CN104674454B - Method for manufacturing three-dimensional porous disorder scaffolds from polylactic acid molten spinning fibers by means of thermal bonding and solidifying - Google Patents
Method for manufacturing three-dimensional porous disorder scaffolds from polylactic acid molten spinning fibers by means of thermal bonding and solidifying Download PDFInfo
- Publication number
- CN104674454B CN104674454B CN201510040458.4A CN201510040458A CN104674454B CN 104674454 B CN104674454 B CN 104674454B CN 201510040458 A CN201510040458 A CN 201510040458A CN 104674454 B CN104674454 B CN 104674454B
- Authority
- CN
- China
- Prior art keywords
- polylactic acid
- disordered
- pla
- melt
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000747 poly(lactic acid) Polymers 0.000 title claims abstract description 161
- 239000004626 polylactic acid Substances 0.000 title claims abstract description 139
- 239000000835 fiber Substances 0.000 title claims abstract description 116
- 238000000034 method Methods 0.000 title abstract description 20
- 238000009987 spinning Methods 0.000 title description 9
- 238000004519 manufacturing process Methods 0.000 title description 6
- 238000004804 winding Methods 0.000 claims abstract description 3
- 238000007731 hot pressing Methods 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 8
- 238000002074 melt spinning Methods 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 6
- 239000011148 porous material Substances 0.000 abstract description 18
- 230000008569 process Effects 0.000 abstract description 4
- 210000000988 bone and bone Anatomy 0.000 abstract description 3
- 229920003023 plastic Polymers 0.000 abstract description 3
- 239000004033 plastic Substances 0.000 abstract description 3
- 230000000704 physical effect Effects 0.000 abstract description 2
- -1 Polypropylene Polymers 0.000 description 57
- 239000004745 nonwoven fabric Substances 0.000 description 32
- 239000002131 composite material Substances 0.000 description 30
- 239000004744 fabric Substances 0.000 description 20
- 238000001878 scanning electron micrograph Methods 0.000 description 12
- 239000002121 nanofiber Substances 0.000 description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 9
- 229920000954 Polyglycolide Polymers 0.000 description 7
- 239000004750 melt-blown nonwoven Substances 0.000 description 7
- 239000004633 polyglycolic acid Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- 230000000844 anti-bacterial effect Effects 0.000 description 6
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000001523 electrospinning Methods 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000002048 multi walled nanotube Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 244000025254 Cannabis sativa Species 0.000 description 4
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 4
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 241000191967 Staphylococcus aureus Species 0.000 description 4
- 235000009120 camo Nutrition 0.000 description 4
- 235000005607 chanvre indien Nutrition 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000011487 hemp Substances 0.000 description 4
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 4
- 239000004753 textile Substances 0.000 description 4
- 240000008564 Boehmeria nivea Species 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 240000006240 Linum usitatissimum Species 0.000 description 3
- 235000004431 Linum usitatissimum Nutrition 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000011173 biocomposite Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229960003405 ciprofloxacin Drugs 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 239000002122 magnetic nanoparticle Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920001610 polycaprolactone Polymers 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 2
- 244000082204 Phyllostachys viridis Species 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 239000011425 bamboo Substances 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 230000010478 bone regeneration Effects 0.000 description 2
- 238000009960 carding Methods 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000009940 knitting Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000520 poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 230000003075 superhydrophobic effect Effects 0.000 description 2
- YCIHPQHVWDULOY-FMZCEJRJSA-N (4s,4as,5as,6s,12ar)-4-(dimethylamino)-1,6,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide;hydrochloride Chemical compound Cl.C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]4(O)C(=O)C3=C(O)C2=C1O YCIHPQHVWDULOY-FMZCEJRJSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical group FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002361 compost Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 210000001724 microfibril Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000002103 nanocoating Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 230000009818 osteogenic differentiation Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920006381 polylactic acid film Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229960004989 tetracycline hydrochloride Drugs 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/435—Polyesters
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D13/00—Complete machines for producing artificial threads
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/542—Adhesive fibres
- D04H1/55—Polyesters
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nonwoven Fabrics (AREA)
Abstract
本发明公开的聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法,步骤如下:将具有良好生物降解性和生物相容性的聚乳酸切片通过熔融纺丝方法制备熔融纺纤维和绕纱工艺制成平行排列的纤维集合体;再将平行排列的纤维集合体剪断为不同长度的短纤维,经过均匀铺网和热粘合固化方法制备无序支架。或者将具有良好生物降解性和生物相容性的聚乳酸切片,利用单螺杆塑料挤出机,通过熔喷工艺利用自身热粘合得到无序支架。本发明方法制备的PLA熔融纺纤维三维多孔无序支架结构稳定,具有较好的内部孔隙结构、物理性能和力学性能。该无序支架可以应用在骨组织工程等生物医用领域,具有较好的应用潜力和前景。
The method for preparing polylactic acid melt-spun fibers thermally bonded and solidified three-dimensional porous disordered scaffolds disclosed by the invention comprises the following steps: preparing melt-spun fibers and The fiber aggregates arranged in parallel are made by the yarn winding process; then the parallel arrayed fiber aggregates are cut into short fibers of different lengths, and the disordered scaffolds are prepared by uniform laying and thermal bonding and curing. Alternatively, slice polylactic acid with good biodegradability and biocompatibility, use a single-screw plastic extruder, and use self-thermal bonding through a melt-blown process to obtain a disordered scaffold. The PLA melt-spun fiber prepared by the method of the invention has a stable three-dimensional porous and disordered scaffold structure, and has better internal pore structure, physical properties and mechanical properties. The disordered scaffold can be applied in biomedical fields such as bone tissue engineering, and has good application potential and prospects.
Description
技术领域technical field
本发明涉及聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法。The invention relates to a method for preparing a polylactic acid melt-spun fiber thermally bonded and solidified three-dimensional porous disordered scaffold.
背景技术Background technique
北卡罗莱纳州立大学非织造布研究中心的Fedorova et al.[Fedorova N,Pourdeyhimi B:High strength nylon micro-and nanofiber based nonwovens viaspunbonding.J Appl Polym Sci 2007,104(5):3434-3442.]利用锦纶6(N6)和PLA(Natureworks)制备不同的海岛纤维(锦纶6为岛,PLA为海),然后纤维网通过30m/min的水刺加固成织物。再将织物利用3%的NaOH溶液,在100℃处理10min去除掉PLA成分。通过溶掉PLA组分后,可以得到微米和纳米纤维,并且纤维直径可以达到0.36-1.3mm。Fedorova et al., North Carolina State University Nonwovens Research Center [Fedorova N, Pourdeyhimi B: High strength nylon micro-and nanofiber based nonwovens viaspunbonding. J Appl Polym Sci 2007,104(5):3434-3442.] Nylon 6 (N6) and PLA (Natureworks) were used to prepare different island-in-the-sea fibers (Nylon 6 is the island, PLA is the sea), and then the fiber web was reinforced into a fabric by 30m/min hydroentanglement. Then the fabric was treated with 3% NaOH solution at 100° C. for 10 minutes to remove the PLA component. After dissolving the PLA component, micron and nanofibers can be obtained, and the fiber diameter can reach 0.36-1.3mm.
关于PLA熔融纺纤维,还有Polypropylene/Poly(lactic acid)(PP/PLA)双组份纤维[Arvidson SA,Roskov KE,Pate JJ,Spontak RJ,Khan SA,Gorga RE:Modification ofMelt-Spun Isotactic Polypropylene and Poly(lactic acid)Bicomponent Filamentswith a Premade Block Copolymer.Macromolecules 2012,45(2):913-925.;Liu Y,ToviaF,Pierce JD:Consumer Acceptability of Scent-infused Knitting Scarves UsingFunctional Melt-spun PP/PLA Bicomponent Fibers.Text Res J2009,79(6):566-573.]、poly(lactic acid)/hydroxyapatite(PLA/HA)[Persson M,Lorite GS,Cho SW,Tuukkanen J,Skrifvars M:Melt Spinning of Poly(lactic acid)and HydroxyapatiteComposite Fibers:Influence of the Filler Content on the Fiber Properties.AcsAppl Mater Inter 2013,5(15):6864-6872.]、poly(lactic acid)/Poly(R)-3-hydroxybutyrate-co-R-3-hydroxyvalerate(PLA/PHBV)[Pivsa-Art S,Srisawat N,O-Charoen N,Pavasupree S,Pivsa-Art W:Preparation of Knitting Socks from Poly(lactic acid)and Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate](PHBV)blends for Textile Industrials.Enrgy Proced 2011,9.]、poly(lactic acid)/polyvinylidene fluoride(PLA/PVDF)[Fryczkowski R,Fryczkowska B,Binias W,Janicki J:Morphology of fibrous composites of PLA and PVDF.Compos Sci Technol2013,89:186-193.]、Polylactide/Multiwall Carbon Nanotube(PLA/MWNT)[Rizvi R,Tong L,Naguib H:Processing and Properties of Melt Spun Polylactide-MultiwallCarbon Nanotube Fiber Composites.J Polym Sci Pol Phys 2014,52(6):477-484.]、Polylactide/poly(vinyl alcohol)(PLA/PVA)[Tran NHA,Brunig H,Hinuber C,HeinrichG:Melt Spinning of Biodegradable Nanofibrillary Structures from Poly(lacticacid)and Poly(vinyl alcohol)Blends.Macromol Mater Eng 2014,299(2):219-227.]、Polylactide/poly(butylene succinate)(PLA/PBS)[Jompang L,Thumsorn S,On JW,Surin P,Apawet C,Chaichalermwong T,Kaabbuathong N,O-Charoen N,Srisawat N:Poly(lactic acid)and Poly(butylene succinate)Blend Fibers Prepared by MeltSpinning Technique.10th Eco-Energy and Materials Science and EngineeringSymposium 2013,34:493-499.]。Regarding PLA melt-spun fibers, there are also Polypropylene/Poly(lactic acid) (PP/PLA) bicomponent fibers [Arvidson SA, Roskov KE, Pate JJ, Spontak RJ, Khan SA, Gorga RE: Modification of Melt-Spun Isotactic Polypropylene and Poly(lactic acid)Bicomponent Filamentswith a Premade Block Copolymer.Macromolecules 2012,45(2):913-925.; Liu Y,ToviaF,Pierce JD:Consumer Acceptability of Scent-infused Knitting Scarves UsingFunctional Melt-spun PP/PLA Bicomponent Fibers .Text Res J2009,79(6):566-573.], poly(lactic acid)/hydroxyapatite(PLA/HA)[Persson M,Lorite GS,Cho SW,Tuukkanen J,Skrifvars M:Melt Spinning of Poly(lactic acid) and HydroxyapatiteComposite Fibers: Influence of the Filler Content on the Fiber Properties.AcsAppl Mater Inter 2013,5(15):6864-6872.], poly(lactic acid)/Poly(R)-3-hydroxybutyrate-co-R -3-hydroxyvalerate(PLA/PHBV)[Pivsa-Art S,Srisawat N,O-Charoen N,Pavasupree S,Pivsa-Art W:Preparation of Knitting Socks from Poly(lactic acid)and Poly[(R)-3- hydroxybutyrate-co-(R)-3-hydroxyvalerate](PHBV)blends for Textile Industries.Enrgy Proced 2011,9.], poly(lactic acid)/polyvinylidene fluoride(PLA/PVDF)[Fryczkowski R, Fryczkowska B, Binias W, Janicki J: Morphology of fibrous composites of PLA and PVDF.Compos Sci Technol2013,89:186-193.], Polylactide/Multiwall Carbon Nanotube (PLA/MWNT) [Rizvi R, Tong L, Naguib H: Processing and Properties of Melt Spun Polylactide-Multiwall Carbon Nanotube Fiber Composites.J Polym Sci Pol Phys 2014,52(6):477-484.], Polylactide/ poly(vinyl alcohol)(PLA/PVA)[Tran NHA,Brunig H,Hinuber C,HeinrichG:Melt Spinning of Biodegradable Nanofibrillary Structures from Poly(lactic acid)and Poly(vinyl alcohol)Blends.Macromol Mater Eng 2014,299(2) :219-227.], Polylactide/poly(butylene succinate)(PLA/PBS)[Jompang L, Thumsorn S, On JW, Surin P, Apawet C, Chaichalermwong T, Kaabbuathong N, O-Charoen N, Srisawat N: Poly (lactic acid) and Poly(butylene succinate) Blend Fibers Prepared by MeltSpinning Technique. 10th Eco-Energy and Materials Science and Engineering Symposium 2013,34:493-499.].
此外,也有研究人员将PLA加工成织物(机织物、针织物、三维正交织物)、非织造布(熔喷非织造布、纺粘非织造布、针刺非织造布、热粘合非织造布和静电纺纳米纤维非织造布)、复合材料、膜等形式。In addition, some researchers have processed PLA into fabrics (woven fabrics, knitted fabrics, three-dimensional orthogonal fabrics), nonwovens (meltblown nonwovens, spunbonded nonwovens, needle punched nonwovens, thermally bonded nonwovens, etc.) cloth and electrospun nanofiber nonwovens), composites, films, etc.
Dai et al.[Dai XJJ,du Plessis J,Kyratzis IL,Maurdev G,Huson MG,CoombsC:Controlled Amine Functionalization and Hydrophilicity of a Poly(lacticacid)Fabric.Plasma Process Polym2009,6(8):490-497.]将PLA熔融纺纤维制备成针织物然后进行等离子体处理。Bae et al.[Bae GY,Jang J,Jeong YG,Lyoo WS,Min BG:Superhydrophobic PLA fabrics prepared by UV photo-grafting of hydrophobicsilica particles possessing vinyl groups.J Colloid Interf Sci 2010,344(2):584-587.]利用紫外照射技术在PLA织物表面接枝疏水性的二氧化硅粒子制备超疏水织物。Nodo et al.[Nodo K,Leong YW,Hamada H:Effect of knitted and woven textilestructures on the mechanical performance of poly(lactic acid)textile insertinjection-compression moldings.J Appl Polym Sci 2012,125:E200-E207.]研究PLA机织物和针织物冲击试验的载荷性能,结果表明通过压缩成型制备的PLA织物具有较好的韧性和延伸性。此外,还有PLA三维正交织物[Zhou NT,Geng XY,Ye MQ,Yao L,Shan ZD,QiuYP:Mechanical and sound adsorption properties of cellular poly(lactic acid)matrix composites reinforced with 3D ramie fabrics woven with co-wrappedyarns.Ind Crop Prod 2014,56:1-8.]。Dai et al.[Dai XJJ,du Plessis J,Kyratzis IL,Maurdev G,Huson MG,CoombsC:Controlled Amine Functionalization and Hydrophilicity of a Poly(lactic acid)Fabric.Plasma Process Polym2009,6(8):490-497.] The PLA melt-spun fibers were prepared into knitted fabrics and then treated with plasma. Bae et al.[Bae GY,Jang J,Jeong YG,Lyoo WS,Min BG:Superhydrophobic PLA fabrics prepared by UV photo-grafting of hydrophobicsilica particles possessing vinyl groups.J Colloid Interf Sci 2010,344(2):584-587 .] Using ultraviolet irradiation technology to graft hydrophobic silica particles on the surface of PLA fabrics to prepare superhydrophobic fabrics. Nodo et al.[Nodo K,Leong YW,Hamada H:Effect of knitted and woven textile structures on the mechanical performance of poly(lactic acid)textile insertion-compression moldings.J Appl Polym Sci 2012,125:E200-E207.]Research The loading properties of PLA woven and knitted fabrics in impact tests, the results show that the PLA fabrics prepared by compression molding have better toughness and extensibility. In addition, there are PLA three-dimensional orthogonal fabrics [Zhou NT, Geng XY, Ye MQ, Yao L, Shan ZD, QiuYP: Mechanical and sound adsorption properties of cellular poly(lactic acid) matrix composites reinforced with 3D ramie fabrics woven with co- wrappedyarns. Ind Crop Prod 2014, 56:1-8.].
熔喷技术是借助高速气流将热塑性聚合物制备成超细纤维非织造布,这种非织造布具有较小的孔径和较大的孔隙率。Liu et al.[Liu Y,Cheng BW,Cheng GX:Developmentand Filtration Performance of Polylactic Acid Meltblowns.Text Res J 2010,80(9):771-779.]将美国Natureworks的PLA切片(Tg=52℃,Tm=168℃)依次经过干燥、熔融挤出、过滤、齿轮计量、纺丝、热空气拉伸、冷却和卷绕接收来制备PLA熔喷非织造布。其中接收距离为20cm,热空气压力为0.15MPa,纺丝温度为220℃,热空气温度分别为250、260、270、280、290和300℃,狭缝宽度分别为0.3、0.4、0.5和0.6cm。并且分别研究了热空气温度(250-290℃)和狭缝宽度(0.3-0.6cm)的变化对PLA熔喷非织造布的纤维直径、孔隙率、平均孔径、0.3μm和0.5μm颗粒的过滤效率以及透气量的影响及变化规律。Majchrzycka[MajchrzyckaK:Evaluation of a New Bioactive Nonwoven Fabric for RespiratoryProtection.Fibres Text East Eur 2014,22(1):81-88.]利用Natureworks的PLA切片(Tm=160-170℃),270℃的纺丝温度,270℃的热空气温度,8.8m3/h的空气流速,300mm的接收距离制备PLA熔喷非织造布,并且利用生物活性物质对PLA熔喷非织造布进行改性,同时研究细菌在该生物活性非织造布上的存活性以及气溶胶的过滤效率。Cerkez et al.[CerkezI,Worley SD,Broughton RM,Huang TS:Rechargeable antimicrobial coatings forpoly(lactic acid)nonwoven fabrics.Polymer 2013,54(2):536-541.]将田纳西大学纺织品和非织造布发展中心提供的PLA熔喷非织造布(30g/m2)利用杂环N-卤代胺醋酸盐的均聚物(1.5wt%,40℃,10min)进行涂层。实验结果表明,涂层非常稳定,并且具有高效的对金黄色葡萄球菌和大肠杆菌的抗菌性。这种涂层支架可以用在抗菌食品包装、过滤器和卫生产品方面。Krucinska et al.[Krucinska I,Surma B,Chrzanowski M,Skrzetuska E,Puchalski M:Application of melt-blown technology in the manufacturing of asolvent vapor-sensitive,non-woven fabric composed of poly(lactic acid)loadedwith multi-walled carbon nanotubes.Text Res J 2013,83(8):859-870.]首次制备了98%PLA/2%多壁纳米碳管(MWCNTs)熔喷非织造布。Melt-blown technology is to prepare thermoplastic polymers into ultra-fine fiber non-woven fabrics with high-speed airflow. This non-woven fabric has smaller pore size and larger porosity. Liu et al.[Liu Y, Cheng BW, Cheng GX: Development and Filtration Performance of Polylactic Acid Meltblowns. Text Res J 2010,80(9):771-779.] Sliced PLA from Natureworks (T g =52℃, T m = 168°C) to prepare PLA melt-blown nonwovens through drying, melt extrusion, filtration, gear metering, spinning, hot air stretching, cooling and winding reception in sequence. The receiving distance is 20cm, the hot air pressure is 0.15MPa, the spinning temperature is 220°C, the hot air temperature is 250, 260, 270, 280, 290, and 300°C, and the slit width is 0.3, 0.4, 0.5, and 0.6 cm. And the changes of hot air temperature (250-290°C) and slit width (0.3-0.6cm) on the fiber diameter, porosity, average pore size, and filtration of 0.3 μm and 0.5 μm particles of PLA meltblown nonwovens were studied respectively. The influence and change rule of efficiency and air flow. Majchrzycka[MajchrzyckaK:Evaluation of a New Bioactive Nonwoven Fabric for RespiratoryProtection.Fibres Text East Eur 2014,22(1):81-88.] Using Natureworks PLA slices (T m =160-170°C), spinning at 270°C Temperature, hot air temperature of 270°C, air flow rate of 8.8m 3 /h, receiving distance of 300mm to prepare PLA melt-blown nonwovens, and use biologically active substances to modify PLA melt-blown nonwovens, and at the same time study bacteria in Survivability on the bioactive nonwoven and aerosol filtration efficiency. Cerkez et al. [CerkezI, Worley SD, Broughton RM, Huang TS: Rechargeable antimicrobial coatings for poly(lactic acid)nonwoven fabrics. Polymer 2013,54(2):536-541.] University of Tennessee Textile and Nonwovens Development Center The provided PLA meltblown nonwoven fabric (30 g/m 2 ) was coated with a homopolymer of heterocyclic N-haloamine acetate (1.5 wt%, 40° C., 10 min). Experimental results show that the coating is very stable and has high antibacterial properties against Staphylococcus aureus and Escherichia coli. The coated scaffold could be used in antimicrobial food packaging, filters and hygiene products. Krucinska et al.[Krucinska I, Surma B, Chrzanowski M, Skrzetuska E, Puchalski M: Application of melt-blown technology in the manufacturing of solvent vapor-sensitive, non-woven fabric composed of poly(lactic acid) loaded with multi-walled carbon nanotubes.Text Res J 2013,83(8):859-870.] For the first time, 98% PLA/2% multi-walled carbon nanotubes (MWCNTs) melt-blown nonwovens were prepared.
Puchalski et al.[Puchalski M,Krucinska I,Sulak K,Chrzanowski M,Wrzosek H:Influence of the calender temperature on the crystallizationbehaviors of polylactide spun-bonded non-woven fabrics.Text Res J 2013,83(17):1775-1785.]将美国Natureworks的PLA切片6251D(Mn=45800g/mol,Tg=61℃,Tm=168℃),在80℃干燥4h,纺丝温度为205-216℃,聚合物的生产量为0.10-0.43g/min/Hole,喷丝板总共有467孔,热压温度为60-130℃。并且研究了不同热压温度下PLA纺粘非织造布的内部形态、结晶度、物理-力学性能以及热降解性能。Gutowska et al.[Gutowska A,Jozwicka J,Sobczak S,Tomaszewski W,Sulak K,Miros P,Owczarek M,Szalczynska M,Ciechanska D,Krucinska I:In-Compost Biodegradation of PLA Nonwovens.FibresText East Eur 2014,22(5):99-106.]利用Natureworks的PLA切片(Tm=160-170℃),212±1℃的纺丝温度,2.9-6.8m/min转速的卷取辊,42.4-101.8g/min的挤出生产量,60-105℃的热粘合温度和1500-2000Pa的压力制备PLA纺粘非织造布并且研究其在58±2℃、pH=7和52.6%湿度环境中的降解性能。Wang et al.[Wang HB,Wei QF,Wang X,Gao WD,Zhao XY:Antibacterial properties of PLA nonwoven medical dressings coated withnanostructured silver.Fiber Polym2008,9(5):556-560.]首先将江西国桥非织造布有限公司提供的PLA纺粘非织造布(35g/m2)浸没在丙酮溶液中,然后超声冲洗30分钟去除有机溶剂,再用等离子水清洗两次,在30-35℃烘箱中干燥。再利用氩等离子体的磁控溅射镀膜系统在其上镀银,得到纳米银涂层的PLA纺粘非织造布,并且研究纳米涂层厚度对非织造布抗菌性能的影响。实验结果表明,当涂层厚度在1nm时,对金黄色葡萄球菌和大肠杆菌的抗菌效果可以达到100%。Puchalski et al. [Puchalski M, Krucinska I, Sulak K, Chrzanowski M, Wrzosek H: Influence of the calender temperature on the crystallization behaviors of polylactide spun-bonded non-woven fabrics. Text Res J 2013,83(17):1775- 1785.] Dried the PLA chip 6251D (Mn=45800g/mol, Tg =61°C, Tm =168°C) of American Natureworks at 80°C for 4h, the spinning temperature was 205-216°C, the production capacity of the polymer 0.10-0.43g/min/Hole, the spinneret has 467 holes in total, and the hot pressing temperature is 60-130°C. The internal morphology, crystallinity, physical-mechanical properties and thermal degradation properties of PLA spunbond nonwovens were studied at different hot-pressing temperatures. Gutowska et al.[Gutowska A,Jozwicka J,Sobczak S,Tomaszewski W,Sulak K,Miros P,Owczarek M,Szalczynska M,Ciechanska D,Krucinska I:In-Compost Biodegradation of PLA Nonwovens.FibresText East Eur 2014,22( 5): 99-106.] Using Natureworks PLA slices (T m =160-170°C), spinning temperature of 212±1°C, take-up roll at a speed of 2.9-6.8m/min, 42.4-101.8g/min The extrusion throughput, thermal bonding temperature of 60-105°C and pressure of 1500-2000Pa were used to prepare PLA spunbonded nonwovens and study their degradation performance in an environment of 58±2°C, pH=7 and 52.6% humidity. Wang et al. [Wang HB, Wei QF, Wang X, Gao WD, Zhao XY: Antibacterial properties of PLA nonwoven medical dressings coated with nanostructured silver. Fiber Polym2008, 9(5): 556-560.] The PLA spunbonded nonwoven fabric (35g/m 2 ) provided by Woven Cloth Co., Ltd. was immersed in acetone solution, then ultrasonically rinsed for 30 minutes to remove the organic solvent, washed twice with plasma water, and dried in an oven at 30-35°C. The magnetron sputtering coating system of argon plasma was used to plate silver on it to obtain PLA spunbond nonwovens coated with nano silver, and the influence of nano coating thickness on the antibacterial properties of nonwovens was studied. Experimental results show that when the thickness of the coating is 1nm, the antibacterial effect on Staphylococcus aureus and Escherichia coli can reach 100%.
Yilmaz et al.[Yilmaz ND,Banks-Lee P,Powell NB,Michielsen S:Effects ofPorosity,Fiber Size,and Layering Sequence on Sound Absorption Performance ofNeedle-Punched Nonwovens.J Appl Polym Sci 2011,121(5):3056-3069.]将美国约翰逊纤维创新技术的PLA纤维,依次经过Truetzschler纤维开松、气流铺网和针刺加固工序制备多层复合PLA针刺非织造布,并且研究其厚度、重量、孔隙率和气流阻力。Pelto et al.[Tingaut P,Zimmermann T,Lopez-Suevos F:Synthesis and Characterization ofBionanocomposites with Tunable Properties from Poly(lactic acid)andAcetylated Microfibrillated Cellulose.Biomacromolecules 2010,11(2):454-464.]将10-20mm的PLA熔融纺单丝切断、梳理后利用针刺加固制备PLA针刺非织造布,然后再使用硫酸软骨素和导电聚吡(polypyrrole,PPy)咯涂层改性来制备成骨支架。实验结果表明与未涂层的PLA针刺非织造布相比,涂层后的导电支架在电刺激作用下能够提高人体脂肪干细胞的增殖和成骨的分化。并且涂层后的导电支架在水解开始时的导电性比较显著,但在孵化一周后开始下降。这种涂层的导电支架可以应用在骨组织工程。Yilmaz et al.[Yilmaz ND,Banks-Lee P,Powell NB,Michielsen S:Effects of Porosity,Fiber Size,and Layering Sequence on Sound Absorption Performance ofNeedle-Punched Nonwovens.J Appl Polym Sci 2011,121(5):3056- 3069.] The PLA fibers of Johnson Fiber’s innovative technology in the United States were sequentially subjected to Truetzschler fiber opening, air-laid and needle-punched reinforcement processes to prepare multi-layer composite PLA needle-punched nonwovens, and their thickness, weight, porosity and airflow were studied. resistance. 10-20mm PLA melt-spun monofilaments were cut, carded, and needle-punched to prepare PLA needle-punched nonwovens, and then modified with chondroitin sulfate and conductive polypyrrole (polypyrrole, PPy) coating to prepare bone-forming scaffolds. The experimental results showed that compared with the uncoated PLA needle-punched nonwovens, the coated conductive scaffolds could improve the proliferation and osteogenic differentiation of human adipose stem cells under electrical stimulation. And the conductivity of the coated conductive scaffolds was significant at the beginning of hydrolysis, but began to decline after one week of incubation. This coated conductive scaffold can be applied in bone tissue engineering.
Bhat et al.[Bhat GS,Gulgunje P,Desai K:Development of structure andproperties during thermal calendering of polylactic acid(PLA)fiberwebs.Express Polym Lett 2008,2(1):49-56.]将PLA短纤维(纤维长度为76mm,细度为3denier)利用SDS Atlas梳理机梳理后形成重量为35g/m2的纤维网,纤维网尺寸为120cm×30cm,然后对纤维网通过热轧复合(热轧温度高于纤维的玻璃化温度而低于熔点,为130-150℃)。在热轧过程中,热压辊的速度和压力保持不变,从而制备PLA短纤维非织造布。Bhat et al. [Bhat GS, Gulgunje P, Desai K: Development of structure and properties during thermal calendering of polylactic acid (PLA) fiberwebs. Express Polym Lett 2008, 2 (1): 49-56.] PLA staple fiber (fiber Length is 76mm, and fineness is 3denier) Utilize SDS Atlas carding machine to form the fiber web that weight is 35g/m 2 after carding, and fiber web size is 120cm * 30cm, then fiber web is compounded by hot rolling (hot rolling temperature is higher than fiber The glass transition temperature is lower than the melting point, which is 130-150°C). During the hot rolling process, the speed and pressure of the hot pressing rolls were kept constant to prepare PLA short fiber nonwovens.
Wakita et al.[Wakita T,Obata A,Poologasundarampillai G,Jones JR,Kasuga T:Preparation of electrospun siloxane-poly(lactic acid)-vateritehybrid fibrous membranes for guided bone regeneration.Compos Sci Technol2010,70(13):1889-1893.]利用静电纺丝方法制备了siloxane-poly(lactic acid)(PLA)-vaterite复合非织造布作为引导骨再生的支架,并且利用hydroxyapatite(HA)涂层来提高织物的细胞相容性。实验结果表明,经过涂层后的复合非织造布具有释放可溶性硅和钙的能力,可以在基因水平刺激成骨细胞。并且这种多孔支架具有较小的孔径可以阻止软组织的进入,促进骨形成和离子的释放,同时增强骨骼生长。Chen et al.[Chen HC,Tsai CH,Yang MC:Mechanical properties and biocompatibility of electrospunpolylactide/poly(vinylidene fluoride)mats.J Polym Res 2011,18(3):319-327.]将PLA与poly(vinylidene fluoride)(PVDF)混合后溶解在共同溶剂N,N-二甲基甲酰胺和丙酮中进行静电纺丝,分别制备不同混合比例的纳米纤维非织造布,并且研究纤维形态、接触角、热学性能、拉伸性能、血液相容性和细胞相容性。实验结果表明,与PLA和PVDF非织造布相比,PLA/PVDF复合非织造布具有较好的成纤维细胞增殖能力和应用潜力。Au et al.[Chen HC,Tsai CH,Yang MC:Mechanical properties and biocompatibility ofelectrospun polylactide/poly(vinylidene fluoride)mats.J Polym Res 2011,18(3):319-327.]利用静电纺丝技术分别制备了聚乳酸/壳聚糖(PLA/CS)和聚乳酸/壳聚糖/纳米银(PLA/CS/Ag)非织造布,实验结果表明含有纳米银的静电纺非织造布具有对大肠杆菌和金黄色葡萄球菌较好的抗菌性能。Haroosh et al.[Haroosh HJ,Dong Y,Ingram GD:Synthesis,Morphological Structures,and Material Characterization ofElectrospun PLA:PCL/Magnetic Nanoparticle Composites for Drug Delivery.JPolym Sci Pol Phys 2013,51(22):1607-1617.]将磁性纳米颗粒(MPs)加入到poly(lactic acid)(PLA):poly(e-caprolactone)(PCL)溶液中进行静电纺丝制备复合非织造布,并且将盐酸四环素加入到复合物中研究药物释放性能。实验结果与前人研究理论一致,表明该复合非织造布具有较好的药物释放性能,可以应用在药物传递方面。Casasola etal.[Casasola R,Thomas NL,Trybala A,Georgiadou S:Electrospun poly lactic acid(PLA)fibres:Effect of different solvent systems on fibre morphology anddiameter.Polymer 2014,55(18):4728-4737.]系统的研究了PLA在不同溶剂中的静电纺可纺性、纤维形态、纺丝液的粘度、导电性和表面张力。实验结果表明,在所有溶剂中,丙酮/二甲基甲酰胺具有较高的生产效率,可以制备最好的没有缺陷(串珠形貌)的纳米纤维。Parweet al.[Parwe SP,Chaudhari PN,Mohite KK,Selukar BS,Nande SS,Garnaik B:Synthesis of ciprofloxacin-conjugated poly(L-lactic acid)polymer fornanofiber fabrication and antibacterial evaluation.Int J Nanomed 2014,9:1463-1477.]将环丙沙星和PLA通过静电纺丝制备纳米纤维复合膜,其纤维直径为150-400nm,孔径为62-102nm。实验结果表明,该复合膜具有较好的对环丙沙星的释放能力和抑制金黄色葡萄球菌和大肠杆菌的生长能力。这种可生物降解的环丙沙星-纳米纤维非织造布可以应用在药物输送方面。Li et al.[Li DP,Frey MW,Baeumner AJ:Electrospun polylacticacid nanofiber membranes as substrates for biosensor assemblies.J MembraneSci 2006,279(1-2):354-363.]将生物素加入到PLA纺丝液中进行静电纺丝,制备生物传感器用纳米纤维膜。Wakita et al.[Wakita T,Obata A,Poologasundarampillai G,Jones JR,Kasuga T:Preparation of electrospun siloxane-poly(lactic acid)-vateritehybrid fibrous membranes for guided bone regeneration.Compos Sci Technol2010,70(13):1889- 1893.] The siloxane-poly(lactic acid)(PLA)-vaterite composite nonwoven fabric was prepared by electrospinning method as a scaffold for guiding bone regeneration, and the hydroxyapatite (HA) coating was used to improve the cytocompatibility of the fabric. The experimental results show that the coated composite nonwoven has the ability to release soluble silicon and calcium, which can stimulate osteoblasts at the gene level. And this porous scaffold has a smaller pore size that can prevent the entry of soft tissue, promote bone formation and ion release, and enhance bone growth at the same time. Chen et al.[Chen HC, Tsai CH, Yang MC: Mechanical properties and biocompatibility of electrospunpolylactide/poly(vinylidene fluoride)mats.J Polym Res 2011,18(3):319-327.] Combining PLA with poly(vinylidene fluoride) )(PVDF) were mixed and dissolved in the common solvent N,N-dimethylformamide and acetone for electrospinning to prepare nanofiber nonwovens with different mixing ratios, and to study fiber morphology, contact angle, thermal properties, Tensile properties, hemocompatibility and cytocompatibility. The experimental results show that, compared with PLA and PVDF nonwovens, PLA/PVDF composite nonwovens have better fibroblast proliferation ability and application potential. Au et al.[Chen HC, Tsai CH, Yang MC: Mechanical properties and biocompatibility of electrospun polylactide/poly(vinylidene fluoride)mats.J Polym Res 2011,18(3):319-327.] were prepared by electrospinning technology Polylactic acid/chitosan (PLA/CS) and polylactic acid/chitosan/nano-silver (PLA/CS/Ag) nonwovens were tested, and the experimental results showed that electrospun nonwovens containing nano-silver had anti-Escherichia coli and Good antibacterial properties of Staphylococcus aureus. Haroosh et al.[Haroosh HJ,Dong Y,Ingram GD:Synthesis,Morphological Structures,and Material Characterization of Electrospun PLA:PCL/Magnetic Nanoparticle Composites for Drug Delivery.JPolym Sci Pol Phys 2013,51(22):1607-1617.] Magnetic nanoparticles (MPs) were added to poly(lactic acid)(PLA):poly(e-caprolactone)(PCL) solution for electrospinning to prepare composite nonwovens, and tetracycline hydrochloride was added to the composite to study drugs Unleash performance. The experimental results are consistent with previous research theories, indicating that the composite nonwoven has good drug release performance and can be used in drug delivery. Casasola et al. [Casasola R, Thomas NL, Trybala A, Georgiadou S: Electrospun poly lactic acid (PLA) fibers: Effect of different solvent systems on fiber morphology and diameter. Polymer 2014,55(18):4728-4737.] The electrospinnability, fiber morphology, viscosity, conductivity and surface tension of PLA in different solvents were studied. The experimental results showed that, among all the solvents, acetone/dimethylformamide had higher production efficiency and produced the best nanofibers without defects (beaded morphology). Parwe et al.[Parwe SP,Chaudhari PN,Mohite KK,Selukar BS,Nande SS,Garnaik B:Synthesis of ciprofloxacin-conjugated poly(L-lactic acid)polymer for nanofiber fabrication and antibacterial evaluation.Int J Nanomed 2014,9:1463- 1477.] Prepare ciprofloxacin and PLA by electrospinning to prepare nanofiber composite membrane, the fiber diameter is 150-400nm, and the pore diameter is 62-102nm. The experimental results show that the composite film has a good ability to release ciprofloxacin and inhibit the growth of Staphylococcus aureus and Escherichia coli. This biodegradable ciprofloxacin-nanofiber nonwoven can be used in drug delivery. Li et al.[Li DP, Frey MW, Baeumner AJ: Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies.J MembraneSci 2006,279(1-2):354-363.] Adding biotin to PLA spinning solution Electrospinning was performed to prepare nanofibrous membranes for biosensors.
Moran et al.[Moran JM,Pazzano D,Bonassar LJ:Characterization ofpolylactic acid polyglycolic acid composites for cartilage tissueengineering.Tissue Eng 2003,9(1):63-70.]将polyglycolic acid(PGA)非织造布(纤维直径为15mm,孔隙率>95%)分别剪成小块,然后分别用1mL的0.5、1.0、2.0和3.0%的PLA溶液(PLA溶在二氯甲烷)涂层,然后将支架经过干燥后测试性能并且研究牛关节软骨细胞在聚乳酸(PLA)/聚乙醇酸(PGA)复合材料上的生长情况。实验结果表明,细胞在PGA上显示扁平形状,而在PLA上更为接近圆形。这种支架可以用在软骨组织工程方面。此外,还有PLA/亚麻复合非织造布材料[Alimuzzaman S,Gong RH,Akonda M:Nonwoven Polylactic Acidand Flax Biocomposites.Polym Composite 2013,34(10):1611-1619.;Alimuzzaman S,Gong RH,Akonda M:Three-dimensional nonwoven flax fiber reinforced polylacticacid biocomposites.Polym Composite 2014,35(7):1244-1252.],PLA/大麻层压复合材料[Song YS,Lee JT,Ji DS,Kim MW,Lee SH,Youn JR:Viscoelastic and thermalbehavior of woven hemp fiber reinforced poly(lactic acid)composites.ComposPart B-Eng 2012,43(3):856-860.],PLA/竹纤维织物层压复合材料[Porras A,MaranonA:Development and characterization of a laminate composite material frompolylactic acid(PLA)and woven bamboo fabric.Compos Part B-Eng 2012,43(7):2782-2788.],椰子纤维/PLA纤维复合材料[Jang JY,Jeong TK,Oh HJ,Youn JR,Song YS:Thermal stability and flammability of coconut fiber reinforced poly(lacticacid)composites.Compos Part B-Eng 2012,43(5):2434-2438.],苎麻织物/PLA膜层压复合材料[Zhou NT,Yao L,Liang YZ,Yu B,Ye MQ,Shan ZD,Qiu YP:Improvement ofmechanical properties of ramie/poly(lactic acid)(PLA)laminated compositesusing a cyclic load pre-treatment method.Ind Crop Prod 2013,45:94-99.],红麻/PLA复合电子材料[Serizawa S,Inoue K,Iji M:Kenaf-fiber-reinforced poly(lacticacid)used for electronic products.J Appl Polym Sci 2006,100(1):618-624.],大麻/PLA生物降解复合材料[Hu R,Lim JK:Fabrication and mechanical properties ofcompletely biodegradable hemp fiber reinforced polylactic acid composites.JCompos Mater 2007,41(13):1655-1669.]。Moran et al. [Moran JM, Pazzano D, Bonassar LJ: Characterization of polylactic acid polyglycolic acid composites for cartilage tissue engineering. Tissue Eng 2003,9 (1): 63-70.] Polyglycolic acid (PGA) nonwoven fabric (fiber diameter 15mm, porosity > 95%) were cut into small pieces, and then coated with 1mL of 0.5, 1.0, 2.0 and 3.0% PLA solution (PLA dissolved in methylene chloride) respectively, and then the scaffold was dried and tested for performance And the growth of bovine articular chondrocytes on polylactic acid (PLA)/polyglycolic acid (PGA) composites was studied. The experimental results showed that the cells showed a flat shape on PGA, while they were more rounded on PLA. This scaffold can be used in cartilage tissue engineering. In addition, there are PLA/flax composite nonwoven materials [Alimuzzaman S, Gong RH, Akonda M: Nonwoven Polylactic Acid and Flax Biocomposites. Polym Composite 2013,34(10):1611-1619.; Alimuzzaman S, Gong RH, Akonda M :Three-dimensional nonwoven flax fiber reinforced polylactic acid biocomposites.Polym Composite 2014,35(7):1244-1252.], PLA/hemp laminate composite [Song YS, Lee JT, Ji DS, Kim MW, Lee SH, Youn JR:Viscoelastic and thermalbehavior of woven hemp fiber reinforced poly(lactic acid)composites.ComposPart B-Eng 2012,43(3):856-860.], PLA/bamboo fiber fabric laminated composites [Porras A,MaranonA:Development and characterization of a laminate composite material frompolylactic acid(PLA)and woven bamboo fabric.Compos Part B-Eng 2012,43(7):2782-2788.], coconut fiber/PLA fiber composite material [Jang JY, Jeong TK, Oh HJ,Youn JR,Song YS:Thermal stability and flammability of coconut fiber reinforced poly(lactic acid)composites.Compos Part B-Eng 2012,43(5):2434-2438.], ramie fabric/PLA film laminated composites[ Zhou NT, Yao L, Liang YZ, Yu B, Ye MQ, Shan ZD, Qiu YP: Improvement of mechanical properties of ramie/poly(lactic acid)(PLA)laminated composite susi ng a cyclic load pre-treatment method.Ind Crop Prod 2013,45:94-99.], kenaf/PLA composite electronic materials [Serizawa S, Inoue K, Iji M: Kenaf-fiber-reinforced poly(lactic acid) used for electronic products.J Appl Polym Sci 2006,100(1):618-624.], hemp/PLA biodegradable composites [Hu R,Lim JK:Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites.JCompos Mater 2007 , 41(13):1655-1669.].
Tingaut et al.[Tingaut P,Zimmermann T,Lopez-Suevos F:Synthesis andCharacterization of Bionanocomposites with Tunable Properties from Poly(lactic acid)and Acetylated Microfibrillated Cellulose.Biomacromolecules2010,11(2):454-464.]将PLA溶解在氯仿中(2%w/w),并且以PLA作为基体,乙酰化的微原纤(MFC)为增强体制备生物纳米复合材料。实验结果表明,这种生物复合材料具有较好的热稳定性和吸湿性。Tingaut et al.[Tingaut P, Zimmermann T, Lopez-Suevos F:Synthesis and Characterization of Bionanocomposites with Tunable Properties from Poly(lactic acid)and Acetylated Microfibrillated Cellulose.Biomacromolecules2010,11(2):454-464.]Dissolve PLA in In chloroform (2% w/w), and with PLA as the matrix and acetylated microfibrils (MFC) as the reinforcement to prepare bionanocomposites. Experimental results show that this biocomposite has good thermal stability and hygroscopicity.
由于无序支架的发展前景和应用潜力,以及前人文献中制备无序支架方法的不足之处,本发明尝试将PLA熔融纺纤维,利用热粘合方法,制备为无序支架。Due to the development prospects and application potential of disordered scaffolds, as well as the inadequacies of methods for preparing disordered scaffolds in previous literatures, the present invention attempts to prepare disordered scaffolds by using thermal bonding of PLA melt-spun fibers.
发明内容Contents of the invention
本发明的目的是提供一种简单易行,符合绿色环保要求,并且聚乳酸熔融纺纤维之间粘合紧密、不会脱散、成形性较好的聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法。The purpose of the present invention is to provide a kind of polylactic acid melt-spun fiber thermally bonded and solidified three-dimensional porous polylactic acid melt-spun fiber that is simple and easy to implement, meets the requirements of environmental protection, and has tight adhesion between polylactic acid melt-spun fibers, no detachment, and good formability Preparation of disordered scaffolds.
本发明的聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法,有以下二种技术解决方案:The preparation method of the polylactic acid melt-spun fiber thermally bonded and solidified three-dimensional porous disordered scaffold has the following two technical solutions:
方案1:plan 1:
聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法,包括如下步骤:A method for preparing a polylactic acid melt-spun fiber thermally bonded and solidified three-dimensional porous disordered scaffold comprises the following steps:
1)将具有良好生物降解性和生物相容性的聚乳酸切片通过熔融纺丝方法制备纤维;1) Polylactic acid chips with good biodegradability and biocompatibility are prepared into fibers by melt spinning;
2)将步骤1)制备的聚乳酸纤维,用缕纱测长仪在周长为999-1001mm,宽度为3-4cm的纱框,以1-300r/min的转速和100cN的初始张力,对纤维进行平行绕制,得到聚乳酸有序纤维束;2) the polylactic acid fiber prepared in step 1) is 999-1001mm in circumference and 3-4cm in width with a skein length measuring instrument, with a speed of 1-300r/min and an initial tension of 100cN. The fibers are wound in parallel to obtain ordered fiber bundles of polylactic acid;
3)将步骤2)制备的聚乳酸有序纤维束剪成长度为1-4cm的短纤维,然后将短纤维集合体均匀铺成网状,在60-140℃温度,13×106Pa压力下,热压1-60min,得到三维多孔无序支架;3) Cut the polylactic acid ordered fiber bundle prepared in step 2) into short fibers with a length of 1-4 cm, and then evenly spread the short fiber aggregates into a net shape, at a temperature of 60-140 ° C, a pressure of 13 × 10 6 Pa , hot pressing for 1-60min to obtain a three-dimensional porous and disordered scaffold;
或者将步骤2)制备的聚乳酸有序纤维束剪成长度为1-4cm的短纤维,然后将短纤维集合体均匀铺成网状,在60-140℃温度,13×106Pa压力下,热压1-60min,再在0℃,1-13×106Pa压力条件下冷压1-5min进行粘合,然后自然冷却至室温,得到三维多孔无序支架。Or cut the polylactic acid ordered fiber bundle prepared in step 2) into short fibers with a length of 1-4 cm, and then evenly spread the short fiber aggregates into a net, at a temperature of 60-140 ° C and a pressure of 13 × 10 6 Pa , hot pressing for 1-60 min, then cold pressing for 1-5 min at 0°C and 1-13×10 6 Pa pressure conditions for bonding, and then naturally cooled to room temperature to obtain a three-dimensional porous disordered scaffold.
方案2:Scenario 2:
聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法,包括如下步骤:A method for preparing a polylactic acid melt-spun fiber thermally bonded and solidified three-dimensional porous disordered scaffold comprises the following steps:
将具有良好生物降解性和生物相容性的聚乳酸切片,利用单螺杆塑料挤出机,螺杆长径比L/D=28:1,滚筒转速为21.0rpm,横动速度为38.8cm/min,螺杆转速为5.65r/min,喷丝孔直径为0.02mm,纺丝模头温度为250℃,热空气温度为320℃,热空气压力为0.3MPa,喷丝口到接收滚筒之间的接收距离为75-200mm,通过自身热粘合,得到三维多孔无序支架。Sliced polylactic acid with good biodegradability and biocompatibility, using a single-screw plastic extruder, the screw length-to-diameter ratio L/D=28:1, the drum speed is 21.0rpm, and the traverse speed is 38.8cm/min , the screw speed is 5.65r/min, the diameter of the spinneret hole is 0.02mm, the temperature of the spinning die is 250°C, the temperature of the hot air is 320°C, the pressure of the hot air is 0.3MPa, the receiving between the spinneret and the receiving drum The distance is 75-200mm, and a three-dimensional porous and disordered scaffold is obtained by self-thermal bonding.
本发明中,所述的聚乳酸(PLA)的分子量为170000-200000。In the present invention, the molecular weight of the polylactic acid (PLA) is 170,000-200,000.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明方法简单易行,没有污染,并且聚乳酸熔融纺纤维之间粘合紧密、不会脱散、成形性较好,可以满足产业化应用的需要。利用聚乳酸熔融纺纤维热粘合固化制备三维多孔无序支架的方法,可以对其它高聚物(比如聚己内酯、聚乙醇酸、聚乙二醇、聚氨酯等)的熔融纺纤维制备类似支架提供参考。该制备方法制备的聚乳酸熔融纺纤维无序支架具有较好的内部孔隙结构、物理性能和力学性能,并且具有较好的应用潜力,可以作为生物材料应用在骨组织工程方面。The method of the invention is simple and easy, has no pollution, and the polylactic acid melt-spun fibers are tightly bonded without detachment and good formability, and can meet the needs of industrial application. The method of preparing three-dimensional porous disordered scaffolds by thermal bonding and solidification of polylactic acid melt-spun fibers can be similar to the preparation of melt-spun fibers of other high polymers (such as polycaprolactone, polyglycolic acid, polyethylene glycol, polyurethane, etc.) The brackets are provided for reference. The polylactic acid melt-spun fiber disordered scaffold prepared by the preparation method has good internal pore structure, physical properties and mechanical properties, and has good application potential, and can be used as a biomaterial in bone tissue engineering.
附图说明Description of drawings
图1是实施例1制备的PLA熔融纺纤维无序支架表面的扫描电镜照片。FIG. 1 is a scanning electron micrograph of the surface of the PLA melt-spun fiber disordered scaffold prepared in Example 1.
图2是实施例1制备的PLA熔融纺纤维无序支架横截面形态的扫描电镜照片。FIG. 2 is a scanning electron micrograph of the cross-sectional shape of the disordered scaffold of PLA melt-spun fibers prepared in Example 1. FIG.
图3是实施例2制备的PLA熔融纺纤维无序支架表面的扫描电镜照片。Fig. 3 is a scanning electron micrograph of the surface of the PLA melt-spun fiber disordered scaffold prepared in Example 2.
图4是实施例2制备的PLA熔融纺纤维无序支架横截面形态的扫描电镜照片。FIG. 4 is a scanning electron micrograph of the cross-sectional shape of the disordered scaffold of PLA melt-spun fibers prepared in Example 2. FIG.
图5是实施例3制备的PLA熔融纺纤维无序支架表面的扫描电镜照片。Fig. 5 is a scanning electron micrograph of the surface of the PLA melt-spun fiber disordered scaffold prepared in Example 3.
图6是实施例3制备的PLA熔融纺纤维无序支架横截面形态的扫描电镜照片。6 is a scanning electron micrograph of the cross-sectional shape of the disordered scaffold of PLA melt-spun fibers prepared in Example 3.
图7是实施例4制备的PLA熔融纺纤维无序支架表面的扫描电镜照片。FIG. 7 is a scanning electron micrograph of the surface of the PLA melt-spun fiber disordered scaffold prepared in Example 4. FIG.
图8是实施例4制备的PLA熔融纺纤维无序支架横截面形态的扫描电镜照片。8 is a scanning electron micrograph of the cross-sectional shape of the disordered scaffold of PLA melt-spun fibers prepared in Example 4.
图9是实施例5制备的PLA熔融纺纤维无序支架表面的扫描电镜照片。FIG. 9 is a scanning electron micrograph of the surface of the PLA melt-spun fiber disordered scaffold prepared in Example 5. FIG.
图10是实施例5制备的PLA熔融纺纤维无序支架横截面形态的扫描电镜照片。FIG. 10 is a scanning electron micrograph of the cross-sectional shape of the disordered scaffold of PLA melt-spun fibers prepared in Example 5.
图11是实施例6制备的PLA熔融纺纤维无序支架表面的扫描电镜照片。FIG. 11 is a scanning electron micrograph of the surface of the PLA melt-spun fiber disordered scaffold prepared in Example 6. FIG.
图12是实施例6制备的PLA熔融纺纤维无序支架横截面形态的扫描电镜照片。Fig. 12 is a scanning electron micrograph of the cross-sectional shape of the disordered scaffold of PLA melt-spun fibers prepared in Example 6.
具体实施方式detailed description
以下结合实施例进一步说明本发明。Below in conjunction with embodiment further illustrate the present invention.
实施例1:Example 1:
将分子量为170000的PLA切片通过熔融纺丝方法制备平均直径为12.41μm的PLA纤维;利用YG086型缕纱测长仪绕制1000根平行排列的集合体,转速为300r/min,纱框周长为1000mm,宽度为3.5cm,初始张力为100cN。将平行排列的有序PLA熔融纺纤维束用剪刀剪断10次,剪成长度为1cm短纤维10000根。然后将10000根的1cm短纤维集合体均匀铺网,再进行热压和冷压,热压温度为60℃,热压时间为5min,热压压力为13×106Pa,冷压温度为0℃,冷压时间为5min,冷压压力为13×106Pa。然后自然冷却至室温,得到三维多孔无序支架。PLA chips with a molecular weight of 170,000 were melt-spun to prepare PLA fibers with an average diameter of 12.41 μm; a YG086 skein length measuring instrument was used to wind 1,000 aggregates arranged in parallel at a speed of 300 r/min, and the circumference of the yarn frame It is 1000mm, the width is 3.5cm, and the initial tension is 100cN. The ordered PLA melt-spun fiber bundles arranged in parallel were cut 10 times with scissors, and cut into 10,000 short fibers with a length of 1 cm. Then, 10,000 1cm short fiber aggregates were uniformly laid, and then hot-pressed and cold-pressed. The hot-pressing temperature was 60°C, the hot-pressing time was 5 minutes, the hot-pressing pressure was 13×10 6 Pa, and the cold-pressing temperature was 0 ℃, the cold pressing time is 5 min, and the cold pressing pressure is 13×10 6 Pa. Then cooled naturally to room temperature to obtain a three-dimensional porous disordered scaffold.
该实施例制备的PLA熔融纺纤维三维多孔无序支架的表面及横截面形态如图1和2所示。由图可见,这种三维多孔无序支架中PLA熔融纺纤维呈现随机杂乱无序排列,平均厚度为0.02cm,重量为0.0054g/cm2,有序度为81.7°,孔隙的平均孔径为17.8μm,孔隙率为54.4%,孔间连通性较好。支架沿纤维排列方向的拉伸应力和应变分别为0.0026MPa和48.9%。The surface and cross-sectional morphology of the PLA melt-spun fiber three-dimensional porous disordered scaffold prepared in this example are shown in Figures 1 and 2 . It can be seen from the figure that the PLA melt-spun fibers in this three-dimensional porous and disordered scaffold are arranged randomly and disorderly, with an average thickness of 0.02cm, a weight of 0.0054g/cm 2 , an order degree of 81.7°, and an average pore diameter of 17.8 μm, the porosity is 54.4%, and the connectivity between pores is good. The tensile stress and strain of the scaffold along the fiber alignment direction are 0.0026MPa and 48.9%, respectively.
实施例2:Example 2:
方法同实施例1,区别在于改变PLA熔融纺短纤维长度为2cm。该实施例制备的PLA熔融纺纤维三维多孔无序支架的表面及横截面形态如图3和4所示。由图可见,这种无序支架中PLA熔融纺纤维呈现随机杂乱无序排列,平均厚度为0.056cm,重量为0.019g/cm2,有序度为70.2°,孔隙的平均孔径为20.9μm,孔隙率为65.9%,孔间连通性较好。支架沿纤维排列方向的拉伸应力和应变分别为0.04MPa和73.3%。The method is the same as in Example 1, except that the length of short PLA melt-spun fibers is changed to 2 cm. The surface and cross-sectional morphology of the PLA melt-spun fiber three-dimensional porous disordered scaffold prepared in this example are shown in FIGS. 3 and 4 . It can be seen from the figure that the PLA melt-spun fibers in this disordered scaffold are arranged randomly and disorderly, with an average thickness of 0.056 cm, a weight of 0.019 g/cm 2 , an order degree of 70.2°, and an average pore size of 20.9 μm. The porosity is 65.9%, and the inter-pore connectivity is good. The tensile stress and strain of the scaffold along the fiber alignment direction are 0.04MPa and 73.3%, respectively.
实施例3:Example 3:
方法同实施例1,区别在于改变PLA熔融纺短纤维长度为4cm。该实施例制备的PLA熔融纺纤维三维多孔无序支架的表面及横截面形态如图5和6所示。由图可见,这种无序支架中PLA熔融纺纤维呈现随机杂乱无序排列,平均厚度为0.092cm,重量为0.039g/cm2,有序度为37.3°,孔隙的平均孔径为19.8μm,孔隙率为74%,孔间连通性较好。支架沿纤维排列方向的拉伸应力和应变分别为0.16MPa和126.2%。The method is the same as in Example 1, except that the length of short PLA melt-spun fibers is changed to 4 cm. The surface and cross-sectional morphology of the PLA melt-spun fiber three-dimensional porous disordered scaffold prepared in this example are shown in FIGS. 5 and 6 . It can be seen from the figure that the PLA melt-spun fibers in this disordered scaffold are randomly arranged in disorder, with an average thickness of 0.092 cm, a weight of 0.039 g/cm 2 , an order degree of 37.3°, and an average pore size of 19.8 μm. The porosity is 74%, and the inter-pore connectivity is good. The tensile stress and strain of the scaffold along the fiber alignment direction are 0.16MPa and 126.2%, respectively.
实施例4:Example 4:
将分子量为170000的PLA切片,利用SJ-30/28单螺杆塑料挤出机,螺杆长径比L/D=28:1。滚筒转速为21.0rpm,横动速度为38.8cm/min,螺杆转速为5.65r/min,喷丝孔直径为0.02mm。纺丝模头温度为250℃,热空气温度为320℃,热空气压力为0.3MPa,喷丝口到滚筒之间的接收距离为75mm。无需热压和冷压过程,通过自身热粘合,得到纤维直径为3μm的PLA三维多孔无序支架。Slice PLA with a molecular weight of 170,000 and use a SJ-30/28 single-screw plastic extruder with a screw length-to-diameter ratio of L/D=28:1. The rotating speed of the drum is 21.0 rpm, the traverse speed is 38.8 cm/min, the rotating speed of the screw is 5.65 r/min, and the diameter of the spinneret hole is 0.02 mm. The temperature of the spinning die is 250° C., the temperature of the hot air is 320° C., the pressure of the hot air is 0.3 MPa, and the receiving distance between the spinneret and the drum is 75 mm. A three-dimensional porous and disordered PLA scaffold with a fiber diameter of 3 μm was obtained by self-thermal bonding without hot pressing and cold pressing.
该实施例制备的PLA熔融纺纤维三维多孔无序支架的表面及横截面形态如图7和8所示。由图可见,这种无序支架中PLA熔融纺纤维呈现随机杂乱无序排列,平均厚度为0.12cm,重量为0.014g/cm2,有序度为73.5°,孔隙的平均孔径为19.7μm,孔隙率为59.8%,孔间连通性较好。支架沿纤维排列方向的拉伸应力和应变分别为0.059MPa和70.7%。The surface and cross-sectional morphology of the PLA melt-spun fiber three-dimensional porous disordered scaffold prepared in this example are shown in FIGS. 7 and 8 . It can be seen from the figure that the PLA melt-spun fibers in this disordered scaffold are randomly arranged in disorder, with an average thickness of 0.12 cm, a weight of 0.014 g/cm 2 , an order degree of 73.5°, and an average pore size of 19.7 μm. The porosity is 59.8%, and the inter-pore connectivity is good. The tensile stress and strain of the scaffold along the fiber alignment direction are 0.059MPa and 70.7%, respectively.
实施例5:Embodiment 5:
方法同实施例4,区别在于改变接收距离为100mm。得到纤维直径为5.3μm的PLA三维多孔无序支架。该实施例制备的PLA熔融纺纤维无序支架的表面及横截面形态如图9和10所示。由图可见,这种无序支架中PLA熔融纺纤维呈现随机杂乱无序排列,平均厚度为0.072cm,重量为0.0093g/cm2,有序度为60.2°,孔隙的平均孔径为17.8μm,孔隙率为65.4%,孔间连通性较好。支架沿纤维排列方向的拉伸应力和应变分别为0.028MPa和58.5%。The method is the same as that in Embodiment 4, except that the receiving distance is changed to 100mm. A PLA three-dimensional porous disordered scaffold with a fiber diameter of 5.3 μm was obtained. The surface and cross-sectional morphology of the PLA melt-spun fiber disordered scaffold prepared in this example are shown in FIGS. 9 and 10 . It can be seen from the figure that the PLA melt-spun fibers in this disordered scaffold are arranged randomly and disorderly, with an average thickness of 0.072cm, a weight of 0.0093g/cm 2 , an order degree of 60.2°, and an average pore size of 17.8μm. The porosity is 65.4%, and the inter-pore connectivity is good. The tensile stress and strain of the scaffold along the fiber alignment direction are 0.028MPa and 58.5%, respectively.
实施例6:Embodiment 6:
方法同实施例4,区别在于改变接收距离为200mm。得到纤维直径为5.3μm的PLA三维多孔无序支架。该实施例制备的PLA熔融纺纤维无序支架的表面及横截面形态如图11和12所示。由图可见,这种无序支架中PLA熔融纺纤维呈现随机杂乱无序排列,平均厚度为0.13cm,重量为0.012g/cm2,有序度为79.2°,孔隙的平均孔径为13μm,孔隙率为51.2%,孔间连通性较好。支架沿纤维排列方向的拉伸应力和应变分别为0.035MPa和53.5%。The method is the same as that in Embodiment 4, except that the receiving distance is changed to 200mm. A PLA three-dimensional porous disordered scaffold with a fiber diameter of 5.3 μm was obtained. The surface and cross-sectional morphology of the PLA melt-spun fiber disordered scaffold prepared in this example are shown in FIGS. 11 and 12 . It can be seen from the figure that the PLA melt-spun fibers in this disordered scaffold are randomly arranged in disorder, with an average thickness of 0.13 cm, a weight of 0.012 g/cm 2 , an order degree of 79.2°, and an average pore diameter of 13 μm. The ratio is 51.2%, and the connectivity between pores is good. The tensile stress and strain of the scaffold along the fiber alignment direction are 0.035MPa and 53.5%, respectively.
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510040458.4A CN104674454B (en) | 2015-01-27 | 2015-01-27 | Method for manufacturing three-dimensional porous disorder scaffolds from polylactic acid molten spinning fibers by means of thermal bonding and solidifying |
CN201611039705.XA CN106757772B (en) | 2015-01-27 | 2015-01-27 | The preparation method of the three-dimensional porous unordered holder of fiber heat bonding solidification is spun in a kind of polylactic acid melting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510040458.4A CN104674454B (en) | 2015-01-27 | 2015-01-27 | Method for manufacturing three-dimensional porous disorder scaffolds from polylactic acid molten spinning fibers by means of thermal bonding and solidifying |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611039705.XA Division CN106757772B (en) | 2015-01-27 | 2015-01-27 | The preparation method of the three-dimensional porous unordered holder of fiber heat bonding solidification is spun in a kind of polylactic acid melting |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104674454A CN104674454A (en) | 2015-06-03 |
CN104674454B true CN104674454B (en) | 2017-04-12 |
Family
ID=53310010
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611039705.XA Expired - Fee Related CN106757772B (en) | 2015-01-27 | 2015-01-27 | The preparation method of the three-dimensional porous unordered holder of fiber heat bonding solidification is spun in a kind of polylactic acid melting |
CN201510040458.4A Expired - Fee Related CN104674454B (en) | 2015-01-27 | 2015-01-27 | Method for manufacturing three-dimensional porous disorder scaffolds from polylactic acid molten spinning fibers by means of thermal bonding and solidifying |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611039705.XA Expired - Fee Related CN106757772B (en) | 2015-01-27 | 2015-01-27 | The preparation method of the three-dimensional porous unordered holder of fiber heat bonding solidification is spun in a kind of polylactic acid melting |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN106757772B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107881646A (en) * | 2017-09-30 | 2018-04-06 | 武汉每时工业发展有限公司 | A kind of electrostatic spinning dry-laying prepares the method and device of bi-component acoustical cotton |
CN110863252A (en) * | 2019-11-06 | 2020-03-06 | 百事基材料(青岛)股份有限公司 | Plant functional polyester filament and preparation method thereof |
WO2021229111A1 (en) * | 2020-05-12 | 2021-11-18 | Laboratorios Farmacéuticos Rovi, S.A. | Method for purifying biodegradable thermoplastic polymer particles for medical and/or pharmaceutical use |
CN113293517B (en) * | 2021-05-27 | 2022-05-13 | 河南驼人医疗器械研究院有限公司 | Polylactic acid elastic superfine fiber non-woven material and preparation method and application thereof |
CN113403747A (en) * | 2021-07-12 | 2021-09-17 | 上海亮丰新材料科技有限公司 | Degradable non-woven fabric and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1711977A (en) * | 2004-06-24 | 2005-12-28 | 同济大学 | Preparation method of tissue engineering porous scaffold |
CN103191470A (en) * | 2013-04-03 | 2013-07-10 | 中国科学院上海硅酸盐研究所 | Organic/inorganic composite three-dimensional porous scaffold with drug sustained release function, and preparation method thereof |
CN203447550U (en) * | 2013-08-26 | 2014-02-26 | 苏州大学 | Suspensible skin tissue engineering nanofiber support |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1057915A1 (en) * | 1999-06-02 | 2000-12-06 | Unitika Ltd. | Biodegradable filament nonwoven fabric and method of producing the same |
CN1176726C (en) * | 2002-07-10 | 2004-11-24 | 浙江大学 | Preparation method of polylactic acid porous scaffold for tissue engineering |
CN1710155A (en) * | 2005-06-29 | 2005-12-21 | 河南飘安高科股份有限公司 | Polylactic acid medical viscose non-woven material and its production process |
CN100446818C (en) * | 2006-02-24 | 2008-12-31 | 东华大学 | A tissue engineering carrier material using polycaprolactone as raw material and its preparation method |
CN101147812A (en) * | 2007-10-30 | 2008-03-26 | 东华大学 | A three-dimensional porous tissue engineering carrier material and its preparation and application |
CN101249277A (en) * | 2008-04-11 | 2008-08-27 | 东华大学 | Three-dimensional porous tissue engineering scaffold material, preparation and application of its fiber bonding method |
CN101265609B (en) * | 2008-04-28 | 2011-12-28 | 上海聚睿生物材料有限公司 | Medical fiber preparation method and uses thereof |
CN101444641B (en) * | 2008-12-24 | 2012-08-08 | 浙江大学 | Three-dimensional large aperture tissue engineering scaffold based on nano-fibers and application thereof |
CN102358959B (en) * | 2011-08-16 | 2013-11-06 | 中山大学 | Method and device for preparing electrospinning fiber bracket with three-dimensional structure |
CN102335461A (en) * | 2011-09-13 | 2012-02-01 | 东华大学 | Controllable safe human body pipeline bracket made of PLA (Poly Lactic Acid)/PCLA (Polycaprolactone Lactide) degradable composite material and production method thereof |
CN103877624B (en) * | 2012-12-21 | 2016-05-25 | 上海微创医疗器械(集团)有限公司 | A kind of degradable polyester support and preparation method thereof |
CN103143060B (en) * | 2013-03-07 | 2014-09-24 | 嘉兴学院 | Preparation of three-dimensional porous membranes with ordered hierarchical nanostructures |
-
2015
- 2015-01-27 CN CN201611039705.XA patent/CN106757772B/en not_active Expired - Fee Related
- 2015-01-27 CN CN201510040458.4A patent/CN104674454B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1711977A (en) * | 2004-06-24 | 2005-12-28 | 同济大学 | Preparation method of tissue engineering porous scaffold |
CN103191470A (en) * | 2013-04-03 | 2013-07-10 | 中国科学院上海硅酸盐研究所 | Organic/inorganic composite three-dimensional porous scaffold with drug sustained release function, and preparation method thereof |
CN203447550U (en) * | 2013-08-26 | 2014-02-26 | 苏州大学 | Suspensible skin tissue engineering nanofiber support |
Also Published As
Publication number | Publication date |
---|---|
CN106757772A (en) | 2017-05-31 |
CN106757772B (en) | 2018-10-12 |
CN104674454A (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alharbi et al. | Fabrication of core-shell structured nanofibers of poly (lactic acid) and poly (vinyl alcohol) by coaxial electrospinning for tissue engineering | |
He et al. | Fabrication of drug‐loaded electrospun aligned fibrous threads for suture applications | |
US10150070B2 (en) | Interlaced Filtration Barrier | |
CN104674454B (en) | Method for manufacturing three-dimensional porous disorder scaffolds from polylactic acid molten spinning fibers by means of thermal bonding and solidifying | |
Zhou et al. | Manufacturing technologies of polymeric nanofibres and nanofibre yarns | |
Fakirov | Nano-/microfibrillar polymer–polymer and single polymer composites: The converting instead of adding concept | |
Ohkawa et al. | Preparation of pure cellulose nanofiber via electrospinning | |
Barani | Antibacterial continuous nanofibrous hybrid yarn through in situ synthesis of silver nanoparticles: preparation and characterization | |
Zhuo et al. | Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials | |
Mi et al. | Characterization and properties of electrospun thermoplastic polyurethane blend fibers: Effect of solution rheological properties on fiber formation | |
WO2019117816A1 (en) | Porous three-dimensional structure comprised of nanofibers and a method of producing the same | |
CN117626527A (en) | Micro-nano fiber composite biological film based on electrostatic spinning technology and preparation method and application thereof | |
Deeraj et al. | Electrospun biopolymer-based hybrid composites | |
KR20180037788A (en) | Antibacterial nanofiber nonwoven and manufacturing method thereof | |
Meng et al. | Tailoring the microstructure of biodegradable PLA/PBS melt-blown nonwovens with enhanced mechanical performance by in situ PBS fibrils formation | |
Hoque | Electrospun gelatin composite nanofibres: a review on structural and mechanical characterizations | |
JP2010065325A (en) | Polylactic acid nanofiber | |
Zhang et al. | Antibacterial cellulose solution-blown nonwovens modified with salicylic acid microcapsules using NMMO as solvent | |
Brennan | Enhancement of electrospun nanofiber properties via automated track post-draw processing | |
Lu et al. | Review: Scalable Fabrication of Polymeric Nanofibers from Nano-Spinning Techniques to Emerging Applications | |
Gharaei et al. | An investigation into the nano-/micro-architecture of electrospun poly (ε-caprolactone) and self-assembling peptide fibers | |
Jiang et al. | Improvement on Mechanical Property of Electrospun Nanofibers, Their Yarns, and Materials | |
Nugroho et al. | The Fabrication and characterization of electrospun PVA-snail mucin nanofiber membrane | |
JP4125837B2 (en) | Antibacterial nonwoven fabric | |
König | Melt electrospinning towards industrial scale nanofiber production: an in-depth material and parameter study based on polypropylene and polylactic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170412 |