CN104668002B - Compact fluid analysis device and manufacture method thereof - Google Patents
Compact fluid analysis device and manufacture method thereof Download PDFInfo
- Publication number
- CN104668002B CN104668002B CN201410852370.8A CN201410852370A CN104668002B CN 104668002 B CN104668002 B CN 104668002B CN 201410852370 A CN201410852370 A CN 201410852370A CN 104668002 B CN104668002 B CN 104668002B
- Authority
- CN
- China
- Prior art keywords
- flow control
- substrate
- control substrate
- fluid sample
- fluidic substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 title abstract 4
- 238000000034 method Methods 0.000 title abstract 4
- 238000004519 manufacturing process Methods 0.000 title 1
- 239000000758 substrate Substances 0.000 abstract 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 229910052710 silicon Inorganic materials 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
在第一方面,本发明涉及用于分析流体样本的器件。所述器件包括:流控衬底,包括:嵌入在流控衬底中的配置用于通过毛细力将流体样本传播通过该器件的微流控组件;连接到该微流控组件的用于提供流体样本的装置;附连到该流控衬底至少部分覆盖该流控衬底并至少部分关闭该微流控组件的盖子;其中该流控衬底是硅流控衬底且其中该盖子是CMOS芯片。在第二方面,本发明的各实施例涉及用于制造这样的器件的方法。该方法包括:提供流控衬底;提供盖子;通过CMOS兼容接合处理来将流控衬底附连到盖子以至少部分关闭流控衬底。
In a first aspect, the invention relates to a device for analyzing a fluid sample. The device includes: a fluidic substrate, including: a microfluidic component embedded in the fluidic substrate and configured to propagate a fluid sample through the device through capillary force; a microfluidic component connected to the microfluidic component for providing A device for a fluid sample; a cover attached to the fluidic substrate at least partially covering the fluidic substrate and at least partially closing the microfluidic assembly; wherein the fluidic substrate is a silicon fluidic substrate and wherein the cover is CMOS chips. In a second aspect, embodiments of the invention relate to methods for fabricating such devices. The method includes: providing a fluidic substrate; providing a cover; and attaching the fluidic substrate to the cover by a CMOS compatible bonding process to at least partially close the fluidic substrate.
Description
技术领域technical field
本发明涉及生物分析器件领域。具体而言,本发明涉及用于流体样本分析的紧凑器件。更具体而言,本发明涉及用于流体样本分析的完全集成的芯片上的实验室器件。The invention relates to the field of biological analysis devices. In particular, the present invention relates to compact devices for analysis of fluid samples. More specifically, the present invention relates to a fully integrated lab-on-a-chip device for fluid sample analysis.
背景技术Background technique
当前,存在用于血液分析的现有技术即时检验(point-of-care)器件。这些器件的缺点是它们的大小取决于执行血液分析所需的不同组件。在这些器件中,外部的泵是即时检验仪器的一部分。在一些器件中,使用微型泵来传播样本通过器件的流体通道。泵的使用增加了器件的大小和费用,这使得它们不适合用作一次性器件。当前的一次性器件通常被插入在昂贵的读出仪器中,具有多个非一次性的不同的电子或光学组件以读出发生在一次性器件中的生化反应。现有技术的即时检验器件的另一个缺点是它们的制造费用。Currently, there are prior art point-of-care devices for blood analysis. The disadvantage of these devices is that their size depends on the different components required to perform blood analysis. In these devices, the external pump is part of the point-of-care instrument. In some devices, micropumps are used to propagate the sample through the fluidic channels of the device. The use of pumps adds to the size and expense of the devices, which makes them unsuitable for use as disposables. Current disposables are typically inserted into expensive readout instruments with multiple, non-disposable, different electronic or optical components to read out the biochemical reactions that occur in the disposable. Another disadvantage of prior art point-of-care devices is their manufacturing expense.
其它现有技术器件是侧流试纸。这些试纸通常用纤维素制造,这不允许对传播通过试纸的流体样本的流动的精确控制。这使得这些器件的应用范围变窄。Other prior art devices are lateral flow test strips. These dipsticks are usually manufactured from cellulose, which does not allow precise control over the flow of the fluid sample propagating through the dipstick. This narrows the range of applications of these devices.
需要用于流体样本的完全集成分析的花费少的、便于使用的、一次性的、紧凑器件。Inexpensive, easy-to-use, disposable, compact devices for fully integrated analysis of fluid samples are desired.
发明内容Contents of the invention
在第一方面,本发明涉及用于分析流体样本的器件。所述器件包括:流控衬底,包括:嵌入在流控衬底中的微流控组件,配置用于通过毛细作用力来传播流体样本通过微流控组件;以及连接到微流控组件的用于提供流体样本的装置;附连到流控衬底的至少部分覆盖流控衬底并至少部分关闭微流控组件的盖子。流控衬底是硅流控衬底,而盖子是CMOS芯片。In a first aspect, the invention relates to a device for analyzing a fluid sample. The device includes: a fluidic substrate, including: a microfluidic component embedded in the fluidic substrate, configured to spread a fluid sample through the microfluidic component by capillary force; and a microfluidic component connected to the microfluidic component. A device for providing a fluid sample; a cover attached to the fluidic substrate at least partially covering the fluidic substrate and at least partially closing the microfluidic assembly. The fluidic substrate is a silicon fluidic substrate, while the lid is a CMOS chip.
根据本发明的各方面,当流体样本存在于器件中时,盖子的至少一部分与流体样本接触。According to aspects of the invention, at least a portion of the cover is in contact with the fluid sample when the fluid sample is present in the device.
根据本发明的各方面,盖子包括晶体管层,该晶体管层电连接至少一个电子组件,该电子组件为以下的至少一个:生物感测电路、用于感测目的的电极、用于流体操纵目的的电极、用于数据通信目的的电路、用于无线数据通信目的的电路、温度传感器、用于温度控制的加热器电极,和用于流体黏性控制的流体传感器和电极。According to aspects of the invention, the cover includes a transistor layer electrically connected to at least one electronic component, the electronic component being at least one of: biosensing circuitry, electrodes for sensing purposes, electrodes for fluid manipulation purposes Electrodes, circuits for data communication purposes, circuits for wireless data communication purposes, temperature sensors, heater electrodes for temperature control, and fluid sensors and electrodes for fluid viscosity control.
根据本发明的各实施例,用于提供流体样本的装置是用硅制成的集成针,并包括连接到微流控组件的内部的流控通道。该针是流控衬底的突出的部分并被放置以在对皮肤组织按压时穿透皮肤组织。According to various embodiments of the present invention, the means for providing a fluid sample is an integrated needle made of silicon and includes a fluidic channel connected to the interior of the microfluidic assembly. The needles are protruding portions of the fluidic substrate and are positioned to penetrate the skin tissue when pressed against the skin tissue.
根据本发明的各实施例,流控衬底包括切口,而针位于切口中。According to various embodiments of the invention, the fluidic substrate includes cutouts, and the needles are located in the cutouts.
根据本发明的各实施例,流控衬底包括用于保护针的保护结构,该保护结构可移除地附连到流控衬底。According to various embodiments of the invention, the fluidic substrate includes a protective structure for protecting the needles, the protective structure being removably attached to the fluidic substrate.
根据本发明的各实施例,用于提供流体样本的装置是注入口。样本滴可通过毛细吸力的方式被插入到微流控组件中。微流控组件可包括不同的流控隔间,例如以供多组学(muti-omic)分析。不同的微流控隔间可具有相同或不同的深度。不同的微流控隔间可以由能够以任何合适的方式(例如通过流体力或通过电流)致动的阀(valve)来分隔。用于致动的电极可被包含在流控衬底上或盖子上。According to various embodiments of the invention, the means for providing a fluid sample is an injection port. The sample droplet can be inserted into the microfluidic assembly by means of capillary suction. A microfluidic assembly may comprise different fluidic compartments, eg, for muti-omic analysis. Different microfluidic compartments can have the same or different depths. The different microfluidic compartments may be separated by valves that can be actuated in any suitable way, eg by fluid force or by electric current. Electrodes for actuation may be included on the fluidic substrate or on the cover.
根据本发明的各实施例,流控衬底或盖子还可包括至少一个光学波导以允许光学激发并当流体样本在器件内存在时感测流体样本。流控衬底或盖子还可包括过滤器,用于拒绝光激发散发来测量荧光信号。流控衬底或盖子可包括多谱段过滤器以用于测量具有多种颜色的荧光信号。流控衬底或盖子可包括光学波导和/或小孔以照射样本用于执行无透镜显微方法。According to various embodiments of the present invention, the fluidic substrate or cover may further comprise at least one optical waveguide to allow optical excitation and sensing of a fluid sample when present within the device. The fluidic substrate or cover may also include a filter for rejecting light excitation emission to measure the fluorescence signal. Fluidic substrates or covers can include multispectral filters for measuring fluorescent signals with multiple colors. The fluidic substrate or cover may include optical waveguides and/or apertures to illuminate samples for performing lensless microscopy methods.
根据本发明的各实施例,流控衬底或盖子包括至少一个通孔用于将生化试剂应用到微流控组件的至少一个区域或应用到盖子的至少一个区域。According to various embodiments of the present invention, the fluidic substrate or the cover comprises at least one through hole for applying a biochemical reagent to at least one area of the microfluidic assembly or to at least one area of the cover.
根据本发明的各实施例,盖子使用光刻形成图案的聚合物被接合到流控衬底。According to various embodiments of the invention, the lid is bonded to the fluidic substrate using photolithographically patterned polymer.
根据本发明的各实施例,该器件还可包括电连接到盖子的金属触头,用于读出由流体生成并由盖子中的测量系统捕捉到的电信号。根据本发明的各实施例,该器件的盖子还可包括CMOS有源像素,用于来自流体的光信号的读出。According to various embodiments of the invention, the device may also include metal contacts electrically connected to the cover for reading out electrical signals generated by the fluid and captured by the measurement system in the cover. According to various embodiments of the invention, the cover of the device may also include CMOS active pixels for readout of optical signals from the fluid.
根据本发明的各实施例,流控衬底和/或盖子的至少部分是用透明材料制造的,以允许微流控组件中的流体样本的光学检查。According to various embodiments of the invention, at least part of the fluidic substrate and/or cover is fabricated from a transparent material to allow optical inspection of the fluidic sample in the microfluidic assembly.
根据本发明的各实施例,该器件的形状允许插入到移动通信设备中。According to embodiments of the invention, the shape of the device allows insertion into a mobile communication device.
在第二方面,本发明的各实施例,涉及用于制造用于分析流体样本的器件的方法。该方法包括:提供流控衬底;提供盖子;将该流控衬底附连到所述盖子以至少部分地关闭该流控衬底。流控衬底是硅流控衬底,而盖子是CMOS芯片,并且流控衬底使用CMOS兼容接合处理来附连到盖子。In a second aspect, embodiments of the invention relate to a method for manufacturing a device for analyzing a fluid sample. The method includes: providing a fluidic substrate; providing a cover; attaching the fluidic substrate to the cover to at least partially close the fluidic substrate. The fluidic substrate is a silicon fluidic substrate, while the lid is a CMOS chip, and the fluidic substrate is attached to the lid using a CMOS compatible bonding process.
根据本发明的各实施例,提供流控衬底可包括:提供硅衬底,提供掩模层,例如氧化掩模,图案化氧化掩模以在氧化掩模中创建精细结构;提供保护层以包含氧化掩模;图案化粗结构;蚀刻该粗结构;生成氧化物以保护该粗结构;移除保护层并蚀刻精细结构;移除氧化物。According to various embodiments of the present invention, providing a fluidic substrate may include: providing a silicon substrate, providing a mask layer, such as an oxide mask, patterning the oxide mask to create fine structures in the oxide mask; providing a protective layer to An oxide mask is included; patterning the coarse structure; etching the coarse structure; generating an oxide to protect the coarse structure; removing the protective layer and etching the fine structure; removing the oxide.
根据本发明的各实施例,提供流控衬底可包括提供硅衬底,以每一层在另一层的顶部上的方式提供多个掩模,并使用每个掩模来创建不同深度的微流控结构。According to various embodiments of the invention, providing a fluidic substrate may include providing a silicon substrate, providing a plurality of masks with each layer on top of another, and using each mask to create a Microfluidic structures.
根据本发明的各特定实施例,提供流控衬底可包括提供硅衬底,提供第一氧化物掩模,图案化微流控结构,将该衬底蚀刻到单个深度,提供第二氧化物掩模,图案化微流控结构,将该衬底蚀刻到第二深度,并且,如果必须,重复这些步骤来创建微流控结构的多个深度。According to certain embodiments of the invention, providing a fluidic substrate may include providing a silicon substrate, providing a first oxide mask, patterning the microfluidic structure, etching the substrate to a single depth, providing a second oxide mask, pattern the microfluidic structure, etch the substrate to a second depth, and, if necessary, repeat these steps to create multiple depths of microfluidic structures.
根据本发明的各特定实施例,根据本发明的各实施例的器件的流控衬底和盖子可以是更大的流控包的一部分,它可由不同材料制成,例如聚合物,并且可包括更大的流控结构、试剂,流控和电接口。由此的优点是:这样的系统变得更加成本高效。According to certain embodiments of the present invention, the fluidic substrate and cover of devices according to various embodiments of the present invention may be part of a larger fluidic pack, which may be made of different materials, such as polymers, and may include Larger fluidic structures, reagents, fluidics and electrical interfaces. The advantage hereby is that such a system becomes more cost-effective.
根据本发明的各实施例,流控衬底和盖子的表面可被部分或完全涂敷以改变衬底与流体样本的表面交互。According to various embodiments of the present invention, the surfaces of the fluidic substrate and cover may be partially or fully coated to alter the surface interaction of the substrate with the fluid sample.
在第三方面,本发明提供了如在本发明的第一方面描述的器件的使用及其实施例以执行显微方法。显微方法可根据数字化全息摄影的原理通过使用盖子来检测无透镜图像来实现。In a third aspect, the invention provides the use of a device as described in the first aspect of the invention and embodiments thereof to perform a microscopic method. The microscopic method can be implemented according to the principle of digital holography by using a cover to detect a lensless image.
如所描述的器件的使用可执行多组学分析,其中流控衬底被用于在多个通道和室中执行多个化验,且CMOS盖子被用来检测来自全部的化验的多个信号。那些信息可组合来自同一分析物的多个DNA、RNA、小分子、细胞信号。Use of the device as described can perform multi-omics analysis where a fluidic substrate is used to perform multiple assays in multiple channels and chambers, and a CMOS cover is used to detect multiple signals from all assays. That information can combine multiple DNA, RNA, small molecule, cellular signals from the same analyte.
在各特定实施例中,器件被用作用于分析少量液体的单个一次性使用器件。In particular embodiments, the device is used as a single single-use device for analyzing small volumes of liquid.
在第四方面,来自盖子的数据可例如使用无线连接来被发送到智能设备。智能设备可被用来处理、可视化和/或传递数据。In a fourth aspect, data from the cover may be sent to the smart device, for example using a wireless connection. Smart devices can be used to process, visualize and/or communicate data.
在本发明的各实施例中,从单个同一样本收集的经组合的数据可在软件算法中被使用,以计算与个体的疾病或良好状态相关联的参数。In various embodiments of the invention, the combined data collected from the single same sample can be used in software algorithms to calculate parameters associated with the disease or well-being of the individual.
在所附独立和从属权利要求中陈述了本发明的具体和优选方面。来自从属权利要求的特征在适当时可与独立权利要求的特征组合,且可与其他从属权利要求的特征组合,而不仅如权利要求中显式陈述的那样。Particular and preferred aspects of the invention are set out in the appended independent and dependent claims. Features from dependent claims may, where appropriate, be combined with features of the independent claim, and with features of other dependent claims, not only as explicitly stated in the claims.
参考以下描述的实施例,本发明的这些以及其他方面将是显而易见的且得以说明。These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.
附图简述Brief description of the drawings
图1示出了可在本发明的各实施例中使用的流控衬底的一个实施例的3D视图。Figure 1 shows a 3D view of one embodiment of a fluidic substrate that may be used in various embodiments of the present invention.
图2示出了根据本发明的各实施例的用于分析流体样本的器件的第一实施例的俯视图。Fig. 2 shows a top view of a first embodiment of a device for analyzing a fluid sample according to embodiments of the invention.
图3示出在图2的器件中使用的流控衬底的俯视图。FIG. 3 shows a top view of a fluidic substrate used in the device of FIG. 2 .
图4示出图2中器件的侧视图。FIG. 4 shows a side view of the device in FIG. 2 .
图5示出了根据本发明的各实施例的用于分析流体样本的器件的第二实施例的顶视图,对针的切口进行特写。Fig. 5 shows a top view of a second embodiment of a device for analyzing a fluid sample according to embodiments of the present invention, with a close-up of the cutout of the needle.
图6示出了用于图5的器件中的,对针的切口进行特写的流控衬底的一个实施例的俯视图。FIG. 6 shows a top view of one embodiment of a fluidic substrate for use in the device of FIG. 5 , close-up of the needle cutouts.
图7示出图5的器件的侧视图。FIG. 7 shows a side view of the device of FIG. 5 .
图8示出了根据本发明的各实施例的用于分析流体样本的器件的第三实施例的俯视图,对针的保护结构特写。Fig. 8 shows a top view of a third embodiment of a device for analyzing a fluid sample according to various embodiments of the present invention, with a close-up of the needle protection structure.
图9示出了用于图8的器件中的,对针的保护结构进行特写的流控衬底的一个实施例的俯视图。FIG. 9 shows a top view of one embodiment of a fluidic substrate for use in the device of FIG. 8 , close-up of the needle protection structure.
图10示出图8的器件的侧视图。FIG. 10 shows a side view of the device of FIG. 8 .
图11-17示出了制造在根据本发明的各实施例的器件中使用的流控衬底的方法。11-17 illustrate methods of fabricating fluidic substrates for use in devices according to various embodiments of the invention.
图18示出在根据本发明各实施例的器件中使用的CMOS芯片的实施例。Figure 18 shows an embodiment of a CMOS chip used in a device according to various embodiments of the invention.
图19示出了根据本发明的各实施例的CMOS芯片与流控衬底的接合。FIG. 19 illustrates the bonding of a CMOS chip to a fluidic substrate according to various embodiments of the present invention.
图20示出了根据本发明的各实施例的CMOS芯片与流控衬底的接合,其中CMOS芯片包括硅I/O内连。Figure 20 illustrates the bonding of a CMOS chip including silicon I/O interconnects to a fluidic substrate according to various embodiments of the invention.
图21示出了在根据本发明的各实施例的器件中使用的CMOS芯片的一个实施例,CMOS芯片包括I/O垫。Figure 21 shows one embodiment of a CMOS chip including I/O pads for use in devices according to embodiments of the invention.
图22示出了在根据本发明的各实施例的器件中使用的CMOS芯片的一个实施例,CMOS芯片包括接合到流控衬底的I/O垫,其中CMOS芯片的一部分覆盖在流控衬底上。Figure 22 shows one embodiment of a CMOS chip for use in devices according to embodiments of the invention, the CMOS chip comprising I/O pads bonded to a fluidic substrate, wherein a portion of the CMOS chip covers the fluidic substrate on the bottom.
图23示出了根据本发明的各实施例的CMOS芯片与流控衬底的接合,其中CMOS芯片包括通孔。FIG. 23 illustrates the bonding of a CMOS chip to a fluidic substrate, wherein the CMOS chip includes vias, according to various embodiments of the present invention.
图24示出了根据本发明的各实施例的CMOS芯片与流控衬底的接合,其中流控衬底包括两个通孔。FIG. 24 shows the bonding of a CMOS chip and a fluidic substrate according to various embodiments of the present invention, wherein the fluidic substrate includes two through holes.
图25示出了根据本发明的实施例的器件的3D视图。Figure 25 shows a 3D view of a device according to an embodiment of the invention.
图26示出了根据本发明的实施例的无线独立器件的3D视图。Figure 26 shows a 3D view of a wireless standalone device according to an embodiment of the present invention.
图27示出了在根据本发明的各实施例的器件中使用的微流控组件的第一实施例的一部分的俯视图,该微流控组件包括微柱。Figure 27 shows a top view of a portion of a first embodiment of a microfluidic assembly comprising micropillars for use in devices according to embodiments of the invention.
图28示出了图27的微流控组件的一部分的3D视图。FIG. 28 shows a 3D view of a portion of the microfluidic assembly of FIG. 27 .
图29示出了在根据本发明的各实施例的器件中使用的微流控组件的第二实施例的一部分的俯视图,该微流控组件包括微柱。Figure 29 shows a top view of a portion of a second embodiment of a microfluidic assembly comprising micropillars for use in devices according to embodiments of the invention.
图30示出了图29的微流控组件的一部分的3D视图。FIG. 30 shows a 3D view of a portion of the microfluidic assembly of FIG. 29 .
图31示出了根据本发明的各实施例的器件的SD卡形的一个实施例。Figure 31 shows one embodiment of an SD card form factor of a device according to various embodiments of the invention.
图32示出了根据本发明的各实施例的器件的SD卡形的另一个实施例。Figure 32 shows another embodiment of a device in SD card form according to embodiments of the invention.
图33是根据本发明的各实施例的器件的截面图,其中多个功能由单CMOS技术支持。Figure 33 is a cross-sectional view of a device according to various embodiments of the invention, wherein multiple functions are supported by a single CMOS technology.
附图仅仅是示例性的而非限制性的。在附图中,出于说明的目的,一些元件的尺寸可被夸大且不按比例地绘制。The drawings are illustrative only and non-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes.
权利要求书中的任何附图标记不应当被解释为限制范围。Any reference signs in the claims should not be construed as limiting the scope.
在不同附图中,相同参考标记指示相同或相似元件。In the different drawings, the same reference signs indicate the same or similar elements.
具体实施方式detailed description
将针对具体实施例且参考特定附图来描述本发明,但是本发明不限于此而仅由权利要求书定义。所描述的附图只是示意性的和非限制性的。在附图中,出于说明的目的,一些元件的尺寸可被夸大且不按比例地绘制。尺寸和相对尺寸并不对应于为实践本发明的实际再现。The present invention will be described with respect to particular embodiments and with reference to certain drawings but the invention is not limited thereto but only by the claims. The drawings described are only schematic and non-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes. The dimensions and relative dimensions do not correspond to actual reproductions for the practice of the invention.
此外,在说明书和权利要求书中,术语“第一”、“第二”等用于在类似元素之间进行区分,而并不一定用于描述时间顺序、空间顺序、等级排序、或者任何其他方式的顺序。应理解,如此使用的术语在适当情况下是可互换的,且本文中所描述的本发明的实施例能以不同于本文所描述或示出的其它顺序操作。Furthermore, in the specification and claims, the terms "first", "second", etc. are used to distinguish between similar elements, and not necessarily to describe a temporal order, spatial order, hierarchical ordering, or any other the order of the methods. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other sequences than described or illustrated herein.
此外,说明书和权利要求书中的术语在……之上、在……之下等等被用于描述目的,而不一定用于描述相对位置。应理解,如此使用的术语在适当情况下是可互换的,且本文中所描述的本发明的实施例能以不同于本文所描述或示出的其它取向操作。Furthermore, the terms above, below, etc. in the specification and claims are used for descriptive purposes and not necessarily to describe relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other orientations than described or illustrated herein.
应注意,在权利要求中使用的术语“包括”不应当被解释为受限于下文中列出的含义;它不排除其它元件或步骤。因此它应当被解读为指定所述特征、整数、步骤或部件如所述及的存在,但不排除一个或多个其它特征、整数、步骤或部件或其群组的存在或添加。因此,措词“一种包括装置A和B的器件”的范围不应当被限定于仅由组件A和B构成的器件。这意味着该器件与本发明有关的唯一相关组件是A和B。It should be noted that the term "comprising", used in the claims, should not be interpreted as limited to the meanings listed below; it does not exclude other elements or steps. It should therefore be read as specifying the presence of said features, integers, steps or components as stated, but not excluding the presence or addition of one or more other features, integers, steps or components or groups thereof. Therefore, the scope of the expression "a device comprising means A and B" should not be limited to a device consisting of components A and B only. This means that the only relevant components of this device that are relevant to the invention are A and B.
在本说明书通篇中对“一个实施例”或“一实施例”的引用意味着结合该实施例描述的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在本说明书通篇中的各个位置中短语“在一个实施例中”或“在一实施例中”的出现不一定全都指的是同一实施例,但是可以是指同一实施例。此外,在一个或多个实施例中,如本领域普通技术人员根据本公开内容显而易见的是,特定特征、结构或特性可以任何适当的方式组合。Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrase "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to one of ordinary skill in the art from this disclosure, in one or more embodiments.
类似地,应当理解的是,在本发明的示例实施例的描述中,本发明的各个特征有时在单个实施例、附图及其描述中被组合到一起,以将本公开内容连成整体,并帮助理解各个发明方面中的一个或多个方面。然而,本公开的方法不应被解读为反映所要求保护的发明需要比在每一权利要求中明确表述的特征更多的特征的意图。相反,如所附权利要求书所反映的,各发明性方面在于比以上公开的单个实施例的所有特征要少的特征。因此,随详细描述所附的权利要求在此明确地被纳入到此详细描述中,其中每个权利要求自行作为本发明的单独实施例。Similarly, it is to be understood that, in the description of example embodiments of the invention, various features of the invention are sometimes grouped together in a single embodiment, drawings and description thereof, so as to tie the disclosure together, and aid in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.
此外,尽管此处描述的一些实施例包括其他实施例中所包括的一些特征但没有其他实施例中包括的其他特征,但是不同实施例的特征的组合意图落在本发明的范围内,并且形成如本领域技术人员所理解的不同实施例。例如,在所附的权利要求书中,所要求保护的实施例中的任何实施例均可以任何组合来使用。Furthermore, although some embodiments described herein include some features included in other embodiments but not others, combinations of features from different embodiments are intended to be within the scope of the invention and form Different embodiments as understood by those skilled in the art. For example, in the appended claims, any of the claimed embodiments may be used in any combination.
在本文提供的描述中,陈述了众多具体细节。然而,应当理解,可以在不具有这些具体细节的情况下实施本发明的各实施例。在其它实例中,未详细示出众所周知的方法、结构以及技术,以免混淆对本描述的理解。In the description provided herein, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure the understanding of this description.
在本发明的各实施例中作出对“流体样本”的参考时,参考任何人体流体诸如血液、尿液、唾液。Where reference is made to a "fluid sample" in various embodiments of the invention, reference is made to any bodily fluid such as blood, urine, saliva.
在本发明的各实施例中作出对“I/O垫”或“I/O触头”的参考时,参考诸如允许微芯片的电信号的输入和输出的金属触头。When reference is made to "I/O pads" or "I/O contacts" in various embodiments of the present invention, reference is made to metal contacts such as metal contacts that allow input and output of electrical signals of a microchip.
在本发明的各实施例中作出对“CMOS”的参考时,参考互补金属氧化物半导体。Where references to "CMOS" are made in the various embodiments of the present invention, reference is made to complementary metal oxide semiconductors.
在本发明的第一方面,涉及如图26所示的用于分析流体样本的器件100。所述器件100包括:流控衬底101和附连到流控衬底101并至少部分地覆盖衬底101的盖子103。流控衬底101包括嵌入在流控衬底101中的微流控组件102,配置用于通过毛细作用力来传播流体样本通过微流控组件102(微流控组件102由诸如样本垫102a(=进口)、试剂存储器102b、一次性使用的密封阀102c、第一触发阀102d、混合器102e、延迟线102f、第二触发阀102g、加热器102h和渗吸条102i等多个微流控组件示出);以及连接到微流控组件102的用于提供流体样本的装置。盖子103,通过至少部分覆盖衬底101,至少部分关闭了微流控组件102。在本发明的各实施例中,流控衬底101是硅流控衬底;而盖子103是CMOS芯片。In a first aspect the invention relates to a device 100 for analyzing a fluid sample as shown in FIG. 26 . The device 100 includes: a fluidic substrate 101 and a cover 103 attached to the fluidic substrate 101 and at least partially covering the substrate 101 . The fluidic substrate 101 includes a microfluidic component 102 embedded in the fluidic substrate 101, configured to spread a fluid sample through the microfluidic component 102 by capillary force (the microfluidic component 102 is composed of a sample pad 102a ( = inlet), reagent storage 102b, single-use sealing valve 102c, first trigger valve 102d, mixer 102e, delay line 102f, second trigger valve 102g, heater 102h, and wicking strip 102i, etc. Components are shown); and a device connected to the microfluidic component 102 for providing a fluid sample. The cover 103 at least partially closes the microfluidic assembly 102 by at least partially covering the substrate 101 . In various embodiments of the present invention, the fluidic substrate 101 is a silicon fluidic substrate; and the cover 103 is a CMOS chip.
由于流控衬底101是硅衬底并且盖子103是CMOS芯片,两者均可使用大规模生成兼容的硅处理技术来制造。作为附加的优点,廉价CMOS装配技术可被用于将硅衬底接合到CMOS芯片。这减少了器件的总费用并允许它被用作一次性器件并大量生产。Since the fluidic substrate 101 is a silicon substrate and the lid 103 is a CMOS chip, both can be fabricated using mass production compatible silicon processing techniques. As an added advantage, inexpensive CMOS assembly techniques can be used to bond the silicon substrate to the CMOS chip. This reduces the overall cost of the device and allows it to be used as a disposable device and mass produced.
图1示出了流控衬底101的一个实施例的3D视图。FIG. 1 shows a 3D view of one embodiment of a fluidic substrate 101 .
器件100的一个实施例的俯视图在图2中示出,流控衬底101和盖子103相互附连。在图2的器件中使用的示例性流控衬底101的俯视图在图3中示出。图2的器件100的一个实施例的侧视图(其中流控衬底101附连到盖子103)在图4中示出。A top view of one embodiment of a device 100 is shown in FIG. 2 with a fluidic substrate 101 and a lid 103 attached to each other. A top view of an exemplary fluidic substrate 101 used in the device of FIG. 2 is shown in FIG. 3 . A side view of one embodiment of the device 100 of FIG. 2 with the fluidic substrate 101 attached to the lid 103 is shown in FIG. 4 .
根据本发明的各实施例的器件100包括附连或接合到盖子103的流控衬底101。流控衬底101包括微流控组件102。微流控组件102可包括内连以允许流体样本传播通过完整的微流控组件102的微流控通道、微反应器或其它微流控部分/结构。微流控组件102可包括有规律或无规律距离处的多个微柱或微结构,以允许在毛细流动期间过滤和分隔、阀控(=用作阀)、混合流体样本。图27示出了包括(用以允许在毛细流动期间过滤和分隔、阀控、混合流体样本的)微柱270的打开的微流控组件102的部分的俯视图。图28示出了图27的包括微柱270的打开的微流控组件102的3D视图。图27和28中的微柱270被放置以形成梯度。这个梯度对于在微流控组件102的第一部分中过滤出较大颗粒并在微流控组件102的第二部分中过滤出较小颗粒是有利的。图29和图30示出了微流控组件102中的微柱270的梯度的另一个实施例。微流控组件102可被配置来引起毛细作用以传播流体样本通过器件100。微流控组件102的各尺寸可被适应,以便当流体样本存在时在微流控组件102中引起毛细作用。例如,在微流控组件102中的微柱270的尺寸及其间的距离可被配置以在微流控组件102中引起毛细作用。作为优点,在本发明的各实施例中,器件100不需要额外的有源组件(例如有源泵)来传播流体样本通过器件100。因此,相比于现有技术的实现,器件100的复杂性减少,这减少了制造费用和能耗。由于制造费用低廉,器件可被用作一次性流体分析器件。A device 100 according to various embodiments of the invention includes a fluidic substrate 101 attached or bonded to a cover 103 . The fluidic substrate 101 includes a microfluidic component 102 . Microfluidic assembly 102 may include microfluidic channels, microreactors, or other microfluidic parts/structures interconnected to allow fluidic samples to propagate through the complete microfluidic assembly 102 . The microfluidic assembly 102 may comprise a plurality of micropillars or microstructures at regular or irregular distances to allow filtering and separation, valving (= acting as a valve), mixing of fluid samples during capillary flow. 27 shows a top view of a portion of an open microfluidic assembly 102 including micropillars 270 (to allow filtration and separation, valving, mixing of fluid samples during capillary flow). FIG. 28 shows a 3D view of the opened microfluidic assembly 102 of FIG. 27 including micropillars 270 . The micropillars 270 in Figures 27 and 28 are positioned to form a gradient. This gradient is advantageous for filtering out larger particles in the first portion of the microfluidic assembly 102 and filtering out smaller particles in the second portion of the microfluidic assembly 102 . 29 and 30 illustrate another embodiment of the gradient of the microcolumn 270 in the microfluidic assembly 102. Microfluidic assembly 102 may be configured to induce capillary action to propagate a fluid sample through device 100 . The dimensions of the microfluidic assembly 102 can be adapted to induce capillary action in the microfluidic assembly 102 when a fluid sample is present. For example, the size and distance between micropillars 270 in microfluidic assembly 102 can be configured to induce capillary action in microfluidic assembly 102 . As an advantage, in various embodiments of the invention, the device 100 does not require additional active components (eg, active pumps) to propagate the fluid sample through the device 100 . Thus, the complexity of device 100 is reduced compared to prior art implementations, which reduces manufacturing costs and energy consumption. Due to the low manufacturing cost, the device can be used as a disposable fluid analysis device.
本发明的一个优点是,通过例如正确地设定微流控组件102中存在的微流控通道和/或微柱的尺寸和距离,可获得对流体样本在微流控组件102中的流动的精细控制。光刻图案可被用来制造流控衬底101中的微流控组件102。微流控组件102的微柱和微流控通道的光刻图案允许准确地控制微柱和微流控通道的尺寸、大小和形状,从而精确地控制毛细流动是个优点。通过光刻过程可获得的对尺寸的该精确控制在获得可重现的侧流方面相比于现有技术侧流试纸(由非受控侧流的多孔渗水纸制成)而言呈现了优势。通过改变器件长度上的尺寸,在期望时减缓和/或加速流体样本的流动是可能的。这允许相对于现有侧流免疫测定测试中使用的简单流动而言更复杂的生化反应的实现。与在作为盖子接合到流控衬底101上的CMOS芯片中实现的功能的组合在需要时还添加温控、电子流控致动和阀控、集成生物感测和读出。因此,变得可能实现在从身体的流体中开始的一集成毛细系统中的复杂的化验,包括DNA/RNA化验、蛋白质、小分子和细胞及其组合。此外,硅中的具有受控侧流并具有对温度和流速率的控制的毛细流的实现产生更精确的即时检测结果。An advantage of the present invention is that by, for example, correctly setting the dimensions and distances of the microfluidic channels and/or microcolumns present in the microfluidic assembly 102, the flow of fluid samples in the microfluidic assembly 102 can be controlled precisely. Fine control. The photolithographic pattern can be used to fabricate the microfluidic component 102 in the fluidic substrate 101 . The photolithographic patterning of the micropillars and microfluidic channels of the microfluidic assembly 102 allows for precise control of the size, size and shape of the micropillars and microfluidic channels, thus precisely controlling capillary flow is an advantage. This precise control of dimensions achievable by the photolithographic process presents an advantage in obtaining reproducible lateral flow over prior art lateral flow test papers (made from porous paper with uncontrolled lateral flow) . By varying the dimensions along the length of the device, it is possible to slow down and/or speed up the flow of the fluid sample as desired. This allows the realization of more complex biochemical reactions relative to the simple flow used in existing lateral flow immunoassay tests. The combination with the functions implemented in the CMOS chip bonded as a lid onto the fluidic substrate 101 also adds temperature control, electrofluidic actuation and valve control, integrated biosensing and readout if required. Thus, it becomes possible to realize complex assays, including DNA/RNA assays, proteins, small molecules and cells, and combinations thereof, in an integrated capillary system starting from the fluids of the body. Furthermore, the implementation of capillary flow in silicon with controlled side flow and with control over temperature and flow rate yields more accurate immediate detection results.
在本发明的各实施例中,流控衬底101包括连接到微流控组件102的用于提供流体样本的装置。In various embodiments of the present invention, the fluidic substrate 101 includes a device connected to the microfluidic component 102 for providing a fluid sample.
盖子103用作流控衬底101的覆盖,其中盖子103完全或部分地关闭微流控组件102。图25示出了本发明的一个实施例,其中盖子103部分覆盖流控衬底101。微流控组件102可以是流控衬底101中的打开的微流控组件102。根据本发明的替换实施例,盖子102的尺寸可与流控衬底101的尺寸一致。盖子103可完全或还是部分覆盖流控衬底101。当用于提供流体样本的装置是注入口109(如图26所示)(例如样本垫102a)时,盖子103可部分覆盖流控衬底101,允许用户接入注入口109以放置流体样本。The cover 103 serves as a cover for the fluidic substrate 101 , wherein the cover 103 completely or partially closes the microfluidic assembly 102 . FIG. 25 shows an embodiment of the present invention, wherein the cover 103 partially covers the fluidic substrate 101 . The microfluidic component 102 may be an open microfluidic component 102 in the fluidic substrate 101 . According to an alternative embodiment of the present invention, the size of the cover 102 may coincide with the size of the fluidic substrate 101 . The cover 103 may completely or partially cover the fluidic substrate 101 . When the device for providing the fluid sample is an injection port 109 (as shown in FIG. 26 ) such as a sample pad 102a, the cover 103 can partially cover the fluidic substrate 101, allowing the user to access the injection port 109 to place the fluid sample.
根据本发明的各实施例,器件100还可包括放置在流控衬底101上的微流控组件102上的一个或多个电极。这些电极可以是生物适合的电极。电极可被电连接到盖子103并且被允许与器件100的微流控组件102中的流体样本交互(因为它们可以直接接触微流控组件102中的流体样本)。当盖子103自身可包括电极时,将电极从盖子103分开以允许盖子103更小以减少费用是有优势的。According to various embodiments of the present invention, the device 100 may further include one or more electrodes placed on the microfluidic component 102 on the fluidic substrate 101 . These electrodes may be biocompatible electrodes. The electrodes can be electrically connected to the cover 103 and allowed to interact with the fluid sample in the microfluidic assembly 102 of the device 100 (since they can directly contact the fluid sample in the microfluidic assembly 102). While the cover 103 may itself include electrodes, it may be advantageous to separate the electrodes from the cover 103 to allow the cover 103 to be smaller to reduce costs.
根据本发明的各实施例,微流控组件102可包括毛细泵。According to various embodiments of the invention, the microfluidic assembly 102 may include a capillary pump.
根据本发明的各实施例,用于提供流体样本的装置可以是例如用硅制成的集成针104,并包括连接到微流控组件102的内部的流控通道105。针104可以是流控衬底101的突出部分并可被放置使得在对皮肤组织按压时穿透皮肤组织。According to various embodiments of the present invention, the means for providing a fluid sample may be, for example, an integrated needle 104 made of silicon and comprising a fluidic channel 105 connected to the interior of the microfluidic assembly 102 . The needles 104 may be protruding portions of the fluidic substrate 101 and may be positioned so as to penetrate the skin tissue when pressed against the skin tissue.
流控衬底101和针104可用单片硅制造。根据本发明的各实施例,这简化了器件100的制造,因为不需要分开的步骤将针104附连到流控衬底101。同样,标准的CMOS处理技术可被用于制造针104。优选地针104是使得皮肤组织被穿透的尖的针。流控衬底101和针104两者都可用硅制造。作为一个优点,硅的强度允许针104非常尖锐,这方便了针104在皮肤组织中的穿透。此外,硅的强度允许皮肤组织紧紧地被压在针104上,从而允许皮肤组织的穿透而不弯曲或折断针104。Fluidic substrate 101 and needles 104 can be fabricated from a single piece of silicon. According to various embodiments of the invention, this simplifies the fabrication of the device 100 since no separate step is required to attach the needles 104 to the fluidic substrate 101 . Likewise, standard CMOS processing techniques can be used to fabricate needles 104 . Preferably needle 104 is a sharp needle that allows skin tissue to be penetrated. Both the fluidic substrate 101 and the needle 104 can be fabricated from silicon. As an advantage, the strength of silicon allows the needles 104 to be very sharp, which facilitates the penetration of the needles 104 in skin tissue. In addition, the strength of silicon allows the skin tissue to be pressed tightly against the needle 104 , allowing penetration of the skin tissue without bending or breaking the needle 104 .
根据本发明的各实施例,针104可以位于流控衬底101的水平面中,其中针104位于流控衬底101的侧壁上。针104可以是流控衬底101的侧壁的突出部分。根据不同的实施例,针104可位于流控衬底101的水平面上,其中针垂直置于流控衬底101的主表面上。根据本发明的各实施例,针104可以起到连接到微流控组件102的打开的通道的作用,其中在使用中,当皮肤组织被穿透时皮肤组织用作针104的侧壁。According to various embodiments of the present invention, the needles 104 may be located in the horizontal plane of the fluidic substrate 101 , wherein the needles 104 are located on the sidewall of the fluidic substrate 101 . The needles 104 may be protruding portions of the sidewall of the fluidic substrate 101 . According to different embodiments, the needles 104 may be located on the horizontal plane of the fluidic substrate 101 , wherein the needles are vertically placed on the main surface of the fluidic substrate 101 . According to various embodiments of the invention, the needle 104 may function as an open channel connected to the microfluidic assembly 102, wherein in use, the skin tissue acts as a side wall of the needle 104 when it is penetrated.
根据本发明的各实施例的器件100可通过将用户的皮肤组织向针104按压来使用。当使用足够的力时,针104穿透皮肤组织,允许血液进入针104的内部的流控通道105。针104具有打开的针尖以允许流体样本进入内部的流控通道105。当针具有小的外径(优选小于200μm)的尖锐时,皮肤组织的穿透将不会引起用户的任何不适。随着针104的内部的流控通道105连接到流控衬底101的微流控组件102,血液可进入微流控组件102。由于毛细作用力,血液将传播通过微流控组件102。The device 100 according to various embodiments of the invention may be used by pressing the user's skin tissue against the needle 104 . When sufficient force is applied, the needle 104 penetrates the skin tissue, allowing blood to enter the fluidic channel 105 inside the needle 104 . Needle 104 has an open tip to allow a fluid sample to enter internal fluidic channel 105 . When the needle is sharp with a small outer diameter (preferably less than 200 μm), the penetration of the skin tissue will not cause any discomfort to the user. With the internal fluidic channel 105 of the needle 104 connected to the microfluidic component 102 of the fluidic substrate 101 , blood can enter the microfluidic component 102 . Blood will travel through the microfluidic assembly 102 due to capillary forces.
图1示出了具有集成针104(作为流控衬底101的一部分)的流控衬底101的实施例,该针具有连接到微流控组件102的内部的流控通道105。微流控组件102可包括:样本垫102a(=注入口)、试剂存储器102b、一次性使用的密封阀102c、第一触发阀102d、混合器102e、延迟线102f、第二触发阀102g、加热器102h和渗吸条102i。如图1所示,流控衬底101中的全部的流控组件是打开的。盖子103将用作覆盖来关闭一些或全部流控组件。FIG. 1 shows an embodiment of a fluidic substrate 101 with integrated needles 104 (as part of the fluidic substrate 101 ) with fluidic channels 105 connected to the interior of the microfluidic assembly 102 . The microfluidic assembly 102 may comprise: a sample pad 102a (=injection port), a reagent reservoir 102b, a single-use sealing valve 102c, a first trigger valve 102d, a mixer 102e, a delay line 102f, a second trigger valve 102g, a heating Device 102h and imbibition bar 102i. As shown in FIG. 1 , all the fluidic components in the fluidic substrate 101 are opened. Lid 103 will serve as a cover to close off some or all of the fluidic components.
根据本发明的各实施例,流控衬底101可包括切口106,其中针104位于切口106中。切口106是流控衬底101的被移除的部分,以向存在于切口中的针104提供机械保护。According to various embodiments of the present invention, the fluidic substrate 101 may include a cutout 106 , wherein the needle 104 is located in the cutout 106 . The cutouts 106 are portions of the fluidic substrate 101 that are removed to provide mechanical protection to the needles 104 present in the cutouts.
图5示出了本发明一个实施例的俯视图,其中盖子103被接合到流控衬底101。图6示出了本发明一实施例的示例性流控衬底101的俯视图。图7示出了本发明一个实施例的侧视图,其中盖子103被接合到流控衬底101。FIG. 5 shows a top view of an embodiment of the present invention where a lid 103 is bonded to a fluidic substrate 101 . FIG. 6 shows a top view of an exemplary fluidic substrate 101 according to an embodiment of the present invention. FIG. 7 shows a side view of an embodiment of the present invention where a cover 103 is bonded to a fluidic substrate 101 .
如图5、6和7所示,针104位于流控衬底101的切口106中。切口106保护针104免于例如在器件100插入外部设备(诸如智能电话的移动设备,例如用于读出)的插口中时折断。流控衬底101的侧壁可以起到切口106的作用。针104可位于切口106中以允许用户在牢牢压向切口时穿透皮肤组织。作为进一步的优点,在制造过程中,针104可在制造切口106时被制造。作为结果,更少的材料被浪费,因为仅仅是用于切口106的材料,不包括用于针104的材料,需要被移除。可使用标准硅处理技术来制造切口106和针104。As shown in FIGS. 5 , 6 and 7 , needles 104 are located in cutouts 106 of fluidic substrate 101 . The cutouts 106 protect the pins 104 from breaking, for example, when the device 100 is inserted into a socket of an external device, such as a mobile device such as a smartphone, for example for readout. The sidewall of the fluidic substrate 101 may function as the cutout 106 . Needle 104 may be positioned in incision 106 to allow the user to penetrate skin tissue while pressing firmly against the incision. As a further advantage, during the manufacturing process, the needle 104 can be manufactured when the incision 106 is made. As a result, less material is wasted, since only the material for the incision 106 , not including the material for the needle 104 , needs to be removed. Slits 106 and needles 104 can be fabricated using standard silicon processing techniques.
根据本发明的各实施例,流控衬底101可包括用于保护针104的保护结构107,该保护结构可移除地附连到流控衬底101。根据本发明的各实施例,保护结构107可通过至少一个锚定机制108附连到流控衬底101。通过断开至少一个锚定机制108,保护结构107可被分离。保护结构107可以是流控衬底101的一部分,其中锚定机制108是流控衬底101中的凹槽,以允许在该凹槽处断开保护结构107。图8是器件100的这样的实施例的俯视图。如图9(所示的是用于在根据本发明的各实施例的器件(例如如图8所示器件)中使用的流控衬底101的示例实施例的俯视图)中可见,保护结构107是流控衬底101的一部分,并特写了两个锚定机制108,它们允许保护结构107从流控衬底101分离。图10示出图8中器件100的侧视图。According to various embodiments of the present invention, the fluidic substrate 101 may include a protective structure 107 for protecting the needles 104 , the protective structure being removably attached to the fluidic substrate 101 . According to various embodiments of the invention, the protective structure 107 may be attached to the fluidic substrate 101 by at least one anchoring mechanism 108 . By breaking at least one anchoring mechanism 108, the protective structure 107 can be detached. The protection structure 107 may be part of the fluidic substrate 101, wherein the anchoring mechanism 108 is a groove in the fluidic substrate 101 to allow breaking of the protection structure 107 at the groove. FIG. 8 is a top view of such an embodiment of device 100 . As can be seen in FIG. 9 (shown is a top view of an example embodiment of a fluidic substrate 101 for use in devices according to embodiments of the invention, such as the device shown in FIG. 8 ), a protective structure 107 is part of the fluidic substrate 101 and features two anchoring mechanisms 108 that allow the protection structure 107 to be detached from the fluidic substrate 101 . FIG. 10 shows a side view of device 100 in FIG. 8 .
根据本发明的各实施例,用于提供流体样本的装置是注入口109。注入口109可以是流控衬底101中的缺口,它通过流控通道连接到微流控组件102。为使用该器件,用户可将一滴身体的流体(诸如血液或尿液)放置在该器件的注入口109上。由于毛细作用力,身体的流体将传播通过微流控组件102。According to various embodiments of the invention, the means for providing a fluid sample is an injection port 109 . The injection port 109 may be a gap in the fluidic substrate 101, and it is connected to the microfluidic component 102 through a fluidic channel. To use the device, a user places a drop of bodily fluid, such as blood or urine, on the infusion port 109 of the device. Fluids of the body will travel through the microfluidic assembly 102 due to capillary forces.
图26示出了拆开的根据本发明各实施例的器件100,它包括包含注入口109和微流控组件102的流控衬底101、盖子103和包110。包110可包括基部和顶部,它们可以装配在一起包住流控衬底101和盖子103,从而保护流控衬底101和盖子103免受环境影响(如灰尘)。包可包括用于将流体样本放到流控衬底101的注入口109上的通孔260。当全部部分被装配时,器件100可用作单独的用于分析流体样本的无线设备。FIG. 26 shows a device 100 disassembled according to various embodiments of the present invention, which includes a fluidic substrate 101 including an injection port 109 and a microfluidic assembly 102 , a cover 103 and a bag 110 . Pack 110 may include a base and a top that may fit together to enclose fluidic substrate 101 and cover 103, thereby protecting fluidic substrate 101 and cover 103 from environmental influences such as dust. The pack may include a through hole 260 for placing a fluid sample onto the injection port 109 of the fluidic substrate 101 . When all parts are assembled, the device 100 can be used as a single wireless device for analyzing fluid samples.
根据本发明的各方面,当流体样本存在于器件100中时,盖子103的至少一部分可以与流体样本接触。由于盖子103是CMOS芯片,当盖子103用作流控衬底101的打开的微流控组件102的侧壁时,存在于芯片表面上的电子电路可直接与流体样本接触。在此情况中,芯片的包括电子电路的一侧可被接合到流控衬底101的打开的微流控组件102,其中该电子电路在期望与流体样本互动处与流控组件102的各部分对齐。作为一个优点,这可以改善电子电路和流体样本之间的互动。According to aspects of the invention, at least a portion of the cover 103 may be in contact with the fluid sample when the fluid sample is present in the device 100 . Since the cover 103 is a CMOS chip, when the cover 103 is used as a side wall of the opened microfluidic assembly 102 of the fluidic substrate 101, the electronic circuits present on the surface of the chip can directly contact the fluid sample. In this case, the side of the chip that includes the electronic circuitry may be bonded to the open microfluidic assembly 102 of the fluidic substrate 101, wherein the electronic circuitry interacts with portions of the fluidic assembly 102 where interaction with the fluid sample is desired. align. As an advantage, this improves the interaction between the electronic circuit and the fluid sample.
根据本发明的各实施例,盖子103可包括接合层以允许将盖子103接合到流控衬底101。According to various embodiments of the invention, the cover 103 may include a bonding layer to allow bonding of the cover 103 to the fluidic substrate 101 .
根据本发明的各实施例,流控衬底101的包括打开的微流控组件102的第一侧可被接合到CMOS芯片103的包括至少一个电子组件的第一侧。According to various embodiments of the present invention, the first side of the fluidic substrate 101 including the opened microfluidic component 102 may be bonded to the first side of the CMOS chip 103 including at least one electronic component.
根据一个实施例,盖子103包括晶体管层,该晶体管层电连接至少一个电子组件,该电子组件为以下的至少一个:生物感测电路、用于感测目的的电极、用于流体操纵目的的电极、用于数据通信目的的电路、用于无线数据通信目的的电路、温度传感器、用于温度控制或温度循环的加热器电极,和用于流体黏性控制的流体传感器和电极。用于无线数据通信的电路可包括用于经由蓝牙无线电或WiFi模块进行通信的规定以从盖子103中的电子电路无线地发送数据。作为一个优点,器件100可与诸如移动设备的外部设备进行通信,该外部设备可被用于进一步处理数据。According to one embodiment, the cover 103 includes a transistor layer electrically connected to at least one electronic component, the electronic component being at least one of: bio-sensing circuitry, electrodes for sensing purposes, electrodes for fluid manipulation purposes , circuits for data communication purposes, circuits for wireless data communication purposes, temperature sensors, heater electrodes for temperature control or temperature cycling, and fluid sensors and electrodes for fluid viscosity control. The circuitry for wireless data communication may include provisions for communicating via a Bluetooth radio or a WiFi module to wirelessly send data from the electronic circuitry in the cover 103 . As an advantage, device 100 can communicate with external devices, such as mobile devices, which can be used for further processing of data.
盖子103是CMOS芯片。根据本发明的各实施例,CMOS芯片包括硅衬底111、晶体管层112,电连接到该晶体管层112的至少一个电子组件,以及至少一个接合层115。至少一个电子组件可以是生物感测电路、用于感测目的的电极、用于流体操纵目的的电极、用于数据通信目的的电路、用于无线数据通信目的的电路、温度传感器、用于温度控制的加热器电极,和用于流体黏性控制的流体传感器和电极。The cover 103 is a CMOS chip. According to various embodiments of the present invention, a CMOS chip includes a silicon substrate 111 , a transistor layer 112 , at least one electronic component electrically connected to the transistor layer 112 , and at least one bonding layer 115 . The at least one electronic component may be a biosensing circuit, an electrode for sensing purposes, an electrode for fluid manipulation purposes, a circuit for data communication purposes, a circuit for wireless data communication purposes, a temperature sensor, a temperature sensor for temperature heater electrodes for control, and fluid sensors and electrodes for fluid viscosity control.
根据本发明的各实施例的盖子103的一个特定实施例在图18示出。在该实施例中,CMOS芯片103包括硅衬底111。在硅衬底111顶上可存在晶体管层112。在晶体管层112顶上可存在内连层113。在晶体管层112的顶上,可存在至少一个电子组件,它通过内连层113电连接到晶体管层112。内连层113可包括多个金属层。根据本发明的各实施例,在晶体管层112的顶上,可存在接合层115和至少一个电极114。电极114可以经由内连层113电连接到晶体管层。One particular embodiment of a cover 103 according to embodiments of the invention is shown in FIG. 18 . In this embodiment, the CMOS chip 103 includes a silicon substrate 111 . On top of the silicon substrate 111 there may be a transistor layer 112 . On top of the transistor layer 112 there may be an interconnect layer 113 . On top of transistor layer 112 there may be at least one electronic component electrically connected to transistor layer 112 through interconnect layer 113 . The interconnect layer 113 may include multiple metal layers. On top of the transistor layer 112 there may be a bonding layer 115 and at least one electrode 114 according to various embodiments of the invention. The electrode 114 may be electrically connected to the transistor layer via the interconnect layer 113 .
根据本发明的各实施例,至少一个电子组件可以是不会被流体腐蚀并且化学惰性的生物适合的电极。根据一个特定实施例,至少一个电极114是TiN电极。According to various embodiments of the invention, at least one electronic component may be a biocompatible electrode that is not corroded by the fluid and is chemically inert. According to a particular embodiment, at least one electrode 114 is a TiN electrode.
根据本发明的各实施例,接合层115可以是允许将CMOS芯片103在低温和低电压时接合到流控衬底101的层。这是有利的,因为这些情况不破坏CMOS芯片,也不破坏试剂或例如可被提供在微流控衬底101上的蛋白质。根据一个特定实施例,接合层115可以是SiO2或聚合物层。According to various embodiments of the present invention, the bonding layer 115 may be a layer that allows bonding the CMOS chip 103 to the fluidic substrate 101 at low temperature and low voltage. This is advantageous because these situations do not damage the CMOS chip, nor reagents or eg proteins that may be provided on the microfluidic substrate 101 . According to a particular embodiment, bonding layer 115 may be a SiO 2 or polymer layer.
图19示出了根据本发明的各实施例的器件100,其中如图18所示的CMOS芯片103被接合到流控衬底101。CMOS芯片103的包括接合层115和电极114的一侧被接合到流控衬底101的包括打开的微流控组件102的一侧。这意味着如图18所示的CMOS芯片103相对于它在图18的位置来说上下翻了过来。电极114因此直接接触存在于微流控组件102中的流体样本。接合层115被用于将CMOS芯片103附连到流控衬底101。FIG. 19 shows a device 100 according to various embodiments of the present invention, wherein a CMOS chip 103 as shown in FIG. 18 is bonded to a fluidic substrate 101 . The side of the CMOS chip 103 including the bonding layer 115 and the electrodes 114 is bonded to the side of the fluidic substrate 101 including the opened microfluidic assembly 102 . This means that the CMOS chip 103 shown in FIG. 18 is turned upside down relative to its position in FIG. 18 . The electrodes 114 are thus in direct contact with the fluid sample present in the microfluidic assembly 102 . The bonding layer 115 is used to attach the CMOS chip 103 to the fluidic substrate 101 .
根据本发明的各实施例,CMOS芯片103可包括至少一个硅I/O连接116,如图20所示。硅I/O连接116可以是贯通衬底111的背后开口,以在晶体管层112中存取CMOS芯片103的电信号。此外,在替换实施例中,硅I/O连接116可以是贯通衬底111和晶体管层112两者的背后开口,以在内连层113中存取CMOS芯片103的电信号。图20示出了器件100,其中CMOS芯片103被接合到流控衬底101,并且其中CMOS芯片103特写了贯通衬底111和晶体管层112两者的硅I/O连接116。According to various embodiments of the invention, the CMOS chip 103 may include at least one silicon I/O connection 116, as shown in FIG. 20 . The silicon I/O connection 116 may be a rear opening through the substrate 111 to access electrical signals of the CMOS chip 103 in the transistor layer 112 . Furthermore, in an alternative embodiment, the silicon I/O connection 116 may be a rear opening through both the substrate 111 and the transistor layer 112 to access electrical signals of the CMOS chip 103 in the interconnect layer 113 . FIG. 20 shows device 100 where CMOS chip 103 is bonded to fluidic substrate 101 and where CMOS chip 103 features silicon I/O connections 116 through both substrate 111 and transistor layer 112 .
根据本发明的各实施例,流控衬底可包括打开的微流控组件102,且流控衬底可部分被CMOS芯片103覆盖。微流控组件102的一部分不被覆盖是有利的,因为这允许试剂被施加/滴在微流控组件102的特定打开部分上。在此情况下,在将流控衬底101接合到CMOS芯片103之后,不需要额外的通孔来施加试剂。CMOS芯片区域更小也是有利的,因为有源电子仪器是一次性的更贵的一部分。According to various embodiments of the present invention, the fluidic substrate may include an open microfluidic component 102 , and the fluidic substrate may be partially covered by the CMOS chip 103 . It is advantageous that a portion of the microfluidic assembly 102 is not covered, as this allows reagents to be applied/dropped on specific open portions of the microfluidic assembly 102 . In this case, after bonding the fluidic substrate 101 to the CMOS chip 103, no additional via holes are required to apply reagents. The smaller area of the CMOS chip is also advantageous because the active electronics are a more expensive part of the disposable.
根据本发明的各实施例,CMOS芯片103还可包括至少一个I/O垫117。该至少一个I/O垫117可位于内连层113上。According to various embodiments of the present invention, the CMOS chip 103 may further include at least one I/O pad 117 . The at least one I/O pad 117 can be located on the interconnect layer 113 .
图21示出CMOS芯片103的实施例。CMOS芯片113包括硅衬底111。在硅衬底的顶上存在晶体管层112。在晶体管层112顶上存在内连层113。内连层113可包括多个金属层以将晶体管层112与电子组件内连。在晶体管层112的顶上,存在接合层115、I/O垫117,以及在所示实施例中的多个电极114。电极114经由内连层113电连接到晶体管层112。I/O垫117也经由内连层113电连接到晶体管层112。FIG. 21 shows an embodiment of a CMOS chip 103 . The CMOS chip 113 includes a silicon substrate 111 . On top of the silicon substrate there is a transistor layer 112 . On top of the transistor layer 112 there is an interconnect layer 113 . The interconnect layer 113 may include multiple metal layers to interconnect the transistor layer 112 with electronic components. On top of the transistor layer 112, there is a bonding layer 115, an I/O pad 117, and in the embodiment shown a plurality of electrodes 114. The electrode 114 is electrically connected to the transistor layer 112 via the interconnection layer 113 . I/O pad 117 is also electrically connected to transistor layer 112 via interconnect layer 113 .
根据本发明的各实施例,CMOS芯片103的第一主表面的第一部分可覆盖流控衬底101,CMOS芯片103的第一主表面的第二部分可不覆盖流控衬底101。在这些实施例中,CMOS芯片103要么可以大于流控衬底101,要么它可以相对于流控衬底101侧向移动,使得CMOS芯片103的一部分形成相对于流控衬底101的悬伸部(overhang)。CMOS芯片103的第一主表面的第二部分可包括至少一个I/O垫117以访问I/O垫117。According to various embodiments of the present invention, the first part of the first main surface of the CMOS chip 103 may cover the fluidic substrate 101 , and the second part of the first main surface of the CMOS chip 103 may not cover the fluidic substrate 101 . In these embodiments, the CMOS chip 103 can either be larger than the fluidic substrate 101 or it can be moved laterally relative to the fluidic substrate 101 such that a portion of the CMOS chip 103 forms an overhang relative to the fluidic substrate 101 (overhang). A second portion of the first main surface of the CMOS chip 103 may include at least one I/O pad 117 to access the I/O pad 117 .
图22示出了接合到流控衬底101的图21所示的CMOS芯片103。CMOS芯片103的第一部分指示部分地,并且在该实施例中被示为完全覆盖流控衬底101,其中在流体样本存在于器件100的微流控组件102中时电极114直接接触流体样本。接合层115被用于将CMOS芯片103的第一部分接合到流控衬底101。CMOS芯片103的第二部分形成不覆盖流控衬底101的悬伸部。第二部分包括I/O垫117。作为一个优点,该悬伸部允许容易地访问I/O垫117。这允许使用标准I/O垫尺寸和包装方法,以将衬底插入通常用于智能卡的插槽中。进一步的优点是不需要附加的处理步骤来制造硅I/O连接(例如通过衬底和晶体管层的孔)以访问CMOS芯片103中的电信号。FIG. 22 shows the CMOS chip 103 shown in FIG. 21 bonded to the fluidic substrate 101 . The first part of the CMOS chip 103 indicates partially, and in this embodiment is shown completely covering the fluidic substrate 101 , where the electrodes 114 directly contact the fluidic sample when it is present in the microfluidic assembly 102 of the device 100 . The bonding layer 115 is used to bond the first part of the CMOS chip 103 to the fluidic substrate 101 . The second part of the CMOS chip 103 forms an overhang that does not cover the fluidic substrate 101 . The second part includes I/O pads 117 . As an advantage, the overhang allows easy access to the I/O pad 117 . This allows the use of standard I/O pad sizes and packaging methods to insert the substrate into the socket typically used for smart cards. A further advantage is that no additional processing steps are required to make silicon I/O connections (such as holes through the substrate and transistor layers) to access electrical signals in the CMOS chip 103 .
根据本发明的各实施例,流控衬底101还包括至少一个光学波导以允许光学激发并当流体样本在器件100内存在时感测流体样本。According to various embodiments of the present invention, the fluidic substrate 101 also includes at least one optical waveguide to allow optical excitation and sensing of a fluid sample when present within the device 100 .
根据本发明的各实施例,流控衬底101或盖子103包括至少一个通孔用于将生化试剂应用到微流控组件102的一个区域或应用到盖子103的一个区域。流控衬底101或盖子103中的通孔允许将生化试剂应用于微流控组件102的特定区域或应用于盖子103的特定区域。这是有利的,因为它允许在将盖子103附连到流控衬底101之后应用试剂。According to various embodiments of the present invention, the fluidic substrate 101 or the cover 103 includes at least one through hole for applying a biochemical reagent to a region of the microfluidic assembly 102 or to a region of the cover 103 . Through holes in the fluidic substrate 101 or the cover 103 allow biochemical reagents to be applied to specific areas of the microfluidic assembly 102 or to specific areas of the cover 103 . This is advantageous because it allows reagents to be applied after the lid 103 is attached to the fluidic substrate 101 .
根据本发明的各实施例,CMOS芯片103可包括至少一个通孔118。在附连到流控衬底101时,CMOS芯片103中的通孔118允许试剂滴在流控衬底101中的微流控组件102的特定位置上或CMOS芯片103的特定部分上。图23示出了这样的实施例,其中CMOS芯片103包括一个通孔118。在此实施例中,CMOS芯片还包括硅I/O连接116。如所示,CMOS芯片103完全覆盖流控衬底101的一部分。According to various embodiments of the present invention, the CMOS chip 103 may include at least one via 118 . When attached to the fluidic substrate 101 , the through holes 118 in the CMOS chip 103 allow reagent droplets to be dropped on specific locations of the microfluidic component 102 in the fluidic substrate 101 or on specific portions of the CMOS chip 103 . FIG. 23 shows an embodiment in which the CMOS chip 103 includes a via 118 . In this embodiment, the CMOS chip also includes silicon I/O connections 116 . As shown, the CMOS chip 103 completely covers a portion of the fluidic substrate 101 .
根据本发明的相同或替换实施例,流控衬底101的第一侧包括打开的微流控组件102。对着微流控组件102被提供的那侧的另一侧,可包括至少一个通孔119。通孔119允许试剂滴在流控衬底101的微流控组件102的特定位置上或CMOS芯片102的特定部分上。图24示出了这样的实施例,其中流控衬底包括两个通孔119。CMOS芯片103的一部分覆盖流控衬底101,不覆盖流控衬底101但形成悬伸部的部分包括I/O垫117。According to the same or an alternative embodiment of the invention, the first side of the fluidic substrate 101 comprises an open microfluidic assembly 102 . The other side opposite to the side where the microfluidic assembly 102 is provided may include at least one through hole 119 . The through holes 119 allow reagents to be dropped on a specific position of the microfluidic component 102 of the fluidic substrate 101 or a specific part of the CMOS chip 102 . FIG. 24 shows an embodiment in which the fluidic substrate includes two vias 119 . A part of the CMOS chip 103 covers the fluidic substrate 101 , and a part that does not cover the fluidic substrate 101 but forms an overhang includes an I/O pad 117 .
根据本发明的各实施例,可使用聚合物(优选为光刻形成图案的聚合物)将盖子103接合到流控衬底101。用于形成盖子103和流控衬底101之间的接合的材料应当适合于(优选地在低温,例如室温)执行Si-Si接合。这与存在与盖子103上的不应被接合处理破坏的CMOS电路是兼容的,并且与存在于流控衬底101上或在流控衬底中的也不应被接合处理破坏的试剂是兼容的。用于将盖子103接合到流控衬底101的合适的接合材料是例如可从DowCorning获得的可照片图案化的PDMS、可从MicrChem获得的SU8、或可从MerceneLabs获得的OSTE。这些接合材料全都将室温作为接合温度。According to various embodiments of the invention, the lid 103 may be bonded to the fluidic substrate 101 using a polymer, preferably a photolithographically patterned polymer. The material used to form the bond between the lid 103 and the fluidic substrate 101 should be suitable (preferably at low temperature, eg room temperature) to perform Si-Si bonding. This is compatible with the presence of CMOS circuitry on the lid 103 that should not be damaged by the bonding process, and with reagents present on or in the fluidic substrate 101 that should also not be damaged by the bonding process of. Suitable bonding materials for bonding the lid 103 to the fluidic substrate 101 are, for example, photopatternable PDMS available from Dow Corning, SU8 available from MicrChem, or OSTE available from MerceneLabs. All of these bonding materials use room temperature as the bonding temperature.
根据本发明的另一个实施例,使用CMOS兼容包装技术将盖子103接合到流控衬底101。当流控衬底101是硅衬底而盖子103是CMOS芯片时,CMOS包装技术的用途可被使用。According to another embodiment of the present invention, the lid 103 is bonded to the fluidic substrate 101 using CMOS compatible packaging techniques. The use of CMOS packaging technology can be used when the fluidic substrate 101 is a silicon substrate and the cover 103 is a CMOS chip.
根据本发明的各实施例,器件100还可包括电连接到盖子103以从盖子103读出电信号的金属触头。金属触头可位于盖子102上,电连接到盖子103中的电子电路。金属触头的位置和形状可根据标准来选择,允许将器件插入标准化的插槽,诸如:在诸如移动设备的通信设备中通常使用的存储卡(例如,压缩闪存存储卡、智能媒体存储卡、多媒体存储卡或者安全数字(SD)存储卡)的插槽。将器件100插入移动设备允许由移动设备中存在的处理器和/或其它电子组件来处理来自盖子103的电信号。例如,智能手机的处理器可被用来处理电信号和/或显示数据。According to various embodiments of the present invention, the device 100 may further include metal contacts electrically connected to the cover 103 to read out electrical signals from the cover 103 . Metal contacts may be located on cover 102 electrically connected to electronic circuitry in cover 103 . The position and shape of the metal contacts can be selected according to standards, allowing the device to be plugged into standardized slots, such as: memory cards commonly used in communication devices such as mobile devices (e.g., Compact Flash memory cards, SmartMedia memory cards, Multimedia memory card or Secure Digital (SD) memory card). Plugging device 100 into the mobile device allows electrical signals from cover 103 to be processed by processors and/or other electronic components present in the mobile device. For example, a smartphone's processor may be used to process electrical signals and/or display data.
根据本发明的各实施例,流控衬底101和/或盖子103的至少部分可用透明材料制造,以在流体样本存在于微流控组件102中时允许对流体样本进行光学检查。流控衬底101的由透明材料制造的那部分可以是器件100的微流控组件102的部分。透明部分可以是器件100的微流控组件102的侧壁。透明材料允许对器件100中的流体样本的光学检查。光学检测器可被用来光学地检查流体样本,以便例如检测分析物。光学检测器可以是图像传感器,它可以是外部设备的一部分或可被集成在器件100中。透明材料可以是透明氧化物或聚合物。为了显微方法的目的,盖子103的一部分或流控衬底101的一部分可以是透明的。为了无透镜成像的目的,盖子103的一部分和流控衬底101的一部分可以是透明的以允许以透射模式工作,其中辐射源可被使用以通过盖子103的透明部分辐射器件100中的流体样本中的对象,而检测器可被使用以检测通过流控衬底101的透明部分来自所辐射的对象的信号。信号可以是流体样本中的所辐射对象的衍射图案。According to various embodiments of the invention, at least part of the fluidic substrate 101 and/or cover 103 may be fabricated from a transparent material to allow optical inspection of the fluid sample while it is present in the microfluidic assembly 102 . That portion of the fluidic substrate 101 made of transparent material may be part of the microfluidic component 102 of the device 100 . The transparent portion may be a sidewall of the microfluidic component 102 of the device 100 . Transparent materials allow optical inspection of fluid samples in device 100 . Optical detectors may be used to optically examine fluid samples, for example to detect analytes. The optical detector can be an image sensor, which can be part of an external device or can be integrated in device 100 . Transparent materials can be transparent oxides or polymers. A portion of the cover 103 or a portion of the fluidic substrate 101 may be transparent for microscopy purposes. For lensless imaging purposes, a portion of the cover 103 and a portion of the fluidic substrate 101 may be transparent to allow operation in a transmission mode, where a radiation source may be used to irradiate a fluid sample in the device 100 through the transparent portion of the cover 103 objects in the fluidic substrate 101 , while detectors can be used to detect signals from irradiated objects through the transparent portion of the fluidic substrate 101 . The signal may be a diffraction pattern of an irradiated object in the fluid sample.
图33示出了根据本发明的各实施例的器件100,其中流控衬底101和盖子103相互接合。流控衬底101包括用于多组学分析的不同的微流控组件,在所示的实施例中包括多个室330、331、332、333和微流控通道(未示出)。各室可具有不同深度,取决于它们的功能和所执行的测量的类型。各室可以由能够以任何合适的方式(例如通过流体力或通过电流)致动的阀来分隔。用于致动的电极可被提供在流控衬底101上或盖子103上。形成盖子103的CMOS芯片可因此结合不同功能,诸如例如CMOS微观成像器334、CMOS光学检测器335、336,和用于加热和/或感测的CMOS电子电路337。CMOS微观成像器334可包括用于从微流控组件102中的流体样本中读出光学信号的CMOS有源像素。CMOS光学检测器335包括光学谐振器338。可存在波导339用以将测量光从CMOS芯片103的一个位置传输到另一个位置。波导可例如被用于照射样本以执行无透镜显微方法。此外,过滤器可被提供在流控衬底101中或盖子103中以拒绝光激发散发,从而允许对荧光信号的测量。同样多谱过滤器可被提供在流控衬底101中或盖子中,用于使用多种颜色测量流控信号。Fig. 33 shows a device 100 according to various embodiments of the invention, wherein a fluidic substrate 101 and a cover 103 are bonded to each other. Fluidic substrate 101 includes various microfluidic components for multi-omics analysis, including in the illustrated embodiment multiple chambers 330, 331, 332, 333 and microfluidic channels (not shown). The chambers can have different depths, depending on their function and the type of measurements performed. The chambers may be separated by valves actuatable in any suitable manner, eg by fluid force or by electrical current. Electrodes for actuation may be provided on the fluidic substrate 101 or on the cover 103 . The CMOS chip forming the lid 103 may thus incorporate different functions, such as for example a CMOS microscopic imager 334, CMOS optical detectors 335, 336, and CMOS electronics 337 for heating and/or sensing. The CMOS microscopic imager 334 may include CMOS active pixels for reading out optical signals from a fluid sample in the microfluidic assembly 102 . The CMOS optical detector 335 includes an optical resonator 338 . A waveguide 339 may be present to transport measurement light from one location of the CMOS chip 103 to another. The waveguide can be used, for example, to illuminate a sample to perform lens-less microscopy. In addition, filters may be provided in the fluidic substrate 101 or in the cover 103 to reject light excitation emission, thereby allowing the measurement of fluorescent signals. Also a multispectral filter can be provided in the fluidic substrate 101 or in the cover for measuring the fluidic signal using multiple colors.
以此方式,根据本发明的各实施例,对不同类型的标记的检测可在单个的,优选地一次性的,检测器件中执行。In this way, according to various embodiments of the invention, the detection of different types of labels can be performed in a single, preferably disposable, detection device.
根据本发明的各实施例,该器件100的形状允许插入到移动通信设备中。根据本发明的各实施例,器件100具有存储卡的形状/尺寸。这是本发明各实施例的一个优点,器件100的尺寸可以根据标准,例如,根据移动设备中使用的诸如以下的存储卡的标准:压缩闪存存储卡、智能媒体存储卡、多媒体存储卡、安全数字存储卡或其它类型存储卡。According to embodiments of the invention, the shape of the device 100 allows insertion into a mobile communication device. According to various embodiments of the invention, device 100 has the shape/dimensions of a memory card. It is an advantage of various embodiments of the present invention that the device 100 can be sized according to standards, for example, according to the standards of memory cards used in mobile devices such as: Compact Flash memory cards, smart media memory cards, multimedia memory cards, security Digital memory card or other type of memory card.
图31和32示出了本发明的一个实施例,其中器件100具有SD卡的形状。在切口106(总是根据SD卡标准存在的)内部,存在针104。在SD卡的另一侧,存在金属触头并电连接到盖子103以允许从盖子103读出电信号,该电信号可进一步由SD卡插入其中的设备进行处理。Figures 31 and 32 show an embodiment of the invention in which the device 100 has the shape of an SD card. Inside the cutout 106 (always present according to the SD card standard), there is a needle 104 . On the other side of the SD card, there are metal contacts and are electrically connected to the cover 103 to allow electrical signals to be read out from the cover 103, which can be further processed by the device into which the SD card is inserted.
根据本发明的各实施例,盖子103或流控衬底101还可包括电连接到盖子103的用于给器件100提供供电的隔间,诸如电池隔间(未示出)。According to various embodiments of the present invention, the cover 103 or the fluidic substrate 101 may further include a compartment, such as a battery compartment (not shown), electrically connected to the cover 103 for providing power to the device 100 .
在本发明的各实施例的第二方面,涉及用于制造本发明的第一方面中公开的器件的方法。该方法包括:提供流控衬底101;提供盖子103;将流控衬底101附连到盖子103以至少部分地关闭流控衬底101;其特征在于:流控衬底101是硅流控衬底,而盖子103是CMOS芯片;并且其中流控衬底101使用CMOS兼容的接合处理来附连到盖子103。In a second aspect embodiments of the invention relate to methods for fabricating the device disclosed in the first aspect of the invention. The method includes: providing a flow control substrate 101; providing a cover 103; attaching the flow control substrate 101 to the cover 103 to at least partially close the flow control substrate 101; characterized in that: the flow control substrate 101 is a silicon flow control substrate, while the cover 103 is a CMOS chip; and wherein the fluidic substrate 101 is attached to the cover 103 using a CMOS compatible bonding process.
使用CMOS兼容的接合处理来将流控衬底101接合到盖子103是有利的。在现有技术的器件中,接合是使用高温/高电压接合技术来执行的。这些接合技术可能破坏CMOS芯片中存在的电子电路和/或存在于微流控衬底101中的试剂。使用CMOS兼容的接合允许在较低温度/较低电压进行接合,并因此保护盖子103的电子电路和存在于微流控衬底101中的试剂。根据本发明的各实施例,接合可通过晶片到晶片或管芯到晶片接合处理(诸如直接的氧化物到氧化物接合或经由可图案化聚合物接合)来执行。此外,能够在低温执行接合是有利的,因为在制造流期间一些试剂已经被滴在衬底之一上了。It is advantageous to use a CMOS compatible bonding process to bond the fluidic substrate 101 to the lid 103 . In prior art devices, bonding is performed using high temperature/high voltage bonding techniques. These bonding techniques may damage the electronic circuits present in the CMOS chip and/or the reagents present in the microfluidic substrate 101 . Using CMOS compatible bonding allows bonding at lower temperature/lower voltage and thus protects the electronic circuitry of the cover 103 and the reagents present in the microfluidic substrate 101 . According to various embodiments of the invention, bonding may be performed by a wafer-to-wafer or die-to-wafer bonding process, such as direct oxide-to-oxide bonding or via patternable polymer bonding. Furthermore, it is advantageous to be able to perform bonding at low temperatures, since some reagents are already dripped onto one of the substrates during the fabrication flow.
流控衬底101可使用单片硅衬底中的粗结构和精细结构的组合,通过两个硬掩模、层的保护和去保护、蚀刻粗结构和蚀刻精细结构的组合来制造。精细结构可以是配置用于允许器件100的微流控组件102中的受控毛细吸力的结构。精细结构可包括微柱270和/或其它微结构。粗结构可以是用于存储更大体积的流体的结构(例如用于储存试剂的试剂存储102b)或渗吸条102i。使用硅而不是更常见的诸如玻璃或聚合物的微流控材料是个优点,因为硅的非高的各向异性蚀刻导致精细结构具有特别高的纵横比。该硅微柱270通常具有从1μm到20μm的横向尺寸,相对于20-50的纵横比。高的纵横比在具有高的表面对体积比方面是有利的,这是毛细流动必需的。高的纵横比精细结构,与粗结构的组合,允许在更紧凑的覆盖面积中实现相比于通过任何其它材料可获得的更复杂的毛细流控功能。更复杂的功能包括分隔(例如将细胞从分子分隔)、混合、阀控、热控反应……。此外,硅是具有相对于生化反应的实现而言明确的优点的插入材料。特别紧凑的完全集成的一次性器件的优点源自将硅在流控衬底和CMOS盖子两者上的先进的使用。减少的覆盖面积还导致整个器件的减少的费用。The fluidic substrate 101 can be fabricated using a combination of coarse and fine structures in a monolithic silicon substrate, through a combination of two hard masks, protection and deprotection of layers, etching of coarse structures and etching of fine structures. The fine structure may be a structure configured to allow controlled capillary suction in the microfluidic assembly 102 of the device 100 . Fine structures may include micropillars 270 and/or other microstructures. The coarse structure may be a structure for storing a larger volume of fluid (such as reagent storage 102b for storing reagents) or a wicking strip 102i. Using silicon rather than more common microfluidic materials such as glass or polymers is an advantage because the non-highly anisotropic etching of silicon results in fine structures with particularly high aspect ratios. The silicon micropillars 270 typically have lateral dimensions from 1 μm to 20 μm, relative to an aspect ratio of 20-50. A high aspect ratio is advantageous in having a high surface to volume ratio, which is necessary for capillary flow. High aspect ratio fine structures, in combination with coarse structures, allow for more complex capillary fluidic functions in a more compact footprint than can be achieved by any other material. More complex functions include separation (e.g. separating cells from molecules), mixing, valve control, thermally controlled reactions... Furthermore, silicon is an intercalation material with definite advantages with respect to the realization of biochemical reactions. The advantage of a particularly compact fully integrated disposable device derives from the advanced use of silicon both on the fluidic substrate and on the CMOS lid. The reduced footprint also results in reduced cost of the overall device.
根据本发明的各实施例,提供流控衬底101包括提供硅衬底201(图11所示)并图案化硅衬底以在器件100中形成微流控组件102以及用于提供流体样本的装置,微流控组件102被配置来通过毛细力将流体样本传播通过器件100。According to various embodiments of the present invention, providing a fluidic substrate 101 includes providing a silicon substrate 201 (shown in FIG. 11 ) and patterning the silicon substrate to form a microfluidic component 102 in the device 100 and a device for providing a fluid sample. The device, microfluidic assembly 102 is configured to propagate a fluid sample through device 100 by capillary force.
根据本发明的各实施例,提供流控衬底101包括:提供硅衬底201,提供氧化物掩模202,通过使用第一可图案化掩模层210来图案化氧化物掩模202,以便在氧化物掩模202中创建精细结构203(图12);提供保护层204来保护经图案化的氧化物掩模;在第二可图案化掩模层211中图案化粗结构(图13);通过第二掩模层211在硅衬底201中蚀刻粗结构205(图14);移除第二掩模层211并生成氧化物206(图15)以保护粗结构205;移除保护层204(图16)并使用氧化物层206作为蚀刻掩模来蚀刻精细结构203(图16);移除氧化物206(图17)。所得到的结构是微流控衬底101,它可被用于根据本发明的第一方面的各实施例的器件中。According to various embodiments of the present invention, providing the fluidic substrate 101 includes: providing a silicon substrate 201, providing an oxide mask 202, and patterning the oxide mask 202 by using a first patternable mask layer 210, so that Fine structure 203 is created in oxide mask 202 (FIG. 12); protective layer 204 is provided to protect the patterned oxide mask; coarse structure is patterned in second patternable mask layer 211 (FIG. 13) ; Etch the coarse structure 205 in the silicon substrate 201 through the second mask layer 211 ( FIG. 14 ); remove the second mask layer 211 and generate an oxide 206 ( FIG. 15 ) to protect the coarse structure 205 ; remove the protective layer 204 (FIG. 16) and etch the fine structure 203 (FIG. 16) using the oxide layer 206 as an etch mask; remove the oxide 206 (FIG. 17). The resulting structure is a microfluidic substrate 101, which can be used in devices according to various embodiments of the first aspect of the invention.
图11-17示出了如何制造流控衬底101。根据本发明的各实施例,流控衬底101可通过执行以下来制造:11-17 illustrate how the fluidic substrate 101 is fabricated. According to various embodiments of the present invention, the fluidic substrate 101 can be manufactured by performing the following:
图案化精细结构203包括:提供硅衬底201,提供氧化物掩模202,图案化氧化物掩模202来在氧化物掩模202中创建精细结构203;Patterning the fine structure 203 includes: providing a silicon substrate 201, providing an oxide mask 202, and patterning the oxide mask 202 to create a fine structure 203 in the oxide mask 202;
提供保护层204来保护氧化物层202;providing a protective layer 204 to protect the oxide layer 202;
执行粗结构205的光刻;performing photolithography of the coarse structure 205;
执行粗结构205的蚀刻;performing etching of the coarse structure 205;
生成氧化物206用于保护粗结构205,其中精细结构203上的保护层204防止氧化物生成;Oxide generation 206 is used to protect the coarse structure 205, wherein the protective layer 204 on the fine structure 203 prevents oxide generation;
移除保护层204并蚀刻精细结构203;removing the protection layer 204 and etching the fine structure 203;
移除氧化物206。Oxide 206 is removed.
根据本发明的各实施例,保护层204可以是氮化物层。According to various embodiments of the present invention, the protection layer 204 may be a nitride layer.
根据本发明的各实施例,提供CMOS芯片103包括:提供硅衬底111,在硅衬底的顶上制造晶体管层112并在晶体管层的顶上提供内连层113。内连层可以包括至少一个金属层。使用标准CMOS处理技术来制造CMOS芯片103。According to various embodiments of the present invention, providing a CMOS chip 103 includes providing a silicon substrate 111, fabricating a transistor layer 112 on top of the silicon substrate and providing an interconnect layer 113 on top of the transistor layer. The interconnection layer may include at least one metal layer. CMOS chip 103 is fabricated using standard CMOS processing techniques.
此外,在标准CMOS处理流之上,附加的组件,诸如生物兼容电极、接合层、I/O垫或其它组件,可被部署或图案化到内连层113上。Additionally, additional components, such as biocompatible electrodes, bonding layers, I/O pads, or other components, may be deployed or patterned onto the interconnect layer 113 on top of standard CMOS processing flow.
根据本发明的各实施例,通孔109、118可被蚀刻贯通流控衬底101或CMOS芯片103以允许流体访问,从而将试剂施加到流控衬底101或CMOS芯片103。CMOS芯片103中的通孔可被制造,同时在CMOS芯片103中制造硅I/O内连116。流控衬底101中的通孔可通过先使得流控衬底变薄并接着蚀刻通孔来制造。According to various embodiments of the present invention, vias 109 , 118 may be etched through fluidic substrate 101 or CMOS chip 103 to allow fluidic access to apply reagents to fluidic substrate 101 or CMOS chip 103 . Vias in the CMOS chip 103 may be fabricated while silicon I/O interconnects 116 are fabricated in the CMOS chip 103 . The vias in the fluidic substrate 101 can be fabricated by first thinning the fluidic substrate and then etching the vias.
根据本发明的各实施例,CMOS芯片103可使用管芯到晶片或晶片晶片的接合处理来被接合到流控衬底101。According to various embodiments of the invention, the CMOS chip 103 may be bonded to the fluidic substrate 101 using a die-to-wafer or wafer-to-wafer bonding process.
为了访问CMOS芯片103的电信号,硅I/O触头116可被提供。根据本发明的各实施例,触头可通过使得CMOS芯片103的硅衬底111变薄并在硅衬底111上执行背侧蚀刻以获得对内连层113的金属层的访问来制造。In order to access the electrical signals of the CMOS chip 103, silicon I/O contacts 116 may be provided. According to embodiments of the invention, the contacts may be fabricated by thinning the silicon substrate 111 of the CMOS chip 103 and performing a backside etch on the silicon substrate 111 to gain access to the metal layers of the interconnect layer 113 .
可替换地,可提供在芯片103的第一侧包含I/O垫117的CMOS芯片103,其中CMOS芯片103的第一侧被接合到流控衬底101并且其中包含I/O垫117的CMOS芯片103的第一侧不覆盖流控衬底101。这例如在图22中示出。在CMOS芯片103被接合到流控衬底101时I/O垫117是可访问的。I/O垫117可被用作存储卡上的金属触头。Alternatively, a CMOS chip 103 containing I/O pads 117 on a first side of the chip 103 may be provided, wherein the first side of the CMOS chip 103 is bonded to the fluidic substrate 101 and contains a CMOS chip of the I/O pads 117 therein. The first side of the chip 103 does not cover the fluidic substrate 101 . This is shown, for example, in FIG. 22 . The I/O pads 117 are accessible when the CMOS chip 103 is bonded to the fluidic substrate 101 . I/O pads 117 may be used as metal contacts on the memory card.
根据本发明的各实施例,CMOS芯片103被接合到流控衬底101,同时将CMOS芯片103的第一侧上的至少一个电子组件与微流控组件102对齐。例如,CMOS芯片103的第一侧上的感测和致动电极与流控衬底101中的感测或致动侧对齐。这允许在流体样本存在于器件100中时,流体样本与存在于CMOS芯片103上的电子组件直接接触。According to various embodiments of the present invention, the CMOS chip 103 is bonded to the fluidic substrate 101 while at least one electronic component on the first side of the CMOS chip 103 is aligned with the microfluidic component 102 . For example, the sensing and actuation electrodes on the first side of the CMOS chip 103 are aligned with the sensing or actuation side in the fluidic substrate 101 . This allows the fluid sample to be in direct contact with the electronic components present on the CMOS chip 103 while the fluid sample is present in the device 100 .
根据本发明的各实施例,流控衬底101和盖子103的表面被部分或完全地涂敷以改变与流体样本的表面交互。表面可以是微流控组件102的内表面或CMOS芯片103的被接合到流控衬底101的表面。具体而言,CMOS芯片103的表面的那些部分与存在于微流控组件102中的流体样本接触。该涂层可以是亲水涂层。According to various embodiments of the invention, the surfaces of the fluidic substrate 101 and cover 103 are partially or fully coated to alter the surface interaction with the fluid sample. The surface may be the inner surface of the microfluidic component 102 or the surface of the CMOS chip 103 bonded to the fluidic substrate 101 . In particular, those parts of the surface of the CMOS chip 103 are in contact with the fluid sample present in the microfluidic assembly 102 . The coating can be a hydrophilic coating.
微流控组件102的表面和/或CMOS芯片103的接合到流控衬底101的那侧可被做成亲水,以改善表面的浸润特性,从而提升毛细流动。表面还可被处理以避免壁上的生物分子的吸收或黏附。可例如通过使用硅烷进行蒸汽涂敷来完成涂敷。根据本发明的各实施例,涂敷可在流控衬底101的特定部分上(例如在一些微流控通道中)或CMOS芯片103的特定部分上本地地执行。The surface of the microfluidic component 102 and/or the side of the CMOS chip 103 bonded to the fluidic substrate 101 can be made hydrophilic to improve the wetting properties of the surface, thereby enhancing capillary flow. The surface can also be treated to avoid absorption or adhesion of biomolecules on the wall. Coating can be accomplished, for example, by vapor coating with silanes. According to various embodiments of the present invention, the coating can be performed locally on a specific portion of the fluidic substrate 101 (for example in some microfluidic channels) or on a specific portion of the CMOS chip 103 .
根据本发明的各实施例,至少一个通孔通过首先蚀刻通孔且随后用聚合物的透明氧化物填充通孔来在流控衬底101中制造。According to various embodiments of the invention, at least one via is fabricated in the fluidic substrate 101 by first etching the via and then filling the via with a transparent oxide of a polymer.
本发明的各实施例改善了紧凑型一次性即时检验器件的功能、便携性和可制造性。本发明的特定实施例是带有用作血液或其它体液的进口的针或注入口完全集成硅器件。该器件以毛细流控系统为特征,用于流体样本经由毛细作用传播通过该器件。用作毛细流控系统的渗吸区的毛细泵可被用于在器件中传播流体样本。读取由毛细系统内生化感测反应产生的信号的传感器芯片可被用于向器件添加生物感测功能。此外,器件以用于向个人计算机、计算机单元、智能电话或其它任何无线通信设备发送数据的数据通信接口为特征。该器件可用作单独的系统,其中供电接口(诸如电池)向电子电路(诸如器件中的微芯片)供电。可替换地,该器件可经由器件的通信端口来被供电。Embodiments of the present invention improve the functionality, portability, and manufacturability of compact, single-use point-of-care testing devices. A particular embodiment of the invention is a fully integrated silicon device with a needle or infusion port used as an inlet for blood or other bodily fluids. The device features a capillary fluidic system for a fluid sample to propagate through the device via capillary action. A capillary pump serving as the imbibition region of the capillary fluidic system can be used to spread the fluid sample in the device. Sensor chips that read signals generated by biochemical sensing reactions within capillary systems can be used to add biosensing functionality to devices. Furthermore, the device features a data communication interface for sending data to a personal computer, computer unit, smartphone or any other wireless communication device. The device can be used as a stand-alone system where a power interface (such as a battery) supplies power to an electronic circuit (such as a microchip in the device). Alternatively, the device may be powered via the communication port of the device.
该器件还包括包含过滤、混合、阀控结构的流控操纵结构。可存在具有切除区的保护针并防止针在使用前折断的保护结构以防止在使用之前的污染。可存在诸如电可控流控操纵结构的结构(包括电浸润,电的和介电的原子间致导电性的操纵)以与器件中的流体样本进行交互。电可控加热器可存在,用于精确控制芯片的温度或用于热循环目的。The device also includes a fluidic control structure including filtering, mixing, and valve control structures. There may be a protective needle with a cut-out area and a protective structure that prevents the needle from snapping off before use to prevent contamination before use. Structures such as electrically controllable fluidic manipulation structures (including electrowetting, electrical and dielectric interatomic-induced conductivity manipulation) may exist to interact with fluid samples in the device. Electrically controllable heaters may be present for precise control of the temperature of the chip or for thermal cycling purposes.
本发明的另一个示例实施例包括简炼的、低费用的且紧凑的方式通过提供硅衬底来制造全部的上述功能,该硅衬底可包括光刻限定通道、微柱和通过深度反应离子蚀刻制造的各种形状的微结构,并被设计以用作毛细流控平台。硅衬底可具有制造针以及用于保护针的切除区的规定。硅衬底可具有不同的蚀刻深度以允许对体积和器件中的流体样本的毛细流动的精确的控制。硅衬底可被包括包含晶体管层的CMOS电子器件的CMOS衬底(=盖子103)来关闭。该电子器件可被设计来提供包括感测、致动、发信号、数据处理和数据通信的功能并因此代替即时检验仪器。一些电极可直接接触流体,这些电极可以流体兼容方式被保护。通过以防漏和生物兼容方式来接合硅衬底和CMOS衬底两者,硅衬底可被CMOS衬底关闭。这可通过晶片到晶片或管芯到晶片接合处理(诸如通过可图案化聚合物的接合)来完成。可与体液接触的内部硅衬底表面可以以通过对内部通道的涂敷的亲水层为特征。此外,通过晶片的孔可在硅衬底中被制造,以在器件被接合后供给试剂。对于每个分析,可供给不同试剂。作为一个优点,通过简单地通过最后生产步骤中的通孔添加试剂,相同器件变得针对不同疾病可配置。可使用CMOS兼容处理步骤来制造器件,其降低生产费用并允许器件被用作一次性器件。Another exemplary embodiment of the present invention includes manufacturing all of the above functions in a compact, low-cost and compact manner by providing a silicon substrate that may include photolithographically defined channels, micropillars, and pass-through depth reactive ions. Microstructures of various shapes were etched and designed to serve as capillary fluidic platforms. The silicon substrate may have provisions for fabricating the needles as well as cut-out areas for protecting the needles. The silicon substrate can have different etch depths to allow precise control over the volume and capillary flow of fluid samples in the device. The silicon substrate can be closed by a CMOS substrate (=lid 103 ) comprising CMOS electronics comprising transistor layers. The electronics can be designed to provide functions including sensing, actuation, signaling, data processing and data communication and thus replace point-of-care instruments. Some electrodes may be in direct contact with the fluid and these electrodes may be protected in a fluid compatible manner. By bonding both the silicon substrate and the CMOS substrate in a leak-proof and biocompatible manner, the silicon substrate can be closed by the CMOS substrate. This can be done through a wafer-to-wafer or die-to-wafer bonding process, such as bonding through a patternable polymer. The internal silicon substrate surface that may come into contact with bodily fluids may be characterized by a hydrophilic layer applied to the internal channels. Additionally, through-wafer holes can be fabricated in the silicon substrate to supply reagents after the devices are bonded. For each analysis, different reagents can be supplied. As an advantage, the same device becomes configurable for different diseases by simply adding reagents through through-holes in the final production step. The devices can be fabricated using CMOS compatible processing steps, which reduces production costs and allows the devices to be used as disposable devices.
此外,器件可包括允许与标准用户接口进行对接的组件。例如,将这样的器件用作无线通信设备中的插入到通常预见智能卡的插槽中的智能卡。例如,这样的器件连同紧凑且廉价电池以及低费用的通信设备(例如,蓝牙、NFC)一起使用。例如,这样的器件连同有线通信接口(例如USB)一起使用。Additionally, the device may include components that allow interfacing with standard user interfaces. For example, such a device is used as a smart card in a wireless communication device that is inserted into a slot where a smart card is usually foreseen. For example, such devices are used in conjunction with compact and cheap batteries and low-cost communication devices (eg, Bluetooth, NFC). For example, such devices are used with wired communication interfaces such as USB.
本发明的各实施例可被用来从体液中检测DNA/RNA并执行分析以检测:变异(血统、药物剂量、疾病趋势)、miRNA(癌症和其它疾病的标记)、病原体DNA/RNA(诸如HepC、HIV等的传染性疾病)、微生物DNA。此外,该器件可被用于检测蛋白质,诸如特定疾病(癌症、阿尔茨海默病、传染性疾病、心脏病、癌症等)的生物标记。此外,该器件可被用于检测小分子和代谢物以展示代谢信息(胆固醇)。此外,该器件可被用于检测来自外来体的生物标记。此外,该器件可被用于执行显微镜方法以执行血液计数、分析血液中存在的细胞(例如,循环肿瘤细胞)、标识传染性作用物(例如,疟疾)并检测血液紊乱(例如,镰状细胞血症)。Embodiments of the invention can be used to detect DNA/RNA from bodily fluids and perform analysis to detect: variants (ancestry, drug dosage, disease trends), miRNAs (markers of cancer and other diseases), pathogenic DNA/RNA (such as Infectious diseases such as HepC, HIV, etc.), microbial DNA. Furthermore, the device can be used to detect proteins, such as biomarkers of specific diseases (cancer, Alzheimer's disease, infectious diseases, heart disease, cancer, etc.). Furthermore, the device can be used to detect small molecules and metabolites to reveal metabolic information (cholesterol). Additionally, the device can be used to detect biomarkers from exosomes. Additionally, the device can be used to perform microscopy methods to perform blood counts, analyze cells present in blood (e.g., circulating tumor cells), identify infectious agents (e.g., malaria), and detect blood disorders (e.g., sickle cell blood disease).
Claims (19)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2014/060591 WO2014187926A1 (en) | 2013-05-22 | 2014-05-22 | Compact fluid analysis device and method to fabricate |
EPPCT/EP2014/060591 | 2014-05-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104668002A CN104668002A (en) | 2015-06-03 |
CN104668002B true CN104668002B (en) | 2016-03-16 |
Family
ID=53365532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410852370.8A Active CN104668002B (en) | 2014-05-22 | 2014-12-26 | Compact fluid analysis device and manufacture method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104668002B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111001451A (en) * | 2019-12-13 | 2020-04-14 | 深圳先进技术研究院 | Microfluidic chip and whole blood separation method based on microfluidic chip |
CN114210377B (en) * | 2021-12-21 | 2023-01-06 | 哈尔滨工业大学 | A Portable Multifunctional Visual Microfluidic Device Based on Electric Field Regulation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101253404A (en) * | 2004-04-13 | 2008-08-27 | 哈佛大学 | Manipulation and/or detection of biological samples and other objects |
CN101988897A (en) * | 2009-08-07 | 2011-03-23 | 中国科学院广州生物医药与健康研究院 | Liquid phase chip detector based on quantum dot |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110312689A1 (en) * | 2010-06-17 | 2011-12-22 | Geneasys Pty Ltd | Microfluidic device with sensor-triggered photodetection of fluorescent probe-target hybrid |
-
2014
- 2014-12-26 CN CN201410852370.8A patent/CN104668002B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101253404A (en) * | 2004-04-13 | 2008-08-27 | 哈佛大学 | Manipulation and/or detection of biological samples and other objects |
CN101988897A (en) * | 2009-08-07 | 2011-03-23 | 中国科学院广州生物医药与健康研究院 | Liquid phase chip detector based on quantum dot |
Also Published As
Publication number | Publication date |
---|---|
CN104668002A (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2912947C (en) | Compact fluid analysis device and method to fabricate | |
JP2016179198A5 (en) | ||
US20130315782A1 (en) | Biochip and fabrication thereof | |
EP3223944B1 (en) | A fluid analysis device | |
US11241687B2 (en) | Compact glass-based fluid analysis device and method to fabricate | |
JP2020533993A (en) | Diagnostic devices and systems | |
CN104668002B (en) | Compact fluid analysis device and manufacture method thereof | |
US11684915B2 (en) | Compact fluid analysis device and method to fabricate | |
JP6924263B2 (en) | Microfluidic chip with bead integration system | |
CN107001026A (en) | Microfluid sensing system | |
US11781954B2 (en) | Bridging liquid between microfluidic elements without closed channels | |
TWI872181B (en) | Analyte sensing system and cartridge thereof | |
TWI872492B (en) | Analyte sensing system and cartridge thereof | |
US20170102378A1 (en) | Industrial design of stand-alone assay system | |
Piacentini et al. | MEMS-based blood cell counting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1210736 Country of ref document: HK |