CN104658641A - Low-resistance transparent conductive laminate, low-resistance patterned transparent conductive laminate, and touch panel - Google Patents
Low-resistance transparent conductive laminate, low-resistance patterned transparent conductive laminate, and touch panel Download PDFInfo
- Publication number
- CN104658641A CN104658641A CN201310716908.8A CN201310716908A CN104658641A CN 104658641 A CN104658641 A CN 104658641A CN 201310716908 A CN201310716908 A CN 201310716908A CN 104658641 A CN104658641 A CN 104658641A
- Authority
- CN
- China
- Prior art keywords
- transparent conductive
- transparent
- layer
- optical adjustment
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种触控面板用的低电阻透明导电积层体,特别是涉及一种包含透明基板、透明光学调整层、氧化硅层以及透明导电层的低电阻透明导电积层体。 The invention relates to a low-resistance transparent conductive laminate for a touch panel, in particular to a low-resistance transparent conductive laminate comprising a transparent substrate, a transparent optical adjustment layer, a silicon oxide layer and a transparent conductive layer. the
背景技术 Background technique
近年来市场上推出了许多便利的智慧商品,例如,智能型手机、触控荧幕、触控平板、电子书等。随着这些高度应用触控技术的推出,带动了整个触控面板的使用。且该触控面板例如但不限于电阻式触控面板或电容式触控面板。所述触控面板为一包括透明有机高分子基材以及设置于该透明有机高分子基材上的透明导电膜的透明导电积层体。 In recent years, many convenient smart products have been launched on the market, such as smart phones, touch screens, touch panels, and e-books. With the introduction of these highly applied touch technologies, the use of the entire touch panel has been driven. And the touch panel is for example but not limited to a resistive touch panel or a capacitive touch panel. The touch panel is a transparent conductive laminate including a transparent organic polymer substrate and a transparent conductive film disposed on the transparent organic polymer substrate. the
上述透明导电积层体视需求可进一步将透明导电膜进行图案化处理,形成一图案化的透明导电积层体,其中,该图案化处理为将部分透明导电膜移除,以形成非导电区域,而剩余的部分透明导电膜则形成导电区域。然而,光线进入该图案化的透明导电积层体并被反射时,由于透明有机高分子基材与透明导电膜对于光的反射率并不相同,使得通过导电区域的光与通过非导电区域的光的反射率差异大,应用至触控面板上,当使用者使用时,容易且明显地看到并辨别出导电区域与非导电区域,继而影响触控面板的显示质量。 The above-mentioned transparent conductive laminate can be further patterned to form a patterned transparent conductive laminate according to requirements, wherein the patterning process is to remove part of the transparent conductive film to form a non-conductive region , and the remaining part of the transparent conductive film forms a conductive region. However, when light enters the patterned transparent conductive laminate and is reflected, since the reflectivity of the transparent organic polymer substrate and the transparent conductive film are different for light, the light passing through the conductive area is different from the light passing through the non-conductive area. The reflectance of light varies greatly, and when applied to the touch panel, the user can easily and clearly see and distinguish the conductive area and the non-conductive area, which in turn affects the display quality of the touch panel. the
中国台湾专利公开案201213136揭示一种透明导电性膜。该透明导电性膜包括透明基材、第一硬涂层、第一透明介电质层以及第一透明导电体层。该透明基材的膜厚范围为2μm至250μm。第一硬涂层的膜厚范围为0.5μm至6μm,且折射率范围为1.40至1.90。第一透明介电质层的膜厚范围为10nm至50nm,且折射率范围为1.30至1.50。该第一透明导电体层进行了图案化且膜厚范围为10nm至2μm。由该中国台湾案的说明书中表1的揭示可知,第一透明导电体层经结晶化后的表面电阻值在270Ω/sq以上时,通过所述参数条件的调控, 可降低通过导电区域的光线的反射率与通过非导电区域的光线的反射率的差异,使得使用者使用时,不易看到导电区域与非导电区域,以达到无图案化的效果。然而,因目前触控面板尺寸有越来越大的趋势,若第一透明导电体层的表面电阻值过高,应用于大尺寸触控面板时易产生杂讯。但为避免杂讯的产生,通过增加第一透明导电体层的厚度来降低表面电阻值,则会使得通过导电区域的光线的反射率与通过非导电区域的光线的反射率的差异变大,导致使用者在观看触控面板时容易看到并辨别出导电区域与非导电区域。 China Taiwan Patent Publication No. 201213136 discloses a transparent conductive film. The transparent conductive film includes a transparent substrate, a first hard coat layer, a first transparent dielectric layer and a first transparent conductor layer. The film thickness of the transparent base material ranges from 2 μm to 250 μm. The film thickness of the first hard coat layer ranges from 0.5 μm to 6 μm, and the refractive index ranges from 1.40 to 1.90. The film thickness of the first transparent dielectric layer ranges from 10nm to 50nm, and the refractive index ranges from 1.30 to 1.50. The first transparent conductor layer is patterned and has a film thickness ranging from 10 nm to 2 μm. From the disclosure in Table 1 in the specification of the Taiwan case, it can be seen that when the surface resistance value of the first transparent conductor layer after crystallization is above 270Ω/sq, the light passing through the conductive region can be reduced by adjusting the parameter conditions. The difference between the reflectivity of the reflectivity and the reflectivity of light passing through the non-conductive area makes it difficult for the user to see the conductive area and the non-conductive area when using, so as to achieve the effect of no patterning. However, since the size of the touch panel is getting bigger and bigger, if the surface resistance of the first transparent conductor layer is too high, it is easy to generate noise when it is applied to a touch panel with a large size. However, in order to avoid the generation of noise, by increasing the thickness of the first transparent conductor layer to reduce the surface resistance value, the difference between the reflectivity of light passing through the conductive region and the reflectivity of light passing through the non-conductive region will become larger, As a result, the user can easily see and identify the conductive area and the non-conductive area when looking at the touch panel. the
有鉴于上述,改良透明导电性膜从而减少通过导电区域的光线的反射率与通过非导电区域的光线的反射率的差异,以解决使用者在观看触控面板时易看到透明导电层图案化的痕迹的问题,继而提高触控面板的显示质量,仍是此技术领域相关技术人员可再突破的课题。 In view of the above, improve the transparent conductive film to reduce the difference between the reflectivity of light passing through the conductive area and the reflectance of light passing through the non-conductive area, so as to solve the problem that the user can easily see the patterning of the transparent conductive layer when viewing the touch panel. The problem of traces, and then improving the display quality of the touch panel, is still a subject that relevant technical personnel in this technical field can make breakthroughs. the
发明内容 Contents of the invention
本发明的第一目的在于提供一种光线被反射后无干涉纹产生的低电阻透明导电积层体。 The first object of the present invention is to provide a low-resistance transparent conductive laminate without interference fringes after light is reflected. the
本发明低电阻透明导电积层体,包含: The low-resistance transparent conductive laminate of the present invention comprises:
一透明基板; a transparent substrate;
一透明光学调整层,设置在该透明基板上,且厚度范围为50nm至4,000nm,以及折射率范围为1.58至1.70; A transparent optical adjustment layer, disposed on the transparent substrate, has a thickness ranging from 50nm to 4,000nm, and a refractive index ranging from 1.58 to 1.70;
一氧化硅层,设置在该透明光学调整层上,且厚度范围为23nm至27nm;及 A silicon monoxide layer disposed on the transparent optical adjustment layer and having a thickness ranging from 23nm to 27nm; and
一透明导电层,设置在该氧化硅层上,且厚度范围为20nm至25nm,以及表面电阻值范围为小于200Ω/sq; A transparent conductive layer disposed on the silicon oxide layer with a thickness in the range of 20nm to 25nm and a surface resistance in the range of less than 200Ω/sq;
其中,该透明基板的折射率与该透明光学调整层的折射率的差值的绝对值范围为0.05以下,且该氧化硅是由式(I)所示; Wherein, the absolute value range of the difference between the refractive index of the transparent substrate and the refractive index of the transparent optical adjustment layer is less than 0.05, and the silicon oxide is represented by formula (I);
SiOx (I) SiO x (I)
式(I)中,x为大于1.6至小于2.0。 In formula (I), x is greater than 1.6 to less than 2.0. the
本发明的第二目的在于提供一种光线反射后无干涉纹产生,且,使用者在观看时不易看到透明导电层图案化的痕迹的低电阻图案化的透明导电积层体。 The second object of the present invention is to provide a low-resistance patterned transparent conductive laminate that does not generate interference fringes after light reflection and that is difficult for users to see patterned traces of the transparent conductive layer. the
本发明低电阻图案化的透明导电积层体,包含: The low-resistance patterned transparent conductive laminate of the present invention comprises:
一透明基板; a transparent substrate;
一透明光学调整层,设置在该透明基板上,且厚度范围为50nm至4,000nm,以及折射率范围为1.58至1.70; A transparent optical adjustment layer, disposed on the transparent substrate, has a thickness ranging from 50nm to 4,000nm, and a refractive index ranging from 1.58 to 1.70;
一氧化硅层,设置在该透明光学调整层上,且厚度范围为23nm至27nm;及 A silicon monoxide layer disposed on the transparent optical adjustment layer and having a thickness ranging from 23nm to 27nm; and
一图案化的透明导电层,设置在该氧化硅层上,且厚度范围为20nm至25nm,以及表面电阻值范围为小于200Ω/sq; A patterned transparent conductive layer disposed on the silicon oxide layer with a thickness in the range of 20nm to 25nm and a surface resistance in the range of less than 200Ω/sq;
其中,该透明基板的折射率与该透明光学调整层的折射率的差值的绝对值范围为0.05以下,且氧化硅是由式(I)所示; Wherein, the absolute value range of the difference between the refractive index of the transparent substrate and the refractive index of the transparent optical adjustment layer is less than 0.05, and silicon oxide is represented by formula (I);
SiOx (I) SiO x (I)
式(I)中,x为大于1.6至小于2.0。 In formula (I), x is greater than 1.6 to less than 2.0. the
本发明的第三目的在于提供一种具有较佳显示质量的触控面板。 The third objective of the present invention is to provide a touch panel with better display quality. the
本发明触控面板包含上述的低电阻透明导电积层体或上述低电阻图案化的透明导电积层体。 The touch panel of the present invention includes the above-mentioned low-resistance transparent conductive laminate or the above-mentioned low-resistance patterned transparent conductive laminate. the
本发明的有益效果在于:通过所述参数条件的调控,本发明低电阻透明导电积层体无干涉纹产生,以及,由该低电阻透明导电积层体所形成的低电阻图案化的透明导电积层体应用至触控面板时,使用者在观看时不易看到透明导电层图案化的痕迹,继而使得触控面板具有较佳的显示质量。 The beneficial effect of the present invention is that: through the adjustment and control of the parameter conditions, the low-resistance transparent conductive laminate of the present invention has no interference fringe, and the low-resistance patterned transparent conductive laminate formed by the low-resistance transparent conductive laminate When the laminate is applied to the touch panel, it is difficult for the user to see the traces of the patterning of the transparent conductive layer when viewing, which in turn makes the touch panel have better display quality. the
具体实施方式 Detailed ways
以下将就本发明内容进行详细说明: The content of the present invention will be described in detail below:
本发明低电阻透明导电积层体,包含: The low-resistance transparent conductive laminate of the present invention comprises:
一透明基板; a transparent substrate;
一透明光学调整层,设置在该透明基板上,且厚度范围为50nm至4,000nm,以及折射率范围为1.58至1.70; A transparent optical adjustment layer, disposed on the transparent substrate, has a thickness ranging from 50nm to 4,000nm, and a refractive index ranging from 1.58 to 1.70;
一氧化硅层,设置在该透明光学调整层上,且厚度范围为23nm至27nm;及 A silicon monoxide layer disposed on the transparent optical adjustment layer and having a thickness ranging from 23nm to 27nm; and
一透明导电层,设置在该氧化硅层上,且厚度范围为20nm至25nm,以及表面电阻值范围为小于200Ω/sq; A transparent conductive layer disposed on the silicon oxide layer with a thickness in the range of 20nm to 25nm and a surface resistance in the range of less than 200Ω/sq;
其中,该透明基板的折射率与该透明光学调整层的折射率的差值的绝对值范围为0.05以下,且氧化硅是由式(I)所示; Wherein, the absolute value range of the difference between the refractive index of the transparent substrate and the refractive index of the transparent optical adjustment layer is less than 0.05, and silicon oxide is represented by formula (I);
SiOx (I) SiO x (I)
式(I)中,x为大于1.6至小于2.0。 In formula (I), x is greater than 1.6 to less than 2.0. the
本发明通过调整该透明基板的折射率与该透明光学调整层的折射率的差值的绝对值范围为0.05以下,使该透明基板与该透明光学调整层的界面不引起反射,以减少干涉纹的产生。同时,通过所述参数条件的调控,使得低电阻图案化的透明导电积层体应用至触控面板时,使用者在观看时不易看到透明导电层图案化的痕迹,继而使得触控面板具有较佳的显示质量。 In the present invention, the absolute value range of the difference between the refractive index of the transparent substrate and the refractive index of the transparent optical adjustment layer is adjusted to be 0.05 or less, so that the interface between the transparent substrate and the transparent optical adjustment layer does not cause reflection, so as to reduce interference fringes generation. At the same time, through the adjustment of the parameter conditions, when the low-resistance patterned transparent conductive laminate is applied to the touch panel, it is difficult for the user to see the patterned traces of the transparent conductive layer when viewing, and then the touch panel has Better display quality. the
较佳地,本发明低电阻透明导电积层体中,还包含一设置于该透明基板上且与透明光学调整层相反侧的机能层。 Preferably, the low-resistance transparent conductive laminate of the present invention further includes a functional layer disposed on the transparent substrate and opposite to the transparent optical adjustment layer. the
本发明低电阻透明导电积层体的制备方法,可采用现有制备触控面板用的低电阻透明导电积层体的方法即可。举例来说,本发明低电阻透明导电积层体的制备方法包含以下步骤:提供一透明基板;于该透明基板上形成一透明光学调整层,获得一第一积层体;于该第一积层体的透明光学调整层上形成一氧化硅层,获得一第二积层体;于该第二积层体的氧化硅层上形成一透明导电层,即可获得本发明低电阻透明导电积层体。 The method for preparing the low-resistance transparent conductive laminate of the present invention can adopt the existing method for preparing the low-resistance transparent conductive laminate for the touch panel. For example, the method for preparing a low-resistance transparent conductive laminate of the present invention includes the following steps: providing a transparent substrate; forming a transparent optical adjustment layer on the transparent substrate to obtain a first laminate; A silicon oxide layer is formed on the transparent optical adjustment layer of the layer to obtain a second laminate; a transparent conductive layer is formed on the silicon oxide layer of the second laminate to obtain the low-resistance transparent conductive product of the present invention. layers. the
该透明光学调整层形成的方法并无特别的限制。该形成方法例如但不限于辊涂法、旋涂法,或浸涂法等。基于可连续生产的观点而言,较佳地,该形成方法为辊涂法。 The method for forming the transparent optical adjustment layer is not particularly limited. The forming method is, for example but not limited to, a roll coating method, a spin coating method, or a dip coating method. From the viewpoint of continuous production, preferably, the forming method is a roll coating method. the
该氧化硅层的形成方法并无特别的限制。该形成方法例如但不限于干式涂布法,或湿式涂布法等。该干式涂布法例如但不限于蒸镀法、溅镀法、离子镀敷法(ion Plating)、化学气相沉积法或电镀法等。基于可连续生产的观点而言,较佳地,该干式涂布法为溅镀法。该湿式涂布法例如但不限于辊涂法、旋涂法或浸涂法等。基于可连续生产的观点而言,较佳地,该湿式涂布法为辊涂法。 The method for forming the silicon oxide layer is not particularly limited. The forming method is, for example but not limited to, a dry coating method or a wet coating method. The dry coating method is, for example but not limited to, vapor deposition, sputtering, ion plating, chemical vapor deposition or electroplating. From the viewpoint of continuous production, preferably, the dry coating method is a sputtering method. The wet coating method is, for example but not limited to, roll coating, spin coating or dip coating. From the viewpoint of continuous production, preferably, the wet coating method is a roll coating method. the
该透明导电层的形成方法并无特别的限制。该形成方法例如但不限于蒸镀法、溅镀法、离子镀敷法、化学气相沉积法,或电镀法。以有效控制透明导电层厚度的观点而言,较佳地,该形成方法为蒸镀法或溅镀法。 The method for forming the transparent conductive layer is not particularly limited. The forming method is, for example but not limited to, evaporation method, sputtering method, ion plating method, chemical vapor deposition method, or electroplating method. From the viewpoint of effectively controlling the thickness of the transparent conductive layer, preferably, the forming method is an evaporation method or a sputtering method. the
该本发明低电阻透明导电积层体的制备方法还包含一对该透明 导电层施予退火处理步骤,以使透明导电层结晶化并调整其电阻值,其中,该退火处理的操作温度范围为100℃至200℃。 The preparation method of the low-resistance transparent conductive laminated body of the present invention also includes a pair of steps of annealing the transparent conductive layer to crystallize the transparent conductive layer and adjust its resistance value, wherein the operating temperature range of the annealing treatment is 100°C to 200°C. the
该本发明低电阻透明导电积层体的制备方法还包含一形成于该透明基板上并与该透明光学调整层相反侧的机能层的步骤。该机能层的形成方法并无特别的限制。该形成方法例如但不限辊涂法、旋涂法、浸涂法、棒涂法,或凹版涂布法等。 The method for preparing the low-resistance transparent conductive laminate of the present invention further includes a step of forming a functional layer on the transparent substrate opposite to the transparent optical adjustment layer. The method for forming the functional layer is not particularly limited. The forming method is, for example but not limited to, roll coating, spin coating, dip coating, bar coating, or gravure coating. the
本发明低电阻图案化的透明导电积层体制备方法包含上述低电阻透明导电积层体的制备方法,以及对该低电阻透明导电积层体的透明导电层施予一图案化处理,形成一图案化的透明导电层,即可获得本发明低电阻图案化的透明导电积层体,其中,退火处理步骤可于形成透明导电层后或图案化的透明导电层后再进行。 The preparation method of the low-resistance patterned transparent conductive laminate of the present invention includes the preparation method of the above-mentioned low-resistance transparent conductive laminate, and applying a patterning treatment to the transparent conductive layer of the low-resistance transparent conductive laminate to form a The patterned transparent conductive layer can be used to obtain the low-resistance patterned transparent conductive laminate of the present invention, wherein the annealing step can be performed after forming the transparent conductive layer or after the patterned transparent conductive layer. the
该图案化处理为将部分透明导电层移除,以形成非导电区,而剩余的部分透明导电层则形成导电区。该图案化处理例如但不限于干蚀刻法或湿蚀刻法。 In the patterning process, part of the transparent conductive layer is removed to form a non-conductive region, and the remaining part of the transparent conductive layer forms a conductive region. The patterning process is, for example but not limited to, dry etching or wet etching. the
以下将逐一对该透明基板、透明光学调整层、氧化硅层、透明导电层及机能层进行详细说明。 The transparent substrate, the transparent optical adjustment layer, the silicon oxide layer, the transparent conductive layer and the functional layer will be described in detail below one by one. the
<<透明基板>> <<Transparent Substrate>>
于本发明中该透明基板的材质并无特别的限制,例如但不限于聚酯类树脂(polyester-based resin),或聚碳酸酯类树脂(polycar-bonate-based resin)等。该聚酯类树脂例如但不限于聚对苯二甲酸乙二酯(polyethylene terephthalate,简称PET)等。该聚碳酸酯类树脂例如但不限于聚碳酸酯(polycarbonate,简称PC)等。较佳地,该透明基板的材质为聚对苯二甲酸乙二酯。 In the present invention, the material of the transparent substrate is not particularly limited, such as but not limited to polyester-based resin or polycar-bonate-based resin. The polyester resin is for example but not limited to polyethylene terephthalate (PET for short) and the like. The polycarbonate resin is for example but not limited to polycarbonate (polycarbonate, PC for short) and the like. Preferably, the material of the transparent substrate is polyethylene terephthalate. the
较佳地,于本发明中该透明基板的折射率范围为1.58至1.80。该透明基板的折射率为小于1.58时,于透明导电层进行图案化处理后,通过所形成的导电区的光线的反射率与通过所形成的非导电区的光线的反射率差异更大,应用至触控面板时,使用者在观看时易看到透明导电层图案化的痕迹。 Preferably, the refractive index of the transparent substrate in the present invention ranges from 1.58 to 1.80. When the refractive index of the transparent substrate is less than 1.58, after the transparent conductive layer is patterned, the reflectance of the light passing through the formed conductive area is much different from the reflectance of light passing through the formed non-conductive area, and the application When it comes to the touch panel, the user can easily see the patterned traces of the transparent conductive layer when watching. the
于本发明中该透明基板的厚度并无特别的限制,较佳地,该透明基板的厚度范围为2μm至300μm;更佳地,为10μm至250μm。该透明基板的厚度小于2μm时,会有机械强度不足的问题,使后续制 程操作不易。该透明基板的厚度大于300μm时,则制作成本会增加,且会造成低电阻透明导电积层体或低电阻图案化的透明导电积层体的总光线穿透率下降,同时,无法满足科技产品薄型化的需求。 In the present invention, the thickness of the transparent substrate is not particularly limited. Preferably, the thickness of the transparent substrate ranges from 2 μm to 300 μm; more preferably, it ranges from 10 μm to 250 μm. When the thickness of the transparent substrate is less than 2 μm, there will be a problem of insufficient mechanical strength, which makes subsequent process operations difficult. When the thickness of the transparent substrate is greater than 300 μm, the production cost will increase, and the total light transmittance of the low-resistance transparent conductive laminate or the low-resistance patterned transparent conductive laminate will decrease. Thinning needs. the
<<透明光学调整层>> <<Transparent optical adjustment layer>>
透明光学调整层设置在该透明基板上,且厚度范围为50nm至4,000nm,以及折射率范围为1.58至1.70。该透明光学调整层的厚度小于50nm时,厚度均匀性不易控制。该透明光学调整层的厚度大于4,000nm时,则制作成本会增加。较佳地,该透明光学调整层的厚度范围为50nm至小于500nm。 The transparent optical adjustment layer is disposed on the transparent substrate, and has a thickness ranging from 50nm to 4,000nm and a refractive index ranging from 1.58 to 1.70. When the thickness of the transparent optical adjustment layer is less than 50 nm, it is difficult to control the thickness uniformity. When the thickness of the transparent optical adjustment layer is greater than 4,000 nm, the production cost will increase. Preferably, the transparent optical adjustment layer has a thickness ranging from 50 nm to less than 500 nm. the
该透明光学调整层的折射率大于1.70时,则不易将其与透明基板的折射率差值的绝对值范围控制在0.05以下,继而易导致干涉纹的产生。该透明光学调整层的折射率小于1.58时,则无法提升第一积层体的折射率,因此,于透明导电层进行图案化处理后,通过所形成的导电区的光线的反射率与通过所形成的非导电区的光线的反射率差异大,应用至触控面板时,使用者在观看时易看到透明导电层图案化的痕迹。较佳地,该透明光学调整层的折射率范围为1.63至1.68。 When the refractive index of the transparent optical adjustment layer is greater than 1.70, it is difficult to control the absolute value range of the refractive index difference between the transparent optical adjustment layer and the transparent substrate below 0.05, which will easily lead to interference fringes. When the refractive index of the transparent optical adjustment layer is less than 1.58, the refractive index of the first laminate cannot be increased. Therefore, after the transparent conductive layer is patterned, the reflectivity of the light passing through the formed conductive region is related to the reflectivity of the light passing through the formed layer. The reflectivity of light in the formed non-conductive area varies greatly, and when applied to a touch panel, users can easily see patterned traces of the transparent conductive layer when watching. Preferably, the refractive index of the transparent optical adjustment layer ranges from 1.63 to 1.68. the
较佳地,该透明光学调整层是由一包括金属氧化物微粒子及一功能组份的形成透明光学调整层用组成物所形成,其中,该功能组份包括可光硬化的黏结剂及光起始剂。该金属氧化物微粒子例如但不限于氧化钛或氧化锆等。较佳地,该金属氧化物微粒子的折射率范围为2.0至3.0。较佳地,该金属氧化物微粒子的平均粒径范围为5nm至20nm。较佳地,以该功能组份的总量为100重量份计,该金属氧化物微粒子的含量范围为2重量份至50重量份。该可光硬化的黏结剂例如但不限于具有(甲基)丙烯酸基的多官能单体、具有(甲基)丙烯酸基的低聚物,或具有(甲基)丙烯酸基的聚合物等。该光起始剂能使该可光硬化的黏结剂进行光固化反应者皆可,且该光起始剂可单独或混合使用,例如但不限于乙烯基苯酮类、二苯甲酮衍生物、米希勒酮、苯炔、苯甲基衍生物、苯偶姻衍生物、苯偶姻甲醚类、α-酰氧基酯、噻吨酮类及蒽醌类。较佳地,以该功能组份的总量为100wt%计,该光起始剂的含量范围为0.1wt%至10wt%。 Preferably, the transparent optical adjustment layer is formed from a composition for forming a transparent optical adjustment layer including metal oxide particles and a functional component, wherein the functional component includes a photohardenable binder and a photoactivator starter. The metal oxide particles are, for example but not limited to, titanium oxide or zirconium oxide. Preferably, the metal oxide particles have a refractive index ranging from 2.0 to 3.0. Preferably, the average particle diameter of the metal oxide particles ranges from 5 nm to 20 nm. Preferably, based on 100 parts by weight of the total amount of the functional components, the content of the metal oxide particles ranges from 2 parts by weight to 50 parts by weight. The photohardenable binder is, for example but not limited to, a multifunctional monomer with (meth)acrylic groups, an oligomer with (meth)acrylic groups, or a polymer with (meth)acrylic groups. The photoinitiator can make the photohardenable adhesive undergo photocuring reaction, and the photoinitiator can be used alone or in combination, such as but not limited to vinyl phenones, benzophenone derivatives , Michler's ketone, benzyne, benzyl derivatives, benzoin derivatives, benzoin methyl ethers, α-acyloxy esters, thioxanthones and anthraquinones. Preferably, based on the total amount of the functional components as 100wt%, the content of the photoinitiator ranges from 0.1wt% to 10wt%. the
<<氧化硅层>> <<Silicon oxide layer>>
该氧化硅层设置在透明光学调整层上,且厚度范围为23nm至27nm。该氧化硅层的厚度为大于27nm,则氧化硅层的穿透色中的b*值变大,会带黄色调。该氧化硅层的厚度为小于23nm,则低电阻透明导电积层体或低电阻图案化的透明导电积层体的总光线穿透率下降。该氧化硅层的含氧量可借由控制制备时通入的氧气量进行调整。当式(I)中的x为1.6以下时,因氧化不完全导致氧化硅层透明性不佳,继而导致低电阻透明导电积层体或低电阻图案化的透明导电积层体的总光线穿透率下降,且,使通过导电区的光线的反射率与通过非导电区的光线的反射率差异变大,应用至触控面板时,使用者在观看时易看到透明导电层图案化的痕迹。由于自然界中,SiOx中x的最大值为2.0,若再继续增加氧气量反而使会使溅镀速率降低,导致产能降低。 The silicon oxide layer is disposed on the transparent optical adjustment layer, and has a thickness ranging from 23nm to 27nm. When the thickness of the silicon oxide layer is greater than 27 nm, the b * value in the transmission color of the silicon oxide layer becomes large, and it becomes yellowish. When the thickness of the silicon oxide layer is less than 23 nm, the total light transmittance of the low-resistance transparent conductive laminate or the low-resistance patterned transparent conductive laminate decreases. The oxygen content of the silicon oxide layer can be adjusted by controlling the amount of oxygen introduced during the preparation. When x in the formula (I) is less than 1.6, the transparency of the silicon oxide layer is not good due to incomplete oxidation, which in turn leads to the total light penetration of the low-resistance transparent conductive laminate or the low-resistance patterned transparent conductive laminate. The transmittance decreases, and the difference between the reflectance of light passing through the conductive area and the reflectance of light passing through the non-conductive area becomes larger. When it is applied to a touch panel, the user can easily see the patterned pattern of the transparent conductive layer. trace. Since the maximum value of x in SiO x is 2.0 in nature, if the amount of oxygen continues to be increased, the sputtering rate will be reduced, resulting in a decrease in productivity.
<<透明导电层>> <<Transparent conductive layer>>
该透明导电层的材质可单独或混合使用,且该透明导电层的材质例如但不限于氧化铟、氧化锡、氧化钛、氧化铝、氧化锌、氧化镓,或氧化铟锡(二氧化锡与三氧化二铟所组成,Indium tin oxide,简称ITO)。较佳地,该透明导电层的材质为氧化铟锡。 The material of the transparent conductive layer can be used alone or in combination, and the material of the transparent conductive layer is such as but not limited to indium oxide, tin oxide, titanium oxide, aluminum oxide, zinc oxide, gallium oxide, or indium tin oxide (tin dioxide and Composed of indium trioxide, Indium tin oxide, referred to as ITO). Preferably, the material of the transparent conductive layer is indium tin oxide. the
当该透明导电层的材质为氧化铟锡,经结晶化(如进行退火处理)后,锡(Sn4+)取代了铟(In3+)在晶格中的位置,而放出一个电子,继而使得表面电阻值得以下降。较佳地,以该氧化铟锡的总量为100wt%计,该二氧化锡的含量范围为3wt%至10wt%。该二氧化锡的含量大于10wt%时,透明导电层不易结晶化。更佳地,该二氧化锡的含量范围为5wt%至7wt%。 When the material of the transparent conductive layer is indium tin oxide, after crystallization (such as annealing treatment), tin (Sn 4+ ) replaces the position of indium (In 3+ ) in the lattice, and releases an electron, and then The surface resistance value can be reduced. Preferably, based on the total amount of the indium tin oxide as 100wt%, the content of the tin dioxide is in the range of 3wt% to 10wt%. When the content of the tin dioxide is greater than 10wt%, the transparent conductive layer is not easy to crystallize. More preferably, the tin dioxide content ranges from 5wt% to 7wt%.
根据固体光学理论,当该透明导电层经结晶化后,增加的电子浓度,会使该透明导电层折射率下降,因此,未结晶化前的折射率较结晶化后的折射率高。较佳地,该透明导电层的折射率范围为1.85至2.15。该透明导电层的折射率低于1.85或高于2.15时,该透明导电层会带有颜色,且穿透率会降低,同时,该低电阻图案化的透明导电积层体应用至触控面板时,使用者在观看时易看到透明导电层图案化的痕迹。更佳地,该透明导电层的折射率范围为1.90至2.05。 According to the theory of solid optics, when the transparent conductive layer is crystallized, the increased electron concentration will cause the refractive index of the transparent conductive layer to decrease. Therefore, the refractive index before crystallization is higher than that after crystallization. Preferably, the refractive index of the transparent conductive layer ranges from 1.85 to 2.15. When the refractive index of the transparent conductive layer is lower than 1.85 or higher than 2.15, the transparent conductive layer will be colored and the transmittance will be reduced. At the same time, the low-resistance patterned transparent conductive laminate is applied to a touch panel When viewing, users can easily see patterned traces of the transparent conductive layer. More preferably, the refractive index of the transparent conductive layer ranges from 1.90 to 2.05. the
该透明导电层的厚度范围为20nm至25nm。该透明导电层的膜厚低于20nm时,表面电阻值过高。该透明导电层的膜厚高于25nm时,会使低电阻透明导电积层体的穿透色中的b1 *值变大,而偏黄色调。 The thickness of the transparent conductive layer ranges from 20nm to 25nm. When the film thickness of this transparent conductive layer is less than 20 nm, the surface resistance value becomes too high. When the film thickness of the transparent conductive layer is higher than 25 nm, the value of b 1 * in the transparent color of the low-resistance transparent conductive laminate becomes large, resulting in a yellowish tinge.
<<机能层>> <<Functional Layer>>
该机能层例如但不限于硬涂层、抗眩层、抗指纹层,或自身修复层。较佳地,本发明低电阻透明导电积层体中,该机能层的厚度范围为1μm至10μm。该硬涂层可强化透明基板的硬度。该机能层的膜厚小于1.0μm时,无法满足铅笔硬度为H以上的标准。该机能层的厚度大于10μm时,于制备机能层的过程中,会因硬化导致膜缩,进而导致该透明基板发生卷曲的现象,且制作成本会增加。 The functional layer is for example but not limited to a hard coat layer, an anti-glare layer, an anti-fingerprint layer, or a self-healing layer. Preferably, in the low-resistance transparent conductive laminate of the present invention, the thickness of the functional layer ranges from 1 μm to 10 μm. The hard coat can strengthen the hardness of the transparent substrate. When the film thickness of the functional layer is less than 1.0 μm, the standard of pencil hardness H or higher cannot be satisfied. When the thickness of the functional layer is greater than 10 μm, during the process of preparing the functional layer, the film will shrink due to hardening, which will cause curling of the transparent substrate, and the production cost will increase. the
本发明将就以下实施例来作进一步说明,但应了解的是,所述实施例仅为例示说明用,而不应被解释为本发明实施的限制。 The present invention will be further described with reference to the following examples, but it should be understood that the examples are for illustrative purposes only and should not be construed as limitations on the implementation of the present invention. the
<<合成例1>>形成透明光学调整层用组成物 <<Synthesis example 1>>Composition for forming a transparent optical adjustment layer
将40wt%的丙烯酸系紫外线硬化性树脂、20wt%的丙二醇甲醚,及35wt%的甲基异丁酮进行混合,接着,加入5wt%的光起始剂(厂牌:Ciba制;型号:IRGACURE184)以形成一功能组份,最后,将20重量份的氧化锆(厂牌:堺化学工业株式会社制;型号:SZR-K)分散于该功能组份中,即可获得形成透明光学调整层用组成物,以下简称H-1。 Mix 40wt% of acrylic ultraviolet curable resin, 20wt% of propylene glycol methyl ether, and 35wt% of methyl isobutyl ketone, and then add 5wt% of photoinitiator (brand: Ciba; model: IRGACURE184 ) to form a functional component, and finally, 20 parts by weight of zirconia (brand: Sakai Chemical Industry Co., Ltd.; model: SZR-K) is dispersed in the functional component to obtain a transparent optical adjustment layer The composition used is hereinafter referred to as H-1. the
<<合成例2>> <<Synthesis Example 2>>
将40wt%的丙烯酸系紫外线硬化性树脂、20wt%的丙二醇甲醚,及35wt%的甲基异丁酮进行混合,接着,加入5wt%的光起始剂(厂牌:Ciba制;型号:IRGACURE184)以形成一功能组份,最后,将28重量份的氧化锆(厂牌:堺化学工业株式会社制;型号:SZR-K)分散于该功能组份中,即可获得形成透明光学调整层用组成物,以下简称H-2。 Mix 40wt% of acrylic ultraviolet curable resin, 20wt% of propylene glycol methyl ether, and 35wt% of methyl isobutyl ketone, and then add 5wt% of photoinitiator (brand: Ciba; model: IRGACURE184 ) to form a functional component, and finally, 28 parts by weight of zirconia (brand: Sakai Chemical Industry Co., Ltd.; model: SZR-K) is dispersed in the functional component to obtain a transparent optical adjustment layer The composition is referred to as H-2 hereinafter. the
<<合成例3>> <<Synthesis Example 3>>
将44wt%的丙烯酸系紫外线硬化性树脂及55wt%的甲基异丁酮进行混合,接着,加入1wt%的光起始剂(厂牌:Ciba制;型号:IRGACURE184)以形成一功能组份,最后,将25重量份的二氧化硅(厂牌:日产化学制;型号:MIBK-ST)分散于该功能组份中,即可获得形成透明光学调整层用组成物,以下简称H-3。 Mix 44wt% acrylic UV curable resin and 55wt% methyl isobutyl ketone, then add 1wt% photoinitiator (brand: Ciba; model: IRGACURE184) to form a functional component, Finally, 25 parts by weight of silicon dioxide (manufactured by Nissan Chemical; model: MIBK-ST) was dispersed in the functional component to obtain a composition for forming a transparent optical adjustment layer, hereinafter referred to as H-3. the
<<合成例4>> <<Synthesis Example 4>>
将40wt%的丙烯酸系紫外线硬化性树脂、20wt%的丙二醇甲醚,及35wt%的甲基异丁酮进行混合,接着,加入5wt%的光起始剂(厂牌:Ciba制;型号:IRGACURE184)以形成一功能组份,最后,将36重量份的氧化锆(厂牌:堺化学工业株式会社制;型号:SZR-K)分散于该功能组份中,即可获得形成透明光学调整层用组成物,以下简称H-4。 Mix 40wt% of acrylic ultraviolet curable resin, 20wt% of propylene glycol methyl ether, and 35wt% of methyl isobutyl ketone, and then add 5wt% of photoinitiator (brand: Ciba; model: IRGACURE184 ) to form a functional component, and finally, 36 parts by weight of zirconia (brand: Sakai Chemical Industry Co., Ltd.; model: SZR-K) is dispersed in the functional component to obtain a transparent optical adjustment layer The composition used is hereinafter referred to as H-4. the
<<合成例5>> <<Synthesis Example 5>>
将40wt%的丙烯酸系紫外线硬化性树脂及59wt%的甲基异丁酮进行混合,接着,加入1wt%的光起始剂(厂牌:Ciba制;型号:IRGACURE184)以形成一功能组份,最后,将33重量份的二氧化硅(厂牌:日产化学制;型号:MIBK-ST)分散于该功能组份中,即可获得形成透明光学调整层用组成物,以下简称H-5。 Mix 40wt% acrylic UV curable resin and 59wt% methyl isobutyl ketone, then add 1wt% photoinitiator (brand: Ciba; model: IRGACURE184) to form a functional component, Finally, 33 parts by weight of silicon dioxide (manufactured by Nissan Chemical; model: MIBK-ST) were dispersed in the functional component to obtain a composition for forming a transparent optical adjustment layer, hereinafter referred to as H-5. the
<<实施例1>> <<Example 1>>
使用聚对苯二甲酸乙二酯(TOYOBO制,商品名:A4300,简称PET)制作出一厚度为125μm的聚对苯二甲酸乙二酯透明基板。在聚对苯二甲酸乙二酯透明基板的表面以绕线棒(wire-bar)涂上一包括32.5wt%的压克力树脂及67.5wt%的2-丁酮(methyl ehtyl ketone)的混合溶液。接着,以80℃进行2分钟的干燥处理,然后,以曝光量为200mJ/cm2的紫外光进行照射,以于该聚对苯二甲酸乙二酯透明基板上形成厚度为4μm的硬涂层。 A polyethylene terephthalate transparent substrate with a thickness of 125 μm was produced using polyethylene terephthalate (manufactured by TOYOBO, trade name: A4300, PET for short). A mixture of 32.5wt% acrylic resin and 67.5wt% 2-butanone (methyl ehtyl ketone) was coated on the surface of a polyethylene terephthalate transparent substrate with a wire-bar. solution. Next, dry at 80° C. for 2 minutes, and then irradiate with ultraviolet light with an exposure amount of 200 mJ/cm 2 to form a hard coat layer with a thickness of 4 μm on the polyethylene terephthalate transparent substrate. .
将合成例1的H-1以绕线棒涂布在与硬涂层相反侧的聚对苯二甲酸乙二酯透明基板上,接着,以曝光量为600mJ/cm2的紫外光进行照射,以于该聚对苯二甲酸乙二酯透明基板上形成厚度为0.05μm的透明光学调整层,获得一第一积层体。然后,将该第一积层体置于磁控溅镀腔体中,以硅为靶材,且将腔体真空度降低至3×10-6torr后,于腔体中通入氩气及氧气,其中,氧气与氩气的流量比为0.23,并使腔体的真空度控制在5×10-3torr下。使用4KW的功率,且该第一积层体的温度调控在室温,于该第一积层体的透明光学调整层上形成一厚度为25nm的氧化硅层,获得一第二积层体。接着,以氧化铟锡作为靶材,其中,锡的含量为5wt%,然后,于腔体中通入氩气及氧气,其中,氧气与氩气的流量比为0.02,并使腔体的真空度控制在5× 10-4torr下。使用4KW的功率,且该第二积层体的温度调控在室温,于该第二积层体的氧化硅层上形成一厚度为25nm的透明导电层,即可获得本发明低电阻透明导电积层体。接着,将该低电阻透明导电积层体裁切成6cm×6cm的大小,并垂直浸泡于5wt%的盐酸溶液,且浸泡3分钟,以将部分透明导电层移除,形成导电区及非导电区,接着,置入于150℃的烘箱中,使图案化的透明导电层进行1小时的退火处理,即可获得本发明低电阻图案化的透明导电积层体。 Coat H-1 of Synthesis Example 1 on the polyethylene terephthalate transparent substrate on the side opposite to the hard coat layer with a wire-wound bar, and then irradiate with ultraviolet light with an exposure amount of 600mJ/ cm2 , A transparent optical adjustment layer with a thickness of 0.05 μm was formed on the polyethylene terephthalate transparent substrate to obtain a first laminate. Then, place the first laminated body in the magnetron sputtering chamber, use silicon as the target material, and after reducing the vacuum degree of the chamber to 3×10 -6 torr, argon gas and Oxygen, wherein the flow ratio of oxygen to argon is 0.23, and the vacuum degree of the chamber is controlled at 5×10 -3 torr. Using a power of 4KW and controlling the temperature of the first laminate at room temperature, a silicon oxide layer with a thickness of 25 nm was formed on the transparent optical adjustment layer of the first laminate to obtain a second laminate. Next, indium tin oxide is used as the target material, wherein the content of tin is 5wt%, and then argon and oxygen are introduced into the cavity, wherein the flow ratio of oxygen to argon is 0.02, and the vacuum of the cavity is The temperature is controlled at 5×10 -4 torr. Using a power of 4KW, and the temperature of the second laminate is controlled at room temperature, a transparent conductive layer with a thickness of 25nm is formed on the silicon oxide layer of the second laminate, and the low-resistance transparent conductive layer of the present invention can be obtained. layers. Next, cut the low-resistance transparent conductive laminate into a size of 6cm×6cm, and soak it vertically in a 5wt% hydrochloric acid solution for 3 minutes to remove part of the transparent conductive layer to form a conductive area and a non-conductive area , and then placed in an oven at 150° C., annealing the patterned transparent conductive layer for 1 hour to obtain the low-resistance patterned transparent conductive laminate of the present invention.
<<实施例2至8及比较例1至9>> <<Examples 2 to 8 and Comparative Examples 1 to 9>>
实施例2至8及比较例1至9是以与实施例1相同的步骤来制备低电阻透明导电积层体及低电阻图案化的透明导电积层体,不同的地方如表1及表2所示。 Examples 2 to 8 and Comparative Examples 1 to 9 are prepared in the same steps as in Example 1 to prepare low-resistance transparent conductive laminates and low-resistance patterned transparent conductive laminates. The differences are shown in Table 1 and Table 2 shown. the
<<实施例9>> <<Example 9>>
实施例9是以与实施例1相同的步骤来制备低电阻透明导电积层体及低电阻图案化的透明导电积层体,不同的地方在于制备透明导电层时,以氧化铟锡作为靶材,其中,锡的含量为5wt%,然后,于腔体中通入氩气及氧气,其中,氧气与氩气的流量比为0.01,并使腔体的真空度控制在5×10-4torr下。使用4KW的功率,且该第二积层体的温度调控在室温,于该第二积层体的氧化硅层上形成一厚度为25nm的透明导电层。 Example 9 uses the same steps as in Example 1 to prepare a low-resistance transparent conductive laminate and a low-resistance patterned transparent conductive laminate. The difference is that when preparing the transparent conductive layer, indium tin oxide is used as the target , wherein the content of tin is 5wt%, and then argon and oxygen are introduced into the cavity, wherein the flow ratio of oxygen to argon is 0.01, and the vacuum degree of the cavity is controlled at 5×10 -4 torr Down. Using a power of 4KW and controlling the temperature of the second laminate at room temperature, a transparent conductive layer with a thickness of 25 nm was formed on the silicon oxide layer of the second laminate.
<<比较例10>> <<Comparative example 10>>
比较例10是以与实施例1相同的步骤来制备低电阻透明导电积层体及低电阻图案化的透明导电积层体,不同的地方在于透明导电层不进行退火处理。 In Comparative Example 10, a low-resistance transparent conductive laminate and a low-resistance patterned transparent conductive laminate were prepared in the same steps as in Example 1, except that the transparent conductive layer was not annealed. the
<<评价项目>> <<Evaluation item>>
1.折射率及厚度量测: 1. Refractive index and thickness measurement:
<透明光学调整层的折射率与厚度> <Refractive index and thickness of transparent optical adjustment layer>
(1)以商品名「A4300」,TOYOBO制]PET为基材,利用绕线棒(wire-bar)将合成例1至5的形成透明光学调整层用组成物分别涂布于上述基材表面,依序以80℃干燥2分钟,并以200mJ/cm2的UV能量 进行硬化干燥后,形成透明光学调整层。 (1) Using the product name "A4300" [manufactured by TOYOBO] PET as a base material, the compositions for forming a transparent optical adjustment layer in Synthesis Examples 1 to 5 were coated on the surface of the above base material using a wire-bar. , followed by drying at 80°C for 2 minutes, and hardening and drying with 200mJ/cm 2 of UV energy, to form a transparent optical adjustment layer.
(2)以Atago公司制造阿贝折射计测定折射率。 (2) The refractive index was measured with an Abbe refractometer manufactured by Atago Corporation. the
(3)所述透明光学调整层的厚度以JEOL公司制造的穿透式电子显微镜(型号:JEM-2100F)进行截面观察并量测。 (3) The thickness of the transparent optical adjustment layer was observed and measured by a transmission electron microscope (model: JEM-2100F) manufactured by JEOL Corporation. the
<透明导电层的折射率与厚度> <Refractive index and thickness of transparent conductive layer>
使用Si晶圆为基板,ITO溅镀完成后,将表面有ITO的Si晶圆放入热风烘箱,以150℃烘烤60min,进行结晶化处理,接着,以Sopra公司制造的椭圆偏光仪(Ellipsomete;型号;GES5)进行折射率测定。该透明导电层的厚度以JEOL公司制造的穿透式电子显微镜(型号:JEM-2100F)进行截面观察并量测。 Use the Si wafer as the substrate. After the ITO sputtering is completed, put the Si wafer with ITO on the surface into a hot air oven, bake at 150°C for 60min, and carry out crystallization treatment. Then, use an ellipsometer (Ellipsomete ; model; GES5) for refractive index determination. The thickness of the transparent conductive layer was observed and measured by a transmission electron microscope (model: JEM-2100F) manufactured by JEOL Corporation. the
2.氧化硅层中的硅与氧比例测定方法:使用能量分布式光谱仪(Energy Dispersive Spectrometer;Oxford公司制造;型号:Inca Energy),量测氧化硅层中的硅与氧的原子数比例,x=(氧原子数量/硅原子数量)。 2. Silicon and oxygen ratio determination method in the silicon oxide layer: use an energy distributed spectrometer (Energy Dispersive Spectrometer; manufactured by Oxford Company; model: Inca Energy), measure the atomic number ratio of silicon and oxygen in the silicon oxide layer, x =(number of oxygen atoms/number of silicon atoms). the
3.穿透色量测:将实施例1至9及比较例1至10的低电阻图案化的透明导电积层体分别以JISZ8722标准测定方法且使用分光光谱仪(厂牌:日立;型号:U4100)进行量测,以JIS中定义的L*a*b*表色系的蓝黄色度感指数b*为基准。 3. Transmission color measurement: The low-resistance patterned transparent conductive laminates of Examples 1 to 9 and Comparative Examples 1 to 10 were measured according to the JISZ8722 standard using a spectrometer (brand: Hitachi; model: U4100 ) for measurement, based on the blue-yellow sensitivity index b * of the L * a * b * color system defined in JIS.
4.总光线穿透率(单位:TT%)量测:将实施例1至9及比较例1至10的低电阻图案化的透明导电积层体分别以JISK7105标准测定方法且使用日本电色工业(股)制造的测量仪器(型号NDH-2000)进行量测。 4. Measurement of total light transmittance (unit: TT%): The low-resistance patterned transparent conductive laminates of Examples 1 to 9 and Comparative Examples 1 to 10 were measured according to the JISK7105 standard using Nippon Denshoku The measuring instrument (model NDH-2000) manufactured by Industrial Co., Ltd. was used for measurement. the
5.表面电阻值(单位:Ω/sq)量测:将实施例1至9及比较例1至10的低电阻图案化的透明导电积层体分别以JISK7194标准测定方法且使用三菱油化(股)制造的四端子量测仪(型号:Loretest AMCP-T400MCP-T610)进行量测。 5. Surface resistance value (unit: Ω/sq) measurement: The low-resistance patterned transparent conductive laminates of Examples 1 to 9 and Comparative Examples 1 to 10 were measured according to the JISK7194 standard and using Mitsubishi Oil Chemical ( Stock) manufactured four-terminal measuring instrument (model: Loretest AMCP-T400MCP-T610) for measurement. the
6.反射率(单位:%)差值量测:将实施例1至9及比较例1至10的低电阻图案化的透明导电积层体分别置于分光光谱仪(厂牌:日立;型号:U4100)将光线对准导电区进行量测,以380nm作为初始量测波长并进行照射,并量测至780nm,并记录每个波长的反射强度,以获得一反射光谱(Ak)。接着,将光线对准非导电区,然后,依上述方法 进行量测,以获得一反射光谱(Bk)。反射率差值ΔR通过下式获得: 6. Measurement of the difference in reflectance (unit: %): Place the low-resistance patterned transparent conductive laminates of Examples 1 to 9 and Comparative Examples 1 to 10 in a spectrometer (brand: Hitachi; model: U4100) aim the light at the conductive region for measurement, take 380nm as the initial measurement wavelength and irradiate, and measure to 780nm, and record the reflection intensity of each wavelength to obtain a reflection spectrum (A k ). Next, aim the light at the non-conductive area, and then measure according to the above method to obtain a reflectance spectrum (B k ). The reflectance difference ΔR is obtained by the following formula:
n:量测总个数;Ak及Bk:反射光谱。 n: total number of measurements; A k and B k : reflectance spectra.
7.干涉纹评价:将实施例1至9及比较例1至10的低电阻透明导电积层体置于外观检查桌上,开启日光灯使中心照度在2000LUX以上,借由人眼观测,目视角度为45°至60°,检测距离为50cm至100cm。评价方式如下:○为无彩虹现象;X为有彩虹现象。 7. Interference fringe evaluation: Place the low-resistance transparent conductive laminates of Examples 1 to 9 and Comparative Examples 1 to 10 on the appearance inspection table, turn on the fluorescent lamp so that the central illuminance is above 2000LUX, observe with human eyes, and visually inspect The angle is 45° to 60°, and the detection distance is 50cm to 100cm. The evaluation methods are as follows: ○ means no rainbow phenomenon; X means rainbow phenomenon exists. the
8.图案化评价:将16个黑色胶带分别贴于实施例1至9及比较例1至10的低电阻图案化的透明导电积层体的硬涂层上,接着,借由人眼目视观测图案化的透明导电层,并确认是否可辨别出导电区与非导电区。评价方式如下:◎为无法辨别出导电区与非导电区;○为略可辨别出导电区与非导电区;X为可辨别出导电区与非导电区。 8. Patterning evaluation: 16 black adhesive tapes were respectively pasted on the hard coat layer of the low-resistance patterned transparent conductive laminate of Examples 1 to 9 and Comparative Examples 1 to 10, and then, visually inspected by human eyes Observe the patterned transparent conductive layer and confirm whether conductive areas can be distinguished from non-conductive areas. The evaluation methods are as follows: ◎ means that the conductive area and the non-conductive area cannot be distinguished; ○ means that the conductive area and the non-conductive area can be distinguished slightly; X means that the conductive area and the non-conductive area can be identified. the
表1 Table 1
PC:聚碳酸酯(厂牌:龙华Longhua;型号:PC-811); PC: polycarbonate (brand: Longhua Longhua; model: PC-811);
TAC:三醋酸纤维素酯(厂牌:达辉TacBright;型号:N980)。 TAC: cellulose triacetate (brand: Dahui TacBright; model: N980). the
表2 Table 2
PC:聚碳酸酯(厂牌:龙华Longhua;型号:PC-811); PC: polycarbonate (brand: Longhua Longhua; model: PC-811);
TAC:三醋酸纤维素酯(厂牌:达辉TacBright;型号:N980)。 TAC: cellulose triacetate (brand: Dahui TacBright; model: N980). the
由表1的数据结果可知,通过所述参数条件的调控,使得本发明低电阻透明导电积层体无干涉纹产生,以及,由该低电阻透明导电积层体所形成的低电阻图案化的透明导电积层体于人眼观测下,不易辨别出图案化的透明导电层的导电区与非导电区,有效的改善并减轻现有存在的透明导电层图案化痕迹明显的问题,继而可使得触控面板具有较佳的显示质量。 From the data results in Table 1, it can be seen that through the regulation of the parameter conditions, the low-resistance transparent conductive laminate of the present invention has no interference fringes, and the low-resistance patterned structure formed by the low-resistance transparent conductive laminate is Under the observation of the human eye, the transparent conductive laminate is not easy to distinguish the conductive area and the non-conductive area of the patterned transparent conductive layer, which effectively improves and alleviates the existing problem of obvious patterning traces of the transparent conductive layer, and then can make The touch panel has better display quality. the
由表2的数据结果可知,比较例1至3及5的透明光学调整层的折射率,及该透明基板的折射率与该透明光学调整层的折射率的差值的绝对值不在本案的设计范围内,所获得的低电阻透明导电积层体会有干涉纹的产生,以及,由其所形成的低电阻图案化的透明导电积层体于人眼观测下,具有显著的图案化痕迹。 From the results of the data in Table 2, it can be seen that the refractive index of the transparent optical adjustment layer of Comparative Examples 1 to 3 and 5, and the absolute value of the difference between the refractive index of the transparent substrate and the refractive index of the transparent optical adjustment layer are not included in the design of this case. Within the range, the obtained low-resistance transparent conductive laminate has the generation of interference fringes, and the low-resistance patterned transparent conductive laminate formed therefrom has obvious patterning traces under observation by human eyes. the
虽然比较例4的该透明基板的折射率与该透明光学调整层的折射率的差值的绝对值在本案的设计范围内,但透明光学调整层的折射率未在本案的设计范围内,虽能使所获得的低电阻透明导电积层体无干涉纹产生,但由其所形成的低电阻图案化的透明导电积层体于人眼观测下,具有显著的图案化痕迹。 Although the absolute value of the difference between the refractive index of the transparent substrate of Comparative Example 4 and the refractive index of the transparent optical adjustment layer is within the design range of this case, the refractive index of the transparent optical adjustment layer is not within the design range of this case, although The obtained low-resistance transparent conductive laminate has no interference fringe, but the low-resistance patterned transparent conductive laminate formed by it has obvious patterning traces under the observation of human eyes. the
比较例6及7的透明光学调整层的折射率,及该透明基板的折射率与该透明光学调整层的折射率的差值虽在本案的设计范围内,但氧化硅层的厚度不在本案的设计范围内,虽能使所获得的低电阻透明导电积层体无干涉纹的产生,但由其所形成的低电阻图案化的透明导电积层体于人眼观测下,具有显著的图案化痕迹。 Although the refractive index of the transparent optical adjustment layer of Comparative Examples 6 and 7, and the difference between the refractive index of the transparent substrate and the refractive index of the transparent optical adjustment layer are within the design range of this case, the thickness of the silicon oxide layer is not within the scope of this case. Within the design range, although the obtained low-resistance transparent conductive laminate has no interference fringes, the low-resistance patterned transparent conductive laminate formed by it has significant patterning trace. the
比较例8的透明光学调整层的折射率,及该透明基板的折射率与该透明光学调整层的折射率的差值虽在本案的设计范围内,但氧化硅层中的氧比例不在本案的设计的范围内,虽能使所获得的低电阻透明导电积层体无干涉纹的产生,但由其所形成的低电阻图案化的透明导电积层体于人眼观测下,具有显著的图案化痕迹。 Although the refractive index of the transparent optical adjustment layer of Comparative Example 8 and the difference between the refractive index of the transparent substrate and the refractive index of the transparent optical adjustment layer are within the design range of this case, the oxygen ratio in the silicon oxide layer is not within the range of this case. Within the scope of the design, although the obtained low-resistance transparent conductive laminate has no interference fringes, the low-resistance patterned transparent conductive laminate formed by it has a significant pattern under the observation of the human eye. chemical traces. the
比较例9的透明光学调整层的折射率,及该透明基板的折射率与该透明光学调整层的折射率的差值虽在本案的设计范围内,但透明导电层的厚度不在本案的设计的范围内,虽能使所获得的低电阻透明导电积层体无干涉纹的产生,但由其所形成的低电阻图案化的透明导电积层体于人眼观测下,具有显著的图案化痕迹。 Although the refractive index of the transparent optical adjustment layer of Comparative Example 9 and the difference between the refractive index of the transparent substrate and the refractive index of the transparent optical adjustment layer are within the design range of this case, the thickness of the transparent conductive layer is not within the design range of this case. Within the range, although the obtained low-resistance transparent conductive laminate has no interference fringes, the low-resistance patterned transparent conductive laminate formed by it has obvious patterning traces under human observation. . the
比较例10的透明光学调整层的折射率,及该透明基板的折射率与该透明光学调整层的折射率的差值虽在本案的设计范围内,但透明导电层的表面电阻值以及厚度不在本案的设计的范围内,虽能使所获得的低电阻透明导电积层体无干涉纹的产生,但由其所形成的低电阻图案化的透明导电积层体于人眼观测下,具有显著的图案化痕迹。 Although the refractive index of the transparent optical adjustment layer of Comparative Example 10 and the difference between the refractive index of the transparent substrate and the refractive index of the transparent optical adjustment layer are within the design range of this case, the surface resistance value and thickness of the transparent conductive layer are not. Within the scope of the design of this case, although the obtained low-resistance transparent conductive laminate has no interference fringes, the low-resistance patterned transparent conductive laminate formed by it has obvious pattern traces. the
综上所述,通过所述参数条件的调控,本发明低电阻透明导电积层体无干涉纹产生,以及由该低电阻透明导电积层体所形成的低电阻图案化的透明导电积层体于人眼观测下,不易看到透明导电层图案化的痕迹,应用至触控面板时,可使得触控面板具有较佳的显示质量,所以确实能达成本发明的目的。 In summary, through the control of the parameter conditions, the low-resistance transparent conductive laminate of the present invention does not produce interference fringes, and the low-resistance patterned transparent conductive laminate formed by the low-resistance transparent conductive laminate Under the observation of human eyes, it is difficult to see patterned traces of the transparent conductive layer. When applied to a touch panel, the touch panel can have better display quality, so the object of the present invention can indeed be achieved. the
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102141693 | 2013-11-15 | ||
TW102141693A TWI486258B (en) | 2013-11-15 | 2013-11-15 | Low resistance transparent transparent laminate, low resistance patterned transparent Conductive laminated body and touch panel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104658641A true CN104658641A (en) | 2015-05-27 |
CN104658641B CN104658641B (en) | 2017-04-12 |
Family
ID=53249660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310716908.8A Expired - Fee Related CN104658641B (en) | 2013-11-15 | 2013-12-23 | Low-resistance transparent conductive laminate, low-resistance patterned transparent conductive laminate, and touch panel |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104658641B (en) |
TW (1) | TWI486258B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109491545A (en) * | 2018-12-19 | 2019-03-19 | 武汉华星光电半导体显示技术有限公司 | Touch panel unit and electronic equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0726579A2 (en) * | 1995-02-02 | 1996-08-14 | Teijin Limited | Transparent conductive sheet |
CN1257093A (en) * | 1998-12-17 | 2000-06-21 | 三星综合化学株式会社 | Polymer compositions used as cladding with high refractive index, conductivity and idsphancity |
CN1334588A (en) * | 2000-07-25 | 2002-02-06 | 住友金属矿山株式会社 | Transparent electric conductive base material, its mfg. method and coating liquid for forming transparent coating thereby and display device with said base material |
CN1340202A (en) * | 1999-12-28 | 2002-03-13 | Tdk株式会社 | Transparent conductive film and production method thereof |
JP2010108923A (en) * | 2008-09-30 | 2010-05-13 | Dainippon Printing Co Ltd | Proton conductive electrolyte, proton conductive electrolyte membrane, fuel cell, and process of producing the proton conductive electrolyte membrane |
JP2011140187A (en) * | 2010-01-08 | 2011-07-21 | Teijin Chem Ltd | Laminated film, transparent conductive laminated film, and electronic component |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005294084A (en) * | 2004-04-01 | 2005-10-20 | Oike Ind Co Ltd | Transparent conductive film |
JP4508074B2 (en) * | 2005-02-18 | 2010-07-21 | 日東電工株式会社 | Transparent conductive laminate and touch panel provided with the same |
KR20110038517A (en) * | 2009-10-08 | 2011-04-14 | 엘지이노텍 주식회사 | Surface member for touch panel and manufacturing method therefor |
CN102985898B (en) * | 2010-07-09 | 2016-06-01 | 捷恩智株式会社 | Transparent and electrically conductive film and manufacture method thereof |
WO2013103104A1 (en) * | 2012-01-06 | 2013-07-11 | Jnc株式会社 | Transparent electroconductive film |
-
2013
- 2013-11-15 TW TW102141693A patent/TWI486258B/en not_active IP Right Cessation
- 2013-12-23 CN CN201310716908.8A patent/CN104658641B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0726579A2 (en) * | 1995-02-02 | 1996-08-14 | Teijin Limited | Transparent conductive sheet |
CN1257093A (en) * | 1998-12-17 | 2000-06-21 | 三星综合化学株式会社 | Polymer compositions used as cladding with high refractive index, conductivity and idsphancity |
CN1340202A (en) * | 1999-12-28 | 2002-03-13 | Tdk株式会社 | Transparent conductive film and production method thereof |
CN1334588A (en) * | 2000-07-25 | 2002-02-06 | 住友金属矿山株式会社 | Transparent electric conductive base material, its mfg. method and coating liquid for forming transparent coating thereby and display device with said base material |
JP2010108923A (en) * | 2008-09-30 | 2010-05-13 | Dainippon Printing Co Ltd | Proton conductive electrolyte, proton conductive electrolyte membrane, fuel cell, and process of producing the proton conductive electrolyte membrane |
JP2011140187A (en) * | 2010-01-08 | 2011-07-21 | Teijin Chem Ltd | Laminated film, transparent conductive laminated film, and electronic component |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109491545A (en) * | 2018-12-19 | 2019-03-19 | 武汉华星光电半导体显示技术有限公司 | Touch panel unit and electronic equipment |
CN109491545B (en) * | 2018-12-19 | 2020-12-04 | 武汉华星光电半导体显示技术有限公司 | Touch screen assembly and electronic equipment |
US10996799B2 (en) | 2018-12-19 | 2021-05-04 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Touch screen assembly and electronic device with improved light transmittance |
Also Published As
Publication number | Publication date |
---|---|
TWI486258B (en) | 2015-06-01 |
CN104658641B (en) | 2017-04-12 |
TW201518111A (en) | 2015-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105934735B (en) | Two-side transparent conductive film and its coiling body and touch panel | |
CN102034565B (en) | Transparent conductive film | |
JP4775728B2 (en) | Production apparatus and production method for transparent conductive film | |
TW201108261A (en) | Transparent conductive laminate and transparent touch panel | |
CN107406727A (en) | The The lid component with transparency conducting layer with transparent adhesive layer | |
TWI594890B (en) | Laminate, conductive laminate and touch panel, coating composition and method for manufacturing laminate using the same | |
CN102265354A (en) | Transparent conductive laminate and transparent touch panel using the same | |
JP5521535B2 (en) | Transparent conductive film | |
JP6512094B2 (en) | Laminate, transparent conductive laminate and touch panel | |
JP5691279B2 (en) | Transparent conductive film | |
JP6465855B2 (en) | Transparent conductive film and touch panel | |
JP2017139061A (en) | Transparent conductive film | |
TW201108259A (en) | Film with color homogeneity | |
TWI597742B (en) | Transparent conductive body and touch panel | |
JP5780034B2 (en) | Color tone correction film and transparent conductive film using the same | |
JP2014106779A (en) | Transparent conductive film and touch panel | |
CN104658641B (en) | Low-resistance transparent conductive laminate, low-resistance patterned transparent conductive laminate, and touch panel | |
TWI527063B (en) | Conductive transparent laminates, patterned conductive transparent laminates and touch panels | |
CN206607167U (en) | Half-reflection and half-transmission glass with electro-magnetic screen function | |
CN105719733B (en) | Conductive transparent laminated body, patterned conductive transparent laminated body and touch panel | |
TW201302477A (en) | Optical adjustment film, and transparent conductive film using same | |
JP5659601B2 (en) | Transparent conductive film | |
CN106589437B (en) | Capacitive screen refractive index matching film and preparation method thereof | |
CN105005425A (en) | Transparent conductive optical sheet having high invisibility of pattern | |
TWI754714B (en) | Transparent Conductive Film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170412 Termination date: 20171223 |