的一侧。源极形成于第二电性阱区之中,且邻接栅极结构靠近阱接触区的一侧。In an embodiment of the present invention, each first transistor includes a gate structure, a source and a drain. The gate structure is formed on a second electrical well region. The drain is formed in the second electrical well region and adjoins the side of the gate structure away from the well contact region. The source is formed in the second electrical well region and adjoins the side of the gate structure close to the well contact region.
在本发明的一实施例之中,阱接触区与源极共同接地,且漏极与一输入/输出垫电连接。In one embodiment of the present invention, the well contact region and the source are commonly grounded, and the drain is electrically connected to an I/O pad.
在本发明的一实施例之中,每一个第一晶体管还包含一第二电性高浓度掺杂区,位于漏极下方的第二电性阱区之中,并且具有高于第二电性阱区的掺杂浓度。In an embodiment of the present invention, each of the first transistors further includes a second electrical high-concentration doped region, located in the second electrical well region below the drain, and having a higher density than the second electrical The doping concentration of the well region.
根据上述实施例,本发明的是提供一种半导体静电放电保护装置,在本发明的一实施例之中,半导体静电放电保护装置至少包含:形成于元件基底之中的一第一电性晶体管、围绕第一电性晶体管的一第二电性保护环以及位于第一电性晶体管和第二电性保护环之间的半导体间隔区。其中,半导体间隔区为无掺杂区、第一电性掺杂区或掺杂浓度小于第二电性阱区的第二电性掺杂区。通过在第第一电性晶体管和第二电性保护环之间,设置半导体间隔区的方式,以增加第一电性晶体管的漏极与第二电性保护环之间的距离,进而增加半导体静电放电保护装置中寄生的双载流子接面晶体管射极与接地基极之间的阻值,减少漏电流由漏极通过元件基底传导至地面,进而增进半导体静电放电保护装置的静电放电保护能力。According to the above-mentioned embodiments, the present invention provides a semiconductor electrostatic discharge protection device. In one embodiment of the present invention, the semiconductor electrostatic discharge protection device at least includes: a first electrical transistor formed in the element substrate, A second electrical guard ring surrounding the first electrical transistor and a semiconductor spacer between the first electrical transistor and the second electrical guard ring. Wherein, the semiconductor spacer region is an undoped region, a doped region of the first electrical type or a doped region of the second electrical type whose doping concentration is lower than that of the well area of the second electrical type. By setting a semiconductor spacer between the first electrical transistor and the second electrical guard ring, the distance between the drain of the first electrical transistor and the second electrical guard ring is increased, thereby increasing the semiconductor The resistance between the parasitic bicarrier junction transistor emitter and the ground base in the electrostatic discharge protection device reduces the leakage current from the drain to the ground through the element substrate, thereby improving the electrostatic discharge protection of the semiconductor electrostatic discharge protection device ability.
在本发明的另一实施例之中,半导体静电放电保护装置至少包含:形成于元件基底之中的多个第一电性晶体管、围绕第一电性晶体管的第二电性保护环以及被该些个第一电性晶体管围绕的阱接触区。通过特定的布线方式,来增加第一电性晶体管的漏极和阱接触区之间的距离,进而增加半导体静电放电保护装置中寄生的双载流子接面晶体管射极与接地基极之间的阻值,减少漏电流由漏极通过阱接触区传导至地面,进而增进半导体静电放电保护装置的静电放电保护能力。In another embodiment of the present invention, the semiconductor electrostatic discharge protection device at least includes: a plurality of first electrical transistors formed in the element substrate, a second electrical protection ring surrounding the first electrical transistors, and a second electrical protection ring surrounded by the first electrical transistors. A well contact region surrounded by transistors of the first electrical type. Through a specific wiring method, the distance between the drain and the well contact region of the first electrical transistor is increased, thereby increasing the parasitic bi-carrier junction transistor emitter and the ground base in the semiconductor electrostatic discharge protection device The resistance value can reduce the leakage current from the drain to the ground through the well contact area, thereby improving the electrostatic discharge protection capability of the semiconductor electrostatic discharge protection device.
附图说明Description of drawings
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举数个较佳实施例,并配合所附附图,作详细说明如下:In order to make the above-mentioned and other objects, features and advantages of the present invention more comprehensible, several preferred embodiments are specifically cited below, and in conjunction with the accompanying drawings, the detailed description is as follows:
图1A是根据本发明的一实施例所绘示的半导体静电放电保护装置的结构俯视示意图;FIG. 1A is a schematic top view of a semiconductor electrostatic discharge protection device according to an embodiment of the present invention;
图1B是延着图1A的切线S1所绘示的半导体静电放电保护装置的部分结构剖面示意图;1B is a schematic cross-sectional view of a partial structure of the semiconductor electrostatic discharge protection device shown along the tangent line S1 of FIG. 1A;
图2A是根据本发明的另一实施例所绘示的半导体静电放电保护装置的结构俯视示意图;2A is a schematic top view of a semiconductor electrostatic discharge protection device according to another embodiment of the present invention;
图2B是延着图2A的切线S2所绘示的半导体静电放电保护装置的部分结构剖面示意图;2B is a schematic cross-sectional view of a partial structure of the semiconductor electrostatic discharge protection device shown along the tangent line S2 of FIG. 2A;
图3A是根据本发明的又一实施例所绘示的半导体静电放电保护装置的结构俯视示意图;3A is a schematic top view of a semiconductor electrostatic discharge protection device according to another embodiment of the present invention;
图3B是延着图3A的切线S3所绘示的半导体静电放电保护装置的部分结构剖面示意图;3B is a schematic cross-sectional view of a partial structure of the semiconductor electrostatic discharge protection device shown along the tangent line S3 of FIG. 3A;
图4A是根据本发明的再一实施例所绘示的半导体静电放电保护装置的结构俯视示意图;4A is a schematic top view of a semiconductor electrostatic discharge protection device according to yet another embodiment of the present invention;
图4B是延着图4A的切线S4所绘示的半导体静电放电保护装置的部分结构剖面示意图;4B is a schematic cross-sectional view of a partial structure of the semiconductor electrostatic discharge protection device shown along the tangent line S4 of FIG. 4A;
图5A是根据本发明的又另一实施例所绘示的半导体静电放电保护装置的结构俯视示意图;5A is a schematic top view of a semiconductor electrostatic discharge protection device according to yet another embodiment of the present invention;
图5B是延着图5A的切线S5所绘示的半导体静电放电保护装置的部分结构剖面示意图。FIG. 5B is a schematic cross-sectional view of a partial structure of the semiconductor ESD protection device along the tangent line S5 in FIG. 5A .
主要装置符号说明Explanation of main device symbols
100:半导体静电放电保护装置100: Semiconductor electrostatic discharge protection device
101:基底 101a:基底表面101: Substrate 101a: Substrate Surface
102:保护环102: Protection ring
103:金属-氧化物-半导体晶体管103: Metal-Oxide-Semiconductor Transistors
103a:栅极结构 103b:漏极103a: Gate structure 103b: Drain
103c:源极 104:P型阱区103c: source 104: P-type well region
105:浅沟隔离结构 106:半导体间隔区105: Shallow trench isolation structure 106: Semiconductor spacer
107:基底接触区 108a:导电接触107: Substrate contact area 108a: Conductive contact
108b:导电接触 109:导电接触108b: Conductive contact 109: Conductive contact
110:输入/输出垫 111:P型高浓度掺杂区110: Input/output pad 111: P-type high-concentration doped region
200:半导体静电放电保护装置200: Semiconductor electrostatic discharge protection device
206:半导体间隔区 207:基底接触区206: Semiconductor spacer region 207: Substrate contact region
300:半导体静电放电保护装置300: Semiconductor electrostatic discharge protection device
306:半导体间隔区 307:基底接触区306: Semiconductor spacer 307: Substrate contact area
400:半导体静电放电保护装置400: Semiconductor electrostatic discharge protection device
403:金属-氧化物-半导体晶体管403: Metal-Oxide-Semiconductor Transistors
403a:栅极 403b:共同漏极403a: gate 403b: common drain
403c:源极 407:基底接触区403c: Source 407: Substrate contact area
500:半导体静电放电保护装置500: Semiconductor electrostatic discharge protection device
503:金属-氧化物-半导体晶体管503: Metal-Oxide-Semiconductor Transistors
503a:栅极 503c:漏极503a: Gate 503c: Drain
503b:共同源极 507:基底接触区503b: common source 507: substrate contact area
512:N型保护环 S1:切线512: N-type protective ring S1: Tangent
S2:切线 S3:切线S2: Tangent S3: Tangent
S4:切线 S5:切线S4: Tangent S5: Tangent
具体实施方式Detailed ways
本发明是在提供一种半导体静电放电保护装置,可减少漏电流通过元件基底传导至地面,增进半导体静电放电保护装置的静电放电保护能力。为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举数个较佳实施例,并配合所附附图,作详细说明如下。The invention provides a semiconductor electrostatic discharge protection device, which can reduce the leakage current from being conducted to the ground through the element substrate, and improve the electrostatic discharge protection capability of the semiconductor electrostatic discharge protection device. In order to make the above and other objects, features and advantages of the present invention more comprehensible, several preferred embodiments will be described in detail below together with the accompanying drawings.
请参照图1A和1B,图1A是根据本发明的一实施例所绘示的半导体静电放电保护装置100的结构俯视示意图。图1B是延着图1A的切线S1所绘示的半导体静电放电保护装置100的部分结构剖面示意图。其中,半导体静电放电保护装置100至少包含一个形成于半导体基底101之中,且被第二电性保护环102所围绕的第一电性金属-氧化物-半导体(Metal-Oxide-Semiconductor,MOS)晶体管103。Please refer to FIGS. 1A and 1B . FIG. 1A is a schematic top view of a semiconductor ESD protection device 100 according to an embodiment of the present invention. FIG. 1B is a schematic cross-sectional view of a partial structure of the semiconductor ESD protection device 100 along the tangent line S1 of FIG. 1A . Among them, the semiconductor electrostatic discharge protection device 100 includes at least one first electrical metal-oxide-semiconductor (Metal-Oxide-Semiconductor, MOS) formed in the semiconductor substrate 101 and surrounded by the second electrical protection ring 102 Transistor 103.
在本发明的一些实施例之中,为了承受足够高的静电放电电流,半导体静电放电保护装置100一般包含多个金属-氧化物-半导体晶体管103单元。而为了节省所占用的布局面积,在集成电路布局上,一般将半导体静电放电保护装置100设计成,由多个指状的金属-氧化物-半导体晶体管103所构成的多指状(multi-finger)结构(如图1A所绘示)。In some embodiments of the present invention, in order to withstand a sufficiently high ESD current, the semiconductor ESD protection device 100 generally includes a plurality of metal-oxide-semiconductor transistors 103 units. In order to save the occupied layout area, in the integrated circuit layout, the semiconductor ESD protection device 100 is generally designed as a multi-finger (multi-finger) composed of a plurality of finger-shaped metal-oxide-semiconductor transistors 103. ) structure (as shown in Figure 1A).
在本发明的一些实施例之中,第一电性可为N型电性,第二电性为P型电性。例如在本实施例之中,每一个金属-氧化物-半导体晶体管103,都具有一栅极结构103a、一漏极103b以及一源极103c。其中,栅极结构103a包含,位于P型阱区104之上的栅介电层103a1以及栅电极103a2。漏极103b为一高掺杂N型掺杂区(以N+表示),由基底101表面101a延伸进入P型阱区104之中,且邻接栅极结构103a的一侧。源极103c也是一高掺杂N型掺杂区,由基底101表面101a延伸进入P型阱区104之中,且邻接栅极结构103a的另一侧。保护环102,为由基底101表面101a延伸进入P型阱区104的一高掺杂P型掺杂区(以P+表示),用来围绕这些N型金属-氧化物-半导体晶体管103。In some embodiments of the present invention, the first electrical property may be an N-type electrical property, and the second electrical property may be a P-type electrical property. For example, in this embodiment, each metal-oxide-semiconductor transistor 103 has a gate structure 103a, a drain 103b, and a source 103c. Wherein, the gate structure 103 a includes a gate dielectric layer 103 a 1 and a gate electrode 103 a 2 located on the P-type well region 104 . The drain 103b is a highly doped N-type doped region (indicated by N+), extending from the surface 101a of the substrate 101 into the P-type well region 104 and adjoining one side of the gate structure 103a. The source 103c is also a highly doped N-type doped region, extending from the surface 101a of the substrate 101 into the P-type well region 104, and adjacent to the other side of the gate structure 103a. The guard ring 102 is a highly doped P-type doped region (indicated by P+) extending from the surface 101 a of the substrate 101 into the P-type well region 104 , and is used to surround the N-type metal-oxide-semiconductor transistors 103 .
但值得注意的是,在本发明的另一些实施例之中,第一电性为P型电性,相对的第二电性则为N型电性。也就是说,在以下的实施例之中,半导体静电放电保护装置100各个区域的电性并非特定。其会随着金属-氧化物-半导体晶体管103和保护环102所选定的实际电性,而作相对性地改变。However, it should be noted that, in other embodiments of the present invention, the first electrical property is a P-type electrical property, and the second electrical property is an N-type electrical property. That is to say, in the following embodiments, the electrical properties of each region of the semiconductor ESD protection device 100 are not specified. It varies relatively with the actual electrical properties selected for the metal-oxide-semiconductor transistor 103 and the guard ring 102 .
另外,金属-氧化物-半导体晶体管103与第二电性保护环102之间,还包含一浅沟隔离结构105以及一半导体间隔区106,并且围绕金属-氧化物-半导体晶体管103。在本发明的一些实施例之中,浅沟隔离结构105,是由基底101表面101a延伸进入基底101之中的介电材质结构。半导体间隔区106,则是位于浅沟隔离结构105的下方。在本发明的一些实施例之中,半导体间隔区106,则可位于浅沟隔离结构105与保护环102之间。而在本实施例之中,半导体间隔区106是一N型掺杂区,由浅沟隔离结构105的下缘向下延伸于基底101之中,并围绕金属-氧化物-半导体晶体管103。In addition, between the metal-oxide-semiconductor transistor 103 and the second electrical protection ring 102 , there is also a shallow trench isolation structure 105 and a semiconductor spacer 106 surrounding the metal-oxide-semiconductor transistor 103 . In some embodiments of the present invention, the shallow trench isolation structure 105 is a dielectric material structure extending from the surface 101 a of the substrate 101 into the substrate 101 . The semiconductor spacer 106 is located under the shallow trench isolation structure 105 . In some embodiments of the present invention, the semiconductor spacer region 106 may be located between the shallow trench isolation structure 105 and the guard ring 102 . In this embodiment, the semiconductor spacer region 106 is an N-type doped region extending downwardly from the lower edge of the shallow trench isolation structure 105 into the substrate 101 and surrounding the metal-oxide-semiconductor transistor 103 .
在本发明的一些实施例中,源极103c与保护环102,分别通过导电接触108a和109共同接地,且漏极103b通过导电接触108b与一输入/输出垫110电连接,以提供输入/输出垫110静电放电保护。由于,每一金属-氧化物-半导体晶体管103,是经由包含邻接于P型阱区104和第二电性保护环102的一部分基底101的基底接触区107,与保护环102电性联结。因此,会在源极103c、漏极103b、第二电性保护环102三者之间,形成一寄生的双载流子接面(NPN接面)晶体管。In some embodiments of the present invention, the source 103c and the guard ring 102 are commonly grounded through the conductive contacts 108a and 109, respectively, and the drain 103b is electrically connected to an input/output pad 110 through the conductive contact 108b to provide input/output Pad 110 for electrostatic discharge protection. Because each metal-oxide-semiconductor transistor 103 is electrically connected to the guard ring 102 through the substrate contact region 107 including a part of the substrate 101 adjacent to the P-type well region 104 and the second electrical guard ring 102 . Therefore, a parasitic double-carrier junction (NPN junction) transistor is formed between the source 103 c , the drain 103 b , and the second electrical guard ring 102 .
而浅沟隔离结构105和半导体间隔区106的设置,恰可增加漏极103b与保护环102之间的距离(即基底接触区107的长度),进而增加寄生双载流子接面晶体管的射极与接地基极之间的阻值,减少漏电流由漏极103b通过基底接触区107传导至地面,以增进半导体静电放电保护装置100的静电放电保护程度。The arrangement of the shallow trench isolation structure 105 and the semiconductor spacer region 106 can just increase the distance between the drain electrode 103b and the guard ring 102 (that is, the length of the substrate contact region 107), thereby increasing the emitter of the parasitic bicarrier junction transistor. The resistance between the electrode and the grounded base reduces the conduction of leakage current from the drain 103 b to the ground through the base contact region 107 , so as to improve the ESD protection degree of the semiconductor ESD protection device 100 .
另外,为了增进寄生双载流子接面晶体管的射极与接地基极之间的阻值,在本发明的一些实施例中,还可以选择性地在漏极103b下方的P型阱区104之中,设置一P型高浓度掺杂区111,使其具有高于P型阱区104的掺杂浓度。In addition, in order to increase the resistance between the emitter and the grounded base of the parasitic bicarrier junction transistor, in some embodiments of the present invention, the P-type well region 104 below the drain 103b can also be selectively Among them, a P-type high-concentration doped region 111 is provided to have a higher doping concentration than the P-type well region 104 .
值得注意的是,半导体间隔区106的电性,并不限定为N型掺杂区。例如,请参照图2A和2B,图2A是根据本发明的另一实施例所绘示的半导体静电放电保护装置200的结构俯视示意图。图2B是延着图2A的切线S2所绘示的半导体静电放电保护装置200的部分结构剖面示意图。其中,半导体静电放电保护装置200与图1A和1B所绘示的半导体静电放电保护装置100结构大至相同,差别仅在于,半导体间隔区206是掺杂浓度小于P型阱区104的一P型轻掺杂区。It should be noted that the electrical property of the semiconductor spacer region 106 is not limited to an N-type doped region. For example, please refer to FIGS. 2A and 2B . FIG. 2A is a schematic top view of a semiconductor ESD protection device 200 according to another embodiment of the present invention. FIG. 2B is a schematic cross-sectional view of a partial structure of the semiconductor ESD protection device 200 along the tangent line S2 of FIG. 2A . Wherein, the structure of the semiconductor ESD protection device 200 is substantially the same as that of the semiconductor ESD protection device 100 shown in FIGS. 1A and 1B . lightly doped region.
另外,请再参照图3A和3B,图3A是根据本发明的又一实施例所绘示的半导体静电放电保护装置300的结构俯视示意图。图3B是延着图3A的切线S3所绘示的半导体静电放电保护装置300的部分结构剖面示意图。其中,半导体静电放电保护装置300与图1A和1B所绘示的半导体静电放电保护装置100结构也大至相同,差别仅在于,半导体间隔区306是一无掺杂区。In addition, please refer to FIGS. 3A and 3B again. FIG. 3A is a schematic top view of a semiconductor ESD protection device 300 according to another embodiment of the present invention. FIG. 3B is a schematic cross-sectional view of a partial structure of the semiconductor ESD protection device 300 along the tangent line S3 in FIG. 3A . The structure of the semiconductor ESD protection device 300 is substantially the same as that of the semiconductor ESD protection device 100 shown in FIGS. 1A and 1B , the only difference being that the semiconductor spacer region 306 is an undoped region.
而无论是采用P型轻掺杂的半导体间隔区306或是无掺杂的半导体间隔区206,都可以达到增加漏极103b与保护环102之间的距离(即基底接触区207或307的长度),进而增加寄生双载流子接面晶体管的射极与接地基极之间的阻值,减少漏电流由漏极103b通过基底接触区207或307并传导至地面,以增进半导体静电放电保护装置200或300的静电放电保护程度。Regardless of whether the P-type lightly doped semiconductor spacer 306 or the non-doped semiconductor spacer 206 is used, the distance between the drain 103b and the guard ring 102 (that is, the length of the base contact region 207 or 307 can be increased) ), and then increase the resistance between the emitter and the grounded base of the parasitic bicarrier junction transistor, reduce the leakage current from the drain 103b through the substrate contact region 207 or 307 and conduct to the ground, so as to improve the semiconductor electrostatic discharge protection The degree of electrostatic discharge protection of the device 200 or 300 .
另外,也可以通过改变半导体静电放电保护装置的布线方式,来达到增加寄生双载流子接面晶体管的射极与接地基极间的阻值的效果。请参照图4A和4B,图4A是根据本发明的又一实施例所绘示的半导体静电放电保护装置300的结构俯视示意图。图4B是延着图4A的切线S4所绘示的半导体静电放电保护装置400的部分结构剖面示意图。其中,半导体静电放电保护装置400,与图3A和3B所绘示的半导体静电放电保护装置300结构大至相同。差别仅在于,半导体静电放电保护装置400的金属-氧化物-半导体晶体管403的布局方式。In addition, the effect of increasing the resistance between the emitter and the grounded base of the parasitic double-carrier junction transistor can also be achieved by changing the wiring method of the semiconductor electrostatic discharge protection device. Please refer to FIGS. 4A and 4B . FIG. 4A is a schematic top view of a semiconductor ESD protection device 300 according to another embodiment of the present invention. FIG. 4B is a schematic cross-sectional view of a partial structure of the semiconductor ESD protection device 400 along the tangent line S4 of FIG. 4A . Wherein, the structure of the semiconductor ESD protection device 400 is substantially the same as that of the semiconductor ESD protection device 300 shown in FIGS. 3A and 3B . The only difference lies in the layout of the metal-oxide-semiconductor transistor 403 of the semiconductor ESD protection device 400 .
在本发明的一些实施例之中,半导体静电放电保护装置400至少包含多个具有一共同漏极403b的N型金属-氧化物-半导体晶体管403,且这些第一电性金属-氧化物-半导体晶体管403的栅极403a和源极403构成一环状结构,围绕此一共同漏极403b。在本实施例之中,四个第一电性金属-氧化物-半导体晶体管403的栅极403a和源极403构成一环状结构,围绕此一共同漏极403b(参见图4A)。由此,可使共同漏极403b位于第一电性金属-氧化物-半导体晶体管403远离保护环102的一侧,达到增加漏极403b与保护环102之间的距离(即基底接触区407的长度),增加寄生双载流子接面晶体管射极与接地基极的阻值的效果。进而减少漏电流由漏极103b通过基底接触区407并传导至地面,以增进半导体静电放电保护装置400的静电放电保护程度。In some embodiments of the present invention, the semiconductor electrostatic discharge protection device 400 includes at least a plurality of N-type metal-oxide-semiconductor transistors 403 with a common drain 403b, and these metal-oxide-semiconductor transistors of the first electrical type The gate 403a and the source 403 of the transistor 403 form a ring structure surrounding the common drain 403b. In this embodiment, the gates 403 a and sources 403 of the four first electrical type metal-oxide-semiconductor transistors 403 form a ring structure, surrounding the common drain 403 b (see FIG. 4A ). Thus, the common drain 403b can be located on the side of the first electrical type metal-oxide-semiconductor transistor 403 away from the guard ring 102, so as to increase the distance between the drain 403b and the guard ring 102 (that is, the distance between the base contact region 407 length), increasing the resistance of the parasitic bicarrier junction transistor emitter and grounded base. Furthermore, the leakage current is reduced from the drain 103b through the substrate contact region 407 and then conducted to the ground, so as to improve the ESD protection degree of the semiconductor ESD protection device 400 .
请再参照图5A和5B,图5A是根据本发明的又再一实施例所绘示的半导体静电放电保护装置500的结构俯视示意图。图5B是延着图5A的切线S5所绘示的半导体静电放电保护装置500的部分结构剖面示意图。其中,半导体静电放电保护装置500与图4A和4B所绘示的半导体静电放电保护装置400类似,差别仅在于金属-氧化物-半导体晶体管503的布局有所不同。Please refer to FIGS. 5A and 5B again. FIG. 5A is a schematic top view of a semiconductor ESD protection device 500 according to yet another embodiment of the present invention. FIG. 5B is a schematic cross-sectional view of a partial structure of the semiconductor ESD protection device 500 along the tangent line S5 in FIG. 5A . Wherein, the semiconductor ESD protection device 500 is similar to the semiconductor ESD protection device 400 shown in FIGS. 4A and 4B , the only difference lies in the layout of the metal-oxide-semiconductor transistor 503 .
在本发明的一些实施例之中,半导体静电放电保护装置500至少包含一阱接触区507,以及多个N型金属-氧化物-半导体晶体管503。其中,阱接触区507位于P型阱区104中的阱接触区507,且一端接地。而多个N型金属-氧化物-半导体晶体管503具有一环状共同源极503c。详言之,在本实施例之中,四个第一电性金属-氧化物-半导体晶体管503,这些金属-氧化物-半导体晶体管503的栅极503a和漏极503c可构成一个环型结构,用来围绕此一环状共同源极503b。而此一环状共同源极503b,又围绕接地的阱接触区507(参见图4A)。由此,可使每一个金属-氧化物-半导体晶体管503的漏极503c皆远离阱接触区507,达到增加漏极503c与阱接触区507之间的距离,增加寄生双载流子接面晶体管射极与接地基极的阻值的效果。进而减少漏电流由漏极503c通过阱接触区507并传导至地面,以增进半导体静电放电保护装置500的静电放电保护程度。In some embodiments of the present invention, the semiconductor ESD protection device 500 includes at least a well contact region 507 and a plurality of N-type metal-oxide-semiconductor transistors 503 . Wherein, the well contact region 507 is located in the well contact region 507 in the P-type well region 104 , and one end thereof is grounded. The plurality of NMOS transistors 503 have a ring-shaped common source 503c. In detail, in this embodiment, four metal-oxide-semiconductor transistors 503 of the first electrical type, the gate 503a and the drain 503c of these metal-oxide-semiconductor transistors 503 can form a ring structure, used to surround the ring-shaped common source 503b. And this annular common source 503b surrounds the grounded well contact region 507 (see FIG. 4A ). Thus, the drain 503c of each metal-oxide-semiconductor transistor 503 can be kept away from the well contact region 507, so as to increase the distance between the drain 503c and the well contact region 507, and increase the parasitic double-carrier junction transistor The effect of the resistance of the emitter and the ground base. Furthermore, the leakage current is reduced from the drain 503 c to the ground through the well contact region 507 , so as to improve the ESD protection degree of the semiconductor ESD protection device 500 .
另外,为了避免产生元件闭锁(latch-up)效应,在本实施例中,较佳会在保护环502和金属-氧化物-半导体晶体管503之间,设置一N型保护环512,并且围绕第一电性金属-氧化物-半导体晶体管503。另外,N型保护环512,同时也可做为半导体间隔区,用来增加漏极503c与接地的保护环102之间的距离,并增加寄生双载流子接面晶体管的射极与接地基极之间的阻值,以增进半导体静电放电保护装置500的静电放电保护程度。In addition, in order to avoid the element latch-up effect, in this embodiment, it is preferable to set an N-type guard ring 512 between the guard ring 502 and the metal-oxide-semiconductor transistor 503, and surround the first An electrical metal-oxide-semiconductor transistor 503 . In addition, the N-type guard ring 512 can also be used as a semiconductor spacer to increase the distance between the drain 503c and the grounded guard ring 102, and increase the distance between the emitter and the ground base of the parasitic bicarrier junction transistor. The resistance value between the poles is used to improve the ESD protection degree of the semiconductor ESD protection device 500 .
根据上述实施例,本发明的是提供一种半导体静电放电保护装置,在本发明的一实施例之中,半导体静电放电保护装置至少包含:形成于元件基底之中的一第一电性晶体管、围绕第一电性晶体管的一第二电性保护环以及位于第一电性晶体管和第二电性保护环之间的半导体间隔区。其中,半导体间隔区为无掺杂区、第一电性掺杂区或掺杂浓度小于第二电性阱区的第二电性掺杂区。通过在第第一电性晶体管和第二电性保护环之间,设置半导体间隔区的方式,以增加第一电性晶体管的漏极与第二电性保护环之间的距离,进而增加半导体静电放电保护装置中寄生的双载流子接面晶体管射极与接地基极之间的阻值,减少漏电流由漏极通过元件基底传导至地面,进而增进半导体静电放电保护装置的静电放电保护能力。According to the above-mentioned embodiments, the present invention provides a semiconductor electrostatic discharge protection device. In one embodiment of the present invention, the semiconductor electrostatic discharge protection device at least includes: a first electrical transistor formed in the element substrate, A second electrical guard ring surrounding the first electrical transistor and a semiconductor spacer between the first electrical transistor and the second electrical guard ring. Wherein, the semiconductor spacer region is an undoped region, a doped region of the first electrical type or a doped region of the second electrical type whose doping concentration is lower than that of the well area of the second electrical type. By setting a semiconductor spacer between the first electrical transistor and the second electrical guard ring, the distance between the drain of the first electrical transistor and the second electrical guard ring is increased, thereby increasing the semiconductor The resistance between the parasitic bicarrier junction transistor emitter and the ground base in the electrostatic discharge protection device reduces the leakage current from the drain to the ground through the element substrate, thereby improving the electrostatic discharge protection of the semiconductor electrostatic discharge protection device ability.
在本发明的另一实施例之中,半导体静电放电保护装置至少包含:形成于元件基底之中的多个第一电性晶体管、围绕第一电性晶体管的第二电性保护环以及被该些个第一电性晶体管围绕的阱接触区。通过特定的布线方式,来增加第一电性晶体管的漏极和阱接触区之间的距离,进而增加半导体静电放电保护装置中寄生的双载流子接面晶体管射极与接地基极之间的阻值,减少漏电流由漏极通过阱接触区传导至地面,进而增进半导体静电放电保护装置的静电放电保护能力。In another embodiment of the present invention, the semiconductor electrostatic discharge protection device at least includes: a plurality of first electrical transistors formed in the element substrate, a second electrical protection ring surrounding the first electrical transistors, and a second electrical protection ring surrounded by the first electrical transistors. A well contact region surrounded by transistors of the first electrical type. Through a specific wiring method, the distance between the drain and the well contact region of the first electrical transistor is increased, thereby increasing the parasitic bi-carrier junction transistor emitter and the ground base in the semiconductor electrostatic discharge protection device The resistance value can reduce the leakage current from the drain to the ground through the well contact area, thereby improving the electrostatic discharge protection capability of the semiconductor electrostatic discharge protection device.
虽然已结合以上较佳实施例公开了本发明,然而其并非用以限定本发明。任何该领域中熟悉此技术者,在不脱离本发明的精神和范围内,可作些许的更动与润饰。因此本发明的保护范围应以附上的权利要求所界定的为准。Although the present invention has been disclosed in conjunction with the above preferred embodiments, they are not intended to limit the present invention. Anyone skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the appended claims.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310628550.3A CN104681542A (en) | 2013-11-29 | 2013-11-29 | Semiconductor electrostatic discharge protection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310628550.3A CN104681542A (en) | 2013-11-29 | 2013-11-29 | Semiconductor electrostatic discharge protection device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104681542A true CN104681542A (en) | 2015-06-03 |
Family
ID=53316398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310628550.3A Pending CN104681542A (en) | 2013-11-29 | 2013-11-29 | Semiconductor electrostatic discharge protection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104681542A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105304625A (en) * | 2015-10-30 | 2016-02-03 | 北京时代民芯科技有限公司 | SRAM type FPGA double-array-hole electrostatic discharge protection layout structure for aerospace |
CN106328648A (en) * | 2015-07-03 | 2017-01-11 | 台湾类比科技股份有限公司 | Integrated circuit and output buffer with self electrostatic protection |
CN111326568A (en) * | 2020-03-10 | 2020-06-23 | 苏州晶界半导体有限公司 | Nitride device with guard ring structure |
CN113097181A (en) * | 2019-12-23 | 2021-07-09 | 南亚科技股份有限公司 | Semiconductor structure |
-
2013
- 2013-11-29 CN CN201310628550.3A patent/CN104681542A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106328648A (en) * | 2015-07-03 | 2017-01-11 | 台湾类比科技股份有限公司 | Integrated circuit and output buffer with self electrostatic protection |
CN105304625A (en) * | 2015-10-30 | 2016-02-03 | 北京时代民芯科技有限公司 | SRAM type FPGA double-array-hole electrostatic discharge protection layout structure for aerospace |
CN113097181A (en) * | 2019-12-23 | 2021-07-09 | 南亚科技股份有限公司 | Semiconductor structure |
CN113097181B (en) * | 2019-12-23 | 2024-03-22 | 南亚科技股份有限公司 | Semiconductor structure |
CN111326568A (en) * | 2020-03-10 | 2020-06-23 | 苏州晶界半导体有限公司 | Nitride device with guard ring structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI536535B (en) | Electrostatic discharge protection device and electrostatic discharge protection method | |
CN103378092B (en) | Bidirectional ESD (ESD) protection device | |
US8912576B2 (en) | Structures and techniques for using semiconductor body to construct bipolar junction transistors | |
US10497697B2 (en) | Low capacitance transient voltage suppressor | |
US20140133056A1 (en) | Structures and techniques for using mesh-structure diodes for electro-static discharge (esd) protection | |
TWI664709B (en) | Electrostatic discharge protection semiconductor device | |
US9640527B2 (en) | Electrostatic discharge protection device with parasitic bipolar junction transistors | |
US9673189B2 (en) | ESD unit | |
US20150129977A1 (en) | Semiconductor electrostatic discharge protection apparatus | |
TWI704670B (en) | Semiconductor device for electrostatic discharge protection | |
TW201633492A (en) | Semiconductor electrostatic discharge protection component | |
TWI596737B (en) | Electrostatic discharge protection device | |
US8598625B2 (en) | ESD protection device with tunable design windows | |
US8859361B1 (en) | Symmetric blocking transient voltage suppressor (TVS) using bipolar NPN and PNP transistor base snatch | |
CN104681542A (en) | Semiconductor electrostatic discharge protection device | |
CN103943612B (en) | Electrostatic Discharge Protection Device | |
TWI697092B (en) | Semiconductor electrostatic discharge protection circuit, esd protection semiconductor device, and layout structure of esd protection semiconductor device | |
US8723263B2 (en) | Electrostatic discharge protection device | |
CN104299966B (en) | Electrostatic discharge protection structure | |
TWI791325B (en) | Electrostatic discharge protection apparatus and its operating method | |
TWI728090B (en) | Semiconductor structure | |
TWI538160B (en) | Electrostatic discharge protection device and applications thereof | |
CN110690210B (en) | Grounded-gate N-type metal oxide semiconductor transistor | |
CN109309128B (en) | A gg-NMOS device based on FDSOI | |
CN110600465B (en) | Semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150603 |