CN104661008A - Processing method and device for improving colorful image quality under condition of low-light level - Google Patents
Processing method and device for improving colorful image quality under condition of low-light level Download PDFInfo
- Publication number
- CN104661008A CN104661008A CN201310578337.6A CN201310578337A CN104661008A CN 104661008 A CN104661008 A CN 104661008A CN 201310578337 A CN201310578337 A CN 201310578337A CN 104661008 A CN104661008 A CN 104661008A
- Authority
- CN
- China
- Prior art keywords
- image
- brightness
- color
- target
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 15
- 238000005286 illumination Methods 0.000 claims abstract description 25
- 238000007499 fusion processing Methods 0.000 claims abstract description 20
- 230000003595 spectral effect Effects 0.000 claims abstract description 14
- 230000005540 biological transmission Effects 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims description 24
- 238000012937 correction Methods 0.000 claims description 8
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 6
- 230000003287 optical effect Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Landscapes
- Color Television Image Signal Generators (AREA)
Abstract
本发明公开了一种低照度下彩色图像质量提升的处理方法和装置,所述方法包括:周期性地切换部署在图像传感器前的红外滤光片以及全透光谱滤光片,并实时采集相应的红外滤波图像以及全透光图像;获取所述红外滤波图像的图像色彩信息,以及获取所述全透光图像的图像亮度信息;对所述图像亮度信息以及图像色彩信息进行数据融合处理,输出彩色图像。本发明通过周期性地切换部署在图像传感器前的红外滤光片以及全透光谱滤光片,并通过依次采集的图像分别获取低照度条件下图像的亮度信息和色彩信息,然后结合两者在低照度条件下的特点合成新的彩色图像,可以减少低照度条件下图像的噪声,同时提升图像的亮度,从而在低照度环境下获取质量较好的彩色图像。
The invention discloses a processing method and device for improving the quality of color images under low illumination. The method includes: periodically switching the infrared filter and the full-transmission spectral filter arranged in front of the image sensor, and collecting corresponding images in real time. The infrared filter image and the full light transmission image; obtain the image color information of the infrared filter image, and obtain the image brightness information of the full light transmission image; perform data fusion processing on the image brightness information and image color information, and output color image. The present invention periodically switches the infrared filter and the full-transmission spectral filter deployed in front of the image sensor, and obtains the brightness information and color information of the image under low-light conditions through sequentially collected images, and then combines the two in the Features under low-light conditions Synthesize a new color image, which can reduce the noise of the image under low-light conditions and increase the brightness of the image at the same time, so as to obtain better-quality color images under low-light conditions.
Description
技术领域technical field
本发明涉及图像处理技术领域,具体而言,涉及一种低照度下彩色图像质量提升的处理方法和装置。The present invention relates to the technical field of image processing, in particular to a processing method and device for improving the quality of color images under low illumination.
背景技术Background technique
数码摄像机一般包含:光学镜头、图像传感器、图像处理芯片、图像传输模块和图像显示模块,其中,光学镜头控制进数码入摄像机的光线,图像传感器再将光信号转换为电信号,针对这些电信号再利用图像处理芯片进行加工处理,最后通过图像传输模块将最终得到的信号传输到图像显示模块上显示出来。A digital camera generally includes: an optical lens, an image sensor, an image processing chip, an image transmission module, and an image display module. Among them, the optical lens controls the light entering the digital camera, and the image sensor converts the optical signal into an electrical signal. Then the image processing chip is used for processing, and finally the finally obtained signal is transmitted to the image display module through the image transmission module for display.
随着监控摄像机设备的广泛应用,人们对于低照度条件下得到的图像质量要求也越来越高。然而在自然环境中,存在着各种波长的光线,而通常人眼能识别的光线波长范围在320nm-760nm之间,即可见光,而其它波长范围在320nm-760nm之外的光线人眼就无法见到,比如红外光和紫外线等。但是摄像机的图像传感器CCD(Charge-coupled Device,电荷耦合元件图像传感器)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体图像传感器)可以接收绝大部分波长的光线,这样会导致其在图像数据采集的过程中加入除可见光之外的其它多种光线,因此,在实际应用当中,数码摄像机所还原出的图像与人眼所观察到的实际场景在色彩上可能会存在偏差,例如,当图像传感器能够接收红外光时,则其输出图像的颜色会偏红。With the wide application of surveillance camera equipment, people have higher and higher requirements for image quality obtained under low-light conditions. However, in the natural environment, there are various wavelengths of light, and the wavelength range of light that can be recognized by the human eye is generally between 320nm-760nm, that is, visible light, while other light rays with a wavelength range of 320nm-760nm cannot be recognized by the human eye. See, such as infrared light and ultraviolet light. But the camera's image sensor CCD (Charge-coupled Device, charge-coupled device image sensor) or CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor image sensor) can receive most of the wavelengths of light, which will cause it to be in the image data In addition to visible light, other kinds of light are added to the collection process. Therefore, in practical applications, there may be deviations in color between the image restored by the digital camera and the actual scene observed by the human eye. For example, when the image When a sensor is capable of receiving infrared light, its output image will be reddish in color.
为了解决这一色偏问题,现有技术提出的解决方案是在图像传感器前增加一滤光片,以滤除相应的波段光线,例如增加一红外滤光片来过滤红外波段,从而还原出能够被人眼所认同的“真实色彩”。但是,本发明的发明人发现,红外滤光片的引入会降低入光量,尤其在低照度环境下,不仅会导致输出的图像亮度偏低,而且输出图像的噪声也会急剧增加。目前一般的做法是:在低照度环境下移开红外滤光片,并采用全透光谱滤光片以增加入光量,但是对于该技术方案,由于其采用全透光谱滤光片,以致加入了红外光等其它波段的不可见光,使得图像传感器不能显示出正常的彩色图像,其最终只能输出黑白图像。In order to solve this color shift problem, the solution proposed in the prior art is to add a filter in front of the image sensor to filter out the corresponding waveband light, for example, add an infrared filter to filter the infrared waveband, so as to restore the The "true color" recognized by the human eye. However, the inventors of the present invention have found that the introduction of infrared filters will reduce the amount of incident light, especially in low-light environments, which will not only lead to low brightness of the output image, but also sharply increase the noise of the output image. The current general practice is to remove the infrared filter in a low-illumination environment and use a fully transparent spectral filter to increase the amount of light incident. However, for this technical solution, due to the use of a fully transparent spectral filter, the Invisible light in other bands such as infrared light makes the image sensor unable to display normal color images, and it can only output black and white images in the end.
发明内容Contents of the invention
为了解决现有技术中摄像机在低照度条件下输出的彩色图像存在亮度低、噪声大的缺点,或通过全透光谱滤光片仅能获取黑白图像的问题,本发明实施例的目的在于提供一种低照度下彩色图像质量提升的处理方法和装置。In order to solve the problem of low brightness and high noise in the color image output by the camera under low-illuminance conditions in the prior art, or the problem that only black and white images can be obtained through a fully transparent spectral filter, the purpose of the embodiments of the present invention is to provide a A processing method and device for improving the quality of color images under low illumination.
为了达到本发明的目的,本发明实施例采用以下技术方案实现:In order to achieve the purpose of the present invention, the embodiment of the present invention adopts the following technical solutions to realize:
一种低照度下彩色图像质量提升的处理方法,包括:A processing method for improving the quality of color images under low illumination, comprising:
A、周期性地切换部署在图像传感器前的红外滤光片以及全透光谱滤光片,并实时采集相应的红外滤波图像以及全透光图像;A. Periodically switch the infrared filter and the fully transparent spectral filter deployed in front of the image sensor, and collect the corresponding infrared filter image and fully transparent image in real time;
B、获取所述红外滤波图像的图像色彩信息,以及获取所述全透光图像的图像亮度信息;B. Obtain image color information of the infrared filter image, and obtain image brightness information of the fully transparent image;
C、对所述图像亮度信息以及图像色彩信息进行数据融合处理,输出彩色图像。C. Perform data fusion processing on the image brightness information and image color information to output a color image.
优选地,获取所述红外滤波图像的图像色彩信息的步骤包括:Preferably, the step of acquiring image color information of the infrared filtered image includes:
B10、将所述红外滤波图像转换为YCbCr格式的图像数据,其中,所述Y指红外滤波图像的亮度分量,Cb指红外滤波图像的蓝色色度分量,Cr指红外滤波图像的红色色度分量;B10, converting the infrared filter image into image data in YCbCr format, wherein, the Y refers to the brightness component of the infrared filter image, Cb refers to the blue chroma component of the infrared filter image, and Cr refers to the red chroma component of the infrared filter image ;
B11、获取所述YCbCr格式图像数据的蓝色色度分量Cb以及红色色度分量Cr,并将其作为图像色彩信息。B11. Obtain the blue chrominance component Cb and the red chrominance component Cr of the YCbCr format image data, and use them as image color information.
优选地,获取所述全透光图像的图像亮度信息的步骤包括:Preferably, the step of acquiring image brightness information of the fully transparent image includes:
B20、采用如下数学式得到该全透光图像的亮度平均值Yavg:B20, using the following mathematical formula to obtain the brightness average value Y avg of the fully light-transmitting image:
Yavg=Ysum/n;Y avg = Y sum /n;
其中,Ysum为全透光图像所有像素点的亮度值之和,n为全透光图像的像素点个数;Among them, Y sum is the sum of the brightness values of all pixels in the fully transparent image, and n is the number of pixels in the fully transparent image;
B21、判断所述亮度平均值Yavg是否在预设的目标亮度范围[Ytarget-Ythd,Ytarget+Ythd]内,其中,所述Ytarget为预设目标亮度值,所述Ythd为预设波动误差值,如果是,则转步骤B24,否则,执行下一步;B21. Judging whether the brightness average value Y avg is within a preset target brightness range [Y target -Y thd , Y target +Y thd ], wherein the Y target is a preset target brightness value, and the Y thd is the preset fluctuation error value, if yes, go to step B24, otherwise, go to the next step;
B22、采用如下数学式,并根据当前亮度平均值Yavg与目标亮度值Ytarget的差值设置调节步长fstep:B22. Use the following mathematical formula, and set the adjustment step size f step according to the difference between the current brightness average value Y avg and the target brightness value Y target :
B23、根据所述调节步长fstep控制快门曝光时间、图像传感器增益,以及光圈变化率,以实现输出的全透光图像亮度的调节,之后转步骤B20;B23. Control the exposure time of the shutter, the gain of the image sensor, and the rate of change of the aperture according to the adjustment step f step , so as to realize the adjustment of the brightness of the output full light transmission image, and then go to step B20;
B24、获取所述亮度平均值Yavg在预设的目标亮度范围[Ytarget-Ythd,Ytarget+Ythd]内的全透光图像的图像亮度信息。B24. Obtain image brightness information of a fully light-transmitting image in which the brightness average value Y avg is within a preset target brightness range [Y target -Y thd , Y target +Y thd ].
优选地,对所述图像亮度信息以及图像色彩信息进行数据融合处理,输出彩色图像的步骤包括:Preferably, data fusion processing is performed on the image brightness information and image color information, and the step of outputting a color image includes:
C1、将所述图像亮度信息确认为亮度分量Y,并结合图像色彩信息中包含的蓝色色度分量Cb以及红色色度分量Cr合成一YCbCr格式的彩色图像。C1. Identify the brightness information of the image as the brightness component Y, and combine the blue chrominance component Cb and the red chrominance component Cr included in the image color information to synthesize a color image in YCbCr format.
优选地,在执行所有步骤之后,所述低照度下彩色图像质量提升的处理方法还包括:Preferably, after performing all the steps, the processing method for improving the quality of color images under low illumination further includes:
D、对所述彩色图像进行白平衡校正处理。D. Performing white balance correction processing on the color image.
一种低照度下彩色图像质量提升的处理装置,包括:A processing device for improving the quality of color images under low illumination, comprising:
滤光片切换模块,用于周期性地切换部署在图像传感器前的红外滤光片以及全透光谱滤光片;The filter switching module is used to periodically switch the infrared filter and the full-transmission spectral filter deployed in front of the image sensor;
图像获取模块,用于在滤光片切换模块周期性地切换红外滤光片以及全透光谱滤光片时,实时地采集相应的红外滤波图像以及全透光图像;The image acquisition module is used to collect corresponding infrared filter images and full light transmission images in real time when the filter switching module periodically switches the infrared filter and the full light transmission filter;
色彩信息获取模块,用于获取所述红外滤波图像的图像色彩信息;A color information acquisition module, configured to acquire image color information of the infrared filtered image;
亮度信息获取模块,用于获取所述全透光图像的图像亮度信息;A brightness information acquisition module, configured to acquire image brightness information of the fully transparent image;
数据融合处理模块,用于对所述图像亮度信息以及图像色彩信息进行数据融合处理,输出彩色图像。The data fusion processing module is used to perform data fusion processing on the image brightness information and image color information, and output a color image.
优选地,所述色彩信息获取模块包括:Preferably, the color information acquisition module includes:
第一转换单元、用于将所述红外滤波图像转换为YCbCr格式的图像数据,其中,所述Y指红外滤波图像的亮度分量,Cb指红外滤波图像的蓝色色度分量,Cr指红外滤波图像的红色色度分量;The first conversion unit is used to convert the infrared filtered image into image data in YCbCr format, wherein the Y refers to the brightness component of the infrared filtered image, Cb refers to the blue chrominance component of the infrared filtered image, and Cr refers to the infrared filtered image. The red chroma component of
色彩信息获取单元、用于获取所述YCbCr格式图像数据的蓝色色度分量Cb以及红色色度分量Cr,并将其作为图像色彩信息。The color information acquiring unit is configured to acquire the blue chrominance component Cb and the red chrominance component Cr of the YCbCr format image data, and use them as image color information.
优选地,所述亮度信息获取模块包括:Preferably, the brightness information acquisition module includes:
第一计算单元,用于采用如下数学式得到该全透光图像的亮度平均值Yavg:The first calculation unit is used to obtain the average brightness Y avg of the fully transparent image by using the following mathematical formula:
Yavg=Ysum/n;Y avg = Y sum /n;
其中,Ysum为全透光图像所有像素点的亮度值之和,n为全透光图像的像素点个数;Among them, Y sum is the sum of the brightness values of all pixels in the fully transparent image, and n is the number of pixels in the fully transparent image;
判断单元,用于判断所述亮度平均值Yavg是否在预设的目标亮度范围[Ytarget-Ythd,Ytarget+Ythd]内,其中,所述Ytarget为预设目标亮度值,所述Ythd为预设波动误差值,如果是,则向亮度信息获取单元发送色彩信息获取命令,否则控制第二计算单元进行调节步长fstep的计算;A judging unit, configured to judge whether the brightness average value Y avg is within a preset target brightness range [Y target -Y thd , Y target +Y thd ], wherein the Y target is a preset target brightness value, and the Said Ythd is a preset fluctuation error value, if yes, then send a color information acquisition command to the brightness information acquisition unit, otherwise control the second calculation unit to calculate the adjustment step size f step ;
第二计算单元,用于采用如下数学式,并根据当前亮度平均值Yavg与目标亮度值Ytarget的差值设置调节步长fstep:The second calculation unit is used to adopt the following mathematical formula, and set the adjustment step size f step according to the difference between the current brightness average value Y avg and the target brightness value Y target :
调节单元,用于根据所述调节步长fstep控制快门曝光时间、图像传感器增益,以及光圈变化率,以实现输出的全透光图像亮度的调节,之后控制第一计算单元进行亮度平均值Yavg的计算;The adjustment unit is used to control the exposure time of the shutter, the gain of the image sensor, and the rate of change of the aperture according to the adjustment step f step , so as to realize the adjustment of the brightness of the output fully light-transmitting image, and then control the first calculation unit to perform the brightness average value Y Calculation of avg ;
亮度信息获取单元,用于依据所述色彩信息获取命令获取所述亮度平均值Yavg在预设的目标亮度范围[Ytarget-Ythd,Ytarget+Ythd]内的全透光图像的图像亮度信息。A brightness information acquisition unit, configured to acquire an image of a fully transparent image in which the brightness average value Y avg is within a preset target brightness range [Y target -Y thd , Y target +Y thd ] according to the color information acquisition command Brightness information.
优选地,所述数据融合处理模块包括:Preferably, the data fusion processing module includes:
接收单元,用于获取所述图像亮度信息以及图像色彩信息;a receiving unit, configured to obtain the image brightness information and image color information;
融合处理单元,用于将所述图像亮度信息确认为亮度分量Y,并结合图像色彩信息中包含的蓝色色度分量Cb以及红色色度分量Cr合成一YCbCr格式的彩色图像。The fusion processing unit is used to confirm the brightness information of the image as the brightness component Y, and combine the blue chrominance component Cb and the red chrominance component Cr contained in the image color information to synthesize a color image in YCbCr format.
优选地,所述低照度下彩色图像质量提升的处理装置还包括:Preferably, the processing device for improving the quality of color images under low illumination further includes:
白平衡处理模块,用于对所述彩色图像进行白平衡校正处理。The white balance processing module is used to perform white balance correction processing on the color image.
本发明通过周期性地切换部署在图像传感器前的红外滤光片以及全透光谱滤光片,并通过依次采集的图像分别获取低照度条件下图像的亮度信息和色彩信息,然后结合两者在低照度条件下的特点合成新的彩色图像,可以减少低照度条件下图像的噪声,同时提升图像的亮度,从而在低照度环境下获取质量较好的彩色图像。The present invention periodically switches the infrared filter and the full-transmission spectral filter deployed in front of the image sensor, and obtains the brightness information and color information of the image under low-light conditions through sequentially collected images, and then combines the two in the Features under low-light conditions Synthesize a new color image, which can reduce the noise of the image under low-light conditions and increase the brightness of the image at the same time, so as to obtain better-quality color images under low-light conditions.
附图说明Description of drawings
图1为本发明实施例提供的低照度下彩色图像质量提升的处理方法的流程示意图;FIG. 1 is a schematic flowchart of a processing method for improving the quality of a color image under low illumination provided by an embodiment of the present invention;
图2为本发明实施例提供的低照度下彩色图像质量提升的处理装置的结构示意图。FIG. 2 is a schematic structural diagram of a processing device for improving the quality of a color image under low illumination provided by an embodiment of the present invention.
本发明目的的实现、功能特点及优异效果,下面将结合具体实施例以及附图做进一步的说明。The realization of the purpose of the present invention, functional characteristics and excellent effects will be further described below in conjunction with specific embodiments and accompanying drawings.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明所述技术方案作进一步的详细描述,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The technical scheme of the present invention will be described in further detail below in conjunction with the accompanying drawings and specific examples, so that those skilled in the art can better understand the present invention and implement it, but the examples given are not intended to limit the present invention .
针对现有技术中数码摄像机在低照度环境下获取的图像效果存在色偏或无法获得彩色图像问题,为了在低照度环境下,获得质量较高的彩色图像,本发明的目的在于提供一种低照度下彩色图像质量提升的处理方法,本发明的核心思想是:通过周期性地对部署在图像传感器前的红外滤光片以及全透光谱滤光片进行轮番切换,并根据在不同滤光片下分别得到的黑白图像和彩色图像得到相应的亮度信息和色彩信息,再结合前后两次采集的亮度信息和色彩信息得到合成的彩色图像,在某些实施例中,可以再对该输出的彩色图像进行白平衡校正处理,通过上述方法得到的彩色图像亮度较高、噪声较少,可以满足实际监控环境的使用要求。Aiming at the problem of color shift or inability to obtain color images in the images obtained by digital cameras in low-illuminance environments in the prior art, in order to obtain high-quality color images in low-illuminance environments, the purpose of the present invention is to provide a low-light The processing method for improving the quality of color images under illumination, the core idea of the present invention is: by periodically switching the infrared filter and the full-transmission spectral filter deployed in front of the image sensor in turn, and according to the different filters The corresponding brightness information and color information are obtained from the black-and-white image and the color image obtained respectively, and then combined with the brightness information and color information collected twice before and after to obtain a composite color image. In some embodiments, the output color image can be further The image is processed by white balance correction, and the color image obtained by the above method has higher brightness and less noise, which can meet the requirements of the actual monitoring environment.
具体地,如图1所示,本发明实施例提供的一种低照度下彩色图像质量提升的处理方法,包括如下步骤:Specifically, as shown in FIG. 1 , a processing method for improving the quality of a color image under low illumination provided by an embodiment of the present invention includes the following steps:
S10、周期性地切换部署在图像传感器前的红外滤光片以及全透光谱滤光片,并实时采集相应的红外滤波图像以及全透光图像;S10. Periodically switch the infrared filter and the fully transparent spectral filter deployed in front of the image sensor, and collect corresponding infrared filter images and fully transparent images in real time;
S20、获取所述红外滤波图像的图像色彩信息,以及获取所述全透光图像的图像亮度信息;S20. Acquire image color information of the infrared filter image, and acquire image brightness information of the fully transparent image;
S30、对所述图像亮度信息以及图像色彩信息进行数据融合处理,输出彩色图像。S30. Perform data fusion processing on the image brightness information and image color information, and output a color image.
本实施例中,在所述步骤S10中,所述周期可以由本领域的技术人员根据实际应用需求而进行设置,例如所述周期可以被设置为:1秒钟对红外滤光片以及全透光谱滤光片进行25次切换,以此采集25组红外滤波图像以及全透光图像。In this embodiment, in the step S10, the period can be set by those skilled in the art according to actual application requirements, for example, the period can be set as: 1 second for the infrared filter and the full transmission spectrum The filter is switched 25 times to collect 25 sets of infrared filter images and fully transparent images.
在本发明实施例中,通过分别对前后采集的一组红外滤波图像以及全透光图像进行处理,提取其相应的色彩信息以及亮度信息之后,再进行数据融合处理,得到最终输出的彩色图像,具体请参考下文所述。In the embodiment of the present invention, the final output color image is obtained by processing a group of infrared filter images and fully transparent images collected before and after, extracting the corresponding color information and brightness information, and then performing data fusion processing. For details, please refer to the following.
本实施例中,获取所述红外滤波图像的图像色彩信息的步骤包括:In this embodiment, the step of obtaining the image color information of the infrared filtered image includes:
S201、将所述红外滤波图像转换为YCbCr格式的图像数据;S201. Convert the infrared filter image into image data in YCbCr format;
对于RGB格式的红外滤波图像转换,可以按照以下转换关系将其转换为YCbCr格式的图像数据:For infrared filter image conversion in RGB format, it can be converted into image data in YCbCr format according to the following conversion relationship:
Y=0.299R+0.587G+0.114B;Y=0.299R+0.587G+0.114B;
Cb=0.564(B-Y);Cb=0.564(B-Y);
Cr=0.713(R-Y)。Cr=0.713(R-Y).
其中,所述Y指红外滤波图像的亮度分量,Cb指红外滤波图像的蓝色色度分量,Cr指红外滤波图像的红色色度分量,R、G、B分别是指RGB格式的红外滤波图像的红色R分量强度值、绿色G分量强度值、蓝色B分量强度值。Wherein, said Y refers to the luminance component of the infrared filter image, Cb refers to the blue chroma component of the infrared filter image, Cr refers to the red chroma component of the infrared filter image, and R, G, and B refer to the infrared filter image of RGB format respectively. Red R component intensity value, green G component intensity value, blue B component intensity value.
S202、获取所述YCbCr格式图像数据的蓝色色度分量Cb以及红色色度分量Cr,并将其作为图像色彩信息。S202. Obtain the blue chrominance component Cb and the red chrominance component Cr of the YCbCr format image data, and use them as image color information.
本实施例中,获取所述全透光图像的图像亮度信息的步骤包括:In this embodiment, the step of acquiring image brightness information of the fully transparent image includes:
S203、采用如下数学式得到该全透光图像的亮度平均值Yavg:S203. Obtain the average brightness Y avg of the fully light-transmitting image by using the following mathematical formula:
Yavg=Ysum/n;Y avg = Y sum /n;
其中,Ysum为全透光图像所有像素点的亮度值之和,n为全透光图像的像素点个数;Among them, Y sum is the sum of the brightness values of all pixels in the fully transparent image, and n is the number of pixels in the fully transparent image;
S204、判断所述亮度平均值Yavg是否在预设的目标亮度范围[Ytarget-Ythd,Ytarget+Ythd]内,其中,所述Ytarget为预设目标亮度值,所述Ythd为预设波动误差值,如果是,则转步骤S207,否则,执行下一步;S204. Determine whether the brightness average value Y avg is within a preset target brightness range [Y target -Y thd , Y target +Y thd ], wherein the Y target is a preset target brightness value, and the Y thd is the preset fluctuation error value, if yes, go to step S207, otherwise, go to the next step;
S205、采用如下数学式,并根据当前亮度平均值Yavg与目标亮度值Ytarget的差值设置调节步长fstep,其中,该调节步长fstep主要用于调节快门曝光时间、图像传感器增益,以及光圈变化率,从而使得图像的亮度调节的精度和速度都控制在合适的范围内:S205. Adopt the following mathematical formula, and set the adjustment step size f step according to the difference between the current brightness average value Y avg and the target brightness value Y target , wherein the adjustment step size f step is mainly used to adjust the shutter exposure time and image sensor gain , and the aperture change rate, so that the accuracy and speed of image brightness adjustment are controlled within an appropriate range:
S206、根据所述调节步长fstep控制快门曝光时间、图像传感器增益,以及光圈变化率,以实现输出的全透光图像亮度的调节,比如,对于快门曝光时间exposuretime可依照下列公式进行调整:S206. Control the shutter exposure time, image sensor gain, and aperture change rate according to the adjustment step f step , so as to realize the adjustment of the brightness of the output fully light-transmitting image. For example, the shutter exposure time exposure time can be adjusted according to the following formula :
exposuretime=(1+fstep)exposuretime;Exposure time =(1+f step )exposure time ;
之后,转步骤S203;After that, go to step S203;
S207、获取所述亮度平均值Yavg在预设的目标亮度范围[Ytarget-Ythd,Ytarget+Ythd]内的全透光图像的图像亮度信息。S207. Obtain image brightness information of a fully transparent image in which the brightness average value Y avg is within a preset target brightness range [Y target −Y thd , Y target +Y thd ].
本实施例中,对所述图像亮度信息以及图像色彩信息进行数据融合处理,输出彩色图像的步骤包括:In this embodiment, data fusion processing is performed on the image brightness information and image color information, and the step of outputting a color image includes:
S301、将所述图像亮度信息确认为亮度分量Y,并结合图像色彩信息中包含的蓝色色度分量Cb以及红色色度分量Cr合成一YCbCr格式的彩色图像。S301. Confirm the brightness information of the image as the brightness component Y, and combine the blue chrominance component Cb and the red chrominance component Cr included in the image color information to synthesize a color image in YCbCr format.
本实施例中,继续参考图1所示,在执行所有步骤之后,所述低照度下彩色图像质量提升的处理方法还包括:In this embodiment, continuing to refer to FIG. 1, after all the steps are performed, the processing method for improving the quality of color images under low illumination further includes:
S40、对所述彩色图像进行白平衡校正处理。S40. Perform white balance correction processing on the color image.
本实施例中,对于所述白平衡校正处理,可以通过在不同低照度场景下进行测试,获取不同色温下在理想白平衡下的数据,然后再依据这些数据进行统计并分析得到R/G、B/G在不同色温条件下的分布情况(例如以分布曲线的形式呈现)。In this embodiment, for the white balance correction process, it is possible to obtain data under ideal white balance under different color temperatures by performing tests in different low-light scenes, and then perform statistics and analysis based on these data to obtain R/G, The distribution of B/G under different color temperature conditions (for example, presented in the form of a distribution curve).
例如,将彩色图像划分为多个小块图像,计算出每个小块图像中各像素的R/G,B/G的值,然后在已知的R/G、B/G分布曲线中找出对应的区域,其中,将小块图像最多的区域作为参考区域,从而得到R、G、B通道对应的色彩增益值Rgain、Bgain、Ggain,然后采用下式,并根据这些增益值校正彩色图像的R、G、B通道,得到校正后的R、G、B通道值Rnew、Gnew以及Bnew。For example, divide a color image into multiple small block images, calculate the R/G and B/G values of each pixel in each small block image, and then find The corresponding area is obtained, among which, the area with the most small block images is used as the reference area to obtain the color gain values Rgain, Bgain, and Ggain corresponding to the R, G, and B channels, and then use the following formula to correct the color image according to these gain values R, G, and B channels of the corrected R, G, and B channels to obtain R new , G new , and B new .
Rnew=Rgain×R;R new = R gain × R;
Gnew=Ggain×G;G new =G gain ×G;
Bnew=Bgain×B。B new = B gain × B.
如图2所示,本发明实施例提供的一种低照度下彩色图像质量提升的处理装置,包括:As shown in Figure 2, a processing device for improving the quality of color images under low illumination provided by an embodiment of the present invention includes:
滤光片切换模块10,用于周期性地切换部署在图像传感器前的红外滤光片以及全透光谱滤光片;The filter switching module 10 is used to periodically switch the infrared filter and the fully transparent spectral filter deployed in front of the image sensor;
图像获取模块20,用于在滤光片切换模块周期性地切换红外滤光片以及全透光谱滤光片时,实时地采集相应的红外滤波图像以及全透光图像;The image acquisition module 20 is used to collect corresponding infrared filtered images and fully transparent images in real time when the filter switching module periodically switches the infrared filter and the fully transparent spectral filter;
色彩信息获取模块30,用于获取所述红外滤波图像的图像色彩信息;A color information acquisition module 30, configured to acquire image color information of the infrared filtered image;
亮度信息获取模块40,用于获取所述全透光图像的图像亮度信息;A brightness information acquisition module 40, configured to acquire image brightness information of the fully transparent image;
数据融合处理模块50,用于对所述图像亮度信息以及图像色彩信息进行数据融合处理,输出彩色图像。The data fusion processing module 50 is configured to perform data fusion processing on the image brightness information and image color information, and output a color image.
本实施例中,所述色彩信息获取模块30包括:In this embodiment, the color information acquisition module 30 includes:
第一转换单元301、用于将所述红外滤波图像转换为YCbCr格式的图像数据,其中,所述Y指红外滤波图像的亮度分量,Cb指红外滤波图像的蓝色色度分量,Cr指红外滤波图像的红色色度分量;The first conversion unit 301 is used to convert the infrared filtered image into image data in YCbCr format, wherein the Y refers to the brightness component of the infrared filtered image, Cb refers to the blue chrominance component of the infrared filtered image, and Cr refers to the infrared filtered image the red chrominance component of the image;
色彩信息获取单元302、用于获取所述YCbCr格式图像数据的蓝色色度分量Cb以及红色色度分量Cr,并将其作为图像色彩信息。The color information acquiring unit 302 is configured to acquire the blue chrominance component Cb and the red chrominance component Cr of the YCbCr format image data, and use them as image color information.
本实施例中,所述亮度信息获取模块40包括:In this embodiment, the brightness information acquisition module 40 includes:
第一计算单元401,用于采用如下数学式得到该全透光图像的亮度平均值Yavg:The first calculation unit 401 is used to obtain the average brightness Y avg of the fully transparent image by using the following mathematical formula:
Yavg=Ysum/n;Y avg = Y sum /n;
其中,Ysum为全透光图像所有像素点的亮度值之和,n为全透光图像的像素点个数;Among them, Y sum is the sum of the brightness values of all pixels in the fully transparent image, and n is the number of pixels in the fully transparent image;
判断单元402,用于判断所述亮度平均值Yavg是否在预设的目标亮度范围[Ytarget-Ythd,Ytarget+Ythd]内,其中,所述Ytarget为预设目标亮度值,所述Ythd为预设波动误差值,如果是,则向亮度信息获取单元405发送色彩信息获取命令,否则控制第二计算单元403进行调节步长fstep的计算;A judging unit 402, configured to judge whether the luminance average value Y avg is within a preset target luminance range [Y target -Y thd , Y target +Y thd ], wherein the Y target is a preset target luminance value, The Y thd is a preset fluctuation error value, if yes, send a color information acquisition command to the brightness information acquisition unit 405, otherwise control the second calculation unit 403 to calculate the adjustment step size f step ;
第二计算单元403,用于采用如下数学式,并根据当前亮度平均值Yavg与目标亮度值Ytarget的差值设置调节步长fstep:The second calculation unit 403 is used to adopt the following mathematical formula, and set the adjustment step size f step according to the difference between the current brightness average value Y avg and the target brightness value Y target :
调节单元404,用于根据所述调节步长fstep控制快门曝光时间、图像传感器增益,以及光圈变化率,以实现输出的全透光图像亮度的调节,之后控制第一计算单元401进行亮度平均值Yavg的计算;The adjustment unit 404 is used to control the shutter exposure time, the image sensor gain, and the aperture change rate according to the adjustment step f step , so as to realize the adjustment of the brightness of the output fully light-transmitting image, and then control the first calculation unit 401 to perform brightness average Calculation of the value Y avg ;
亮度信息获取单元405,用于依据所述色彩信息获取命令获取所述亮度平均值Yavg在预设的目标亮度范围[Ytarget-Ythd,Ytarget+Ythd]内的全透光图像的图像亮度信息。Brightness information acquiring unit 405, configured to acquire the total light-transmitting image whose brightness average value Y avg is within a preset target brightness range [Y target -Y thd , Y target +Y thd ] according to the color information acquisition command Image brightness information.
本实施例中,所述数据融合处理模块50包括:In this embodiment, the data fusion processing module 50 includes:
接收单元501,用于获取所述图像亮度信息以及图像色彩信息;a receiving unit 501, configured to acquire the image brightness information and image color information;
融合处理单元502,用于将所述图像亮度信息确认为亮度分量Y,并结合图像色彩信息中包含的蓝色色度分量Cb以及红色色度分量Cr合成一YCbCr格式的彩色图像。The fusion processing unit 502 is configured to confirm the image brightness information as a brightness component Y, and combine the blue chrominance component Cb and the red chrominance component Cr contained in the image color information to synthesize a color image in YCbCr format.
本实施例中,所述低照度下彩色图像质量提升的处理装置还包括:In this embodiment, the processing device for improving the quality of color images under low illumination further includes:
白平衡处理模块60,用于对所述彩色图像进行白平衡校正处理。The white balance processing module 60 is configured to perform white balance correction processing on the color image.
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the patent scope of the present invention. Any equivalent structure or equivalent process transformation made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related All technical fields are equally included in the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310578337.6A CN104661008B (en) | 2013-11-18 | 2013-11-18 | The treating method and apparatus that color image quality is lifted under low light conditions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310578337.6A CN104661008B (en) | 2013-11-18 | 2013-11-18 | The treating method and apparatus that color image quality is lifted under low light conditions |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104661008A true CN104661008A (en) | 2015-05-27 |
CN104661008B CN104661008B (en) | 2017-10-31 |
Family
ID=53251638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310578337.6A Expired - Fee Related CN104661008B (en) | 2013-11-18 | 2013-11-18 | The treating method and apparatus that color image quality is lifted under low light conditions |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104661008B (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105120247A (en) * | 2015-09-10 | 2015-12-02 | 联想(北京)有限公司 | White-balance adjusting method and electronic device |
CN105554483A (en) * | 2015-07-16 | 2016-05-04 | 宇龙计算机通信科技(深圳)有限公司 | Image processing method and terminal |
CN105578006A (en) * | 2015-12-18 | 2016-05-11 | 广东欧珀移动通信有限公司 | Imaging method, imaging device and electronic device |
CN105611125A (en) * | 2015-12-18 | 2016-05-25 | 广东欧珀移动通信有限公司 | Imaging method, imaging device and electronic device |
CN105809634A (en) * | 2015-08-27 | 2016-07-27 | 维沃移动通信有限公司 | Photograph generating method and mobile terminal |
CN105827990A (en) * | 2016-01-22 | 2016-08-03 | 维沃移动通信有限公司 | Automatic exposure method and mobile terminal |
CN106454109A (en) * | 2016-11-09 | 2017-02-22 | 深圳天珑无线科技有限公司 | Photo forming method based on single-camera module, and single-camera module |
CN106488201A (en) * | 2015-08-28 | 2017-03-08 | 杭州海康威视数字技术股份有限公司 | A kind of processing method of picture signal and system |
CN106878690A (en) * | 2015-12-14 | 2017-06-20 | 比亚迪股份有限公司 | Imaging method of image sensor, imaging device and electronic equipment |
CN107566747A (en) * | 2017-09-22 | 2018-01-09 | 浙江大华技术股份有限公司 | A kind of brightness of image Enhancement Method and device |
CN107835351A (en) * | 2017-12-14 | 2018-03-23 | 信利光电股份有限公司 | A kind of dual camera module and terminal |
CN108184076A (en) * | 2018-02-01 | 2018-06-19 | 天津天地伟业信息系统集成有限公司 | A kind of brightness calculation algorithm based on Color Statistical |
CN108989783A (en) * | 2018-08-22 | 2018-12-11 | Oppo广东移动通信有限公司 | The control method of electronic device and electronic device |
CN109040534A (en) * | 2017-06-12 | 2018-12-18 | 杭州海康威视数字技术股份有限公司 | A kind of image processing method and image capture device |
WO2019119842A1 (en) * | 2017-12-20 | 2019-06-27 | 杭州海康威视数字技术股份有限公司 | Image fusion method and apparatus, electronic device, and computer readable storage medium |
CN110381244A (en) * | 2019-08-26 | 2019-10-25 | 浙江大华技术股份有限公司 | The method of picture quality is promoted under a kind of camera and low-light (level) |
CN110401787A (en) * | 2019-07-22 | 2019-11-01 | 珠海格力电器股份有限公司 | Image acquisition method and device and readable medium |
CN110463197A (en) * | 2017-03-26 | 2019-11-15 | 苹果公司 | Enhance the spatial resolution in stereoscopic camera imaging system |
WO2020093693A1 (en) * | 2018-11-05 | 2020-05-14 | 华为技术有限公司 | Camera and electronic device |
WO2020119505A1 (en) * | 2018-12-12 | 2020-06-18 | 杭州海康威视数字技术股份有限公司 | Image processing method and system |
WO2020168465A1 (en) * | 2019-02-19 | 2020-08-27 | 华为技术有限公司 | Image processing device and method |
WO2020238807A1 (en) * | 2019-05-31 | 2020-12-03 | 杭州海康威视数字技术股份有限公司 | Image fusion device and image fusion method |
CN112188046A (en) * | 2019-07-05 | 2021-01-05 | 杭州海康威视数字技术股份有限公司 | Imaging assembly of camera, camera and filtering control method thereof |
CN112217962A (en) * | 2019-07-10 | 2021-01-12 | 杭州海康威视数字技术股份有限公司 | Camera and image generation method |
WO2021073141A1 (en) * | 2019-10-18 | 2021-04-22 | 华为技术有限公司 | Image processing method, image processing device, and photographing device |
WO2021159768A1 (en) * | 2020-02-11 | 2021-08-19 | 华为技术有限公司 | Image acquisition apparatus and image acquisition method |
WO2021208926A1 (en) * | 2020-04-14 | 2021-10-21 | 华为技术有限公司 | Photographing device and method |
CN114143421A (en) * | 2020-09-04 | 2022-03-04 | 聚晶半导体股份有限公司 | Dual-sensor camera system and its calibration method |
CN114612571A (en) * | 2022-03-07 | 2022-06-10 | 重庆紫光华山智安科技有限公司 | White balance calibration parameter generation method, image correction method, white balance calibration parameter generation system, image correction device and medium |
US11743599B2 (en) | 2019-04-18 | 2023-08-29 | Zhejiang Dahua Technology Co., Ltd. | Systems and methods for automatically adjusting aperture of a camera |
CN117676120A (en) * | 2023-12-14 | 2024-03-08 | 深圳市眼科医院(深圳市眼病防治研究所) | A kind of intelligent vision-aid glasses used to expand the field of vision of patients with visual field defects |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060272382A1 (en) * | 2005-06-07 | 2006-12-07 | Pitz Jeanne K | Systems and methods of self test for a slowly varying sensor |
CN102055898A (en) * | 2009-11-09 | 2011-05-11 | 中美强科技股份有限公司 | Surveillance cameras that can set color or black and white images according to specific time periods |
CN102148929A (en) * | 2010-02-10 | 2011-08-10 | 索尼公司 | Imaging device, imaging device control method and program |
CN102244791A (en) * | 2010-05-12 | 2011-11-16 | 索尼公司 | Image processing apparatus, image processing method, and program |
CN202904187U (en) * | 2012-09-24 | 2013-04-24 | 湖南安保通智能科技有限公司 | Camera |
CN103281491A (en) * | 2013-05-30 | 2013-09-04 | 中国科学院长春光学精密机械与物理研究所 | Image fusion device based on DSP |
CN103327343A (en) * | 2013-05-30 | 2013-09-25 | 中国科学院长春光学精密机械与物理研究所 | Multispectral image display device |
-
2013
- 2013-11-18 CN CN201310578337.6A patent/CN104661008B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060272382A1 (en) * | 2005-06-07 | 2006-12-07 | Pitz Jeanne K | Systems and methods of self test for a slowly varying sensor |
CN102055898A (en) * | 2009-11-09 | 2011-05-11 | 中美强科技股份有限公司 | Surveillance cameras that can set color or black and white images according to specific time periods |
CN102148929A (en) * | 2010-02-10 | 2011-08-10 | 索尼公司 | Imaging device, imaging device control method and program |
CN102244791A (en) * | 2010-05-12 | 2011-11-16 | 索尼公司 | Image processing apparatus, image processing method, and program |
CN202904187U (en) * | 2012-09-24 | 2013-04-24 | 湖南安保通智能科技有限公司 | Camera |
CN103281491A (en) * | 2013-05-30 | 2013-09-04 | 中国科学院长春光学精密机械与物理研究所 | Image fusion device based on DSP |
CN103327343A (en) * | 2013-05-30 | 2013-09-25 | 中国科学院长春光学精密机械与物理研究所 | Multispectral image display device |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105554483A (en) * | 2015-07-16 | 2016-05-04 | 宇龙计算机通信科技(深圳)有限公司 | Image processing method and terminal |
CN105809634A (en) * | 2015-08-27 | 2016-07-27 | 维沃移动通信有限公司 | Photograph generating method and mobile terminal |
CN105809634B (en) * | 2015-08-27 | 2019-03-05 | 维沃移动通信有限公司 | A kind of generation method and mobile terminal of photo |
CN110830779A (en) * | 2015-08-28 | 2020-02-21 | 杭州海康威视数字技术股份有限公司 | Image signal processing method and system |
CN106488201B (en) * | 2015-08-28 | 2020-05-01 | 杭州海康威视数字技术股份有限公司 | An image signal processing method and system |
US10979654B2 (en) | 2015-08-28 | 2021-04-13 | Hangzhou Hikvision Digital Technology Co., Ltd. | Image signal processing method and system |
CN106488201A (en) * | 2015-08-28 | 2017-03-08 | 杭州海康威视数字技术股份有限公司 | A kind of processing method of picture signal and system |
WO2017036270A1 (en) * | 2015-08-28 | 2017-03-09 | 杭州海康威视数字技术股份有限公司 | Image signal processing method and system |
CN105120247B (en) * | 2015-09-10 | 2017-12-26 | 联想(北京)有限公司 | A kind of white balance adjustment method and electronic equipment |
CN105120247A (en) * | 2015-09-10 | 2015-12-02 | 联想(北京)有限公司 | White-balance adjusting method and electronic device |
CN106878690A (en) * | 2015-12-14 | 2017-06-20 | 比亚迪股份有限公司 | Imaging method of image sensor, imaging device and electronic equipment |
CN105611125A (en) * | 2015-12-18 | 2016-05-25 | 广东欧珀移动通信有限公司 | Imaging method, imaging device and electronic device |
CN105578006A (en) * | 2015-12-18 | 2016-05-11 | 广东欧珀移动通信有限公司 | Imaging method, imaging device and electronic device |
CN105827990B (en) * | 2016-01-22 | 2018-12-04 | 维沃移动通信有限公司 | A kind of automatic explosion method and mobile terminal |
CN105827990A (en) * | 2016-01-22 | 2016-08-03 | 维沃移动通信有限公司 | Automatic exposure method and mobile terminal |
CN106454109A (en) * | 2016-11-09 | 2017-02-22 | 深圳天珑无线科技有限公司 | Photo forming method based on single-camera module, and single-camera module |
CN110463197A (en) * | 2017-03-26 | 2019-11-15 | 苹果公司 | Enhance the spatial resolution in stereoscopic camera imaging system |
CN110463197B (en) * | 2017-03-26 | 2021-05-28 | 苹果公司 | Enhancing Spatial Resolution in Stereo Camera Imaging Systems |
CN109040534A (en) * | 2017-06-12 | 2018-12-18 | 杭州海康威视数字技术股份有限公司 | A kind of image processing method and image capture device |
CN107566747B (en) * | 2017-09-22 | 2020-02-14 | 浙江大华技术股份有限公司 | Image brightness enhancement method and device |
US11490031B2 (en) | 2017-09-22 | 2022-11-01 | Zhejiang Dahua Technology Co., Ltd. | Methods and systems for image capture |
CN107566747A (en) * | 2017-09-22 | 2018-01-09 | 浙江大华技术股份有限公司 | A kind of brightness of image Enhancement Method and device |
WO2019057170A1 (en) * | 2017-09-22 | 2019-03-28 | Zhejiang Dahua Technology Co., Ltd. | Methods and systems for image capture |
CN107835351B (en) * | 2017-12-14 | 2020-12-15 | 信利光电股份有限公司 | Two camera modules and terminal |
CN107835351A (en) * | 2017-12-14 | 2018-03-23 | 信利光电股份有限公司 | A kind of dual camera module and terminal |
WO2019119842A1 (en) * | 2017-12-20 | 2019-06-27 | 杭州海康威视数字技术股份有限公司 | Image fusion method and apparatus, electronic device, and computer readable storage medium |
CN108184076A (en) * | 2018-02-01 | 2018-06-19 | 天津天地伟业信息系统集成有限公司 | A kind of brightness calculation algorithm based on Color Statistical |
CN108184076B (en) * | 2018-02-01 | 2020-07-31 | 天津天地伟业信息系统集成有限公司 | Brightness calculation method based on color statistics |
US11516455B2 (en) | 2018-08-22 | 2022-11-29 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Electronic device and method for controlling the same |
CN108989783A (en) * | 2018-08-22 | 2018-12-11 | Oppo广东移动通信有限公司 | The control method of electronic device and electronic device |
WO2020093693A1 (en) * | 2018-11-05 | 2020-05-14 | 华为技术有限公司 | Camera and electronic device |
WO2020119505A1 (en) * | 2018-12-12 | 2020-06-18 | 杭州海康威视数字技术股份有限公司 | Image processing method and system |
WO2020168465A1 (en) * | 2019-02-19 | 2020-08-27 | 华为技术有限公司 | Image processing device and method |
US11743599B2 (en) | 2019-04-18 | 2023-08-29 | Zhejiang Dahua Technology Co., Ltd. | Systems and methods for automatically adjusting aperture of a camera |
WO2020238807A1 (en) * | 2019-05-31 | 2020-12-03 | 杭州海康威视数字技术股份有限公司 | Image fusion device and image fusion method |
US12190479B2 (en) | 2019-05-31 | 2025-01-07 | Hangzhou Hikvision Digital Technology Co., Ltd. | Apparatus for image fusion and method for image fusion |
CN112188046A (en) * | 2019-07-05 | 2021-01-05 | 杭州海康威视数字技术股份有限公司 | Imaging assembly of camera, camera and filtering control method thereof |
CN112188046B (en) * | 2019-07-05 | 2021-09-10 | 杭州海康威视数字技术股份有限公司 | Imaging assembly of camera, camera and filtering control method thereof |
CN112217962A (en) * | 2019-07-10 | 2021-01-12 | 杭州海康威视数字技术股份有限公司 | Camera and image generation method |
CN112217962B (en) * | 2019-07-10 | 2022-04-05 | 杭州海康威视数字技术股份有限公司 | Camera and image generation method |
CN110401787A (en) * | 2019-07-22 | 2019-11-01 | 珠海格力电器股份有限公司 | Image acquisition method and device and readable medium |
CN110401787B (en) * | 2019-07-22 | 2020-08-18 | 珠海格力电器股份有限公司 | Image acquisition method and device and readable medium |
CN110381244A (en) * | 2019-08-26 | 2019-10-25 | 浙江大华技术股份有限公司 | The method of picture quality is promoted under a kind of camera and low-light (level) |
WO2021073141A1 (en) * | 2019-10-18 | 2021-04-22 | 华为技术有限公司 | Image processing method, image processing device, and photographing device |
US12167183B2 (en) | 2019-10-18 | 2024-12-10 | Huawei Technologies Co., Ltd. | Image processing method, image processing apparatus, and photographing apparatus |
WO2021159768A1 (en) * | 2020-02-11 | 2021-08-19 | 华为技术有限公司 | Image acquisition apparatus and image acquisition method |
WO2021208926A1 (en) * | 2020-04-14 | 2021-10-21 | 华为技术有限公司 | Photographing device and method |
US12108161B2 (en) | 2020-04-14 | 2024-10-01 | Huawei Technologies Co., Ltd. | Photographing apparatus and method |
CN114143421A (en) * | 2020-09-04 | 2022-03-04 | 聚晶半导体股份有限公司 | Dual-sensor camera system and its calibration method |
CN114143421B (en) * | 2020-09-04 | 2024-04-05 | 聚晶半导体股份有限公司 | Dual-sensor camera system and calibration method thereof |
CN114612571A (en) * | 2022-03-07 | 2022-06-10 | 重庆紫光华山智安科技有限公司 | White balance calibration parameter generation method, image correction method, white balance calibration parameter generation system, image correction device and medium |
CN117676120A (en) * | 2023-12-14 | 2024-03-08 | 深圳市眼科医院(深圳市眼病防治研究所) | A kind of intelligent vision-aid glasses used to expand the field of vision of patients with visual field defects |
Also Published As
Publication number | Publication date |
---|---|
CN104661008B (en) | 2017-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104661008B (en) | The treating method and apparatus that color image quality is lifted under low light conditions | |
US11252345B2 (en) | Dual-spectrum camera system based on a single sensor and image processing method | |
CN108419061B (en) | Multispectral-based image fusion equipment and method and image sensor | |
US10070104B2 (en) | Imaging systems with clear filter pixels | |
CN108419062B (en) | Image fusion device and image fusion method | |
CN109951646A (en) | Image fusion method, apparatus, electronic device, and computer-readable storage medium | |
WO2020168465A1 (en) | Image processing device and method | |
US9060159B2 (en) | Image processing device and method, and imaging device | |
CN115239550A (en) | Image processing method, image processing apparatus, storage medium, and electronic device | |
CN115100085B (en) | Image color correction method, device, storage medium and electronic device | |
CN102231787A (en) | Image color correction method and device | |
JP2005303704A (en) | Image pickup device, camera and signal processing method | |
JP2005323141A (en) | Imaging camera, camera and method for processing signal | |
TWI617198B (en) | Imaging systems with clear filter pixels | |
TWI536765B (en) | Imaging systems with clear filter pixels | |
TW201602997A (en) | Color processing system and apparatus | |
HK1255655A1 (en) | Imaging systems with clear filter pixels | |
HK1222962B (en) | Imaging systems with clear filter pixels | |
HK1189731B (en) | Imaging systems with clear filter pixels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171031 |