CN104677778A - Device and method for evaluating temporarily freezing plugging properties of coalbed methane in process of fracturing - Google Patents
Device and method for evaluating temporarily freezing plugging properties of coalbed methane in process of fracturing Download PDFInfo
- Publication number
- CN104677778A CN104677778A CN201410804956.7A CN201410804956A CN104677778A CN 104677778 A CN104677778 A CN 104677778A CN 201410804956 A CN201410804956 A CN 201410804956A CN 104677778 A CN104677778 A CN 104677778A
- Authority
- CN
- China
- Prior art keywords
- coal core
- coal
- core
- gas
- fracturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000008014 freezing Effects 0.000 title claims abstract description 15
- 238000007710 freezing Methods 0.000 title claims abstract description 15
- 230000008569 process Effects 0.000 title claims abstract description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title abstract description 28
- 239000003245 coal Substances 0.000 claims abstract description 105
- 239000007789 gas Substances 0.000 claims abstract description 58
- 238000007789 sealing Methods 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 42
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 26
- 230000035699 permeability Effects 0.000 claims description 25
- 239000007788 liquid Substances 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 14
- 239000011435 rock Substances 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 8
- 150000004677 hydrates Chemical class 0.000 claims description 7
- 239000012153 distilled water Substances 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 6
- 239000008398 formation water Substances 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 230000035882 stress Effects 0.000 claims description 4
- 230000008646 thermal stress Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims 1
- 238000005065 mining Methods 0.000 claims 1
- 230000002265 prevention Effects 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 230000007246 mechanism Effects 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 4
- 238000011161 development Methods 0.000 abstract description 2
- 238000004090 dissolution Methods 0.000 abstract description 2
- 238000001914 filtration Methods 0.000 abstract description 2
- 239000003345 natural gas Substances 0.000 abstract description 2
- 239000003209 petroleum derivative Substances 0.000 abstract description 2
- 238000011160 research Methods 0.000 abstract description 2
- 238000004364 calculation method Methods 0.000 description 5
- 238000005755 formation reaction Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Examining Or Testing Airtightness (AREA)
Abstract
本发明涉及石油天然气开发领域,针对低温气体压裂/辅助压裂煤层气过程中的冰冻暂堵降滤失机理缺乏室内研究手段的问题,提供了一种低温气体压裂/辅助压裂煤层气过程中冰冻暂堵性能评价装置及方法。该实验装置包括增压泵、中间容器组、高压小容器瓶、岩心夹持器、真空泵、恒温箱、压力传感器、温度传感器、数据采集箱和控制电脑等。通过本发明装置和方法,可模拟低温环境下结冰或形成的水合物对煤层的封堵能力,以及随着环境温度升高后,结冰或水合物溶解对煤层封堵能力的影响,对于评价低温气体压裂/辅助压裂煤层气过程中的冰冻暂堵将漏失性能具有重要意义。
The invention relates to the field of petroleum and natural gas development, and provides a low-temperature gas fracturing/auxiliary fracturing coalbed methane solution for the lack of indoor research methods for the mechanism of freezing temporary plugging and filtration loss reduction in the process of low-temperature gas fracturing/assistant fracturing coalbed methane A device and method for evaluating freezing temporary plugging performance during the process. The experimental device includes a booster pump, an intermediate container group, a small high-pressure container bottle, a core holder, a vacuum pump, a constant temperature box, a pressure sensor, a temperature sensor, a data acquisition box, and a control computer. Through the device and method of the present invention, it is possible to simulate the sealing capacity of coal seam caused by icing or hydrate formation in a low-temperature environment, and the influence of icing or hydrate dissolution on the sealing capacity of coal seam as the ambient temperature rises. It is of great significance to evaluate the performance of frozen temporary plugging loss in the process of low temperature gas fracturing/assisted fracturing of coalbed methane.
Description
技术领域technical field
本发明涉及石油天然气开发领域,特别涉及一种低温气体压裂/辅助压裂煤层气过程中冰冻暂堵性能评价装置及方法。The invention relates to the field of petroleum and natural gas development, in particular to a freezing temporary plugging performance evaluation device and method in the process of low-temperature gas fracturing/assisted fracturing of coalbed methane.
背景技术Background technique
水力压裂是煤层气增产的主要措施。目前常用活性水压裂存在压裂液滤失严重、返排率低、压裂裂缝短而复杂等问题,采用新型压裂液和有效暂堵技术是改善压裂效果的关键。利用液氮/液态CO2压裂/辅助压裂煤层气,具有增能助排、降滤失、对地层伤害小等优点,上世纪九十年代,在北美页岩气新井压裂和煤层气老井重复压裂中,曾选用液氮作为压裂液;近年来,我国液氮/液态CO2压裂/辅助压裂工艺也从石油行业成功应用到安徽淮北、河南焦作、华北油田和陕西韩城等煤层气压裂中。这些现场实践都取得了不同程度的增产效果。对于液氮/液态CO2压裂/辅助压裂煤层气,人们更多地还是关注其常规机理,而对于液氮/液态CO2等低温气体注入煤层后产生的冷冲击作用以及可能实现的冰冻暂堵降滤失等机理提及较少,缺乏理论认识、室内评价和现场验证。Hydraulic fracturing is the main measure to increase the production of coalbed methane. Currently commonly used active water fracturing has problems such as severe fluid loss, low flowback rate, short and complex fractures, etc. The use of new fracturing fluid and effective temporary plugging technology is the key to improving the fracturing effect. The use of liquid nitrogen/liquid CO 2 fracturing/assisted fracturing of coalbed methane has the advantages of increasing energy and drainage, reducing fluid loss, and less damage to formations. In the 1990s, fracturing of new shale gas wells and coalbed methane In the repeated fracturing of old wells, liquid nitrogen was used as the fracturing fluid; in recent years, China’s liquid nitrogen/liquid CO 2 fracturing/assisted fracturing technology has also been successfully applied from the petroleum industry to Anhui Huaibei, Henan Jiaozuo, Huabei Oilfield and Shaanxi CBM fracturing in Hancheng etc. These on-site practices have achieved varying degrees of production-increasing effects. For liquid nitrogen/liquid CO 2 fracturing/assisted fracturing coalbed methane, people still pay more attention to its conventional mechanism, but for the cold shock effect and possible freezing of liquid nitrogen/liquid CO 2 and other low-temperature gases injected into coal seams Mechanisms such as temporary plugging and fluid loss reduction are seldom mentioned, and there is a lack of theoretical understanding, indoor evaluation and field verification.
压裂过程中,注入液氮/液态CO2对煤层产生冷冲击,可以初步改善近井煤层的裂缝系统和岩石力学性质,同时为后续冰冻暂堵降低压裂液漏失提供一个孔隙水结冰和维持一定热力学稳定时间的低温环境。煤岩具有较小的导热系数和敏感的热胀冷缩特性,当近井煤层短时间内与大量低温气体接触时,会导致煤岩基质剧烈收缩,当产生的收缩应力超过煤岩的抗拉强度时,会在煤层内部形成许多热应力裂缝,致使煤岩强度降低,有利于压裂裂缝延伸至更深地层。而在冷冲击作用形成的低温环境下,煤层裂缝中的地层水/注入的活性水会结冰,或与注入的低温气体(如液态CO2)/原生甲烷形成气体水合物。地层水结冰或形成水合物都会堵塞煤层的高渗通道,起到降低压裂液漏失的作用。而随着煤层温度升高,形成的冰堵又会融化,不会对煤层造成伤害。During the fracturing process, the injection of liquid nitrogen/liquid CO 2 produces cold impact on the coal seam, which can initially improve the fracture system and rock mechanical properties of the coal seam near the wellbore, and at the same time provide a pore water freeze and A low temperature environment that maintains a certain thermodynamic stability time. Coal rock has a small thermal conductivity and sensitive thermal expansion and contraction characteristics. When the near-well coal seam is in contact with a large amount of low-temperature gas for a short period of time, it will cause the coal rock matrix to shrink violently. When the shrinkage stress exceeds the tensile stress of the coal rock When the strength is high, many thermal stress cracks will be formed inside the coal seam, resulting in a decrease in the strength of the coal rock, which is conducive to the extension of the fracturing fractures to deeper formations. In the low-temperature environment formed by cold shock, formation water/injected active water in coal seam fractures will freeze, or form gas hydrates with injected low-temperature gas (such as liquid CO 2 )/native methane. Freezing of formation water or formation of hydrates will block the high-permeability channels of the coal seam and reduce the loss of fracturing fluid. As the temperature of the coal seam rises, the ice block formed will melt again and will not cause damage to the coal seam.
发明内容Contents of the invention
本发明的目的就是针对低温气体压裂/辅助压裂煤层气过程中的冰冻暂堵降滤失机理缺乏室内研究手段的问题,提供一种评价煤层气压裂过程中冰冻暂堵性能的实验装置及方法。该实验装置主要由增压泵、中间容器组、高压小容器瓶、岩心夹持器、真空泵、恒温箱、压力传感器、温度传感器、数据采集箱、控制电脑等组成,如附图1。The purpose of the present invention is to provide an experimental device for evaluating the performance of freezing temporary plugging in the process of coalbed gas fracturing in view of the lack of indoor research means for the freezing temporary plugging and filtration loss reduction mechanism in the process of low-temperature gas fracturing/assisted fracturing coalbed methane and methods. The experimental device is mainly composed of a booster pump, an intermediate container group, a small high-pressure container bottle, a core holder, a vacuum pump, a constant temperature box, a pressure sensor, a temperature sensor, a data acquisition box, and a control computer, as shown in Figure 1.
实验步骤主要包括:(1)将煤心放入岩心夹持器,连接好设备、管线;(2)采用压降法气测煤心渗透率;(3)向煤心中通入气体和水,达到设定的含气、含水饱和度;(4)开启恒温箱降温至-20℃,待煤心中的水结冰或形成水合物(煤心孔隙中只存在气固两相);(5)再采用压降法气测煤心渗透率,评价冰冻封堵效果;(6)将恒温箱迅速加热至某一温度,记录岩心夹持器温度以及前端压降变化。The experimental steps mainly include: (1) put the coal core into the core holder, and connect the equipment and pipeline; (2) measure the permeability of the coal core by using the pressure drop method; (3) inject gas and water into the coal core, Reach the set gas and water saturation; (4) Turn on the thermostat and cool down to -20°C, and wait for the water in the coal core to freeze or form hydrate (only gas-solid two-phase exists in the pores of the coal core); (5) Then use the pressure drop method to measure the permeability of the coal core, and evaluate the effect of freezing and sealing; (6) quickly heat the thermostat to a certain temperature, and record the temperature of the core holder and the change of the pressure drop at the front end.
其中:in:
步骤(1):所采用干燥煤心尺寸直径2.5cm,长度5cm;所采用煤心种类包括原始煤心、液氮冷冲击煤心或压裂煤心;将煤心放置于液氮中浸泡10min,产生大量热应力裂缝,待煤心与液氮接触表面不再有大量气泡产生,表明煤心已经冷却均匀,取出恢复至常温,可得到冷冲击煤心;在保持煤心相对完整的前提下,通过向煤心两端施加一定应力,使煤心产生一条或多条长裂缝,可得到压裂煤心。(说明:所用岩心并不局限于煤心,还包括页岩、致密砂岩等低渗、特低渗岩心)Step (1): The diameter of the dry coal core used is 2.5cm, and the length is 5cm; the types of coal core used include raw coal core, liquid nitrogen cold impact coal core or fracturing coal core; place the coal core in liquid nitrogen for 10 minutes , a large number of thermal stress cracks are generated, and when there are no more bubbles on the contact surface of the coal core and liquid nitrogen, it indicates that the coal core has been cooled evenly, and the cold shock coal core can be obtained after taking it out and returning to normal temperature; under the premise of keeping the coal core relatively intact , by applying a certain stress to both ends of the coal core to make one or more long cracks in the coal core, the fractured coal core can be obtained. (Note: The cores used are not limited to coal cores, but also include low-permeability and ultra-low-permeability cores such as shale and tight sandstone)
步骤(2):采用N2进行压降法气测煤心原始渗透率,即煤心前端接入装有高压N2的小气瓶(5ml),煤心后端放空,随着N2通过煤心,记录煤心前端的压力下降曲线,采用气测渗透率原理,计算煤心的渗透率(具体计算步骤见后文)。Step (2): Use N2 to measure the original permeability of the coal core by gas pressure drop method, that is, the front end of the coal core is connected to a small gas cylinder (5ml) equipped with high-pressure N2 , the rear end of the coal core is vented, and the N2 passes through the coal core. Record the pressure drop curve at the front end of the coal core, and calculate the permeability of the coal core by using the principle of gas permeability (see later for specific calculation steps).
步骤(3):通过增压泵和中间容器,先向煤心中注水饱和,然后设定煤心后端背压阀压力,继续注水至设定压力,再注入气体达到所设定的含水饱和度;注入的气体可以是CO2、N2和CH4等气体中的一种或几种;注入的水可以是蒸馏水、地层水、活性水、压裂液等水基流体中的一种或几种。Step (3): Through the booster pump and the intermediate container, first inject saturated water into the coal core, then set the pressure of the back pressure valve at the back end of the coal core, continue to inject water to the set pressure, and then inject gas to reach the set water saturation ; The injected gas can be one or more of CO 2 , N 2 and CH 4 ; the injected water can be one or more of water-based fluids such as distilled water, formation water, active water, fracturing fluid, etc. kind.
步骤(4):恒温箱控温范围在-20~60℃;将恒温箱温度控制在-20℃,并保持足够长的时间,使所有或绝大多数水结冰或形成气体水合物,此时煤心孔隙中主要存在气固两相。Step (4): The temperature control range of the incubator is -20 to 60°C; the temperature of the incubator is controlled at -20°C and kept for a long enough time to freeze all or most of the water or form gas hydrates. There are mainly gas-solid two phases in the coal core pores.
步骤(5):再采用压降法测量结冰或形成水合物煤心的渗透率,步骤如步骤2,但此时煤心后端存在背压;评价结冰或水合物对煤心渗透率的影响。Step (5): Then use the pressure drop method to measure the permeability of the frozen or hydrated coal core, the steps are as in step 2, but at this time there is back pressure at the back end of the coal core; evaluate the permeability of the frozen or hydrated coal core Impact.
步骤(6):用于评价当环境温度升高时,结冰或水合物对煤层封堵能力的维持能力。Step (6): It is used to evaluate the ability of freezing or hydrate to maintain the sealing ability of coal seams when the ambient temperature rises.
本发明的有益效果为:The beneficial effects of the present invention are:
通过本发明的装置和方法,可以模拟低温环境下结冰或形成的水合物对煤层的封堵能力,以及随着环境温度升高后,结冰或水合物溶解对煤层封堵能力的影响,对于评价低温气体压裂/辅助压裂煤层气过程中的冰冻暂堵降漏失性能具有重要意义。Through the device and method of the present invention, it is possible to simulate the plugging capacity of coal seam caused by icing or hydrate formation in a low-temperature environment, and the influence of icing or hydrate dissolution on the plugging capacity of coal seam as the ambient temperature rises. It is of great significance to evaluate the performance of freezing temporary plugging and loss reduction in the process of cryogenic gas fracturing/assisted fracturing of coalbed methane.
附图说明Description of drawings
附图1为本发明具体实施方式的工作原理图Accompanying drawing 1 is the working principle diagram of the embodiment of the present invention
图中:1、供水烧杯,2—增压泵,3、中间容器(用于装入蒸馏水),4、中间容器(用于装入高压N2),5、中间容器(用于装入蒸馏水/地层水/活性水/压裂液等水基流体),6、中间容器(用于装入N2/CO2/CH4等高压气体),7、高压小气瓶(5ml),8、岩心夹持器及煤心,9、背压阀,10、接液量筒,11、真空泵,12、恒温箱(控温范围-20~60℃),13、压力传感器,14、岩心夹持器温度传感器,15、恒温箱温度传感器,16、数据采集箱,17、控制电脑,18、气瓶,19-22、阀门19-22(自左向右),23-26、阀门23-26(自左向右),27-35、阀门。In the figure: 1, water supply beaker, 2—booster pump, 3, intermediate container (for loading distilled water), 4, intermediate container (for loading high-pressure N 2 ), 5, intermediate container (for loading distilled water /formation water/activated water/fracturing fluid and other water-based fluids), 6. Intermediate container (for filling high-pressure gas such as N 2 /CO 2 /CH 4 ), 7. High-pressure small gas cylinder (5ml), 8. Rock core Holder and coal core, 9. Back pressure valve, 10. Liquid contact measuring cylinder, 11. Vacuum pump, 12. Constant temperature box (temperature control range -20~60°C), 13. Pressure sensor, 14. Core holder temperature Sensor, 15, incubator temperature sensor, 16, data acquisition box, 17, control computer, 18, gas cylinder, 19-22, valve 19-22 (from left to right), 23-26, valve 23-26 (from left to right) left to right), 27-35, valve.
附图2为岩心夹持器入口段压降曲线Accompanying drawing 2 is the pressure drop curve of the inlet section of the core holder
具体实施方式Detailed ways
结合附图1,对本发明做进一步的描述。In conjunction with accompanying drawing 1, the present invention is further described.
具体步骤如下:Specific steps are as follows:
(1)将干燥煤心放入岩心夹持器8中,并按照附图将设备和管线连接好,初始所有阀门全部关闭。(做好准备工作)(1) Put the dry coal core into the core holder 8, and connect the equipment and pipelines according to the drawings, and initially all valves are closed. (make preparations)
(2)打开阀门19、23、29,启动增压泵2,通过中间容器3注入蒸馏水,对岩心加持器施加围压至Ps(8MPa),然后关闭阀门19、23、29。(对岩心夹持器加围压)(2) Open the valves 19, 23, 29, start the booster pump 2, inject distilled water through the intermediate container 3, apply confining pressure to the core holder to P s (8MPa), and then close the valves 19, 23, 29. (add confining pressure to the core holder)
(3)打开阀门34,启动真空泵11,对高压小气瓶7(Vbtl=5ml)抽真空1-2小时,然后停止真空泵11,并关闭阀门34。(对高压小气瓶抽真空)(3) Open the valve 34, start the vacuum pump 11, evacuate the high-pressure small gas bottle 7 (V btl = 5ml) for 1-2 hours, then stop the vacuum pump 11, and close the valve 34. (Vacuumize the high-pressure small gas cylinder)
(4)打开阀门20、24、27、33,启动增压泵2,通过中间容器4向高压小气瓶7中注入高压N2,至P1(6MPa),然后关闭阀门20、24、27、33。(向高压小气瓶充入高压氮气)(4) Open valves 20, 24, 27, 33, start booster pump 2, inject high-pressure N in high-pressure small gas bottle 7 by intermediate container 4, to P 1 (6MPa), then close valves 20, 24, 27, 33 . (Fill high-pressure nitrogen into the high-pressure small gas cylinder)
(5)打开阀门35、28,启动真空泵11,对岩心夹持器8中的煤心及相关管线抽真空3-4小时,然后停止真空泵11,关闭阀门35。(对煤心抽真空)(5) Open the valves 35 and 28, start the vacuum pump 11, vacuumize the coal core and related pipelines in the core holder 8 for 3-4 hours, then stop the vacuum pump 11, and close the valve 35. (Vacuumize the core)
(6)打开阀门33,高压小气瓶7中的高压N2进入岩心加持器8中的煤心,等待压力平衡后,记录高压小气瓶的压力P1eq,根据气体状态方程,计算煤心孔隙体积Vpor,其中封闭空间内连接管线体积记为Vline。(根据压力变化求孔隙体积)(6) Open the valve 33, the high-pressure N in the high-pressure small gas cylinder 7 enters the coal core in the core holder 8, after waiting for the pressure to balance, record the pressure P 1eq of the high-pressure small gas cylinder, and calculate the coal core pore volume V according to the gas state equation por , where the volume of the connecting pipeline in the enclosed space is denoted as V line . (Calculation of pore volume according to pressure change)
(7)打开阀门30,将岩心夹持器8后端放空,高压小气瓶7中的压力P1将逐渐下降衰竭,采用压力传感器13和数据采集箱16实时监测压力变化,并将压力数据存储于控制电脑17中,待高压小气瓶7中的压力稳定不再下降时,关闭阀门33、28、30;对压降曲线进行处理,计算煤心渗透率,计算方法见后文。(采用压降法测量渗透率)(7) Open the valve 30, the core holder 8 rear end is emptied, the pressure P1 in the high-pressure small gas cylinder 7 will gradually decline and fail, adopt the pressure sensor 13 and the data acquisition box 16 to monitor the pressure change in real time, and store the pressure data In the control computer 17, when the pressure in the high-pressure small gas cylinder 7 is stable and no longer drops, the valves 33, 28, and 30 are closed; the pressure drop curve is processed to calculate the coal core permeability, and the calculation method is as follows. (Permeability is measured by the pressure drop method)
(8)打开阀门32,通过气瓶18,为背压阀9提供背压P2(6MPa)。(开启背压)(8) Open the valve 32 and provide the back pressure P 2 (6 MPa) for the back pressure valve 9 through the gas cylinder 18 . (turn on back pressure)
(9)打开阀门35、27、28、31,启动真空泵11,对岩心夹持器8中的煤心及相关管线抽真空3-4小时,然后停止真空泵11,关闭阀门35。(对煤心抽真空)(9) Open the valves 35, 27, 28, 31, start the vacuum pump 11, vacuumize the coal core and related pipelines in the core holder 8 for 3-4 hours, then stop the vacuum pump 11, and close the valve 35. (Vacuumize the core)
(10)打开阀门21、25,启动增压泵2,通过中间容器5,向煤心中注入蒸馏水/地层水/活性水/压裂液等水基流体,至压力达到P2(6MPa)后,突破背压阀背压P2(6MPa),连续注入3倍于煤心孔隙体积(3Vpor)的水基流体,然后关闭阀门21、25。(高压饱和水基流体)(10) Open the valves 21 and 25, start the booster pump 2, and inject water-based fluids such as distilled water/formation water/activated water/fracturing fluid into the coal core through the intermediate container 5 until the pressure reaches P 2 (6MPa), Break through the back pressure P 2 (6MPa) of the back pressure valve, continuously inject water-based fluid 3 times the pore volume of the coal core (3V por ), and then close the valves 21 and 25. (high pressure saturated water-based fluid)
(11)打开阀门22、26,向煤心中注入一定体积的N2/CH4/CO2等高压气体(或无需注入气体),采用量筒10计量产出水基流体的体积Vpro,计算煤心中的气、水饱和度Sg、Sw,然后关闭阀门22、26、27、28、31。(高压饱和气体)(11) Open the valves 22 and 26, inject a certain volume of high-pressure gas such as N 2 /CH 4 /CO 2 into the coal core (or without injecting gas), use the measuring cylinder 10 to measure the volume V pro of the water-based fluid produced, and calculate the coal Qi in the heart, water saturation S g , S w , and then close the valves 22, 26, 27, 28, 31. (high pressure saturated gas)
(12)开启恒温箱12,降温至-20℃,并保持6-12小时,等待岩心夹持器8中煤心的全部或绝大部分孔隙水结冰或形成水合物,此时煤心孔隙中只存在气固两相。(使孔隙水结冰或形成水合物)(12) Turn on the thermostat 12, lower the temperature to -20°C, and keep it for 6-12 hours, waiting for all or most of the pore water in the coal core in the core holder 8 to freeze or form hydrates. At this time, the coal core pores Only gas-solid two phases exist. (freezes or hydrates pore water)
(13)再采用类似步骤(2-7)中的方法,测量煤心渗透率,但要求岩心夹持器8围压提高至Ps ’(14MPa),高压小气瓶7中的初始压力提高至P1 ’(12MPa),岩心夹持器后端背压阀9压力仍保持在P2(6MPa);分析煤心在冰冻前后的渗透率变化,评价冰冻封堵效果。(测量冰冻煤心渗透率率)(13) Adopt the method in the similar step (2-7) again, measure the coal core permeability, but require rock core holder 8 confining pressure to be raised to P s ' (14MPa), the initial pressure in the high-pressure gas bottle 7 is raised to P 1 ' (12MPa), the pressure of the back pressure valve 9 at the back end of the core holder is still maintained at P 2 (6MPa); the permeability change of the coal core before and after freezing is analyzed, and the effect of freezing plugging is evaluated. (measuring the permeability rate of frozen coal core)
(14)再采用类似步骤(13)中的方法,将高压小气瓶中的压力提高至P1 ’(12MPa);将恒温箱12的温度迅速提高至10-60℃,分别采用温度传感器14、15,记录恒温箱12和岩心夹持器8的温度变化;打开阀门33、28、31,采用压力传感器13,记录高压小气瓶7中的压力下降曲线;根据压降曲线,分析压降特征,结合恒温箱12和岩心夹持器8温度变化特征,评价当环境温度升高时,结冰或水合物对煤心封堵的维持能力。(评价封堵维持情况)(14) Adopt the method in the similar step (13) again, the pressure in the high-pressure gas bottle is increased to P 1 ' (12MPa); The temperature of the incubator 12 is rapidly increased to 10-60 DEG C, adopting temperature sensor 14, 15. Record the temperature change of the thermostatic box 12 and the rock core holder 8; open the valves 33, 28, 31, and use the pressure sensor 13 to record the pressure drop curve in the high-pressure small gas cylinder 7; analyze the pressure drop characteristics according to the pressure drop curve, Combined with the temperature change characteristics of the thermostat 12 and the core holder 8, the ability to maintain the plugging of the coal core by freezing or hydrate is evaluated when the ambient temperature rises. (evaluate blockage maintenance)
煤心孔隙度计算方法:根据气体状态方程,P1Vbtl/z1=P1ep(Vpor+Vbtl+Vline)/z2,求得Coal core porosity calculation method: According to the gas state equation, P 1 V btl /z 1 =P 1ep (V por +V btl +V line )/z 2 , get
煤心渗透率计算方法:气测渗透率公式如下:Calculation method of coal core permeability: gas permeability formula is as follows:
其中,kg为气体渗透率,D;P1为进口(岩心夹持器前端)压力,10-1MPa;P2为出口(岩心夹持器后端)压力,10-1MPa;P0为大气压力,10-1MPa;μ为气体粘度,mPa·s;Q0为大气压下的气体体积流量,cm3/s;A为煤心样品的截面积,cm2;L为煤心品的长度,cm。Among them, k g is the gas permeability, D; P 1 is the inlet (core holder front end) pressure, 10 -1 MPa; P 2 is the outlet (core holder back end) pressure, 10 -1 MPa; P 0 is the atmospheric pressure, 10 -1 MPa; μ is the gas viscosity, mPa·s; Q 0 is the gas volume flow rate under atmospheric pressure, cm 3 /s; A is the cross-sectional area of the coal core sample, cm 2 ; L is the coal core product The length, cm.
通过实验得到岩心夹持器前端(高压小气瓶)的压降曲线如图2,则在ti~ti+1(i在0~n之间)时间段内,岩心夹持器前端平均压力为:The pressure drop curve of the front end of the core holder (high-pressure small gas cylinder ) obtained through experiments is shown in Figure 2, and the average pressure at the front end of the core holder is for:
P1ia=(P1i+P1i+1)/2 (3)P 1ia =(P 1i +P 1i+1 )/2 (3)
气体流量则可以根据状态方程以及高压小气瓶中的压力变化求得,如下:The gas flow rate can be obtained according to the state equation and the pressure change in the high-pressure small gas cylinder, as follows:
将式(3)、(5)代入式(2),这样就可以求得任意时间段ti~ti+1内的煤心气测渗透率Kgi,绘制Kgi~P1i的关系曲线,并进行指数函数拟合,其在纵轴的截距即为煤心的渗透率。Substituting equations (3) and (5) into equation (2), in this way, the coal core gas permeability K gi within any time period t i ~t i+1 can be obtained, and the relationship curve of K gi ~P 1i can be drawn, And exponential function fitting is carried out, and its intercept on the vertical axis is the permeability of the coal core.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410804956.7A CN104677778A (en) | 2014-12-22 | 2014-12-22 | Device and method for evaluating temporarily freezing plugging properties of coalbed methane in process of fracturing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410804956.7A CN104677778A (en) | 2014-12-22 | 2014-12-22 | Device and method for evaluating temporarily freezing plugging properties of coalbed methane in process of fracturing |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104677778A true CN104677778A (en) | 2015-06-03 |
Family
ID=53313129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410804956.7A Pending CN104677778A (en) | 2014-12-22 | 2014-12-22 | Device and method for evaluating temporarily freezing plugging properties of coalbed methane in process of fracturing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104677778A (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105041285A (en) * | 2015-09-12 | 2015-11-11 | 徐建立 | Cold stratum shale oil heat fracturing simulation experiment system |
CN105092790A (en) * | 2015-08-11 | 2015-11-25 | 河南理工大学 | Coal reservoir fracturing physical simulation device and simulation method based on solvent extraction |
CN105114055A (en) * | 2015-08-14 | 2015-12-02 | 中国矿业大学 | Test method for transport simulation of pulverized coal mined and output from coal-bed gas well |
CN105136581A (en) * | 2015-09-10 | 2015-12-09 | 中国华能集团清洁能源技术研究院有限公司 | Multifunctional fracturing simulation test system and method |
CN105156094A (en) * | 2015-08-14 | 2015-12-16 | 中国矿业大学 | Simulation test apparatus for migration of coal powder produced during production of coalbed methane well |
CN105507871A (en) * | 2016-01-06 | 2016-04-20 | 西南石油大学 | Horizontal well liquid nitrogen ice crystal temperature plugging staged fracturing method for coalbed methane |
CN105507894A (en) * | 2015-12-09 | 2016-04-20 | 河南理工大学 | Device and method for testing coal powder production during hydrofracturing of coal bed gas vertical well |
CN105606482A (en) * | 2016-01-11 | 2016-05-25 | 辽宁工程技术大学 | Method for testing accumulated damage effects of liquid nitrogen on fracture structures of water-containing coal samples |
WO2017016168A1 (en) * | 2015-07-24 | 2017-02-02 | 中国矿业大学 | Test system and method for liquid nitrogen circle freeze-thawing permeability-increasing simulation of coal rock sample |
CN106383219A (en) * | 2016-08-31 | 2017-02-08 | 中国石油集团川庆钻探工程有限公司 | Visual device for simulating dynamic closing of discontinuous sand paving seam and testing method |
CN106761721A (en) * | 2016-11-28 | 2017-05-31 | 中国石油大学(华东) | For the experimental provision and its experimental technique of the consideration thermal stress fracturing intrinsic fracture development heat reservori transformation of enhanced geothermal system |
CN107091798A (en) * | 2017-04-21 | 2017-08-25 | 中国矿业大学 | Anxious formula cold and heat succeed each other coalbed methane reservoir transformation analogue means |
CN107288603A (en) * | 2017-06-13 | 2017-10-24 | 北京大学 | A kind of experimental provision of simulation fracture turnaround fracture and its application |
CN107313754A (en) * | 2017-07-28 | 2017-11-03 | 中国地质调查局油气资源调查中心 | A kind of gas hydrates develop the injected system of analogue experiment installation |
CN107764510A (en) * | 2017-10-13 | 2018-03-06 | 中国科学院武汉岩土力学研究所 | It is a kind of to be used for the analogue means and experimental method that oil gas bittern migration rule is studied in the bank of salt cave |
CN108071361A (en) * | 2017-12-29 | 2018-05-25 | 长江大学 | A kind of device and its plugging effect evaluation method being used for the closure of shale microcrack |
CN109187177A (en) * | 2018-10-18 | 2019-01-11 | 中国石油大学(北京) | The monitoring method and device of rock liquid nitrogen pressure break |
CN109238828A (en) * | 2018-10-12 | 2019-01-18 | 中国石油大学(北京) | The test method and device of controllable rock sample temperature |
CN109403940A (en) * | 2018-12-10 | 2019-03-01 | 中国石油大学(北京) | Liquid nitrogen pressure break is applied to the experimental method and experimental provision of geothermal exploitation |
CN110243672A (en) * | 2019-07-18 | 2019-09-17 | 中国华能集团有限公司 | A CO2 pressurized metering system and usage method |
CN110375146A (en) * | 2019-08-07 | 2019-10-25 | 华孚油气工程技术成都有限公司 | Plumber's skill is changed in a kind of closure of oil pipeline hydrate |
CN110793864A (en) * | 2019-11-01 | 2020-02-14 | 中国石油大学(北京) | Method and device for measuring thermal stress of rock test piece under action of liquid nitrogen |
CN111948056A (en) * | 2019-05-15 | 2020-11-17 | 中国石油天然气股份有限公司 | Large-scale fracturing experiment system and method under different flow state carbon dioxide injection conditions |
CN111980649A (en) * | 2020-07-24 | 2020-11-24 | 中国矿业大学 | A low temperature fluid enhanced heat transfer fracturing method for horizontal wells |
CN114112831A (en) * | 2020-08-31 | 2022-03-01 | 中国石油天然气股份有限公司 | Volcanic oil and gas reservoir development method and volcanic compressibility acquisition device |
CN114428047A (en) * | 2020-09-29 | 2022-05-03 | 中国石油化工股份有限公司 | Device and method for fracturing shale by ultralow-temperature carbon dioxide through multiple rounds of huffing and puff |
CN115792189A (en) * | 2022-11-11 | 2023-03-14 | 常州大学 | Method for evaluating leakage stopping effect of drilling fluid in fracture extension type leakage reservoir |
CN117451526A (en) * | 2023-12-22 | 2024-01-26 | 中国石油大学(华东) | An experimental method for simulating the fracturing of sea hydrate sediments |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04110747A (en) * | 1990-08-31 | 1992-04-13 | Matsushita Electric Works Ltd | Measuring device for freezing damage withstand property of porous material |
US20050017723A1 (en) * | 2003-07-25 | 2005-01-27 | Schlumberger Technology Corporation, Incorporated In The State Of Texas | Evaluation of fracture geometries in rock formations |
CN101246106A (en) * | 2008-02-15 | 2008-08-20 | 玄建 | Measuring instrument for permeability rate of drill core containing hydrate |
CN101413870A (en) * | 2008-11-24 | 2009-04-22 | 北京联合大学 | Experimental apparatus and method for measuring rock permeation rate |
CN101899975A (en) * | 2010-08-02 | 2010-12-01 | 成都理工大学 | An experimental evaluation method for hydraulic fluid loss in coal seam fracturing |
CN201687470U (en) * | 2010-06-04 | 2010-12-29 | 海安县石油科研仪器有限公司 | Dynamic filtration instrument of fracture acidizing working solution |
CN102323394A (en) * | 2011-08-23 | 2012-01-18 | 中国地质大学(武汉) | Experimental apparatus and method for researching response characteristic of natural gas hydrate stratum to drilling fluid intrusion |
CN102865898A (en) * | 2012-08-27 | 2013-01-09 | 中国石油大学(华东) | Device and method for measuring parallel core foam flooding gas-phase shunt volume |
CN102914494A (en) * | 2012-11-03 | 2013-02-06 | 中国石油大学(华东) | Device for measuring dynamic leak-off of foam fracturing fluid and working method thereof |
CN103015997A (en) * | 2013-01-16 | 2013-04-03 | 西南石油大学 | Filtration plugging testing apparatus and simulation method for process of fracture temporary plugging by ice crystals |
CN103726819A (en) * | 2013-12-27 | 2014-04-16 | 中国石油大学(华东) | Method of low-temperature gas-assisted coalbed methane fracturing technology |
CN103954544A (en) * | 2014-05-13 | 2014-07-30 | 中国石油大学(北京) | Experimental device and method for estimating water-controlling and air-intake effects of polymer |
-
2014
- 2014-12-22 CN CN201410804956.7A patent/CN104677778A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04110747A (en) * | 1990-08-31 | 1992-04-13 | Matsushita Electric Works Ltd | Measuring device for freezing damage withstand property of porous material |
US20050017723A1 (en) * | 2003-07-25 | 2005-01-27 | Schlumberger Technology Corporation, Incorporated In The State Of Texas | Evaluation of fracture geometries in rock formations |
CN101246106A (en) * | 2008-02-15 | 2008-08-20 | 玄建 | Measuring instrument for permeability rate of drill core containing hydrate |
CN101413870A (en) * | 2008-11-24 | 2009-04-22 | 北京联合大学 | Experimental apparatus and method for measuring rock permeation rate |
CN201687470U (en) * | 2010-06-04 | 2010-12-29 | 海安县石油科研仪器有限公司 | Dynamic filtration instrument of fracture acidizing working solution |
CN101899975A (en) * | 2010-08-02 | 2010-12-01 | 成都理工大学 | An experimental evaluation method for hydraulic fluid loss in coal seam fracturing |
CN102323394A (en) * | 2011-08-23 | 2012-01-18 | 中国地质大学(武汉) | Experimental apparatus and method for researching response characteristic of natural gas hydrate stratum to drilling fluid intrusion |
CN102865898A (en) * | 2012-08-27 | 2013-01-09 | 中国石油大学(华东) | Device and method for measuring parallel core foam flooding gas-phase shunt volume |
CN102914494A (en) * | 2012-11-03 | 2013-02-06 | 中国石油大学(华东) | Device for measuring dynamic leak-off of foam fracturing fluid and working method thereof |
CN103015997A (en) * | 2013-01-16 | 2013-04-03 | 西南石油大学 | Filtration plugging testing apparatus and simulation method for process of fracture temporary plugging by ice crystals |
CN103726819A (en) * | 2013-12-27 | 2014-04-16 | 中国石油大学(华东) | Method of low-temperature gas-assisted coalbed methane fracturing technology |
CN103954544A (en) * | 2014-05-13 | 2014-07-30 | 中国石油大学(北京) | Experimental device and method for estimating water-controlling and air-intake effects of polymer |
Non-Patent Citations (2)
Title |
---|
任韶然 等: "液氮对煤岩的冷冲击作用机制及试验研究", 《岩石力学与工程学报》 * |
蔡承政 等: "液氮冻结条件下岩石孔隙结构损伤试验研究", 《岩土力学》 * |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017016168A1 (en) * | 2015-07-24 | 2017-02-02 | 中国矿业大学 | Test system and method for liquid nitrogen circle freeze-thawing permeability-increasing simulation of coal rock sample |
AU2015403840B2 (en) * | 2015-07-24 | 2017-11-23 | China University Of Mining And Technology | Test system and method for liquid nitrogen circle freeze-thawing permeability-increasing simulation of coal rock sample |
CN105092790A (en) * | 2015-08-11 | 2015-11-25 | 河南理工大学 | Coal reservoir fracturing physical simulation device and simulation method based on solvent extraction |
CN105156094A (en) * | 2015-08-14 | 2015-12-16 | 中国矿业大学 | Simulation test apparatus for migration of coal powder produced during production of coalbed methane well |
CN105114055B (en) * | 2015-08-14 | 2018-06-26 | 中国矿业大学 | A kind of coal bed gas well mining output coal dust transported simulation test method |
CN105156094B (en) * | 2015-08-14 | 2019-04-09 | 中国矿业大学 | A simulation test device for the migration of pulverized coal produced in coalbed methane wells |
CN105114055A (en) * | 2015-08-14 | 2015-12-02 | 中国矿业大学 | Test method for transport simulation of pulverized coal mined and output from coal-bed gas well |
CN105136581A (en) * | 2015-09-10 | 2015-12-09 | 中国华能集团清洁能源技术研究院有限公司 | Multifunctional fracturing simulation test system and method |
CN105136581B (en) * | 2015-09-10 | 2018-07-10 | 中国华能集团清洁能源技术研究院有限公司 | A kind of multi-functional fracturing simulated testing system and method |
CN105041285A (en) * | 2015-09-12 | 2015-11-11 | 徐建立 | Cold stratum shale oil heat fracturing simulation experiment system |
CN105041285B (en) * | 2015-09-12 | 2017-07-18 | 河南工程学院 | Experimental system for simulating is split in a kind of cold stratum shale oil hot pressing |
CN105507894A (en) * | 2015-12-09 | 2016-04-20 | 河南理工大学 | Device and method for testing coal powder production during hydrofracturing of coal bed gas vertical well |
CN105507894B (en) * | 2015-12-09 | 2018-07-06 | 河南理工大学 | Coal bed gas vertical well hydraulic fracturing process coal dust output test device and method |
CN105507871A (en) * | 2016-01-06 | 2016-04-20 | 西南石油大学 | Horizontal well liquid nitrogen ice crystal temperature plugging staged fracturing method for coalbed methane |
CN105606482A (en) * | 2016-01-11 | 2016-05-25 | 辽宁工程技术大学 | Method for testing accumulated damage effects of liquid nitrogen on fracture structures of water-containing coal samples |
CN106383219A (en) * | 2016-08-31 | 2017-02-08 | 中国石油集团川庆钻探工程有限公司 | Visual device for simulating dynamic closing of discontinuous sand paving seam and testing method |
CN106761721A (en) * | 2016-11-28 | 2017-05-31 | 中国石油大学(华东) | For the experimental provision and its experimental technique of the consideration thermal stress fracturing intrinsic fracture development heat reservori transformation of enhanced geothermal system |
CN106761721B (en) * | 2016-11-28 | 2021-04-13 | 中国石油大学(华东) | Experimental device and experimental method for the stimulation of thermal reservoirs with thermal stress-induced natural fractures for enhanced geothermal systems |
CN107091798A (en) * | 2017-04-21 | 2017-08-25 | 中国矿业大学 | Anxious formula cold and heat succeed each other coalbed methane reservoir transformation analogue means |
CN107091798B (en) * | 2017-04-21 | 2019-07-09 | 中国矿业大学 | Simulator is transformed in anxious formula hot and cold alternation coalbed methane reservoir |
CN107288603A (en) * | 2017-06-13 | 2017-10-24 | 北京大学 | A kind of experimental provision of simulation fracture turnaround fracture and its application |
CN107313754A (en) * | 2017-07-28 | 2017-11-03 | 中国地质调查局油气资源调查中心 | A kind of gas hydrates develop the injected system of analogue experiment installation |
CN107764510B (en) * | 2017-10-13 | 2019-11-15 | 中国科学院武汉岩土力学研究所 | A simulation device and experimental method for the study of oil-gas-brine migration law in salt cavern storage |
CN107764510A (en) * | 2017-10-13 | 2018-03-06 | 中国科学院武汉岩土力学研究所 | It is a kind of to be used for the analogue means and experimental method that oil gas bittern migration rule is studied in the bank of salt cave |
CN108071361A (en) * | 2017-12-29 | 2018-05-25 | 长江大学 | A kind of device and its plugging effect evaluation method being used for the closure of shale microcrack |
CN108071361B (en) * | 2017-12-29 | 2020-02-07 | 长江大学 | Device for plugging shale microcracks and plugging effect evaluation method thereof |
CN109238828A (en) * | 2018-10-12 | 2019-01-18 | 中国石油大学(北京) | The test method and device of controllable rock sample temperature |
CN109187177A (en) * | 2018-10-18 | 2019-01-11 | 中国石油大学(北京) | The monitoring method and device of rock liquid nitrogen pressure break |
CN109403940A (en) * | 2018-12-10 | 2019-03-01 | 中国石油大学(北京) | Liquid nitrogen pressure break is applied to the experimental method and experimental provision of geothermal exploitation |
CN111948056B (en) * | 2019-05-15 | 2024-03-26 | 中国石油天然气股份有限公司 | Large-scale fracturing experiment system and method under different flow carbon dioxide injection conditions |
CN111948056A (en) * | 2019-05-15 | 2020-11-17 | 中国石油天然气股份有限公司 | Large-scale fracturing experiment system and method under different flow state carbon dioxide injection conditions |
CN110243672A (en) * | 2019-07-18 | 2019-09-17 | 中国华能集团有限公司 | A CO2 pressurized metering system and usage method |
CN110375146A (en) * | 2019-08-07 | 2019-10-25 | 华孚油气工程技术成都有限公司 | Plumber's skill is changed in a kind of closure of oil pipeline hydrate |
CN110793864A (en) * | 2019-11-01 | 2020-02-14 | 中国石油大学(北京) | Method and device for measuring thermal stress of rock test piece under action of liquid nitrogen |
CN110793864B (en) * | 2019-11-01 | 2020-08-04 | 中国石油大学(北京) | Method and device for measuring thermal stress of rock specimen under the action of liquid nitrogen |
CN111980649A (en) * | 2020-07-24 | 2020-11-24 | 中国矿业大学 | A low temperature fluid enhanced heat transfer fracturing method for horizontal wells |
CN114112831A (en) * | 2020-08-31 | 2022-03-01 | 中国石油天然气股份有限公司 | Volcanic oil and gas reservoir development method and volcanic compressibility acquisition device |
CN114112831B (en) * | 2020-08-31 | 2024-01-30 | 中国石油天然气股份有限公司 | Volcanic oil-gas reservoir development method and volcanic compressibility acquisition device |
CN114428047A (en) * | 2020-09-29 | 2022-05-03 | 中国石油化工股份有限公司 | Device and method for fracturing shale by ultralow-temperature carbon dioxide through multiple rounds of huffing and puff |
CN115792189A (en) * | 2022-11-11 | 2023-03-14 | 常州大学 | Method for evaluating leakage stopping effect of drilling fluid in fracture extension type leakage reservoir |
CN115792189B (en) * | 2022-11-11 | 2024-05-14 | 常州大学 | Method for evaluating plugging effect of fracture expansion type leakage reservoir drilling fluid |
CN117451526A (en) * | 2023-12-22 | 2024-01-26 | 中国石油大学(华东) | An experimental method for simulating the fracturing of sea hydrate sediments |
CN117451526B (en) * | 2023-12-22 | 2024-03-05 | 中国石油大学(华东) | Experimental method for simulating sea area hydrate sediment fracturing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104677778A (en) | Device and method for evaluating temporarily freezing plugging properties of coalbed methane in process of fracturing | |
CN103726819B (en) | Cryogenic gas assists the method for CBM Fracturing technique | |
Yang et al. | Laboratory investigation on cryogenic fracturing of hot dry rock under triaxial-confining stresses | |
CN105507871B (en) | A kind of coal bed gas horizontal well liquid nitrogen ice crystal temporarily blocks up staged fracturing method | |
CN104405366B (en) | A kind of HTHP cementing concrete ring mechanical integrity test device and method | |
CN102778554B (en) | Experimental device for improving permeability of shale gas storage layer in supercritical CO2 fracturing process | |
WO2019033472A1 (en) | Multi-functional testing apparatus for multi-field coupled seepage | |
CN103105466A (en) | Device and method for kinetic study of drilling fluid and natural gas hydrate | |
CN107436262A (en) | Low temperature liquid nitrogen fracturing experiments system under confined pressure | |
CN106198338A (en) | Shale reservoir fracturing fracture stress sensitivity testing device and method using same | |
CN104483449B (en) | A device and method for measuring the retention rate of carbon dioxide flooding process | |
CN105137039B (en) | Damage evaluation method for multi-scalemass transfer capability of coal rock reservoir gas | |
CN206091976U (en) | Experimental apparatus is invaded to high pressure -break nature gas reservoir water of simulation high temperature | |
CN207004497U (en) | System that a kind of coal seam using cryogenic gas pressure break is anti-reflection | |
CN103592210A (en) | A test device for measuring the permeability coefficient of supercritical CO2 in rock | |
Zhao et al. | Cryogenic fracturing of synthetic coal specimens under true-triaxial loadings-An experimental study | |
CN112211625B (en) | A thermal and chemical fluid stimulation reservoir simulation device and method | |
CN108051354A (en) | A kind of hypotonic hydrate sediment permeability survey method and apparatus based on impulse attenuation analysis | |
CN107741372A (en) | An experimental device for rock fracture under the cold impact of liquid nitrogen | |
CN110145291A (en) | A volume fracturing dynamic flowback simulation device and simulation method | |
CN207366375U (en) | An experimental device for rock fracture under the cold impact of liquid nitrogen | |
CN104007021A (en) | Laboratory hydraulic fracturing method in vacuum state | |
CN110618080B (en) | Physical simulation system and test method for forming and removing water lock of different layers of tight sandstone | |
CN112345732A (en) | Deep geothermal reservoir transformation and seepage heat transfer simulation device | |
Zenglin et al. | Production system optimization for enhanced fracture network stimulation in continental shale oil reservoirs in the Dongying Sag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150603 |