CN104665859B - Imaging system - Google Patents
Imaging system Download PDFInfo
- Publication number
- CN104665859B CN104665859B CN201310628197.9A CN201310628197A CN104665859B CN 104665859 B CN104665859 B CN 104665859B CN 201310628197 A CN201310628197 A CN 201310628197A CN 104665859 B CN104665859 B CN 104665859B
- Authority
- CN
- China
- Prior art keywords
- signal
- detector
- imaging system
- initial
- ray beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 25
- 230000004044 response Effects 0.000 claims abstract description 17
- 238000007689 inspection Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 238000012937 correction Methods 0.000 abstract description 29
- 238000001514 detection method Methods 0.000 description 39
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 4
- 238000013500 data storage Methods 0.000 description 4
- 108091008695 photoreceptors Proteins 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
Abstract
本发明涉及一种成像系统。该成像系统包括:X‑射线源,用来发射X‑射线束;检测器阵列,包括若干检测器,所述检测器产生响应斜入射至所述检测器的X‑射线束的初始信号,所述初始信号包括响应入射至相邻所述检测器的X‑射线束的视差串扰信号;及修正模块,连接于所述检测器阵列,且用来修正来自相邻检测器的视差串扰信号产生修正信号。该成像系统对视差串扰信号进行修正来提高图像的质量。
The present invention relates to an imaging system. The imaging system comprises: an X-ray source for emitting a beam of X-rays; a detector array comprising a plurality of detectors which generate an initial signal responsive to the beam of X-rays obliquely incident on the detectors, the The initial signal includes a parallax crosstalk signal in response to an X-ray beam incident to the adjacent detector; and a correction module, connected to the detector array, and used to correct the parallax crosstalk signal from the adjacent detector to generate a correction Signal. The imaging system corrects the parallax crosstalk signal to improve image quality.
Description
技术领域technical field
本发明有关一种成像系统,尤其涉及一种用于CT(Computed Tomography,计算机断层摄影)成像中的成像系统。The present invention relates to an imaging system, in particular to an imaging system used in CT (Computed Tomography, computerized tomography) imaging.
背景技术Background technique
CT扫描仪是通过从X-射线源投射扇形或锥形X-射线束工作的。X-射线源在围绕被成像对象诸如病人的多个视角位置发射X-射线,被成像对象在让X-射线束通过时使其衰减。衰减后的光束被一组检测器检测,检测器产生代表入射X-射线束强度的信号。处理该信号产生代表对象衰减系数沿着X-射线途径的线积分的数据。这些信号一般称为“投影数据”或者就称作“投影”。利用重构技术,诸如滤波反投影,可以从投影形成有用的图像。随后,可以使各图像相关联,以便形成所关心的区域的体积透视图。然后,在医学上,可以从重构的图像或再现的体积来定位或识别各种病状或其它所关心的结构。一般希望研制空间和时间分辨率高、图像质量好的CT扫描仪。X-射线束射入多个检测器会产生视差串扰信号,视差串扰是图像质量降低的一个重要原因,会产生图像噪声和伪影。CT scanners work by projecting a fan-shaped or cone-shaped beam of X-rays from an X-ray source. The X-ray source emits X-rays at multiple viewing positions around an imaged object, such as a patient, which attenuates the X-ray beam as it passes through it. The attenuated beam is detected by a set of detectors which generate a signal representative of the intensity of the incident X-ray beam. Processing the signal yields data representing the line integral of the object's attenuation coefficient along the x-ray path. These signals are generally referred to as "projection data" or simply "projections". Useful images can be formed from the projections using reconstruction techniques, such as filtered backprojection. The images can then be correlated to form a volumetric rendering of the region of interest. In medicine, various pathologies or other structures of interest can then be located or identified from the reconstructed image or reconstructed volume. It is generally desirable to develop a CT scanner with high spatial and temporal resolution and good image quality. When X-ray beams are injected into multiple detectors, parallax crosstalk signals will be generated. Parallax crosstalk is an important cause of image quality degradation, and image noise and artifacts will be generated.
因此,有必要提供一种成像系统来解决上面提及的技术问题。Therefore, it is necessary to provide an imaging system to solve the technical problems mentioned above.
发明内容Contents of the invention
本发明的一个方面在于提供一种成像系统。该成像系统包括:X-射线源,用来发射X-射线束;检测器阵列,包括若干检测器,所述检测器产生响应斜入射至所述检测器的X-射线束的初始信号,所述初始信号包括响应入射至相邻所述检测器的X-射线束的视差串扰信号;及修正模块,连接于所述检测器阵列,且用来修正来自相邻检测器的视差串扰信号产生修正信号。One aspect of the present invention is to provide an imaging system. The imaging system includes: an X-ray source for emitting an X-ray beam; a detector array including a plurality of detectors that generate an initial signal responsive to an X-ray beam obliquely incident on the detector, the The initial signal includes a parallax crosstalk signal in response to the X-ray beam incident to the adjacent detector; and a correction module, connected to the detector array, and used to correct the parallax crosstalk signal from the adjacent detector to generate a correction Signal.
本发明的成像系统对视差串扰信号进行修正来提高图像的质量。The imaging system of the present invention corrects the parallax crosstalk signal to improve image quality.
附图说明Description of drawings
通过结合附图对于本发明的实施方式进行描述,可以更好地理解本发明,在附图中:By describing the embodiments of the present invention in conjunction with the accompanying drawings, the present invention can be better understood. In the accompanying drawings:
图1所示为本发明成像系统的一个实施例的示意图;Fig. 1 shows the schematic diagram of an embodiment of the imaging system of the present invention;
图2所示为图1所示的成像系统的X-射线源和检测器阵列的一个实施例的示意图;Figure 2 is a schematic diagram of an embodiment of an X-ray source and detector array of the imaging system shown in Figure 1;
图3所示为一个实施例的检测阵列的平板模块的部分示意图;Fig. 3 is a partial schematic view of a panel module of a detection array of an embodiment;
图4所示为另一实施例的检测阵列的平板模块的部分示意图;FIG. 4 is a partial schematic view of a panel module of a detection array in another embodiment;
图5所示为再一实施例的检测阵列的平板模块的部分示意图。FIG. 5 is a partial schematic diagram of a flat panel module of a detection array according to another embodiment.
具体实施方式detailed description
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。Unless otherwise defined, the technical terms or scientific terms used herein shall have the usual meanings understood by those skilled in the art to which the present invention belongs. "First", "second" and similar words used in the patent application specification and claims of the present invention do not indicate any sequence, quantity or importance, but are only used to distinguish different components. Words such as "comprises" or "comprising" and similar terms mean that the elements or items listed before "comprising" or "comprising" include the elements or items listed after "comprising" or "comprising" and their equivalents, and do not exclude other component or object. Words such as "connected" or "connected" are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
图1所示为一个实施例的成像系统100的示意图。成像系统100包括X-射线源11、检测器阵列13和修正模块15。X-射线源11用来发射X-射线束17。检测器阵列13包括若干检测器131。检测器131产生响应斜入射至检测器131的X-射线束17的初始信号。初始信号包括响应入射至相邻检测器131的X-射线束17的视差串扰信号。修正模块15连接于检测器阵列13,且用来根据来自相邻检测器131的视差串扰信号产生修正信号。FIG. 1 is a schematic diagram of an imaging system 100 according to one embodiment. The imaging system 100 includes an X-ray source 11 , a detector array 13 and a correction module 15 . The X-ray source 11 is used to emit an X-ray beam 17 . The detector array 13 includes several detectors 131 . The detector 131 generates an initial signal in response to the X-ray beam 17 obliquely incident on the detector 131 . The initial signal comprises a parallax crosstalk signal in response to an X-ray beam 17 incident on an adjacent detector 131 . The correction module 15 is connected to the detector array 13 and used for generating a correction signal according to parallax crosstalk signals from adjacent detectors 131 .
成像系统100包括图像获取单元110、控制器120、处理器130、图像重建装置140、数据存储装置150、输入装置160和显示装置170。图像获取装置110包括构台20、X-射线源11、检测器阵列13、承载台22和收容腔24。检测器131包括至少一个闪烁体(未图示)和感光器(未图示)。在一些实施例中,感光器包括光电二极管或光电晶体管,但不限于此。X-射线源11和检测器阵列13相对设置于构台20,两者被收容腔24隔开。检测对象26放置于承载台22上,且与承载台22一起可位于收容腔24内。在一实施例中,X-射线源11和检测器阵列13相对于构台20和检测对象26旋转设置。在另一实施例中,X-射线源11和检测器阵列13保持不动。The imaging system 100 includes an image acquisition unit 110 , a controller 120 , a processor 130 , an image reconstruction device 140 , a data storage device 150 , an input device 160 and a display device 170 . The image acquisition device 110 includes a gantry 20 , an X-ray source 11 , a detector array 13 , a carrying platform 22 and a receiving cavity 24 . The detector 131 includes at least one scintillator (not shown) and a photoreceptor (not shown). In some embodiments, the photoreceptors include photodiodes or phototransistors, but are not limited thereto. The X-ray source 11 and the detector array 13 are disposed opposite to the gantry 20 , and the two are separated by a housing cavity 24 . The detection object 26 is placed on the carrying platform 22 and can be located in the receiving cavity 24 together with the carrying platform 22 . In one embodiment, the X-ray source 11 and detector array 13 are arranged in rotation relative to the gantry 20 and the test object 26 . In another embodiment, the X-ray source 11 and detector array 13 remain stationary.
X射线源11向检测器阵列13发射X-射线束17,X-射线束17穿过检测对象26。当X-射线束17穿过检测对象26,检测对象26使X-射线束17发生衰减。衰减的X-射线束17被检测器131的闪烁体吸收。闪烁体将吸收的X-射线转换为可见光。感光器将可见光转换为电信号,为响应X-射线束17的初始信号,其为代表X-射线束17强度的信号。每一感光器产生的电信号与闪烁体接收的衰减的X-射线束17的强度成正比。The X-ray source 11 emits an X-ray beam 17 towards the detector array 13 , the X-ray beam 17 passing through a test object 26 . When the X-ray beam 17 passes through the test object 26 , the test object 26 attenuates the X-ray beam 17 . The attenuated X-ray beam 17 is absorbed by the scintillator of the detector 131 . Scintillators convert absorbed X-rays into visible light. The photoreceptor converts visible light into an electrical signal, which is a signal representative of the intensity of the X-ray beam 17 in response to the initial signal of the X-ray beam 17 . The electrical signal generated by each photoreceptor is proportional to the intensity of the attenuated X-ray beam 17 received by the scintillator.
控制器120包括承载台控制单元30、X-射线控制单元32、构台控制单元34和修正模块15。承载台控制单元30控制承载台22的运动。X-射线控制单元32提供功率和时序信号给X-射线源11。构台控制单元34控制X-射线源11的旋转速度和角度方位。修正模块15接收检测器131产生的初始信号并对初始信号进行处理,产生投影信号提供给图像重建装置140。在一实施例中,修正模块15可以与承载台控制单元30、X-射线控制单元32和构台控制单元34整合在一起。在另一实施例中,修正模块15可以与检测器阵列13整合在一起。图像重建装置140和处理器130根据投影信号重建图像。重建的图像存储于数据存储装置150。在一实施例中,数据存储装置150也存储重建图像时的中间处理数据。输入装置160用来接收来自使用者的输入。显示装置170显示检测对象26的图像。The controller 120 includes a stage control unit 30 , an X-ray control unit 32 , a gantry control unit 34 and a correction module 15 . The stage control unit 30 controls the movement of the stage 22 . The X-ray control unit 32 provides power and timing signals to the X-ray source 11 . The gantry control unit 34 controls the rotational speed and angular orientation of the X-ray source 11 . The correction module 15 receives the initial signal generated by the detector 131 and processes the initial signal to generate a projection signal and provide it to the image reconstruction device 140 . In one embodiment, the correction module 15 can be integrated with the stage control unit 30 , the X-ray control unit 32 and the gantry control unit 34 . In another embodiment, the correction module 15 can be integrated with the detector array 13 . The image reconstruction device 140 and the processor 130 reconstruct an image according to the projection signal. The reconstructed images are stored in the data storage device 150 . In an embodiment, the data storage device 150 also stores intermediate processing data when reconstructing images. The input device 160 is used for receiving input from a user. The display device 170 displays an image of the detection object 26 .
在一些实施例中,数据存储装置150可以是磁存储介质或光存储介质,例如,硬盘、存储芯片等,但不限于此。在一实施例中,计算机程序或指令等可以通过输入装置160上传至处理器130。输入装置160可以包括按键、音频输入、视频输入等,但不限于此。在一些实施例中,显示装置170可包括液晶显示仪、阴极射线管显示仪、等离子显示仪等,但不限于此。In some embodiments, the data storage device 150 may be a magnetic storage medium or an optical storage medium, such as a hard disk, a memory chip, etc., but is not limited thereto. In one embodiment, computer programs or instructions can be uploaded to the processor 130 through the input device 160 . The input device 160 may include buttons, audio input, video input, etc., but is not limited thereto. In some embodiments, the display device 170 may include a liquid crystal display, a cathode ray tube display, a plasma display, etc., but is not limited thereto.
图2所示为一个实施例的X-射线源11和检测器阵列13的示意图。检测器阵列13包括一个或多个平板模块133。平板模块133为平板状,其包括多个检测器131。每一平板模块133的检测器131排列在同一平面内。在本实施例中,多个平板模块133的中心排列在一个弧形40上,构成近似的圆弧状的检测器阵列13。用多个分离的平板模块133组成检测器阵列13,平板状的平板模块133较易加工,且每个平板模块133包含的检测器131相对较少,从而其结构较小,且成品率较高。Figure 2 shows a schematic diagram of an X-ray source 11 and detector array 13 of one embodiment. Detector array 13 includes one or more panel modules 133 . The flat panel module 133 is flat and includes a plurality of detectors 131 . The detectors 131 of each flat panel module 133 are arranged in the same plane. In this embodiment, the centers of the plurality of flat panel modules 133 are arranged on an arc 40 to form an approximate arc-shaped detector array 13 . The detector array 13 is composed of a plurality of separated flat panel modules 133, and the flat panel modules 133 are easier to process, and each flat panel module 133 contains relatively few detectors 131, so that its structure is small and the yield is high .
图3所示为一个实施例的平板模块133的部分示意图。X-射线束17穿过检测对象(未图示)斜入射至平板模块133的检测器131。穿过检测对象的部分X-射线束171仅射入一个检测器131,且穿过检测对象的部分X-射线束173射入相邻两个检测器131的边缘。检测器131产生的响应X-射线束17的初始信号包括响应入射至相邻检测器131的X-射线束173的视差串扰(Parallax Cross Talk)信号和响应入射至一个检测器131的X-射线束171的真信号。射入检测器131的第一边缘135的X-射线束173仍射入相邻的检测器131的第二边缘137。相邻两个检测器131分别产生响应穿过检测对象后直接入射至第一边缘135和第二边缘137的X-射线束173的视差串扰信号,可称作一组视差串扰信号。X-射线束171射入检测器131的中心部分136,检测器131产生响应该X-射线束171的真信号。在一实施例中,通过仿真软件根据X-射线束17的入射方向和检测器131的排布来划分第一、第二边缘135、137和中心部分136。检测器131产生初始信号后,利用仿真软件分离视差串扰信号和真信号。图1所示的修正模块15用来根据来自相邻检测器131的视差串扰信号产生修正信号。修正模块15将对应于第一边缘135的视差串扰信号和对应于第二边缘137的视差串扰信号进行修正,来消除由于视差串扰信号引起的图像上的诸如环和黑点等的瑕疵。修正模块15对检测器131产生的真信号进行处理产生真投影信号。FIG. 3 shows a partial schematic view of the panel module 133 of one embodiment. The X-ray beam 17 obliquely enters the detector 131 of the flat panel module 133 through the detection object (not shown). The part of the X-ray beam 171 passing through the detection object only enters one detector 131 , and the part of the X-ray beam 173 passing through the detection object enters the edge of two adjacent detectors 131 . The initial signal generated by the detector 131 in response to the X-ray beam 17 includes a parallax crosstalk (Parallax Cross Talk) signal in response to an X-ray beam 173 incident to an adjacent detector 131 and a response to an X-ray beam incident to a detector 131. The true signal of beam 171. An X-ray beam 173 that strikes a first edge 135 of a detector 131 still strikes a second edge 137 of an adjacent detector 131 . Two adjacent detectors 131 respectively generate parallax crosstalk signals in response to the X-ray beams 173 directly incident on the first edge 135 and the second edge 137 after passing through the detection object, which can be referred to as a set of parallax crosstalk signals. An X-ray beam 171 is incident on the central portion 136 of the detector 131 and the detector 131 generates a true signal in response to the X-ray beam 171 . In one embodiment, the first and second edges 135 , 137 and the central part 136 are divided according to the incident direction of the X-ray beam 17 and the arrangement of the detector 131 by simulation software. After the detector 131 generates the initial signal, the parallax crosstalk signal and the real signal are separated by using simulation software. The correction module 15 shown in FIG. 1 is used to generate correction signals according to parallax crosstalk signals from adjacent detectors 131 . The correction module 15 corrects the parallax crosstalk signal corresponding to the first edge 135 and the parallax crosstalk signal corresponding to the second edge 137 to eliminate defects such as rings and black spots on the image caused by the parallax crosstalk signal. The correction module 15 processes the true signal generated by the detector 131 to generate a true projection signal.
在图3所示的实施例中,检测器阵列13包括若干沿X-射线束17的入射方向的检测通道139。在一实施例中,根据至少一个检测通道139的初始信号产生的投影信号包括真投影信号。在一实施例中,根据至少一个检测通道139的初始信号产生的投影信号包括真投影信号和修正信号。图3所示的实施例中,检测通道139包括相邻检测器131的一部分。检测通道139包括一个检测器131的第一边缘135和中心部分136,且包括相邻检测器131的第二边缘137。射入检测通道139内的X-射线束17包括射入一个检测器131的X-射线束171和射入相邻两个检测器131的X-射线束173。修正模块15对响应射入检测通道139内的X-射线束17的初始信号进行处理产生投影信号。每一检测通道139的初始信号包括一组视差串扰信号和真信号。修正模块15根据每一检测通道139的初始信号产生一组投影信号。本实施例中,每一组投影信号包括修正信号和真投影信号。一组视差串扰信号仅在一个检测通道139内。图1所示的图像重建装置140根据修正模块15产生的投影信号重建图像。In the embodiment shown in FIG. 3 , the detector array 13 includes several detection channels 139 along the incident direction of the X-ray beam 17 . In an embodiment, the projection signal generated according to the initial signal of at least one detection channel 139 includes a true projection signal. In one embodiment, the projection signal generated according to the initial signal of at least one detection channel 139 includes a true projection signal and a modified signal. In the embodiment shown in FIG. 3 , detection channel 139 includes a portion of adjacent detector 131 . The detection channel 139 includes a first edge 135 and a central portion 136 of one detector 131 and includes a second edge 137 of an adjacent detector 131 . The X-ray beam 17 entering the detection channel 139 includes the X-ray beam 171 entering one detector 131 and the X-ray beam 173 entering two adjacent detectors 131 . The correction module 15 processes the initial signal in response to the X-ray beam 17 entering the detection channel 139 to generate a projection signal. The initial signal of each detection channel 139 includes a set of parallax crosstalk signal and true signal. The correction module 15 generates a set of projection signals according to the initial signal of each detection channel 139 . In this embodiment, each group of projection signals includes a correction signal and a true projection signal. One set of parallax crosstalk signals is only in one detection channel 139 . The image reconstruction device 140 shown in FIG. 1 reconstructs an image according to the projection signal generated by the correction module 15 .
图4所示为另一实施例的平板模块133的部分示意图。图4所示的实施例类似于图3所示的实施例。图4所示的实施例与图3所示的实施例的主要区别在于:图4实施例中的检测通道141包括一个检测器131的中心部分136和位于中心部分136两侧的两组第一边缘135和第二边缘137,相邻的检测通道142仅包括一个检测器131的中心部分136,如此间隔排布。检测通道141的初始信号包括两组视差串扰信号和一真信号,相邻的检测通道142的初始信号仅包括真信号。FIG. 4 is a partial schematic diagram of a panel module 133 according to another embodiment. The embodiment shown in FIG. 4 is similar to the embodiment shown in FIG. 3 . The main difference between the embodiment shown in FIG. 4 and the embodiment shown in FIG. 3 is that the detection channel 141 in the embodiment in FIG. The edge 135 and the second edge 137, the adjacent detection channels 142 only include the central portion 136 of one detector 131, and are arranged at intervals in this way. The initial signal of the detection channel 141 includes two sets of parallax crosstalk signals and a true signal, and the initial signal of the adjacent detection channel 142 only includes the true signal.
图5所示为再一实施例的平板模块133的部分示意图。图5所示的实施例类似于图3和图4所示的实施例。相对于图3和图4所示的实施例,图5所示的实施例中,检测通道143包括一个检测器131的一部分。检测通道143仅包括检测器131的中心部分136,该检测通道143的初始信号仅包括真信号。相邻检测通道144包括检测器131的第一边缘135和相邻检测器131的第二边缘137,该检测通道144的初始信号仅包括一组视差串扰信号。如此间隔排布。修正信号和真投影信号分别根据不同的检测通道143、144的初始信号产生。每一组视差串扰信号与真信号分离开,分别被处理产生修正信号和真投影信号,修正信号和真投影信号作为不同组的投影信号。如此将视差串扰信号隔离开单独处理,间接提高采样率,从而提高图像的分辨率。FIG. 5 is a partial schematic diagram of a panel module 133 according to another embodiment. The embodiment shown in FIG. 5 is similar to the embodiment shown in FIGS. 3 and 4 . Compared with the embodiments shown in FIGS. 3 and 4 , in the embodiment shown in FIG. 5 , the detection channel 143 includes a part of a detector 131 . The detection channel 143 comprises only the central part 136 of the detector 131, the initial signal of which detection channel 143 comprises only true signals. The adjacent detection channel 144 includes the first edge 135 of the detector 131 and the second edge 137 of the adjacent detector 131 , and the initial signal of the detection channel 144 only includes a set of parallax crosstalk signals. spaced like this. The correction signal and the true projection signal are generated according to the initial signals of different detection channels 143 , 144 respectively. Each group of parallax crosstalk signals is separated from the real signal, and is respectively processed to generate a modified signal and a true projection signal, and the modified signal and the true projection signal are used as different groups of projection signals. In this way, the parallax crosstalk signal is isolated and processed separately, and the sampling rate is indirectly increased, thereby improving the resolution of the image.
在一实施例中,真投影信号prep'(n)的表达式如表达式(1)所示:In an embodiment, the expression of the true projection signal prep'(n) is shown in expression (1):
prep'(n)=Log[I'n(air)/I'n(λ)]prep'(n)=Log[I' n (air)/I' n (λ)]
=Log[In(air)/In(λ)]+Log[I'n(air)*In(λ)/(In(air)*I'n(λ))] (1)=Log[I n (air)/I n (λ)]+Log[I' n (air)*I n (λ)/(I n (air)*I' n (λ))] (1)
=prep(n)+f'(prep(n))=prep(n)+f'(prep(n))
其中,I'n(air)表示X-射线穿过空气直接射入检测器131时检测器131产生的真信号;I'n(λ)表示X-射线穿过检测对象后射入检测器131时检测器131产生的真信号;In(air)表示X-射线穿过空气直接射入检测器131时检测器131产生的初始信号;In(λ)表示X-射线穿过检测对象后射入检测器131时检测器131产生的初始信号;n代表第n个检测器131;λ表示检测对象的厚度;prep(n)表示根据检测器131产生的初始信号获得的初始投影信号,prep(n)=Log[In(air)/In(λ)];f'(prep(n))为真投影信号的修正函数,f'(prep(n))=Log[I'n(air)*In(λ)/(In(air)*I'n(λ)),I'n(air)和In(air)为常数,因此修正函数随着检测对象的厚度λ变化而变化。Wherein, I' n (air) represents the true signal that detector 131 produces when X-ray passes through air and directly injects detector 131; I' n (λ) represents X-ray and injects detector 131 after passing through detection object The real signal produced by the detector 131; In (air) represents the initial signal produced by the detector 131 when the X - ray passes through the air and directly shoots into the detector 131; In (λ) represents that the X - ray passes through the detection object The initial signal that detector 131 produces when incident detector 131; n represents the nth detector 131; λ represents the thickness of detection object; prep (n) represents the initial projection signal that obtains according to the initial signal that detector 131 produces, prep (n)=Log[I n (air)/I n (λ)]; f'(prep(n)) is the correction function of true projection signal, f'(prep(n))=Log[I' n ( air)*I n (λ)/(I n (air)*I' n (λ)), I' n (air) and I n (air) are constants, so the correction function changes with the thickness λ of the detection object And change.
类似于真投影信号prep'(n),修正信号prep"(n)的表达式如表达式(2)所示:Similar to the true projection signal prep'(n), the expression of the modified signal prep"(n) is shown in expression (2):
prep"(n)=Log[I"n(air)/I"n(λ)]prep"(n)=Log[I" n (air)/I" n (λ)]
=Log[In(air)/In(λ)]+Log[I"n(air)*In(λ)/(In(air)*I"n(λ))] (2)=Log[I n (air)/I n (λ)]+Log[I" n (air)*I n (λ)/(I n (air)*I" n (λ))] (2)
=prep(n)+f"(prep(n))=prep(n)+f"(prep(n))
其中,I"n(air)表示X-射线穿过空气直接射入检测器131时检测器131产生的视差串扰信号;I"n(λ)表示X-射线穿过检测对象后射入检测器131时检测器131产生的视差信号;f"(prep(n))为修正信号的修正函数,f"(prep(n))=Log[I"n(air)*In(λ)/(In(air)*I"n(λ)),I"n(air)为常数,修正函数随着检测对象的厚度λ变化而变化。Wherein, I " n (air) represents the parallax crosstalk signal that detector 131 produces when X-ray passes through air and directly injects detector 131; I " n (λ) represents that X-ray enters detector after passing through detection object The parallax signal that detector 131 produces at 131; f " (prep (n)) is the modification function of correction signal, f " (prep (n))=Log[I" n (air)*I n (λ)/( I n (air)*I" n (λ)), I" n (air) is a constant, and the correction function changes with the thickness λ of the detection object.
真投影信号prep'(n)和修正信号prep"(n)分别在初始投影信号prep(n)的基础上进行修正获得,且修正函数均与检测对象的厚度λ有关。在一实施例中,通过实验仿真获得检测对象的不同厚度对应的修正函数的值,实际检测中可以通过查表快速获得相应的修正函数的值。在仿真实验中,可以用水膜模拟检测对象,但不限于水膜。根据实际应用可以对上述真投影信号prep'(n)和修正信号prep"(n)做进一步的处理,可以分别对两者的修正函数进行调整来适应实际的应用,以获得更准确的投影信号,从而可获得更清晰准确的图像。The true projection signal prep'(n) and the corrected signal prep"(n) are respectively corrected and obtained on the basis of the initial projection signal prep(n), and the correction functions are related to the thickness λ of the detection object. In one embodiment, Obtain the value of the correction function corresponding to the different thicknesses of the detection object by experimental simulation, and can quickly obtain the value of the corresponding correction function by looking up the table in actual detection.In the simulation experiment, the detection object can be simulated by water film, but not limited to water film. According to the actual application, the above real projection signal prep'(n) and the correction signal prep"(n) can be further processed, and the correction functions of the two can be adjusted respectively to adapt to the actual application, so as to obtain a more accurate projection signal , so that a clearer and more accurate image can be obtained.
虽然结合特定的实施方式对本发明进行了说明,但本领域的技术人员可以理解,对本发明可以作出许多修改和变型。因此,要认识到,权利要求书的意图在于涵盖在本发明真正构思和范围内的所有这些修改和变型。Although the present invention has been described in conjunction with specific embodiments, those skilled in the art will appreciate that many modifications and variations can be made to the present invention. It is, therefore, to be realized that the intent of the appended claims is to cover all such modifications and variations as are within the true spirit and scope of the invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310628197.9A CN104665859B (en) | 2013-11-29 | 2013-11-29 | Imaging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310628197.9A CN104665859B (en) | 2013-11-29 | 2013-11-29 | Imaging system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104665859A CN104665859A (en) | 2015-06-03 |
CN104665859B true CN104665859B (en) | 2017-12-15 |
Family
ID=53301830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310628197.9A Active CN104665859B (en) | 2013-11-29 | 2013-11-29 | Imaging system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104665859B (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19714689A1 (en) * | 1997-04-09 | 1998-10-15 | Siemens Ag | X-ray detector |
WO2002086416A2 (en) * | 2001-04-25 | 2002-10-31 | Amnis Corporation | Method and apparatus for correcting crosstalk and spatial resolution for multichannel imaging |
JP2004024659A (en) * | 2002-06-27 | 2004-01-29 | Hitachi Medical Corp | X-ray ct apparatus |
JP4261864B2 (en) * | 2002-10-07 | 2009-04-30 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Data correction method and X-ray CT apparatus |
JP4041040B2 (en) * | 2003-09-08 | 2008-01-30 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Radiation tomography equipment |
JP3978193B2 (en) * | 2004-03-15 | 2007-09-19 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Crosstalk correction method and X-ray CT apparatus |
JP2006068338A (en) * | 2004-09-03 | 2006-03-16 | Ge Medical Systems Global Technology Co Llc | Radiographic equipment |
-
2013
- 2013-11-29 CN CN201310628197.9A patent/CN104665859B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104665859A (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6109973B2 (en) | X-ray CT system | |
JP4790863B2 (en) | Detector having partially transparent scintillator substrate, inspection apparatus, and manufacturing method thereof | |
US7103138B2 (en) | Sampling in volumetric computed tomography | |
US20130016805A1 (en) | Method and system for acquiring sparse channel data and for image processing utilizing iterative reconstruction algorithms | |
CN101040781B (en) | X-ray attenuation correction method, image generating apparatus, x-ray ct apparatus, and image generating method | |
CN110891489B (en) | Reference detector element combined with anti-scatter collimator | |
JP6345486B2 (en) | Photon counting X-ray computed tomography apparatus and medical image reconstruction program | |
US8290233B2 (en) | X-ray computed tomography apparatus and image processing method | |
US20080226020A1 (en) | Direct Measuring and Correction of Scatter For Ct | |
JP2011503535A (en) | Indirect radiation detector | |
CN103919608B (en) | Spacer from spiral reconstruction | |
JP6513431B2 (en) | X-ray CT apparatus and control method thereof | |
FR2914175A1 (en) | IMAGE ACQUISITION AND PROCESSING CHAIN FOR DOUBLE-ENERGY RADIOGRAPHY USING PORTABLE FLAT PANEL SENSOR | |
US20190378248A1 (en) | Distance measuring apparatus, vibration measuring apparatus, and industrial computed tomography apparatus | |
JP2016531293A (en) | PET system with spacing in crystal or detector unit | |
JP2008531107A (en) | Computer tomography apparatus, method for inspecting an object of interest, computer-readable medium and program element | |
US20150178957A1 (en) | Iterative reconstruction for spectral ct based upon combined data of full views of intensity data and sparse views of spectral data | |
JP2008012319A (en) | Method and system for reducing artifact in tomosynthesis/imaging/system | |
CN102727234B (en) | Produce to check the method for the view data of object, process device and x-ray system | |
JP2007252898A (en) | Image display and x-ray ct scanner | |
CN110051378B (en) | CT imaging method, CT data acquisition method, system, equipment and storage medium | |
US9508142B2 (en) | X-ray CT apparatus and X-ray CT image-generating method | |
CN104706371B (en) | Imaging method and imaging system | |
CN1913831A (en) | Laminographic device and method | |
US11241212B2 (en) | Medical apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250227 Address after: Wisconsin Patentee after: Ge precision medical Co.,Ltd. Country or region after: U.S.A. Address before: New York, United States Patentee before: General Electric Co. Country or region before: U.S.A. |
|
TR01 | Transfer of patent right |