CN104659395B - 一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法 - Google Patents
一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法 Download PDFInfo
- Publication number
- CN104659395B CN104659395B CN201310593705.4A CN201310593705A CN104659395B CN 104659395 B CN104659395 B CN 104659395B CN 201310593705 A CN201310593705 A CN 201310593705A CN 104659395 B CN104659395 B CN 104659395B
- Authority
- CN
- China
- Prior art keywords
- exchange membrane
- proton exchange
- organic
- inorganic composite
- composite proton
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 76
- 239000002131 composite material Substances 0.000 title claims abstract description 62
- 239000000446 fuel Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 229920000642 polymer Polymers 0.000 claims abstract description 45
- 238000003756 stirring Methods 0.000 claims abstract description 35
- 239000011964 heteropoly acid Substances 0.000 claims abstract description 28
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 22
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 21
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000003960 organic solvent Substances 0.000 claims abstract description 9
- 229920002492 poly(sulfone) Polymers 0.000 claims abstract description 7
- 239000002033 PVDF binder Substances 0.000 claims abstract description 6
- 229920001002 functional polymer Polymers 0.000 claims abstract description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 6
- 238000005266 casting Methods 0.000 claims abstract description 4
- 239000002904 solvent Substances 0.000 claims description 12
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 11
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 claims description 11
- 238000010345 tape casting Methods 0.000 claims description 7
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 claims description 6
- 229920000491 Polyphenylsulfone Polymers 0.000 claims description 4
- CGFYHILWFSGVJS-UHFFFAOYSA-N silicic acid;trioxotungsten Chemical compound O[Si](O)(O)O.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 CGFYHILWFSGVJS-UHFFFAOYSA-N 0.000 claims description 4
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 125000000623 heterocyclic group Chemical group 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims 2
- 238000006116 polymerization reaction Methods 0.000 claims 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 abstract description 21
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 abstract description 14
- 239000004695 Polyether sulfone Substances 0.000 abstract description 13
- 229920006393 polyether sulfone Polymers 0.000 abstract description 13
- 239000000126 substance Substances 0.000 abstract description 5
- 239000002253 acid Substances 0.000 abstract description 3
- 239000004020 conductor Substances 0.000 abstract description 2
- 238000004090 dissolution Methods 0.000 abstract description 2
- -1 polyethylene Polymers 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000004698 Polyethylene Substances 0.000 abstract 1
- 238000007766 curtain coating Methods 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 238000011031 large-scale manufacturing process Methods 0.000 abstract 1
- 229920000573 polyethylene Polymers 0.000 abstract 1
- 150000003457 sulfones Chemical class 0.000 abstract 1
- 238000001035 drying Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical group 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010054949 Metaplasia Diseases 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical group OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000015689 metaplastic ossification Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920002465 poly[5-(4-benzoylphenoxy)-2-hydroxybenzenesulfonic acid] polymer Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000005266 side chain polymer Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 230000010148 water-pollination Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Abstract
本发明公开了一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法,该质子交换膜由侧链带有N‑杂环的功能聚合物(如聚乙烯吡咯烷酮)、杂多酸及骨架聚合物(如聚偏氟乙烯、聚醚砜、聚砜、聚苯砜等)组成。该方法包括:将功能聚合物、骨架聚合物、杂多酸加入有机溶剂(如N,N‑二甲基甲酰胺、N,N‑二甲基乙酰胺、N‑甲基吡咯烷酮等)中,加热且搅拌至溶解完全,得到透明均一的质子交换膜溶液;采用溶液浇铸或者流延等方法得到有机‑无机复合质子交换膜。该有机‑无机复合质子交换膜为均相、透明、致密隔膜,具有优异的化学稳定性、热稳定性、机械性能和质子电导率,质子导体不易流失。其原料易得,价格低廉,制备工艺简单,适合规模化生产,可广泛应用于燃料电池、液流电池、铅酸电池以及水电解器中。
Description
技术领域
本发明涉及一种质子交换膜燃料电池用有机-无机复合质子交换膜及其制备方法,属于新材料技术及新能源技术领域。
背景技术
质子交换膜燃料电池(PEMFCs)是一种通过电化学反应将燃料和氧化剂中的化学能直接转化为电能的发电装置。PEMFCs由于具有功率密度大、能量转换效率高、电池结构紧凑、启动速度快、环境污染小、可应用领域广泛等众多优点而成为各类燃料电池中发展最快、技术最为成熟的一类燃料电池。
现有的广泛应用于质子交换膜燃料电池(≤80℃)的全氟磺酸质子交换膜(如美国杜邦公司生产的系列膜),其热稳定性、质子导电性能、机械性都很优异,但其成本非常高,并且由于甲醇渗透严重,不适合应用于直接醇类燃料电池。因此高性能、低价格的新型质子交换膜的研发收到人们的广泛关注。
杂多酸作为一种优良的质子导体(如磷钨酸常温下的电导率可以达到0.18S cm-1),已被广泛应用于燃料电池。例如其本身即可作为固体电解质使用,更多情况下是与膜基体材料比如Nafion,SPEEK(磺化聚醚醚酮),PVA(聚乙烯醇),无机复合基体P2O5–SiO2,微孔材料等掺杂共混,这样制备的有机或无机复合膜具备杂多酸和聚电解质双重性质,拥有较好的质子电导能力,并且膜的制备工艺简单。
然而,在目前的杂多酸掺杂型复合膜的中,由于杂多酸具有很好的水溶性,所以复合膜存在杂多酸溶解流失的问题,尤其在DMFC(直接甲醇燃料电池)环境下,更有非常充足的流动水,而杂多酸由于具有极强的亲水性,会逐渐流失,导致电导率下降,最终电池性能也会大幅衰减。
发明内容
针对上述问题,本发明的目的在于提供了一种新型的高性能有机-无机复合质子交换膜及其制备方法,所制备出的有机-无机复合质子交换膜为均相、透明、致密隔膜,具有优良的热稳定性、化学稳定性、机械性能和优异的质子导电性和稳定性。
根据本发明的一个方面,提供了一种质子交换膜燃料电池用有机-无机复合质子交换膜,其特征在于:所述有机-无机复合质子交换膜由侧链带有N-杂环的功能聚合物(如聚乙烯吡咯烷酮、聚乙烯基吡啶等)、杂多酸(如磷钨酸、磷钼酸、硅钨酸)及骨架聚合物(如聚醚砜(PES)、聚砜(PSF)、聚苯砜(PPSF)、聚偏氟乙烯(PVDF)等)组成;所述复合质子交换膜中侧链带有氮杂环的聚合物的质量百分含量为20~80%,所述骨架聚合物的质量百分含量为10~50%,所述杂多酸的质量百分含量为10-60%。
根据本发明的一个进一步的方面,上述燃料电池用有机-无机复合质子交换膜的特征在于:所述侧链带有氮杂环的聚合物为聚乙烯吡咯烷酮(PVP)。
根据本发明的一个进一步的方面,上述燃料电池用有机-无机复合质子交换膜的特征在于:所述杂多酸为磷钨酸(PWA)、磷钼酸(PMA)、硅钨酸(SWA)
根据本发明的一个进一步的方面,上述燃料电池用有机-无机复合质子交换膜的特征在于:具有耐化学腐蚀性和热稳定性的骨架聚合物聚醚砜(PES)、聚砜(PSF)、聚苯砜(PPSF)、聚偏氟乙烯(PVDF)中的一种和/或它们中的两或多种组成的混合物。
根据本发明的另一个方面,提供了一种有机-无机复合质子交换膜的制备方法,其特征在于包括:
A)将具有侧链带有N杂环的聚合物与骨架聚合物按照一定的质量比例混合,溶解于适当的有机溶剂中,得到聚合物浓度为5~20wt%的透明聚合物溶液;
B)将一定质量的杂多酸溶解于上述溶解聚合物的有机溶剂中,得到透明杂多酸有机溶液,杂多酸溶液的浓度为5-50wt%;
C)在搅拌的条件下,将上述步骤B)中所得杂多酸溶液按照一定的比例加入到步骤B)所制备的聚合物溶液中,继续搅拌5~12小时,得到透明均一的质子交换膜铸膜液;
D)制备有机-无机复合质子交换膜。
根据本发明的一个进一步的方面,上述步骤D)中采用溶液浇铸或者流延法制备有机-无机复合质子交换膜,其中,成膜处理是在50-120℃温度下进行干燥和/或挥发溶剂的处理,其成膜时间为10-24小时;
根据本发明的一个进一步的方面,上述燃料电池用有机-无机复合质子交换膜的制备方法的特征在于:所选用的有机溶剂是从由N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)、N-甲基吡咯烷酮(NMP)、二甲基亚砜(DMSO)组成的组中选出的一种或者其中的两种的混合溶剂。
根据本发明的一个进一步的方面,上述燃料电池用有机-无机复合质子交换膜的制备方法的特征在于:所述侧链带有氮杂环的聚合物的质量百分含量为20~80%,所述骨架聚合物的质量浓度为10~50%,所述杂多酸的质量百分含量为10-60%。
本发明的优点包括:
-所述有机-无机复合质子交换膜原材料易得,价格便宜,工艺简单易行适合工业化生产;
-所述有机-无机复合质子交换膜的制膜溶液为均相透明,杂多酸在有机溶剂中不与PVP等作用而生成难溶的复合物,但有机溶剂挥发成膜后,杂多酸与侧链带有氮杂环的聚合物发生相互作用,生成不溶于水的复合物,保证了在燃料电池工作条件下,杂多酸不流失。
-所述有机-无机复合质子交换膜均相、透明、致密,具有优良的热稳定性、耐化学腐蚀性、高的离子导电性,可以达到5×10-2S/cm,并且展示出良好的稳定性;
-可以通过简单调控骨架聚合物和功能聚合物的重量比以及杂多酸的含量来调控有机-无机复合质子交换膜的机械性能和质子电导率,便于开发以系列产品以满足不同应用领域的需求。
附图说明
图1本发明的一个实施例中获得的有机-无机复合膜(PES33-PVP67-HPW67)作为有机-无机复合质子交换膜燃料电池的隔膜材料组装的电池在不同温度的输出性能。
具体实施方式
实施例1:
称取1重量单位的聚苯砜(PPSF)和1重量单位的聚乙烯吡咯烷酮(PVP)将其溶于18重量单位的N,N-二甲基甲酰胺(DMF)中,搅拌直至溶解完全;
称取1重量单位的磷钨酸,将其溶于9重量单位的N,N-二甲基甲酰胺(DMF)中,搅拌直至溶解完全;
将上述两种溶液混合在一起搅拌均匀,将聚合物溶液脱气后浇铸在洁净平整的固体表面(如玻璃板)表面于50℃下干燥挥发溶剂成膜。
所得有机-无机复合质子交换膜具有高的机械性能和良好的柔韧性。机械性能测试采用国标GB13022-91进行测量,所用仪器为CMT6202,抗拉强度=35MPa,断裂伸长率达到40%。
所得有机-无机复合质子交换膜具有良好的质子导电性,室温下时,电导率=0.02S/cm,该结果是由交流阻抗技术测得的垂直于膜方向上的电导率。
实施例2:
称取1重量单位的聚砜(PSF)和1.5重量单位的聚乙烯吡咯烷酮(PVP),将其溶于10重量单位的N,N-二甲基乙酰胺(DMAc)中,搅拌直至溶解完全;
称取1.5重量单位的磷钨酸,将其溶于8.5重量单位的N,N-二甲基甲酰胺(DMF)中,搅拌直至溶解完全;
将上述两种聚合物溶液混合在一起搅拌均匀,将聚合物溶液脱气后采用流延法于60℃下干燥挥发溶剂成膜。
所得有机-无机复合质子交换膜具有高的机械性能和良好的柔韧性。机械性能测试采用国标GB13022-91进行测量,所用仪器为CMT6202,抗拉强度=32MPa,断裂伸长率达到50%。
所得有机-无机复合质子交换膜具有良好的质子导电性,室温下电导率=0.04S/cm,该结果是由交流阻抗技术测得的垂直于膜方向上的电导率。
实施例3:
称取1重量单位的聚醚砜(PES)和2重量单位的聚乙烯吡咯烷酮(PVP),将其溶于11重量单位的N-甲基吡咯烷酮(NMP)中,搅拌直至溶解完全;将上述两种聚合物溶液混合在一起搅拌均匀,
称取2重量单位的磷钨酸,将其溶于8重量单位的N,N-二甲基甲酰胺(DMF)中,搅拌直至溶解完全;
将上述两种聚合物溶液混合在一起搅拌均匀,将聚合物溶液脱气后采用流延法于70℃下干燥挥发溶剂成膜。
所得有机-无机复合质子交换膜具有高的机械性能和良好的柔韧性。机械性能测试采用国标GB13022-91进行测量,所用仪器为CMT6202,抗拉强度=28MPa,断裂伸长率达到58%。
所得有机-无机复合质子交换膜具有优良的质子导电性,室温下电导率=0.06S/cm,该结果是由交流阻抗技术测得的垂直于膜方向上的电导率。
图1为本实施例所得到的有机-无机复合质子交换膜(PES33-PVP67-HPW67)作为有机-无机复合质子交换膜燃料电池的隔膜材料组装的电池在不同温度的输出性能。从图1中可以看到有机-无机复合质子交换膜燃料电池的放电行为正常,,展示出很好的电化学性能(输出功率密度最高可以达到近500mW/cm2)。说明本实施例所制备的隔膜完全可以满足有机-无机复合质子交换膜燃料电池的使用要求。
实施例4:
称取1重量单位的聚偏氟乙烯(PVDF),3重量单位的聚乙烯吡咯烷酮(PVP),将其溶于1,6重量单位的N,N-二甲基乙酰胺(DMAc)和N-甲基吡咯烷酮(NMP)(体积比为8/2)的混合溶剂中,搅拌直至溶解完全;
称取2重量单位的磷钨酸,将其溶于10重量单位的N,N-二甲基乙酰胺(DMAc)和N-甲基吡咯烷酮(NMP)(体积比为8/2)的混合溶剂中,搅拌直至溶解完全;
将上述两种聚合物溶液混合在一起搅拌均匀,将聚合物溶液脱气后采用溶液浇铸法于80℃下干燥挥发溶剂成膜。
所得有机-无机复合质子交换膜具有高的机械性能和良好的柔韧性。机械性能测试采用国标GB13022-91进行测量,所用仪器为CMT6202,抗拉强度=18MPa,断裂伸长率达到75%。
所得有机-无机复合质子交换膜具有优异的质子导电性,室温下电导率=0.08S/cm,该结果是由交流阻抗技术测得的垂直于膜方向上的电导率。
实施例5:
称取1重量单位的聚醚砜(PES)和1重量单位的聚乙烯吡咯烷酮将其溶于13重量单位的N,N-二甲基甲酰胺(DMF)中,搅拌直至溶解完全;
称取2重量单位的磷钼酸,将其溶于8重量单位的N,N-二甲基乙酰胺(DMAc)中,搅拌直至溶解完全;
将上述两种聚合物溶液混合在一起搅拌均匀,将聚合物溶液脱气后浇铸在洁净平整的固体表面(如玻璃板)表面于80℃下干燥挥发溶剂成膜。
所得有机-无机复合质子交换膜具有高的机械性能和良好的柔韧性。机械性能测试采用国标GB13022-91进行测量,所用仪器为CMT6202,抗拉强度=32MPa,断裂伸长率达到40%。
所得有机-无机复合质子交换膜具有优异的高温质子导电性,150℃时,电导率=0.03S/cm,该结果是由交流阻抗技术测得的垂直于膜方向上的电导率。
实施例6:
称取1重量单位的聚醚砜(PES)和2重量单位的聚乙烯吡咯烷酮(PVP),将其溶于11重量单位的N-甲基吡咯烷酮(NMP)中,搅拌直至溶解完全;将上述两种聚合物溶液混合在一起搅拌均匀,
,将其溶于15重量单位的N,N-二甲基乙酰胺(DMAc)中,搅拌直至溶解完全;
称取2重量单位的磷钼酸,将其溶于15重量单位的N-甲基吡咯烷酮(NMP)中,搅拌直至溶解完全;
将上述两种聚合物溶液混合在一起搅拌均匀,将聚合物溶液脱气后采用流延法于80℃下干燥挥发溶剂成膜。
所得有机-无机复合质子交换膜具有高的机械性能和良好的柔韧性。机械性能测试采用国标GB13022-91进行测量,所用仪器为CMT6202,抗拉强度=29MPa,断裂伸长率达到40%。
所得有机-无机复合质子交换膜具有优良的质子导电性,室温下导率=0.045S/cm,该结果是由交流阻抗技术测得的垂直于膜方向上的电导率。
实施例7:
称取1重量单位的聚砜(PSF)和1重量单位的聚乙烯吡咯烷酮,将其溶于14重量单位的N,N-二甲基甲酰胺(DMF)中,搅拌直至溶解完全;
称取2重量单位的硅钨酸,将其溶于15重量单位的N-甲基吡咯烷酮(NMP)中,搅拌直至溶解完全;
将上述两种聚合物溶液混合在一起搅拌均匀,将聚合物溶液脱气后采用流延法于100℃下干燥挥发溶剂成膜。
所得有机-无机复合质子交换膜具有高的机械性能和良好的柔韧性。机械性能测试采用国标GB13022-91进行测量,所用仪器为CMT6202,抗拉强度=30MPa,断裂伸长率达到40%。
所得有机-无机复合质子交换膜具有良好的质子导电性,室温下电导率=0.024S/cm,该结果是由交流阻抗技术测得的垂直于膜方向上的电导率。
实施例8:
称取1重量单位的聚偏氟乙烯(PVDF)、1重量单位的聚醚砜(PES)以及,2重量单位的聚乙烯吡咯烷酮(PVP)将其溶于16重量单位的N,N-二甲基乙酰胺(DMAc)中,搅拌直至溶解完全;
称取3重量单位的磷钨酸,将其溶于15重量单位的N-甲基吡咯烷酮(NMP)中,搅拌直至溶解完全;
将上述两种聚合物溶液混合在一起搅拌均匀,将聚合物溶液脱气后采用流延法于100℃下干燥挥发溶剂成膜。
所得有机-无机复合质子交换膜具有高的机械性能和良好的柔韧性。机械性能测试采用国标GB13022-91进行测量,所用仪器为CMT6202,抗拉强度=28MPa,断裂伸长率达到50%。
所得有机-无机复合质子交换膜具有优异的高温质子导电性,150℃时,电导率=0.05S/cm,该结果是由交流阻抗技术测得的垂直于膜方向上的电导率。
实施例9:
称取1重量单位的聚醚砜(PES)和0.75重量单位的聚乙烯吡咯烷酮,将其溶于15重量单位的N,N-二甲基甲酰胺(DMF)中,搅拌直至溶解完全;
称取0.75重量单位的磷钨酸,将其溶于15重量单位的N,N-二甲基甲酰胺(DMF)中,搅拌直至溶解完全;
将上述两种聚合物溶液混合在一起搅拌均匀,将聚合物溶液脱气后采用溶液浇铸法于70℃下干燥挥发溶剂成膜。
脱膜后把所得均相共混膜浸泡在质量比为40wt%磷钨酸中浸泡处理48小时,取出擦干表面浮酸,即得到高性能有机-无机复合质子交换膜。
所得有机-无机复合质子交换膜具有高的机械性能和良好的柔韧性。机械性能测试采用国标GB13022-91进行测量,所用仪器为CMT6202,抗拉强度=33MPa,断裂伸长率达到35%。
所得有机-无机复合质子交换膜具有良好的质子导电性,室温下电导率=0.01S/cm,该结果是由交流阻抗技术测得的垂直于膜方向上的电导率。
可见,在上述实施例中,制备均相共混膜时聚合物溶液的浓度在5~20wt%时不影响有机-无机复合质子交换膜的电化学性能和机械性能。且在上述实施例中,均可得到类似性质的有机-无机复合质子交换膜:
所述有机-无机复合质子交换膜也可用作燃料电池、液流电池、铅酸电池等器件的隔膜。
Claims (8)
1.一种燃料电池用有机-无机复合质子交换膜的制备方法,其特征在于:
A)将具有侧链带有N杂环的聚合物与骨架聚合物按照一定的质量比例混合,溶解于适当的有机溶剂中,得到聚合物浓度为5~20wt%的透明聚合物溶液;
B)将一定质量的杂多酸溶解于上述溶解聚合物的有机溶剂中,得到透明杂多酸有机溶液,杂多酸溶液的浓度为5-50wt%;
C)在搅拌的条件下,将上述步骤B)中所得杂多酸溶液按照使所述杂多酸在所述有机-无机复合质子交换膜中的质量百分含量为10-60%的比例加入到步骤A)所制备的聚合物溶液中,继续搅拌5~12小时,得到透明均一的质子交换膜铸膜液;
D)用所述质子交换膜铸膜液制备所述燃料电池用有机-无机复合质子交换膜。
2.根据权利要求1的方法,其特征在于所述步骤D)中采用从如下方法中选出的一种来制备有机-无机复合质子交换膜:
溶液浇铸,
流延法。
3.根据权利要求1或2的方法,其中所述步骤D)包括:
在50-120℃温度下进行干燥和/或挥发溶剂的处理,其成膜时间为10-24小时。
4.根据权利要求1或2的方法,其特征在于:所述有机溶剂是从由N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)、N-甲基吡咯烷酮(NMP)、二甲基亚砜(DMSO)组成的组中选出的一种或者其中的两种的混合物。
5.用根据权利要求1-4之一的方法制备的一种质子交换膜燃料电池用有机-无机复合质子交换膜,其特征在于:
所述有机-无机复合质子交换膜由侧链带有氮杂环的功能聚合物、杂多酸及骨架聚合物组成,
所述侧链带有氮杂环的功能聚合物在所述有机-无机复合质子交换膜中的质量百分含量为20~80%,
所述骨架聚合物在所述有机-无机复合质子交换膜中的的质量百分含量为10~50%,
所述杂多酸在所述有机-无机复合质子交换膜中的质量百分含量为10-60%。
6.根据权利要求5所述的燃料电池用有机-无机复合质子交换膜,其特征在于:
所述侧链带有氮杂环的聚合物为聚乙烯吡咯烷酮(PVP)。
7.根据权利要求5所述的燃料电池用有机-无机复合质子交换膜,其特征在于:
所述杂多酸为从由磷钨酸(PWA)、磷钼酸(PMA)、硅钨酸(SWA)组成的组中选出的一种或多种的混合物。
8.根据权利要求5所述的燃料电池用有机-无机复合质子交换膜,其特征在于:
所述骨架聚合物为从由聚醚砜(PES)、聚砜(PSF)、聚苯砜(PPSF)、聚偏氟乙烯(PVDF)组成的组中选出的一种和/或它们中的两或多种组成的混合物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310593705.4A CN104659395B (zh) | 2013-11-20 | 2013-11-20 | 一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310593705.4A CN104659395B (zh) | 2013-11-20 | 2013-11-20 | 一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104659395A CN104659395A (zh) | 2015-05-27 |
CN104659395B true CN104659395B (zh) | 2017-02-08 |
Family
ID=53250271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310593705.4A Active CN104659395B (zh) | 2013-11-20 | 2013-11-20 | 一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104659395B (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107546399B (zh) * | 2016-06-29 | 2020-04-07 | 中国科学院大连化学物理研究所 | 主链与离子交换基团分离的离子交换膜及其制备和应用 |
CN107591545A (zh) * | 2016-07-07 | 2018-01-16 | 中国科学院大连化学物理研究所 | 一种共混多孔膜在液流电池中的应用 |
CN106252696B (zh) * | 2016-10-21 | 2019-02-01 | 长春工业大学 | 燃料电池用无机-有机复合型质子交换膜及其制备方法 |
CN111261912A (zh) * | 2018-11-30 | 2020-06-09 | 中国科学院大连化学物理研究所 | 一种多孔离子传导膜在中性锌铁液流电池中的应用 |
CN112151842A (zh) * | 2019-06-27 | 2020-12-29 | 华南理工大学 | 一种多酸基电解质导体材料及其制备方法和应用 |
CN112824441A (zh) * | 2019-11-15 | 2021-05-21 | 中国科学院大连化学物理研究所 | 一种聚乙烯吡咯烷酮-杂多酸复合膜及其制备方法与应用 |
CN112421085B (zh) * | 2020-10-21 | 2022-03-15 | 浙江巨化技术中心有限公司 | 一种全氟磺酸树脂氢燃料电池质子膜及其制备方法 |
CN112510236B (zh) * | 2020-11-30 | 2022-04-15 | 中国石油大学(北京) | 质子交换膜及其制备方法和应用 |
CN114824394B (zh) * | 2021-01-29 | 2024-01-26 | 武汉氢阳能源有限公司 | 一种改性无机杂多酸复合高温质子交换膜及其制备方法 |
CN114824392B (zh) * | 2021-01-29 | 2024-01-30 | 武汉氢阳能源有限公司 | 一种长链有机胺改性有机质子导体复合质子交换膜及其制备方法 |
CN113410496B (zh) * | 2021-06-16 | 2023-02-14 | 东北大学秦皇岛分校 | 一种全固态微量含水低温适用质子交换膜及其制备方法 |
CN113991140B (zh) * | 2021-10-25 | 2023-02-03 | 吉林大学 | 一种基于有机共价接枝的杂多酸杂化全氟磺酸膜及其制备方法和应用 |
CN115051004B (zh) * | 2022-06-10 | 2023-09-08 | 四川大学 | 燃料电池质子交换膜及其制备方法 |
CN116207313B (zh) * | 2023-05-06 | 2023-07-11 | 苏州擎动动力科技有限公司 | 自增湿膜电极及其制备方法 |
CN116960418A (zh) * | 2023-07-06 | 2023-10-27 | 华南理工大学 | 一种无氟质子交换膜及其制备方法和应用 |
CN118994681A (zh) * | 2024-10-23 | 2024-11-22 | 江苏源氢新能源科技股份有限公司 | 杂化膨体聚四氟乙烯膜的制备方法以及复合质子交换膜 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102376961A (zh) * | 2010-08-18 | 2012-03-14 | 北京航空航天大学 | 一种燃料电池用的高温质子交换膜及制备方法 |
-
2013
- 2013-11-20 CN CN201310593705.4A patent/CN104659395B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102376961A (zh) * | 2010-08-18 | 2012-03-14 | 北京航空航天大学 | 一种燃料电池用的高温质子交换膜及制备方法 |
Non-Patent Citations (1)
Title |
---|
Proton Conducting Composite Membranes from Polysulfone and Heteropolyacid for Fuel Cell Applications.;B.Smitha et al.;《Journal of Polymer Science Part B: Polymer Physics》;20050429;第43卷(第12期);第1538-1547页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104659395A (zh) | 2015-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104659395B (zh) | 一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法 | |
CN101367903B (zh) | 一种基于半互穿网络的增强型复合质子交换膜及其制备方法 | |
JP5599819B2 (ja) | ポリマーブレンドプロトン交換膜及びこれを製造する方法 | |
Xi et al. | Effect of degree of sulfonation and casting solvent on sulfonated poly (ether ether ketone) membrane for vanadium redox flow battery | |
Li et al. | Enhancing the selectivity of Nafion membrane by incorporating a novel functional skeleton molecule to improve the performance of direct methanol fuel cells | |
Wang et al. | Novel sulfonated poly (ether ether ketone)/oxidized g-C3N4 composite membrane for vanadium redox flow battery applications | |
CN101875722B (zh) | 制备聚苯并咪唑/磺化聚合物复合质子交换膜材料的方法 | |
Quan et al. | Novel sulfonated poly (ether ether ketone)/triphenylamine hybrid membrane for vanadium redox flow battery applications | |
CN102376961B (zh) | 一种燃料电池用的高温质子交换膜及制备方法 | |
Xie et al. | Composite proton exchange membranes based on phosphosilicate sol and sulfonated poly (ether ether ketone) for fuel cell applications | |
CN105085913B (zh) | 一种含支化结构的磺化聚酰亚胺质子导电膜的制备方法 | |
CN101475699A (zh) | 一种质子传导膜的制备方法 | |
JP4283125B2 (ja) | 高分子電解質、プロトン伝導膜および膜−電極構造体 | |
CN101510615A (zh) | 一种基于可交联聚酰亚胺的半互穿网络型复合质子交换膜及其制备方法 | |
CN104629081A (zh) | 一种以双醚交联型多孔聚苯并咪唑酰亚胺为基底的填孔型质子交换膜的制备方法 | |
Kumar et al. | A study on the heat behaviour of PEM, prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion, for its high temperature application in DMFC | |
CN100580013C (zh) | 一种磺化聚芳醚酮复合膜的制备方法 | |
CN101768283A (zh) | 一种适用于钒电池的磺化聚合物复合膜的制备方法 | |
CN109309241A (zh) | 聚合物共混质子交换膜及其制备方法 | |
CN101205308A (zh) | 磺化聚苯砜对苯二甲酰胺质子交换膜及其制备方法 | |
CN101733021B (zh) | 一种互穿网络结构全氟离子交换膜及其制备方法 | |
CN110504473A (zh) | 一种全钒液流电池用离子传导膜及其制备方法 | |
CN103996865A (zh) | 高阻醇聚合物电解质膜及其制备方法 | |
CN107546399B (zh) | 主链与离子交换基团分离的离子交换膜及其制备和应用 | |
KR100815117B1 (ko) | 연료전지용 고분자 전해질 막의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180817 Address after: 100192 Room 202, room 2, 202 floor, 24 building, Yilin Jiayuan, Chaoyang District, Beijing, 102, -14 Patentee after: Beijing Haide Liz New Technology Co., Ltd. Address before: 100083 room 1, building 1, Zhongguancun East Road, Haidian District, Beijing, C-812 Patentee before: Beijing Mai Tuokemei Science and Technology Ltd. |