CN104677471A - Network online calibration system of gas turbine flowmeter - Google Patents
Network online calibration system of gas turbine flowmeter Download PDFInfo
- Publication number
- CN104677471A CN104677471A CN201510054818.6A CN201510054818A CN104677471A CN 104677471 A CN104677471 A CN 104677471A CN 201510054818 A CN201510054818 A CN 201510054818A CN 104677471 A CN104677471 A CN 104677471A
- Authority
- CN
- China
- Prior art keywords
- gas turbine
- turbine flowmeter
- online
- calibration
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 claims abstract description 8
- 238000013480 data collection Methods 0.000 claims description 14
- 230000001186 cumulative effect Effects 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000013178 mathematical model Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 10
- 238000012544 monitoring process Methods 0.000 abstract description 6
- 238000007689 inspection Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 85
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 22
- 239000003345 natural gas Substances 0.000 description 11
- 238000001514 detection method Methods 0.000 description 5
- 238000012795 verification Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Description
技术领域technical field
本发明涉及测量技术领域,尤其是涉及一种气体涡轮流量计网络化在线校准系统。The invention relates to the technical field of measurement, in particular to a networked online calibration system for gas turbine flowmeters.
背景技术Background technique
随着天然气工业的发展和“西气东输”等重点工程的建设,天然气作为一种清洁能源和重要的化工原料,人们对其依赖度日益增加。这就造成天然气交接计量站的数量迅速增加,使得越来越多的天然气计量仪表投入使用。天然气从气井到用户一般需要经过多次气体流量计的计量,才能达到公平交易。气体涡轮流量计作为天然气能量计量仪表中广泛使用的重要仪表,人们对其的精度要求也日趋严格。为此,必须对使用的气体涡轮流量计进行定期校准。只有对气体涡轮流量计进行定期校准,才能保证气体涡轮流量计示值的正确性。传统对气体涡轮流量计进行校准一般由两种方法:一种是拆下气体涡轮流量计送实验室校准,这需要拆装气体涡轮流量计,影响到正常供气;标准设备、被校准设备的功能不能充分利用,造成资源的浪费。另一种是将标准设备和校准仪器运到现场进行校准。中国专利授权公告号CN201772915U,授权公告日2011年3月23日,名称为“一种在线燃气流量标准装置”的实用新型专利,就是其中的一种,该装置主要用于在线检测大流量燃气表的准确性。它包括可移动式箱体,箱体内设有与检定管路相连接的相并联的至少一台标准表,检定管路的进气端设有可与被检表连接的连接机构,在每一台标准表前后的管路上设置有与便携式计算机系统连接的压力采集点和温度采集点,在检定管路的末端设有与其连接的燃烧炉。这种现场校准需要有经验的专业人员操作,效率极低。经常移动标准设备,既影响标准设备的测量不确定度,也容易造成对标准设备带来不必要的人为损坏。另外,随着科学技术飞速发展,网络技术已经渗透到我们日常生活的各个领域。传统的流量测量仪表校准方式也向着与网络技术相结合的方向发展。利用网络技术,进行网络化在线校准气体涡轮流量计也水到渠成。With the development of the natural gas industry and the construction of key projects such as the "West-to-East Gas Pipeline", natural gas, as a clean energy source and an important chemical raw material, is increasingly dependent on it. This has resulted in a rapid increase in the number of natural gas transfer metering stations, making more and more natural gas metering instruments put into use. Natural gas generally needs to be measured by gas flow meters many times from gas wells to users in order to achieve fair trade. As an important instrument widely used in natural gas energy metering instruments, the gas turbine flowmeter has increasingly strict requirements on its accuracy. For this reason, the gas turbine flowmeters used must be calibrated regularly. Only by regularly calibrating the gas turbine flowmeter can the correctness of the indication value of the gas turbine flowmeter be guaranteed. Traditionally, there are two ways to calibrate the gas turbine flowmeter: one is to remove the gas turbine flowmeter and send it to the laboratory for calibration, which requires disassembly and assembly of the gas turbine flowmeter, which affects the normal gas supply; Functions cannot be fully utilized, resulting in waste of resources. The other is to transport standard equipment and calibration instruments to the site for calibration. China Patent Authorization Announcement No. CN201772915U, the authorized announcement date is March 23, 2011, and the utility model patent named "an online gas flow standard device" is one of them. This device is mainly used for online detection of large flow gas meters. accuracy. It includes a movable box, in which there is at least one standard meter connected in parallel with the verification pipeline, and the inlet end of the verification pipeline is provided with a connecting mechanism that can be connected with the meter to be tested. There are pressure collection points and temperature collection points connected to the portable computer system on the pipelines before and after a standard meter, and a combustion furnace connected to it is installed at the end of the verification pipeline. This kind of on-site calibration requires experienced professionals to operate, and the efficiency is extremely low. Frequent movement of standard equipment not only affects the measurement uncertainty of standard equipment, but also easily causes unnecessary man-made damage to standard equipment. In addition, with the rapid development of science and technology, network technology has penetrated into various fields of our daily life. The traditional way of calibrating flow measuring instruments is also developing in the direction of combining with network technology. Using network technology, networked online calibration of gas turbine flowmeters is also a matter of course.
发明内容Contents of the invention
为了解决现有技术中气体涡轮流量计校准送检要影响正常供气,在线校准需要投入大量人力物力效率低的技术问题,本发明提供一种方便快捷的对气体涡轮流量计的网络化在线校准系统,同时方便实时监控,让使用的气体涡轮流量计持续保持精准和最佳的性能。In order to solve the technical problems in the prior art that the calibration and inspection of the gas turbine flowmeter will affect the normal gas supply, and the online calibration needs to invest a lot of manpower and material resources, the technical problem is low. The present invention provides a convenient and fast networked online calibration of the gas turbine flowmeter. system, while facilitating real-time monitoring, so that the gas turbine flowmeter used can continue to maintain accuracy and optimal performance.
本发明的技术方案是:一种气体涡轮流量计的网络化在线校准系统,它包括,The technical solution of the present invention is: a networked online calibration system of a gas turbine flowmeter, which includes,
若干数据采集单元,用于采集现场信息处理后上传,数据采集单元包括:采集在线气体涡轮流量计进、出口压差信息的差压变送器、采集在线气体涡轮流量计涡轮两端压差信息的流量积算仪、采集输气管路温度和压力信息的温度变送器和压力变送器;A number of data acquisition units are used to collect on-site information and upload it after processing. The data acquisition unit includes: a differential pressure transmitter that collects the inlet and outlet pressure difference information of the online gas turbine flowmeter, and collects the pressure difference information at both ends of the online gas turbine flowmeter turbine. flow totalizer, temperature transmitter and pressure transmitter for collecting gas pipeline temperature and pressure information;
若干摄像机,用于记录在线气体涡轮流量计使用现场实况和表头显示器数值并上传信息;A number of cameras are used to record the actual use of the online gas turbine flowmeter and the value of the meter display and upload information;
至少一服务器,用于储存在线气体涡轮流量计基本信息和历次校准信息,储存数据采集单元和摄像机上传信息;At least one server is used to store the basic information and previous calibration information of the online gas turbine flowmeter, store the data acquisition unit and the camera upload information;
至少一远程控制端,用于调用服务器数据、控制数据采集单元采集信息、处理上传信息、生成校准报告、对信息进行统计和分析提供分析报告;At least one remote control terminal for invoking server data, controlling the data acquisition unit to collect information, processing uploaded information, generating calibration reports, performing statistics and analysis on information and providing analysis reports;
通讯网络,连接远程控制端、数据采集单元、摄像机与服务器传输信息。The communication network connects the remote control terminal, the data acquisition unit, the camera and the server to transmit information.
作为优选,远程控制端设有基于LabVIEW软件,利用“差压-流量”数学模型将上传的压差信息转换成流量值,将校准时间内的标准累积流量值与在线气体涡轮流量计的累积流量值比较,得到在线气体涡轮流量计的示值误差;实现远程校准在线气体涡轮流量计。As preferably, the remote control terminal is equipped with LabVIEW software based on the "differential pressure-flow" mathematical model to convert the uploaded differential pressure information into a flow value, and compare the standard cumulative flow value within the calibration time with the cumulative flow of the online gas turbine flowmeter Value comparison to obtain the indication error of the online gas turbine flowmeter; realize remote calibration of the online gas turbine flowmeter.
作为优选,数据采集单元还包括数据采集终端,数据采集终端将差压变送器采集的模拟信号转化成数字信号,数据采集单元采集的信息通过采集终端上传服务器;数据传输可靠。Preferably, the data collection unit further includes a data collection terminal, which converts the analog signal collected by the differential pressure transmitter into a digital signal, and the information collected by the data collection unit is uploaded to the server through the collection terminal; the data transmission is reliable.
作为优选,通讯网络包括无线网络和有线网络,数据采集单元通过无线网络上传数字信号,摄像机通过有线网络上传视频信号;利用现有网络,减少成本。Preferably, the communication network includes a wireless network and a wired network, the data acquisition unit uploads digital signals through the wireless network, and the camera uploads video signals through the wired network; the existing network is used to reduce costs.
作为优选,无线网络为CDMA。Preferably, the wireless network is CDMA.
与现有技术相比,本发明的有益效果是:通过网络远距离在线校准气体涡轮流量计,与实际使用环境完全吻合,校准结果准确。无需拆装气体涡轮流量计,无需移动标准设备,无需技术人员到现场,节约成本,提高效率。实时监控校准过程,在校准过程完成之前,其结果可以在线复检,也可以随时终止校准,在得到现场最终校准结果的同时,可以很好地发现现场在校准过程中出现的问题和暴露的弊端,从而可以对现场校准水平给出更为确切的评估。校准结果保存在服务器数据库中,在以后校准或核查时,用户可随时调用,既不会漏检,也不会重复检,还能追溯分析原因,大大提高了校准质量。历史数据共享,为气体涡轮流量计的维护,新选型提供技术支持。Compared with the prior art, the beneficial effect of the present invention is that the gas turbine flowmeter is calibrated remotely and online through the network, which is completely consistent with the actual use environment, and the calibration result is accurate. There is no need to disassemble the gas turbine flowmeter, no need to move standard equipment, no need for technicians to go to the site, saving costs and improving efficiency. Real-time monitoring of the calibration process. Before the calibration process is completed, the results can be rechecked online, and the calibration can also be terminated at any time. While obtaining the final calibration results on site, it is possible to find out the problems and disadvantages exposed during the calibration process on site. , so that a more accurate assessment of the field calibration level can be given. The calibration results are stored in the server database, and the user can call them at any time during subsequent calibration or verification. There will be no missed or repeated inspections, and the cause can be traced and analyzed, which greatly improves the calibration quality. Historical data sharing provides technical support for the maintenance and new selection of gas turbine flowmeters.
附图说明Description of drawings
附图1为本发明连接示意图;Accompanying drawing 1 is the connection schematic diagram of the present invention;
附图2为数据采集单元连接示意图。Accompanying drawing 2 is the connection schematic diagram of data acquisition unit.
图中:1-远程控制端;2-服务器;3-数据采集单;4-摄像机;5-在线气体涡轮流量计;6-直管;31-数据采集终端;32-压力变送器;33-温度变送器;34-差压变送器;35-流量积算仪。In the figure: 1-remote control terminal; 2-server; 3-data collection sheet; 4-camera; 5-online gas turbine flowmeter; 6-straight pipe; 31-data collection terminal; 32-pressure transmitter; 33 - temperature transmitter; 34 - differential pressure transmitter; 35 - flow totalizer.
具体实施方式Detailed ways
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。The technical solutions of the present invention will be further specifically described below through the embodiments and in conjunction with the accompanying drawings.
实施例1:Example 1:
如图1所示,一种气体涡轮流量计的网络化在线校准系统,它包括,至少一远程控制端1、至少一服务器2、若干数据采集单元3、若干摄像机4和通讯网络。数据采集单元3,用于采集现场信息处理后上传。数据采集单元3与在线气体涡轮流量计5数量相同。数据采集单3元包括:数据采集终端31、压力变送器32、温度变送器33、差压变送器34和流量积算仪35。数据采集终端31设有四个输入端。第一输入端与压力变送器32电连接。压力变送器32采集输气管路压力数据。第二输入端与温度变送器33电连接。温度变送器33采集输气管路温度数据。第三输入端与差压变送器34电连接。差压变送器34采集在线气体涡轮流量计5进、出口压差信息,该信息为模拟信号。数据采集终端31将模拟信号转换成数字信号。第四输入端与流量积算仪35电连接。流量积算仪35为在线气体涡轮流量计5自带。流量积算仪35利用磁敏传感器从同轴转动的信号轮上感应出涡轮旋转的角速度与流体体积流量成正比的脉冲信号,该信号经放大、滤波、整形后与温度、压力变送器信号一起进入流量积算仪35的微处理单元进行运算处理。流量积算仪35将气体的体积流量和总量直接显示于在线气体涡轮流量计5的LCD屏上,同时上传至数据采集终端31,该信息为数字信号。摄像机4,用于记录在线气体涡轮流量计5使用现场实况和表头显示器数值并上传信息。每台在线气体涡轮流量计5配置一台摄像机4,连续拍摄记录在线气体涡轮流量计5表头显示器显示的数值和工作现场情况。服务器2,用于储存在线气体涡轮流量计5基本信息和历次校验信息,储存数据采集单元3和摄像机4上传信息。服务器2根据数据库大小要求配置。在线气体涡轮流量计5基本信息包括:型号类型、生产厂家、出厂编号、精度等级、流量范围,以及配套压力变送器、温度变送器及差压传感器的精度等级。远程控制端1,用于调用服务器2数据、控制数据采集单元3采集信息、处理上传信息,生成校准报告。远程控制端1数量由开放用户访问端的数量决定。通讯网络,连接远程控制端1、数据采集单元3与服务器2传输数据;连接摄像机4与服务器2上传视频信号。通讯网络包括无线网络(图中用虚线表示)和有线网络,无线网络为CDMA。远程控制端1通过无线网络管理和处理服务器2数据,数据采集终端3通过无线网络上传数字信号,摄像机4通过有线网络上传视频信号。As shown in Figure 1, a networked online calibration system for gas turbine flowmeters includes at least one remote control terminal 1, at least one server 2, several data acquisition units 3, several cameras 4 and a communication network. The data collection unit 3 is used to collect on-site information and upload it after processing. The number of data acquisition units 3 is the same as that of online gas turbine flowmeters 5 . The data acquisition unit 3 includes: a data acquisition terminal 31 , a pressure transmitter 32 , a temperature transmitter 33 , a differential pressure transmitter 34 and a flow totalizer 35 . The data collection terminal 31 is provided with four input terminals. The first input terminal is electrically connected to the pressure transmitter 32 . The pressure transmitter 32 collects pressure data of the gas pipeline. The second input end is electrically connected with the temperature transmitter 33 . The temperature transmitter 33 collects the temperature data of the gas pipeline. The third input terminal is electrically connected to the differential pressure transmitter 34 . The differential pressure transmitter 34 collects the pressure difference information between the inlet and outlet of the online gas turbine flowmeter 5, which is an analog signal. The data acquisition terminal 31 converts the analog signal into a digital signal. The fourth input terminal is electrically connected to the flow totalizer 35 . The flow totalizer 35 comes with the online gas turbine flowmeter 5 . The flow totalizer 35 uses a magnetic sensor to induce a pulse signal proportional to the angular velocity of the turbine rotation and the fluid volume flow rate from the coaxially rotating signal wheel. together into the micro-processing unit of the flow totalizer 35 for calculation processing. The flow totalizer 35 directly displays the volume flow and total amount of the gas on the LCD screen of the online gas turbine flowmeter 5, and uploads it to the data collection terminal 31 at the same time, and the information is a digital signal. The video camera 4 is used to record the real-time usage of the on-line gas turbine flowmeter 5 and the value of the meter display and upload information. Each online gas turbine flowmeter 5 is equipped with a camera 4, which continuously shoots and records the values displayed on the head display of the online gas turbine flowmeter 5 and the working site conditions. The server 2 is used to store the basic information and previous verification information of the online gas turbine flowmeter 5, and store the uploaded information of the data acquisition unit 3 and the camera 4. Server 2 is configured according to the database size requirements. The basic information of online gas turbine flowmeter 5 includes: model type, manufacturer, serial number, accuracy grade, flow range, and the accuracy grade of supporting pressure transmitter, temperature transmitter and differential pressure sensor. The remote control terminal 1 is used to call the data of the server 2, control the data acquisition unit 3 to collect information, process and upload information, and generate a calibration report. The number of remote control terminals 1 is determined by the number of open user access terminals. The communication network connects the remote control terminal 1, the data acquisition unit 3 and the server 2 to transmit data; connects the camera 4 and the server 2 to upload video signals. The communication network includes a wireless network (indicated by a dotted line in the figure) and a wired network, and the wireless network is CDMA. The remote control terminal 1 manages and processes the data of the server 2 through the wireless network, the data acquisition terminal 3 uploads the digital signal through the wireless network, and the camera 4 uploads the video signal through the wired network.
如图2所示,图中点划线箭头表示气体流向。流量积算仪35的两个输入传感器跨接在线气体涡轮流量计5涡轮两端。气体涡轮流量计5的进、出口分别连接有直管6。压力变送器32的输入传感器插入与在线气体涡轮流量计5进口连接的直管6上。温度变送器33的输入传感器插入与在线气体涡轮流量计5出口连接的直管6上。差压变送器34的正压端插入在线气体涡轮流量计5进口端连接直管6,位于压力变送器32与在线气体涡轮流量计5进口之间靠近在线气体涡轮流量计5进口处。差压变送器34的负压端插入在线气体涡轮流量计5出口端连接直管6,位于温度变送器33与在线气体涡轮流量计5出口之间靠近在线气体涡轮流量计5出口处。As shown in Figure 2, the dotted line arrows in the figure indicate the gas flow direction. The two input sensors of the flow totalizer 35 are connected across the two ends of the turbine of the online gas turbine flowmeter 5 . The inlet and outlet of the gas turbine flowmeter 5 are respectively connected with straight pipes 6 . The input sensor of the pressure transmitter 32 is inserted into the straight pipe 6 connected to the inlet of the online gas turbine flowmeter 5 . The input sensor of the temperature transmitter 33 is inserted into the straight pipe 6 connected to the outlet of the online gas turbine flowmeter 5 . The positive pressure end of the differential pressure transmitter 34 is inserted into the inlet port of the online gas turbine flowmeter 5 and connected to the straight pipe 6, and is located between the pressure transmitter 32 and the inlet of the online gas turbine flowmeter 5 near the inlet of the online gas turbine flowmeter 5 . The negative pressure end of the differential pressure transmitter 34 is inserted into the outlet port of the online gas turbine flowmeter 5 and connected to the straight pipe 6, and is located between the temperature transmitter 33 and the outlet of the online gas turbine flowmeter 5 near the outlet of the online gas turbine flowmeter 5.
如图1和2所示,在远程控制端1基于LabVIEW软件建立“浙江省天然气能源网络化检测系统网络平台”。该平台内容包括:As shown in Figures 1 and 2, the "Zhejiang Provincial Natural Gas Energy Networked Detection System Network Platform" is established on the remote control terminal 1 based on LabVIEW software. The content of the platform includes:
1)天然气能量计量系统管理界面。该界面包括:a、实时采集各天然气计量点的温度、压力、流量、组分运行参数,并根据各参数实时进行能量换算,并进行能量累计。b、查询任意计量点任意时间段内的用气情况,温度、压力、流量、能量曲线,并且可以打印记录。c、对整个天然气能量计量系统的运行进行分析,具有强大的统计和查询功能。d、根据需要自动生成日报表、月报表、年报表、定期检验记录,并可直接打印输出。1) Management interface of natural gas energy metering system. The interface includes: a. Real-time collection of temperature, pressure, flow, and component operating parameters of each natural gas metering point, and real-time energy conversion and energy accumulation based on each parameter. b. Query the gas consumption, temperature, pressure, flow and energy curves of any metering point in any time period, and can print records. c. Analyze the operation of the entire natural gas energy metering system, with powerful statistics and query functions. d. Automatically generate daily reports, monthly reports, annual reports, and regular inspection records according to needs, and can be directly printed out.
2)气体涡轮流量计实时校准和监测管理界面。该界面包括:a、客户登陆界面,对客户身份认证。b、气体涡轮流量计校准界面,实时监测在线气体涡轮流量计5校准。该平台通过摄像机4实时监控对在线气体涡轮流量计5校准过程,操作者可以通过远程控制端计算机访问服务器上在线气体涡轮流量计5现场的摄像机视频数据(包括历史视频数据和实时视频数据),从而监控在线气体涡轮流量计5性能和校准操作规范与否,流量数据是否有较大变化或跳变,便于对后续检查留存有复查依据。2) Gas turbine flowmeter real-time calibration and monitoring management interface. The interface includes: a. a customer login interface, which authenticates the identity of the customer. b. Gas turbine flowmeter calibration interface, real-time monitoring of online gas turbine flowmeter 5 calibration. The platform monitors the calibration process of the online gas turbine flowmeter 5 in real time through the camera 4, and the operator can access the camera video data (including historical video data and real-time video data) of the online gas turbine flowmeter 5 on the server through the remote control terminal computer, In this way, it is possible to monitor whether the performance of the online gas turbine flowmeter 5 and the calibration operation are standardized, and whether there is a large change or jump in the flow data, so as to facilitate the retention of a review basis for subsequent inspections.
3)数据发布界面。该界面包括:a、系统参数管理,用于参数设置、串口设置。b、数据查询界面,用于数据查询打印、历史报表查询。c、提供校准说明。3) Data publishing interface. The interface includes: a. System parameter management, used for parameter setting and serial port setting. b. Data query interface, used for data query printing and historical report query. c. Provide calibration instructions.
4)后台管理界面。该界面包括:a、系统角色管理,用来设置各登录用户的权限,各类登录用户的权限各不相同,所以需要一个统一的管理和分配。b、用户信息管理,用来对登陆用户信息进行添加、修改、删除和密码修改。用户信息包括用户名、密码、用户类型和用户单位名称等。各类型用户权限系统角色管理定义。c、仪表信息管理,对所有监测点的仪表包括气体涡轮流量计、流量计算机和配套的差压变送、温度变送器、压力变送器的信息进行管理,包括添加、修改、删除。仪表信息包括(均有管理员录入):设备生产厂家、规格型号、准确度等级、安装地点、出厂编号、日期等常规资料。d、数据库管理,数据库备份、恢复和原始数据清除。e、数据与信息发布,定期人工确认各气体涡轮流量计运行和校准数据。发布简要的通知信息给企业用户,该信息在相应的企业用户登陆时显示。4) Background management interface. The interface includes: a. System role management, which is used to set the permissions of each login user. The permissions of various login users are different, so a unified management and allocation is required. b. User information management, which is used to add, modify, delete and password modify login user information. User information includes user name, password, user type and user unit name, etc. Various types of user rights system role management definitions. c. Instrument information management, manage the information of instruments at all monitoring points, including gas turbine flowmeters, flow computers, and supporting differential pressure transmitters, temperature transmitters, and pressure transmitters, including adding, modifying, and deleting. Instrument information includes (all entered by the administrator): general information such as equipment manufacturer, specification model, accuracy level, installation location, factory serial number, date, etc. d. Database management, database backup, recovery and original data removal. e. Data and information release, regular manual confirmation of the operation and calibration data of each gas turbine flowmeter. Publish brief notification information to enterprise users, and the information will be displayed when the corresponding enterprise users log in.
远程控制端1设有基于LabVIEW软件,利用“差压-流量”数学模型将上传的压差信息转换成流量值,将校准时间内的标准累积流量值与在线气体涡轮流量计5的累积流量值比较,得到在线气体涡轮流量计5的示值误差。The remote control terminal 1 is equipped with LabVIEW software based on the "differential pressure-flow" mathematical model to convert the uploaded differential pressure information into a flow value, and compares the standard cumulative flow value within the calibration time with the cumulative flow value of the online gas turbine flowmeter 5 By comparison, the indication error of the online gas turbine flowmeter 5 is obtained.
校准流程如下:选择在线气体涡轮流量计5。开始校准,读取在线气体涡轮流量计5数据,同时计算标准累积流量值。形成数据表格,操作人员选取五组有效数据。根据数据库信息、实测数据和计算结果自动生成原始记录。打印并保存。远程给予校准报告,实现被校准仪表不再送到实验室去校准。The calibration process is as follows: Select online gas turbine flowmeter 5. Start the calibration, read the data of the online gas turbine flowmeter 5, and calculate the standard cumulative flow value at the same time. A data table is formed, and the operator selects five sets of valid data. Automatically generate original records based on database information, measured data and calculation results. Print and save. The calibration report is given remotely, so that the calibrated instrument is no longer sent to the laboratory for calibration.
校准时,远程控制端1访问“浙江省天然气能源网络化检测系统网络平台”,在服务器2数据库里选择需要校准的气体涡轮流量计5,选取所要提取数据的采样起始时间和截止时间。When calibrating, the remote control terminal 1 accesses the "Zhejiang Provincial Natural Gas Energy Networked Detection System Network Platform", selects the gas turbine flowmeter 5 to be calibrated in the server 2 database, and selects the sampling start time and cut-off time of the data to be extracted.
远程控制端1发出指令开始检测。流量积算仪35运算处理采集在线气体涡轮流量计5的脉冲信号,计算出校准时间在线内气体涡轮流量计5的累积量值。同时差压变送器34采集在线气体涡轮流量计5前后的差压数据、压力变送器32采集的气体压力数据、温度变送器33采集的气体温度数据。数据采集终端31将采集数据上传服务器2保存在数据库。远程控制端1调用数据,根据“差压-流量”数学模型,计算出直管6校准时间内的累积流量值。The remote control terminal 1 issues an instruction to start detection. The flow totalizer 35 calculates and processes the pulse signal collected from the on-line gas turbine flowmeter 5, and calculates the cumulative value of the on-line gas turbine flowmeter 5 at the calibration time. At the same time, the differential pressure transmitter 34 collects the differential pressure data before and after the online gas turbine flowmeter 5 , the gas pressure data collected by the pressure transmitter 32 , and the gas temperature data collected by the temperature transmitter 33 . The data collection terminal 31 saves the collection data uploaded to the server 2 in the database. The remote control terminal 1 calls the data, and calculates the cumulative flow value of the straight pipe 6 within the calibration time according to the "differential pressure-flow" mathematical model.
流量积算仪35将通过采集到的在线气体涡轮流量计5的脉冲信号,并且由压力变送器测出压力值Pg,温度变送器测出温度值Tg,计算出校准时间内在线气体涡轮流量计5的累积量。流过在线气体涡轮流量计5的工况条件下体积为:The flow totalizer 35 will use the collected pulse signal of the online gas turbine flowmeter 5, and measure the pressure value Pg by the pressure transmitter, and the temperature value Tg by the temperature transmitter, and calculate the online time within the calibration time. The cumulative amount of the gas turbine flowmeter 5. The volume flowing through the online gas turbine flowmeter 5 under working conditions is:
公式中:formula:
Vb:流过被检涡轮流量计的工况条件下体积,单位m3;V b : the volume flowing through the tested turbine flowmeter under working conditions, unit m 3 ;
N:在线气体涡轮流量计的脉冲数,无量纲;N: pulse number of online gas turbine flowmeter, dimensionless;
K:在线涡轮流量计的仪表系数,单位m-3;K: meter coefficient of online turbine flowmeter, unit m -3 ;
P0、T0、Z0分别为标准状况下空气的绝对压力、热力学温度和压缩系数,即P0=101.325kPa、T0=293.15K、Z0=1;P 0 , T 0 , and Z 0 are the absolute pressure, thermodynamic temperature, and compressibility coefficient of air under standard conditions, respectively, that is, P 0 =101.325kPa, T 0 =293.15K, Z 0 =1;
Pg、Tg、Zg分别为工况条件下被检涡轮流量计处空气的绝对压力、热力学温度和压缩系数,单位分别为Pa、K、无量纲,常压下Zg=1。P g , T g , and Z g are the absolute pressure, thermodynamic temperature, and compressibility coefficient of the air at the turbine flowmeter under test under working conditions, respectively, in units of Pa, K, and dimensionless, and Z g =1 under normal pressure.
在工况条件下跨接在线涡轮流量计上1的差压变送器34测量到的压力损失与流量之间的关系为:The relationship between the pressure loss measured by the differential pressure transmitter 34 connected across the online turbine flowmeter 1 and the flow rate under working conditions is:
公式中:formula:
ΔPQmax:标准状态下,介质为干空气(20℃,101.325kPa,ρ=1.205kg/m3)时,最大流量的压力损失,单位kPa;ΔP Qmax : Under standard conditions, when the medium is dry air (20°C, 101.325kPa, ρ=1.205kg/m 3 ), the pressure loss of the maximum flow rate, unit kPa;
ρ0:标准状态(20℃,101.325kPa)下的介质密度,单位kg/m3;ρ 0 : medium density under standard state (20°C, 101.325kPa), unit kg/m 3 ;
Pa:当地大气压,单位kPa;P a : local atmospheric pressure, unit kPa;
Pg:在线气体涡轮流量计压力检测点的绝对压力,单位kPa;P g : the absolute pressure at the pressure detection point of the online gas turbine flowmeter, in kPa;
P0:标准大气压(101.325kPa);P 0 : standard atmospheric pressure (101.325kPa);
T0:标准状态下的绝对温度(293.15K);T 0 : absolute temperature (293.15K) under standard state;
Tg:介质工况条件下绝对温度,单位K;T g : Absolute temperature under medium working conditions, unit K;
Q:工况流量,单位m3/h;Q: working condition flow rate, unit m 3 /h;
Qmax:仪表最大工况流量,单位m3/h。Q max : The maximum working condition flow rate of the meter, in m 3 /h.
由压力变送器32测出压力值Pg,温度变送器33测出温度值Tg,ΔPQmax、Qmax及ρ0由查表得出,即可计算出流过在线气体涡轮流量计5的气体工况理论流量Q,进而积分计算出校准时间内的理论气体累积流量Vc,以此作为标准流量值。The pressure value Pg is measured by the pressure transmitter 32, the temperature value Tg is measured by the temperature transmitter 33, ΔP Qmax , Qmax and ρ0 are obtained from the look-up table, and the flow through the online gas turbine flowmeter can be calculated. 5, the theoretical flow Q of the gas working condition, and then integrally calculate the theoretical gas cumulative flow V c within the calibration time, which is used as the standard flow value.
线气体涡轮流量计5的示值误差按式c计算:The indication error of the line gas turbine flowmeter 5 is calculated according to formula c:
公式中:formula:
Vb:在线被检涡轮流量计示值(累积值);V b : Indicated value (cumulative value) of the online tested turbine flowmeter;
Vc:差压信号处理单元计算值(累积值)。V c : Calculated value (cumulative value) of the differential pressure signal processing unit.
比较两者的流量值,得出在线气体涡轮流量计5的示值误差。Comparing the flow values of the two, the indication error of the online gas turbine flowmeter 5 is obtained.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510054818.6A CN104677471B (en) | 2015-02-03 | 2015-02-03 | A kind of networking on-line calibration system of gas turbine meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510054818.6A CN104677471B (en) | 2015-02-03 | 2015-02-03 | A kind of networking on-line calibration system of gas turbine meter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104677471A true CN104677471A (en) | 2015-06-03 |
CN104677471B CN104677471B (en) | 2017-12-22 |
Family
ID=53312827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510054818.6A Active CN104677471B (en) | 2015-02-03 | 2015-02-03 | A kind of networking on-line calibration system of gas turbine meter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104677471B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107238424A (en) * | 2017-06-26 | 2017-10-10 | 深圳市樊溪电子有限公司 | A kind of detection means and detection method of circulating gas turbine meter |
CN109991144A (en) * | 2017-12-31 | 2019-07-09 | 中国人民解放军63653部队 | Epoxy sealing type measuring device for gas permeability |
CN110554145A (en) * | 2019-09-03 | 2019-12-10 | 北京雪迪龙科技股份有限公司 | device and method for remotely detecting and calibrating automatic flue gas monitoring system |
CN111076779A (en) * | 2019-12-03 | 2020-04-28 | 金卡智能集团股份有限公司 | Metering detection system based on cloud server storage |
CN112683371A (en) * | 2020-12-11 | 2021-04-20 | 浙江苍南仪表集团股份有限公司 | Signal detection method for gas turbine flowmeter verification |
CN113790781A (en) * | 2021-09-15 | 2021-12-14 | 中国航发沈阳黎明航空发动机有限责任公司 | Online calibration method for blade water flow testing equipment |
CN114061708A (en) * | 2021-11-01 | 2022-02-18 | 湖州市检验检测中心 | High-precision automatic control liquid flowmeter (instrument) on-line calibration device |
CN114543945A (en) * | 2022-01-04 | 2022-05-27 | 重庆川仪自动化股份有限公司 | A flow meter calibration system and method based on the Internet of Things |
CN114580214A (en) * | 2022-05-05 | 2022-06-03 | 常州艾肯智造科技有限公司 | Intelligent steam flowmeter checking and testing system and method based on Internet of things |
CN114659594A (en) * | 2022-03-21 | 2022-06-24 | 江苏红光仪表厂有限公司 | Active Calibration Systems for Flow Meters |
CN116046258A (en) * | 2021-10-28 | 2023-05-02 | 中国石油天然气股份有限公司 | Remote online calibration system and method for wireless pressure transmitter |
CN117740121A (en) * | 2024-02-20 | 2024-03-22 | 成都睿宝电子科技有限公司 | Automatic calibration device and calibration method for flowmeter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1308701A2 (en) * | 2001-10-31 | 2003-05-07 | Elster GmbH | Turbine mass flow meter with diagnostic device |
CN101403632A (en) * | 2008-11-13 | 2009-04-08 | 中国石化江汉油田分公司江汉采油厂 | Dynamic multipath synchronization detection apparatus and method for metering device |
CN101435859A (en) * | 2008-12-19 | 2009-05-20 | 广东省计量科学研究院 | Remote calibration method and system |
CN201476850U (en) * | 2009-05-31 | 2010-05-19 | 常州市计量测试技术研究所 | Gas meter detection system |
CN201497548U (en) * | 2009-05-31 | 2010-06-02 | 常州市计量测试技术研究所 | On-line verification system of water meter |
-
2015
- 2015-02-03 CN CN201510054818.6A patent/CN104677471B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1308701A2 (en) * | 2001-10-31 | 2003-05-07 | Elster GmbH | Turbine mass flow meter with diagnostic device |
CN101403632A (en) * | 2008-11-13 | 2009-04-08 | 中国石化江汉油田分公司江汉采油厂 | Dynamic multipath synchronization detection apparatus and method for metering device |
CN101435859A (en) * | 2008-12-19 | 2009-05-20 | 广东省计量科学研究院 | Remote calibration method and system |
CN201476850U (en) * | 2009-05-31 | 2010-05-19 | 常州市计量测试技术研究所 | Gas meter detection system |
CN201497548U (en) * | 2009-05-31 | 2010-06-02 | 常州市计量测试技术研究所 | On-line verification system of water meter |
Non-Patent Citations (3)
Title |
---|
吕几凡 等: "管道天然气超声流量计在线检验系统设计", 《传感器与微系统》 * |
邓立三: "《燃气计量》", 30 November 2011 * |
陈伟: "远程计量校准技术研究", 《计量与质量专题学术交流会论文专辑》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107238424A (en) * | 2017-06-26 | 2017-10-10 | 深圳市樊溪电子有限公司 | A kind of detection means and detection method of circulating gas turbine meter |
CN109991144A (en) * | 2017-12-31 | 2019-07-09 | 中国人民解放军63653部队 | Epoxy sealing type measuring device for gas permeability |
CN110554145A (en) * | 2019-09-03 | 2019-12-10 | 北京雪迪龙科技股份有限公司 | device and method for remotely detecting and calibrating automatic flue gas monitoring system |
CN111076779A (en) * | 2019-12-03 | 2020-04-28 | 金卡智能集团股份有限公司 | Metering detection system based on cloud server storage |
CN112683371A (en) * | 2020-12-11 | 2021-04-20 | 浙江苍南仪表集团股份有限公司 | Signal detection method for gas turbine flowmeter verification |
CN113790781B (en) * | 2021-09-15 | 2023-10-27 | 中国航发沈阳黎明航空发动机有限责任公司 | Online calibration method for blade water flow test equipment |
CN113790781A (en) * | 2021-09-15 | 2021-12-14 | 中国航发沈阳黎明航空发动机有限责任公司 | Online calibration method for blade water flow testing equipment |
CN116046258A (en) * | 2021-10-28 | 2023-05-02 | 中国石油天然气股份有限公司 | Remote online calibration system and method for wireless pressure transmitter |
CN114061708A (en) * | 2021-11-01 | 2022-02-18 | 湖州市检验检测中心 | High-precision automatic control liquid flowmeter (instrument) on-line calibration device |
CN114543945A (en) * | 2022-01-04 | 2022-05-27 | 重庆川仪自动化股份有限公司 | A flow meter calibration system and method based on the Internet of Things |
CN114659594A (en) * | 2022-03-21 | 2022-06-24 | 江苏红光仪表厂有限公司 | Active Calibration Systems for Flow Meters |
CN114659594B (en) * | 2022-03-21 | 2024-08-09 | 江苏红光仪表厂有限公司 | Active calibration system for flow meters |
CN114580214A (en) * | 2022-05-05 | 2022-06-03 | 常州艾肯智造科技有限公司 | Intelligent steam flowmeter checking and testing system and method based on Internet of things |
CN114580214B (en) * | 2022-05-05 | 2022-07-22 | 常州艾肯智造科技有限公司 | Intelligent steam flowmeter checking and testing system and method based on Internet of things |
CN117740121A (en) * | 2024-02-20 | 2024-03-22 | 成都睿宝电子科技有限公司 | Automatic calibration device and calibration method for flowmeter |
CN117740121B (en) * | 2024-02-20 | 2024-06-04 | 成都睿宝电子科技有限公司 | Automatic calibration device and calibration method for flowmeter |
Also Published As
Publication number | Publication date |
---|---|
CN104677471B (en) | 2017-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104677471B (en) | A kind of networking on-line calibration system of gas turbine meter | |
CN101255947B (en) | Metered system for automatically capturing fluid flux | |
CN102721821B (en) | On-line system for automatically monitoring oil state of steam turbine oil in use | |
CN109813400A (en) | Online verification and test system of boiler main steam flowmeter based on Internet of Things technology | |
CN104729637B (en) | A kind of turbine flowmeter on-line calibration system and calibration method | |
US20120054124A1 (en) | Building energy efficiency diagnostic and monitoring system | |
CN102967349A (en) | Networked on-line inspection method of supersonic gas flowmeter | |
CN103336735A (en) | On-line monitoring system for energy efficiency of blowers and water pumps | |
CN104833456B (en) | An on-site detection device and method for a pressure sensor of a valve cooling system | |
CN101871266B (en) | Automatic acquisition system for concrete cooling water data | |
CN106917742A (en) | A kind of air compressor energy-saving amount monitoring system and amount of energy saving remote upload method | |
CN116930424A (en) | Online continuous monitoring system for carbon emission | |
CN209342212U (en) | An online calibration and testing system for boiler main steam flowmeter | |
CN209785245U (en) | Gas pipe network simulation experiment data acquisition system | |
CN105090084B (en) | Draught fan online monitoring system and method | |
CN103292842B (en) | Plug-in smoke gas flow-measuring method based on detection oxygen content and measurement apparatus | |
CN117571627A (en) | System and method for monitoring carbon dioxide in flue of thermal power plant | |
CN201707783U (en) | Automatic data acquisition system of concrete cooling through water | |
CN116147761A (en) | A device for remote online detection of environmental noise monitoring system | |
CN102999028B (en) | Gas medium continuous data early warning system digital-to-analogue constructing method | |
CN116105836A (en) | Remote self-diagnosis ultrasonic gas meter design based on temperature compensation algorithm | |
CN107843286A (en) | A kind of boiler draft test data on-line acquisition system and analysis and processing method | |
CN204900304U (en) | Fan on -line monitoring system | |
CN205279047U (en) | Boiler furnace thermoscope | |
CN201126690Y (en) | Experimental teaching platform for chemical engineering principles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |