CN104649253A - Preparing methods of porous graphene and porous graphene film - Google Patents
Preparing methods of porous graphene and porous graphene film Download PDFInfo
- Publication number
- CN104649253A CN104649253A CN201310581279.2A CN201310581279A CN104649253A CN 104649253 A CN104649253 A CN 104649253A CN 201310581279 A CN201310581279 A CN 201310581279A CN 104649253 A CN104649253 A CN 104649253A
- Authority
- CN
- China
- Prior art keywords
- sodium
- potassium
- graphene
- lithium
- etchant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 391
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 363
- 238000000034 method Methods 0.000 title claims abstract description 119
- 238000006243 chemical reaction Methods 0.000 claims abstract description 37
- 239000002253 acid Substances 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 24
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 24
- 229910000000 metal hydroxide Inorganic materials 0.000 claims abstract description 21
- 150000004692 metal hydroxides Chemical class 0.000 claims abstract description 21
- 229910052744 lithium Inorganic materials 0.000 claims description 69
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 55
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 43
- 229910052700 potassium Inorganic materials 0.000 claims description 43
- 239000011591 potassium Substances 0.000 claims description 43
- 238000002360 preparation method Methods 0.000 claims description 41
- 229910052751 metal Inorganic materials 0.000 claims description 35
- 239000002184 metal Substances 0.000 claims description 34
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 33
- 239000011734 sodium Substances 0.000 claims description 33
- 229910052708 sodium Inorganic materials 0.000 claims description 33
- 229910052799 carbon Inorganic materials 0.000 claims description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- 239000011684 sodium molybdate Substances 0.000 claims description 18
- 235000015393 sodium molybdate Nutrition 0.000 claims description 18
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 claims description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 15
- -1 lanthanide metals Chemical class 0.000 claims description 15
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims description 14
- 239000011609 ammonium molybdate Substances 0.000 claims description 14
- 235000018660 ammonium molybdate Nutrition 0.000 claims description 14
- 229940010552 ammonium molybdate Drugs 0.000 claims description 14
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 claims description 14
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 14
- 238000010306 acid treatment Methods 0.000 claims description 10
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 239000012286 potassium permanganate Substances 0.000 claims description 10
- 229910001388 sodium aluminate Inorganic materials 0.000 claims description 10
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 claims description 10
- 150000002739 metals Chemical class 0.000 claims description 9
- PMJNEQWWZRSFCE-UHFFFAOYSA-N 3-ethoxy-3-oxo-2-(thiophen-2-ylmethyl)propanoic acid Chemical compound CCOC(=O)C(C(O)=O)CC1=CC=CS1 PMJNEQWWZRSFCE-UHFFFAOYSA-N 0.000 claims description 8
- OQVYMXCRDHDTTH-UHFFFAOYSA-N 4-(diethoxyphosphorylmethyl)-2-[4-(diethoxyphosphorylmethyl)pyridin-2-yl]pyridine Chemical compound CCOP(=O)(OCC)CC1=CC=NC(C=2N=CC=C(CP(=O)(OCC)OCC)C=2)=C1 OQVYMXCRDHDTTH-UHFFFAOYSA-N 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- 239000010941 cobalt Substances 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- QLOKJRIVRGCVIM-UHFFFAOYSA-N 1-[(4-methylsulfanylphenyl)methyl]piperazine Chemical compound C1=CC(SC)=CC=C1CN1CCNCC1 QLOKJRIVRGCVIM-UHFFFAOYSA-N 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 7
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 claims description 7
- JQVALDCWTQRVQE-UHFFFAOYSA-N dilithium;dioxido(dioxo)chromium Chemical compound [Li+].[Li+].[O-][Cr]([O-])(=O)=O JQVALDCWTQRVQE-UHFFFAOYSA-N 0.000 claims description 7
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims description 7
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 claims description 7
- AAQNGTNRWPXMPB-UHFFFAOYSA-N dipotassium;dioxido(dioxo)tungsten Chemical compound [K+].[K+].[O-][W]([O-])(=O)=O AAQNGTNRWPXMPB-UHFFFAOYSA-N 0.000 claims description 7
- BNBLBRISEAQIHU-UHFFFAOYSA-N disodium dioxido(dioxo)manganese Chemical compound [Na+].[Na+].[O-][Mn]([O-])(=O)=O BNBLBRISEAQIHU-UHFFFAOYSA-N 0.000 claims description 7
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 claims description 7
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 7
- 229910002096 lithium permanganate Inorganic materials 0.000 claims description 7
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- UMPKMCDVBZFQOK-UHFFFAOYSA-N potassium;iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[K+].[Fe+3] UMPKMCDVBZFQOK-UHFFFAOYSA-N 0.000 claims description 7
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 claims description 7
- KVOIJEARBNBHHP-UHFFFAOYSA-N potassium;oxido(oxo)alumane Chemical compound [K+].[O-][Al]=O KVOIJEARBNBHHP-UHFFFAOYSA-N 0.000 claims description 7
- PNYYBUOBTVHFDN-UHFFFAOYSA-N sodium bismuthate Chemical compound [Na+].[O-][Bi](=O)=O PNYYBUOBTVHFDN-UHFFFAOYSA-N 0.000 claims description 7
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 claims description 7
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 claims description 7
- HVTHJRMZXBWFNE-UHFFFAOYSA-J sodium zincate Chemical compound [OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Zn+2] HVTHJRMZXBWFNE-UHFFFAOYSA-J 0.000 claims description 7
- UYLYBEXRJGPQSH-UHFFFAOYSA-N sodium;oxido(dioxo)niobium Chemical compound [Na+].[O-][Nb](=O)=O UYLYBEXRJGPQSH-UHFFFAOYSA-N 0.000 claims description 7
- 229940071182 stannate Drugs 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 229910000166 zirconium phosphate Inorganic materials 0.000 claims description 7
- JHWIEAWILPSRMU-UHFFFAOYSA-N 2-methyl-3-pyrimidin-4-ylpropanoic acid Chemical compound OC(=O)C(C)CC1=CC=NC=N1 JHWIEAWILPSRMU-UHFFFAOYSA-N 0.000 claims description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 6
- MUBKMWFYVHYZAI-UHFFFAOYSA-N [Al].[Cu].[Zn] Chemical compound [Al].[Cu].[Zn] MUBKMWFYVHYZAI-UHFFFAOYSA-N 0.000 claims description 6
- IOUCSUBTZWXKTA-UHFFFAOYSA-N dipotassium;dioxido(oxo)tin Chemical compound [K+].[K+].[O-][Sn]([O-])=O IOUCSUBTZWXKTA-UHFFFAOYSA-N 0.000 claims description 6
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 claims description 6
- BQFYGYJPBUKISI-UHFFFAOYSA-N potassium;oxido(dioxo)vanadium Chemical compound [K+].[O-][V](=O)=O BQFYGYJPBUKISI-UHFFFAOYSA-N 0.000 claims description 6
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 150000004679 hydroxides Chemical class 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- CAUJDGWBBPVGSB-UHFFFAOYSA-L O[Mn](O)(=O)=O.N.N Chemical compound O[Mn](O)(=O)=O.N.N CAUJDGWBBPVGSB-UHFFFAOYSA-L 0.000 claims description 4
- TVQLLNFANZSCGY-UHFFFAOYSA-N disodium;dioxido(oxo)tin Chemical compound [Na+].[Na+].[O-][Sn]([O-])=O TVQLLNFANZSCGY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- GALOTNBSUVEISR-UHFFFAOYSA-N molybdenum;silicon Chemical compound [Mo]#[Si] GALOTNBSUVEISR-UHFFFAOYSA-N 0.000 claims description 4
- PXLIDIMHPNPGMH-UHFFFAOYSA-N sodium chromate Chemical compound [Na+].[Na+].[O-][Cr]([O-])(=O)=O PXLIDIMHPNPGMH-UHFFFAOYSA-N 0.000 claims description 4
- 229940079864 sodium stannate Drugs 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- MANBDHUBXBMZNV-UHFFFAOYSA-N [V]=[Si] Chemical compound [V]=[Si] MANBDHUBXBMZNV-UHFFFAOYSA-N 0.000 claims description 3
- JOSWYUNQBRPBDN-UHFFFAOYSA-P ammonium dichromate Chemical compound [NH4+].[NH4+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O JOSWYUNQBRPBDN-UHFFFAOYSA-P 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 2
- 229910052746 lanthanum Inorganic materials 0.000 claims 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims 2
- 239000011574 phosphorus Substances 0.000 claims 2
- 229910052698 phosphorus Inorganic materials 0.000 claims 2
- 239000011148 porous material Substances 0.000 abstract description 21
- 238000010894 electron beam technology Methods 0.000 abstract description 16
- 238000005530 etching Methods 0.000 abstract description 13
- 239000000463 material Substances 0.000 abstract description 8
- 238000011160 research Methods 0.000 abstract description 8
- 239000003795 chemical substances by application Substances 0.000 abstract description 7
- 238000002156 mixing Methods 0.000 abstract description 4
- 238000012545 processing Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 66
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 44
- 239000007787 solid Substances 0.000 description 39
- 239000006185 dispersion Substances 0.000 description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 30
- 239000007864 aqueous solution Substances 0.000 description 28
- 239000000243 solution Substances 0.000 description 28
- 239000002105 nanoparticle Substances 0.000 description 25
- 229910021642 ultra pure water Inorganic materials 0.000 description 23
- 239000012498 ultrapure water Substances 0.000 description 23
- 229910052757 nitrogen Inorganic materials 0.000 description 22
- 238000006722 reduction reaction Methods 0.000 description 22
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 20
- 230000009467 reduction Effects 0.000 description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 15
- 239000007788 liquid Substances 0.000 description 14
- 239000000725 suspension Substances 0.000 description 14
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 12
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- UNJPQTDTZAKTFK-UHFFFAOYSA-K cerium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ce+3] UNJPQTDTZAKTFK-UHFFFAOYSA-K 0.000 description 8
- 230000007547 defect Effects 0.000 description 8
- 239000002612 dispersion medium Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 6
- 238000004108 freeze drying Methods 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 239000001307 helium Substances 0.000 description 6
- 229910052734 helium Inorganic materials 0.000 description 6
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- JYLNVJYYQQXNEK-UHFFFAOYSA-N 3-amino-2-(4-chlorophenyl)-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(CN)C1=CC=C(Cl)C=C1 JYLNVJYYQQXNEK-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000004299 exfoliation Methods 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 125000004043 oxo group Chemical group O=* 0.000 description 5
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 5
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 4
- 239000005457 ice water Substances 0.000 description 4
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- HEUMNKZPHGRBKR-UHFFFAOYSA-N [Na].[Cr] Chemical compound [Na].[Cr] HEUMNKZPHGRBKR-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- CGFYHILWFSGVJS-UHFFFAOYSA-N silicic acid;trioxotungsten Chemical compound O[Si](O)(O)O.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 CGFYHILWFSGVJS-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000004317 sodium nitrate Substances 0.000 description 3
- 235000010344 sodium nitrate Nutrition 0.000 description 3
- MFWFDRBPQDXFRC-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;vanadium Chemical compound [V].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O MFWFDRBPQDXFRC-LNTINUHCSA-N 0.000 description 2
- YOBOXHGSEJBUPB-MTOQALJVSA-N (z)-4-hydroxypent-3-en-2-one;zirconium Chemical compound [Zr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O YOBOXHGSEJBUPB-MTOQALJVSA-N 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 2
- BWLBGMIXKSTLSX-UHFFFAOYSA-N 2-hydroxyisobutyric acid Chemical compound CC(C)(O)C(O)=O BWLBGMIXKSTLSX-UHFFFAOYSA-N 0.000 description 2
- XBIUWALDKXACEA-UHFFFAOYSA-N 3-[bis(2,4-dioxopentan-3-yl)alumanyl]pentane-2,4-dione Chemical compound CC(=O)C(C(C)=O)[Al](C(C(C)=O)C(C)=O)C(C(C)=O)C(C)=O XBIUWALDKXACEA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- XEHUIDSUOAGHBW-UHFFFAOYSA-N chromium;pentane-2,4-dione Chemical compound [Cr].CC(=O)CC(C)=O.CC(=O)CC(C)=O.CC(=O)CC(C)=O XEHUIDSUOAGHBW-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- ZKXWKVVCCTZOLD-UHFFFAOYSA-N copper;4-hydroxypent-3-en-2-one Chemical compound [Cu].CC(O)=CC(C)=O.CC(O)=CC(C)=O ZKXWKVVCCTZOLD-UHFFFAOYSA-N 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical group O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- WHQSYGRFZMUQGQ-UHFFFAOYSA-N n,n-dimethylformamide;hydrate Chemical group O.CN(C)C=O WHQSYGRFZMUQGQ-UHFFFAOYSA-N 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- BMGNSKKZFQMGDH-FDGPNNRMSA-L nickel(2+);(z)-4-oxopent-2-en-2-olate Chemical compound [Ni+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O BMGNSKKZFQMGDH-FDGPNNRMSA-L 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000009210 therapy by ultrasound Methods 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- NHXVNEDMKGDNPR-UHFFFAOYSA-N zinc;pentane-2,4-dione Chemical compound [Zn+2].CC(=O)[CH-]C(C)=O.CC(=O)[CH-]C(C)=O NHXVNEDMKGDNPR-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- HSNVNALJRSJDHT-UHFFFAOYSA-N P(=O)(=O)[Mo] Chemical compound P(=O)(=O)[Mo] HSNVNALJRSJDHT-UHFFFAOYSA-N 0.000 description 1
- MPLPXORNGVOUDR-UHFFFAOYSA-L [Cr](=O)(=O)(O)O[Cr](=O)(=O)O.[Na] Chemical compound [Cr](=O)(=O)(O)O[Cr](=O)(=O)O.[Na] MPLPXORNGVOUDR-UHFFFAOYSA-L 0.000 description 1
- WYDJZNNBDSIQFP-UHFFFAOYSA-N [O-2].[Zr+4].[Li+] Chemical compound [O-2].[Zr+4].[Li+] WYDJZNNBDSIQFP-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940045348 brown mixture Drugs 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005685 electric field effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- YXEUGTSPQFTXTR-UHFFFAOYSA-K lanthanum(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[La+3] YXEUGTSPQFTXTR-UHFFFAOYSA-K 0.000 description 1
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- ZSSVQAGPXAAOPV-UHFFFAOYSA-K molybdenum trichloride Chemical compound Cl[Mo](Cl)Cl ZSSVQAGPXAAOPV-UHFFFAOYSA-K 0.000 description 1
- BQBYSLAFGRVJME-UHFFFAOYSA-L molybdenum(2+);dichloride Chemical compound Cl[Mo]Cl BQBYSLAFGRVJME-UHFFFAOYSA-L 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 150000002927 oxygen compounds Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 description 1
- RPESBQCJGHJMTK-UHFFFAOYSA-I pentachlorovanadium Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[V+5] RPESBQCJGHJMTK-UHFFFAOYSA-I 0.000 description 1
- AMAGVGJJHVRPSI-UHFFFAOYSA-N potassium vanadium Chemical compound [K].[V] AMAGVGJJHVRPSI-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种多孔石墨烯及多孔石墨烯膜的制备方法。The invention relates to a method for preparing porous graphene and a porous graphene film.
背景技术Background technique
石墨烯具有优异的电学、热学和机械性能,并且具有较高的理论比表面积(理论计算值为2600m2/g)。在过去的几年里,很多的方法被用来制备石墨烯,包括化学气相沉积法、外延生长法、物理剥离法、化学还原法、液相超声剥离法以及自下而上合成法。其中,化学还原法是目前材料科学领域使用最广泛的制备石墨烯的方法。化学还原法又被称作还原石墨烯氧化物法,按照还原方式可以分为化学试剂还原、电化学还原、高温热还原、溶剂热还原和光化学还原。石墨烯氧化物表面含有多种含氧官能团和缺陷,经过还原之后,大部分的含氧官能团可以被除去,但是缺陷仍然会留在石墨烯片层上。为了得到更加完美的石墨烯,化学气相沉积等方法被用来修复通过化学还原方法制备的石墨烯表面的缺陷。Graphene has excellent electrical, thermal and mechanical properties, and has a high theoretical specific surface area (theoretical calculation value is 2600m 2 /g). In the past few years, many methods have been used to prepare graphene, including chemical vapor deposition, epitaxial growth, physical exfoliation, chemical reduction, liquid-phase ultrasonic exfoliation, and bottom-up synthesis. Among them, the chemical reduction method is currently the most widely used method for preparing graphene in the field of materials science. The chemical reduction method is also called the reduced graphene oxide method. According to the reduction method, it can be divided into chemical reagent reduction, electrochemical reduction, high temperature thermal reduction, solvothermal reduction and photochemical reduction. The surface of graphene oxide contains a variety of oxygen-containing functional groups and defects. After reduction, most of the oxygen-containing functional groups can be removed, but the defects will still remain on the graphene sheet. In order to obtain more perfect graphene, methods such as chemical vapor deposition are used to repair the defects on the surface of graphene prepared by chemical reduction.
多孔石墨烯,是在石墨烯片层结构上引入纳米级的孔(Xu,P.;Yang,J.;Wang,K.;Zhou,Z.;Shen,P.Porous Graphene:Properties,Preparation,and Potential Applications.Chin.Sci.Bull.2012,57(23),2948-2955.),即对石墨烯表面“缺陷”进行设计和加工得到的产物。对于多孔石墨烯的研究,是对其表面缺陷结构的利用。基于石墨烯的优异性能和二维纳米结构,多孔石墨烯表面的孔结构可以赋予其新的性能和应用,比如,气体的分离与纯化、DNA测序、海水脱盐、离子通道。Porous graphene is the introduction of nanoscale pores on the graphene sheet structure (Xu, P.; Yang, J.; Wang, K.; Zhou, Z.; Shen, P. Porous Graphene: Properties, Preparation, and Potential Applications.Chin.Sci.Bull.2012,57(23),2948-2955.), that is, the product obtained by designing and processing the "defects" on the surface of graphene. The research on porous graphene is the utilization of its surface defect structure. Based on the excellent performance and two-dimensional nanostructure of graphene, the pore structure on the surface of porous graphene can endow it with new properties and applications, such as gas separation and purification, DNA sequencing, seawater desalination, and ion channels.
目前,多孔石墨烯主要是利用高能物质对石墨烯片层进行轰击或辐射,发生刻蚀获得纳米级的孔结构,这些高能物质有氦离子、电子束和激光。然而,由于这些方法需要一定的设备,成本高、产率低,因此,多孔石墨烯的研究工作主要集中在计算科学和器件研究领域,对其在材料领域的性能研究相对较少。因此,发展一种简单、高效的制备多孔石墨烯的方法,实现多孔石墨烯的大量制备,对于多孔石墨烯在材料科学领域的研究和应用的意义很大。At present, porous graphene mainly uses high-energy substances to bombard or irradiate graphene sheets, and etches to obtain nanoscale pore structures. These high-energy substances include helium ions, electron beams and lasers. However, because these methods require certain equipment, high cost, and low yield, the research work on porous graphene is mainly concentrated in the field of computing science and device research, and there are relatively few studies on its performance in the field of materials. Therefore, developing a simple and efficient method for preparing porous graphene and realizing the large-scale preparation of porous graphene is of great significance for the research and application of porous graphene in the field of material science.
发明内容Contents of the invention
本发明的目的是提供一种简单、高效的制备多孔石墨烯的方法,以及制备多孔石墨烯膜的方法。The object of the present invention is to provide a simple and efficient method for preparing porous graphene and a method for preparing porous graphene membrane.
碳热反应是一种经典的化学反应,在高温的条件下,绝大部分含有金属和氧元素的化合物可以被碳还原为低价态的金属氧化物或金属单质,甚至形成金属碳化物。在碳热反应中,碳作为还原剂,被含有金属和氧元素的化合物氧化生成一氧化碳或者二氧化碳。本发明的发明人意外地发现,纳米材料具有较高的表面能,石墨烯作为一种二维的碳纳米材料,与金属和氧元素的化合物纳米颗粒可以在相对较低的温度下发生碳热反应。由于石墨烯是由单层碳原子形成的二维纳米结构,表面碳原子被氧化之后在表面留下缺陷,即孔结构,形成多孔石墨烯。Carbothermal reaction is a classic chemical reaction. Under high temperature conditions, most compounds containing metal and oxygen can be reduced by carbon to low-valence metal oxides or metal elements, and even form metal carbides. In a carbothermal reaction, carbon is used as a reducing agent and is oxidized by a compound containing metal and oxygen to produce carbon monoxide or carbon dioxide. The inventors of the present invention unexpectedly found that nanomaterials have high surface energy, and graphene, as a two-dimensional carbon nanomaterial, can generate carbon heat at a relatively low temperature with metal and oxygen compound nanoparticles reaction. Since graphene is a two-dimensional nanostructure formed by a single layer of carbon atoms, after the surface carbon atoms are oxidized, defects, that is, pore structures, are left on the surface to form porous graphene.
基于上述发现,本发明提供了一种多孔石墨烯的制备方法,其中,该方法包括,将石墨烯和/或石墨烯氧化物与刻蚀剂混合,得到混合物;在无氧条件下,对混合物进行碳热反应,并进行酸处理以除去未反应的或反应后的刻蚀剂;所述刻蚀剂为金属氧酸盐、金属氢氧化物和金属氧化物中的一种或多种。Based on the above findings, the present invention provides a method for preparing porous graphene, wherein the method includes mixing graphene and/or graphene oxide with an etchant to obtain a mixture; Carbothermal reaction is carried out, and acid treatment is carried out to remove unreacted or reacted etchant; the etchant is one or more of metal oxo salt, metal hydroxide and metal oxide.
本发明还提供了一种多孔石墨烯膜的制备方法,其中,该方法包括,将刻蚀剂分散在石墨烯和/或石墨烯氧化物膜上,在无氧条件下进行碳热反应或者电子束刻蚀,并进行酸处理以除去反应后或刻蚀后的刻蚀剂;所述刻蚀剂为金属氧酸盐、金属氢氧化物和金属氧化物中的一种或多种。The present invention also provides a method for preparing a porous graphene film, wherein the method comprises: dispersing an etchant on the graphene and/or graphene oxide film, and performing carbon thermal reaction or electronic Beam etching, and acid treatment to remove the reacted or etched etchant; the etchant is one or more of metal oxo salts, metal hydroxides and metal oxides.
本发明提供的多孔石墨烯,孔径在1-200nm之间,出孔率能达到5-80%。The porous graphene provided by the invention has a pore diameter between 1-200nm and a porosity rate of 5-80%.
多孔石墨烯的研究丰富了石墨烯衍生物的范畴,有效的利用了石墨烯衍生物表面的缺陷结构,在锂离子电池、超级电容器电极、催化材料等涉及组分迁移的体系中,可以有效的提高电解液或反应物的扩散和迁移,有利于材料性能的提高。The research on porous graphene enriches the category of graphene derivatives, and effectively utilizes the defect structure on the surface of graphene derivatives. In lithium-ion batteries, supercapacitor electrodes, catalytic materials and other systems involving component migration, it can effectively Improving the diffusion and migration of electrolyte or reactants is beneficial to the improvement of material properties.
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。Other features and advantages of the present invention will be described in detail in the following detailed description.
附图说明Description of drawings
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the description, together with the following specific embodiments, are used to explain the present invention, but do not constitute a limitation to the present invention. In the attached picture:
图1为实施例1.1制备得到的多孔石墨烯样品的TEM照片;Fig. 1 is the TEM photograph of the porous graphene sample that embodiment 1.1 prepares;
图2为实施例2.7制备得到的多孔石墨烯样品的TEM照片;Fig. 2 is the TEM photograph of the porous graphene sample that embodiment 2.7 prepares;
图3为实施例3.1制备得到的多孔石墨烯样品的SEM照片;Fig. 3 is the SEM photograph of the porous graphene sample that embodiment 3.1 prepares;
图4为实施例6.1制备的多孔石墨烯薄膜样品的SEM照片;Fig. 4 is the SEM photo of the porous graphene film sample prepared by embodiment 6.1;
图5为实施例7.1制备的多孔石墨烯薄膜样品的SEM照片。Fig. 5 is the SEM photo of the porous graphene film sample prepared in Example 7.1.
具体实施方式Detailed ways
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。Specific embodiments of the present invention will be described in detail below. It should be understood that the specific embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.
本发明中,术语“石墨烯氧化物”为带有含氧官能团的石墨烯。In the present invention, the term "graphene oxide" refers to graphene with oxygen-containing functional groups.
本发明提供了一种多孔石墨烯的制备方法,其中,该方法包括,将石墨烯和/或石墨烯氧化物与刻蚀剂混合,得到混合物;在无氧条件下,对混合物进行碳热反应,并进行酸处理以除去未反应的以及反应后的刻蚀剂;所述刻蚀剂为金属氧酸盐、金属氢氧化物和金属氧化物中的一种或多种。The invention provides a method for preparing porous graphene, wherein the method comprises: mixing graphene and/or graphene oxide with an etchant to obtain a mixture; and performing a carbothermal reaction on the mixture under an oxygen-free condition , and carry out acid treatment to remove unreacted and reacted etchant; the etchant is one or more of metal oxo-salt, metal hydroxide and metal oxide.
根据本发明所述的方法,只要将石墨烯和/或石墨烯氧化物与刻蚀剂混合,在无氧条件下进行碳热反应并进行酸处理以除去未反应的以及反应后的刻蚀剂即可获得多孔石墨烯,本发明对石墨烯和/或石墨烯氧化物与刻蚀剂的用量没有特别要求,优选情况下,所述石墨烯和/或石墨烯氧化物与刻蚀剂的质量比为0.1-10:1,更优选为0.5-2:1时,可以获得孔大小、孔分布可调多孔石墨烯。According to the method of the present invention, as long as graphene and/or graphene oxide is mixed with etchant, carbon thermal reaction is carried out under oxygen-free conditions and acid treatment is carried out to remove unreacted and reacted etchant Can obtain porous graphene, the present invention does not have special requirement to the consumption of graphene and/or graphene oxide and etchant, preferably, the quality of described graphene and/or graphene oxide and etchant When the ratio is 0.1-10:1, more preferably 0.5-2:1, porous graphene with adjustable pore size and pore distribution can be obtained.
本发明中,对石墨烯和/或石墨烯氧化物的应用形式没有特别要求,例如,石墨烯和/或石墨烯氧化物可以以粉体形式与刻蚀剂混合,也可以以分散液的形式与刻蚀剂混合,优选情况下,所述石墨烯和/或石墨烯氧化物以分散液的形式与刻蚀剂混合,以便使石墨烯和/或石墨烯氧化物与刻蚀剂混合的更均匀,从而获得孔分布可调的多孔石墨烯。In the present invention, there is no special requirement on the application form of graphene and/or graphene oxide, for example, graphene and/or graphene oxide can be mixed with etchant in powder form, also can be in the form of dispersion liquid Mixed with etchant, preferably, the graphene and/or graphene oxide is mixed with etchant in the form of a dispersion, so that the graphene and/or graphene oxide is mixed with etchant more effectively Uniform, thereby obtaining porous graphene with tunable pore distribution.
当所述石墨烯和/或石墨烯氧化物以分散液的形式与刻蚀剂混合时,所述石墨烯和/或石墨烯氧化物的分散液的浓度优选为0.1-20mg/mL,更优选为0.5-4mg/mL。所述石墨烯和/或石墨烯氧化物的分散液可以由石墨烯和/或石墨烯氧化物分散在分散介质中形成。本发明对所述分散介质没有特别要求,只要能形成所述石墨烯和/或石墨烯氧化物的分散液即可,优选情况下,所述分散介质为水、甲醇、乙醇或N,N-二甲基甲酰胺。本发明对形成所述石墨烯和/或石墨烯氧化物的分散液的方法没有特别要求,可选地,还可以将所述石墨烯和/或石墨烯氧化物与分散介质混合后进行超声处理,可以获得较均匀的所述石墨烯和/或石墨烯氧化物的分散液。When the graphene and/or graphene oxide is mixed with the etchant in the form of a dispersion, the concentration of the dispersion of the graphene and/or graphene oxide is preferably 0.1-20 mg/mL, more preferably 0.5-4mg/mL. The dispersion of graphene and/or graphene oxide may be formed by dispersing graphene and/or graphene oxide in a dispersion medium. The present invention has no special requirements on the dispersion medium, as long as it can form a dispersion liquid of the graphene and/or graphene oxide, preferably, the dispersion medium is water, methanol, ethanol or N,N- dimethylformamide. The present invention does not have special requirement to the method for forming the dispersion liquid of described graphene and/or graphene oxide, optionally, can also carry out ultrasonic treatment after described graphene and/or graphene oxide is mixed with dispersion medium , a more uniform dispersion of the graphene and/or graphene oxide can be obtained.
本发明中,所述刻蚀剂可以以粉体形式与石墨烯和/或石墨烯氧化物混合,也可以以溶液或分散液的形式与石墨烯和/或石墨烯氧化物混合,优选情况下,所述刻蚀剂以溶液或分散液的形式与石墨烯和/或石墨烯氧化物混合。刻蚀剂溶液或刻蚀剂分散液的浓度优选为0.01-10mol/L,更优选为0.1-1mol/L。所述刻蚀剂溶液或刻蚀剂分散液的形成由所述刻蚀剂确定。当所述刻蚀剂能够溶于分散液时,即形成所述刻蚀剂溶液,当所述刻蚀剂不溶于分散液时,即形成刻蚀剂分散液。In the present invention, the etchant can be mixed with graphene and/or graphene oxide in powder form, or can be mixed with graphene and/or graphene oxide in the form of solution or dispersion liquid, preferably , the etchant is mixed with graphene and/or graphene oxide in the form of solution or dispersion. The concentration of the etchant solution or etchant dispersion is preferably 0.01-10 mol/L, more preferably 0.1-1 mol/L. The formation of the etchant solution or etchant dispersion is determined by the etchant. When the etchant is soluble in the dispersion, the etchant solution is formed, and when the etchant is insoluble in the dispersion, the etchant dispersion is formed.
本发明中,将石墨烯和/或石墨烯氧化物与刻蚀剂混合,得到混合物,为了保持混合物中石墨烯和/或石墨烯氧化物的片层结构,优选情况下,对石墨烯和/或石墨烯氧化物与刻蚀剂混合形成的混合物使用冷冻干燥机进行干燥,得到干燥后的产物,然后再对干燥后的产物进行碳热反应。本发明对所述冷冻干燥的条件没有特别要求,可以采用本领域技术人员已知的冷冻干燥的条件即可。优选情况下,所述冷冻干燥的条件包括:温度为(-80)-(-50)℃,时间为6-72h。In the present invention, graphene and/or graphene oxide are mixed with etchant to obtain a mixture, in order to keep the sheet structure of graphene and/or graphene oxide in the mixture, preferably, for graphene and/or Or the mixture formed by mixing the graphene oxide and the etchant is dried using a freeze dryer to obtain a dried product, and then the dried product is subjected to a carbon thermal reaction. The present invention has no special requirements on the freeze-drying conditions, and freeze-drying conditions known to those skilled in the art can be used. Preferably, the freeze-drying conditions include: the temperature is (-80)-(-50)°C, and the time is 6-72h.
本发明中,石墨烯和石墨烯氧化物可以直接商购获得,也可以根据本领域技术人员已知的方法进行制备得到,本发明没有特别要求。例如,所述石墨烯氧化物可以通过Hummers方法制备得到(Hummers,W.;Offeman,R.Preparation of Graphitic Oxide.J.Am.Chem.Soc.1958,80(6),1339.);所述石墨烯可以通过还原石墨烯氧化物方法(还原方法包括,化学试剂还原、电化学还原、高温热还原、水/溶剂热还原)、化学气相沉积法、物理剥离方法、超声分散法、轴向外延生长等方法制备。In the present invention, graphene and graphene oxide can be directly purchased commercially, or can be prepared according to methods known to those skilled in the art, and there is no special requirement in the present invention. For example, the graphene oxide can be prepared by the Hummers method (Hummers, W.; Offeman, R. Preparation of Graphic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339.); Graphene can be reduced by graphene oxide methods (reduction methods include chemical reagent reduction, electrochemical reduction, high temperature thermal reduction, water/solvothermal reduction), chemical vapor deposition, physical exfoliation, ultrasonic dispersion, axial epitaxy Growth and other methods of preparation.
本发明中,所述无氧条件指的是没有氧气存在的条件,以避免在氧气存在下,碳被氧化成CO和/或CO2造成碳消耗。所述无氧条件可以为惰性气体(例如氮气和/或氩气)存在的条件,也可以为真空条件,本发明没有特别要求。In the present invention, the oxygen-free condition refers to a condition without oxygen, so as to avoid carbon consumption caused by oxidation of carbon to CO and/or CO 2 in the presence of oxygen. The oxygen-free condition may be a condition in the presence of an inert gas (such as nitrogen and/or argon), or a vacuum condition, which is not particularly required in the present invention.
所述酸处理,指的是将经过碳热反应的产物用酸浸泡,以除去未反应的以及反应后的刻蚀剂。所述酸可以采用本领域技术人员已知的任意一种酸,例如盐酸、磷酸、硫酸、硝酸等等,优选为盐酸。所述酸的用量本发明没有特别要求,只要能将未反应的以及反应后的刻蚀剂完全去除即可,优选情况下,所述酸与最初加入的刻蚀剂的摩尔比为10-50:1。The acid treatment refers to soaking the carbothermal reaction product with acid to remove unreacted and reacted etchant. The acid can be any acid known to those skilled in the art, such as hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, etc., preferably hydrochloric acid. The amount of the acid used in the present invention is not particularly required, as long as the unreacted and reacted etchant can be completely removed, preferably, the molar ratio of the acid to the initially added etchant is 10-50 :1.
根据本发明所述的方法,本发明对所述金属氧酸盐的种类没有特别要求,优选情况下,所述金属氧酸盐可以为钼酸钠、钼酸钾、钨酸锂、钨酸钠、钨酸钾、锡酸锂、锡酸钠、锡酸钾、铝酸锂、铝酸钠、铝酸钾、钛酸锂、钛酸钠、钛酸钾、钛酸锂、钒酸钠、钒酸钾、铋酸锂、铋酸钠、铋酸钾、高锰酸锂、高锰酸钾、高锰酸钠、锰酸锂、锰酸钾、锰酸钠、重铬酸钾、重铬酸钠、铬酸锂、铬酸钾、铬酸钠、锆酸锂、锆酸钠、锆酸钾、高铁酸锂、高铁酸钠、高铁酸钾、锌酸锂、锌酸钠、锌酸钾、铌酸锂、铌酸钠、铌酸钾、钴酸锂、钴酸钠、钴酸钾、镍酸锂、镍酸钠、镍酸钾、硅钼酸、硅钨酸、硅钒酸、钼酸铵、钨酸铵、钒酸铵、锰酸铵、重铬酸铵、铬酸铵、镍酸铵、磷钨酸、磷钼酸和磷钒酸中的一种或多种。According to the method of the present invention, the present invention has no special requirements on the type of the oxometalate. Preferably, the oxometalate can be sodium molybdate, potassium molybdate, lithium tungstate, sodium tungstate , potassium tungstate, lithium stannate, sodium stannate, potassium stannate, lithium aluminate, sodium aluminate, potassium aluminate, lithium titanate, sodium titanate, potassium titanate, lithium titanate, sodium vanadate, vanadium Potassium bismuthate, lithium bismuthate, sodium bismuthate, potassium bismuthate, lithium permanganate, potassium permanganate, sodium permanganate, lithium manganate, potassium manganate, sodium manganate, potassium dichromate, dichromic acid Sodium, lithium chromate, potassium chromate, sodium chromate, lithium zirconate, sodium zirconate, potassium zirconate, lithium ferrate, sodium ferrate, potassium ferrate, lithium zincate, sodium zincate, potassium zincate, Lithium Niobate, Sodium Niobate, Potassium Niobate, Lithium Cobaltate, Sodium Cobaltate, Potassium Cobaltate, Lithium Nickelate, Sodium Nickelate, Potassium Nickelate, Silicon Molybdenum Acid, Silicon Tungstic Acid, Silicon Vanadate Acid, Molybdenum Acid One or more of ammonium, ammonium tungstate, ammonium vanadate, ammonium manganate, ammonium dichromate, ammonium chromate, ammonium nickelate, phosphotungstic acid, phosphomolybdic acid and phosphovanadate.
根据本发明所述的方法,本发明对所述金属氢氧化物的种类没有特别要求,优选情况下,所述金属氢氧化物可以为第ⅡA、ⅢA、ⅠB、ⅡB、ⅣB、ⅤB、ⅥB、Ⅷ族和镧系金属中的一种或多种的氢氧化物。更优选情况下,所述金属氢氧化物为镁、铝、铜、锌、镉、钛、锆、钒、铌、钼、铁、钴、镍、钌和镧中的一种或多种金属的氢氧化物。According to the method of the present invention, the present invention has no special requirements on the type of the metal hydroxide, preferably, the metal hydroxide can be the first IIA, IIIA, IB, IIB, IVB, VB, VIB, One or more hydroxides of Group VIII and lanthanide metals. More preferably, the metal hydroxide is one or more metals of magnesium, aluminum, copper, zinc, cadmium, titanium, zirconium, vanadium, niobium, molybdenum, iron, cobalt, nickel, ruthenium and lanthanum hydroxide.
根据本发明所述的方法,本发明对所述金属氧化物的种类没有特别要求,优选情况下,所述金属氧化物为第ⅢA、ⅠB、ⅡB、ⅣB、ⅤB和Ⅷ族金属中的一种或多种的氧化物。更优选情况下,所述金属氧化物为铝、铜、锌、铬、锆、钒、铁、钴和镍中的一种或多种金属的氧化物。According to the method of the present invention, the present invention has no special requirements on the type of the metal oxide, preferably, the metal oxide is one of the metals of Group IIIA, IB, IIB, IVB, VB and VIII or multiple oxides. More preferably, the metal oxide is an oxide of one or more metals selected from aluminum, copper, zinc, chromium, zirconium, vanadium, iron, cobalt and nickel.
本发明中,尽管采用上述金属氧酸盐、金属氢氧化物或金属氧化物颗粒作为有刻蚀剂即可实现本发明制备多孔石墨烯的目的。但是由于金属氧酸盐具有较好的水溶性,利用金属酸根与石墨烯之间的化学吸附作用,金属酸根很容易在石墨烯表面组装形成纳米结构(以纳米颗粒为主),因而,可以通过调节溶液浓度调控刻蚀剂的尺寸和形状,进一步实现多孔石墨烯表面孔结构的调控。因此本发明优选使用金属氧酸盐作为刻蚀剂制备多孔石墨烯。进一步,出于成本考虑,本发明尤其优选所述刻蚀剂为铝酸钠、钼酸钠和钨酸钠。In the present invention, the purpose of preparing porous graphene in the present invention can be achieved even though the aforementioned metal oxo salt, metal hydroxide or metal oxide particles are used as an etchant. However, due to the good water solubility of metal oxoates, metal acid groups can easily assemble on the surface of graphene to form nanostructures (mainly nanoparticles) by utilizing the chemical adsorption between metal acid groups and graphene. Adjust the solution concentration to control the size and shape of the etchant, and further realize the control of the pore structure of the porous graphene surface. Therefore, the present invention preferably uses an oxometalate as an etchant to prepare porous graphene. Further, in consideration of cost, it is particularly preferred in the present invention that the etchant is sodium aluminate, sodium molybdate and sodium tungstate.
根据本发明所述的方法,所述碳热反应条件可以为本领域技术人员已知的任意一种反应条件,只要能够使石墨烯和/或石墨烯氧化物与刻蚀剂能够发生碳热反应即可,优选情况下,所述碳热反应条件包括:温度300-1000℃,优选为350-650℃,时间为5-300分钟,优选为30-120分钟。According to the method of the present invention, the carbothermal reaction conditions can be any reaction conditions known to those skilled in the art, as long as the carbon thermal reaction of graphene and/or graphene oxide and etchant can occur That is, preferably, the carbothermal reaction conditions include: a temperature of 300-1000° C., preferably 350-650° C., and a time of 5-300 minutes, preferably 30-120 minutes.
一种多孔石墨烯优选的制备方法可以如下所示:A preferred preparation method of porous graphene can be as follows:
(1)制备石墨烯氧化物的分散液(1) Preparation of dispersion liquid of graphene oxide
在20-30℃温度下,将天然鳞片石墨和硝酸钠加入到浓硫酸中,然后在0-2℃冰水浴中冷却30-120分钟,冷却后,在2-10℃条件下加入锰酸钾,将冰水浴撤走,保持2-200小时,得到褐色的混合物。其中,各物质所加入的重量比为天然鳞片石墨:硝酸钠:浓硫酸:高锰酸钾=1:0.5-1:80-150:3-5。Add natural flake graphite and sodium nitrate to concentrated sulfuric acid at a temperature of 20-30°C, then cool in an ice-water bath at 0-2°C for 30-120 minutes, after cooling, add potassium manganate at 2-10°C , the ice-water bath was removed and kept for 2-200 hours to obtain a brown mixture. Wherein, the weight ratio of each substance added is natural flake graphite: sodium nitrate: concentrated sulfuric acid: potassium permanganate=1:0.5-1:80-150:3-5.
加入超纯水(超纯水,也叫三次水,比去离子水的纯度更高,其电导率为18.2MΩcm,此外,还可以加入去离子水、纯净水或是自来水)稀释(超纯水:天然鳞片石墨=100-200:1,质量比),保持20-120min,然后加入双氧水超纯水溶液(1-10质量%),直至将剩余的高锰酸钾以及反应中生成的二氧化锰全部转变成硫酸锰,得到亮黄色的悬浮液。最后用超纯水反复洗涤至悬浮液中没有硫酸根离子。通过离心将悬浮液分离(2000-6000×g,5-10min),去除离心管底部的沉淀,得到的溶液即为石墨烯氧化物超纯水分散液。Add ultrapure water (ultrapure water, also called tertiary water, which is more pure than deionized water, and its conductivity is 18.2MΩcm. In addition, you can also add deionized water, pure water or tap water) to dilute (ultrapure water : natural flake graphite=100-200:1, mass ratio), keep for 20-120min, then add hydrogen peroxide ultrapure aqueous solution (1-10% by mass), until the remaining potassium permanganate and manganese dioxide generated in the reaction All were converted to manganese sulfate, giving a bright yellow suspension. Finally, it was repeatedly washed with ultrapure water until there were no sulfate ions in the suspension. The suspension is separated by centrifugation (2000-6000×g, 5-10min), and the precipitate at the bottom of the centrifuge tube is removed, and the obtained solution is the graphene oxide ultrapure water dispersion.
(2)制备前驱体-1:石墨烯氧化物与钼酸钠混合物(2) Preparation of precursor-1: mixture of graphene oxide and sodium molybdate
将步骤(1)所得到的石墨烯氧化物超纯水溶液(0.1-20mg/mL)与钼酸钠溶液(0.01-10mol/L)混合,在摇床中振荡6-24小时,转速为50-200rpm。用液氮浴将混合溶液冷冻5-20分钟后,使用冷冻干燥机进行干燥(12-48小时,温度为-50℃,压力为7.5Pa),制备得到石墨烯与钼酸钠的混合物。Mix the graphene oxide ultrapure aqueous solution (0.1-20 mg/mL) obtained in step (1) with sodium molybdate solution (0.01-10 mol/L), shake in a shaker for 6-24 hours at a speed of 50- 200rpm. Freeze the mixed solution in a liquid nitrogen bath for 5-20 minutes, and then dry it with a freeze dryer (12-48 hours, at a temperature of -50° C. and a pressure of 7.5 Pa), to prepare a mixture of graphene and sodium molybdate.
(3)制备中间体-1:石墨烯-氧化钼杂化材料(3) Preparation of intermediate-1: graphene-molybdenum oxide hybrid material
将步骤(2)得到的石墨烯氧化物与钼酸钠的混合物作为前驱体,将其置于管式炉中,在氮气保护的条件下,升温至300-1000℃,升温速率为5-20℃/min,保温5-300分钟,自然冷却至室温。Use the mixture of graphene oxide and sodium molybdate obtained in step (2) as a precursor, place it in a tube furnace, and raise the temperature to 300-1000°C under nitrogen protection, with a heating rate of 5-20 ℃/min, keep warm for 5-300 minutes, and cool down to room temperature naturally.
(4)制备多孔石墨烯(4) Preparation of porous graphene
将得到的中间体-1,分散在稀盐酸中(0.1-1mol/L,50mL),搅拌1-7天,过滤收集,使用超纯水洗涤三次,乙醇冲洗一次,60-120℃干燥6-24小时,得到的黑色固体粉末即为多孔石墨烯样品。The obtained Intermediate-1 was dispersed in dilute hydrochloric acid (0.1-1mol/L, 50mL), stirred for 1-7 days, collected by filtration, washed three times with ultrapure water, washed once with ethanol, and dried at 60-120°C for 6- After 24 hours, the obtained black solid powder is the porous graphene sample.
另一方面,本发明还提供了一种多孔石墨烯膜的制备方法,其中,该方法包括,将刻蚀剂分散在石墨烯和/或石墨烯氧化物膜上,在无氧条件下进行碳热反应,并进行酸处理以除去未反应的以及反应后的刻蚀剂;所述刻蚀剂为金属氧酸盐、金属氢氧化物和金属氧化物中的一种或多种。On the other hand, the present invention also provides a method for preparing a porous graphene film, wherein, the method includes, dispersing an etchant on the graphene and/or graphene oxide film, and performing carbonization under an oxygen-free condition. heat reaction, and acid treatment to remove unreacted and reacted etchant; the etchant is one or more of metal oxo salt, metal hydroxide and metal oxide.
根据本发明所述的方法,只要将刻蚀剂分散在石墨烯和/或石墨烯氧化物膜上,在无氧条件下进行碳热反应或者电子束刻蚀并进行酸处理以除去未反应的或反应后即可获得多孔石墨烯膜,本发明对石墨烯和/或石墨烯氧化物与刻蚀剂的用量没有特别要求,优选情况下,所述石墨烯和/或石墨烯氧化物与刻蚀剂的质量比为0.1-10:1,更优选为0.5-2:1时,可以获得孔大小、孔分布更均一的多孔石墨烯。According to the method of the present invention, as long as the etchant is dispersed on the graphene and/or graphene oxide film, carbon thermal reaction or electron beam etching is carried out under oxygen-free conditions and acid treatment is carried out to remove unreacted Or the porous graphene film can be obtained after the reaction, the present invention has no special requirements on the consumption of graphene and/or graphene oxide and etchant, preferably, the graphene and/or graphene oxide and etchant When the mass ratio of the etchant is 0.1-10:1, more preferably 0.5-2:1, porous graphene with more uniform pore size and pore distribution can be obtained.
本发明中,所述石墨烯和/或石墨烯氧化物膜可以通过石墨烯和/或石墨烯氧化物分散液在基质上沉积一层石墨烯和/或石墨烯氧化物膜获得。本发明对所述基质没有要求,例如可以为硅、玻璃、石英以及金属(铜、镍、铁)基底。所述石墨烯和/或石墨烯氧化物膜的厚度本发明也没有要求,可以根据实际需要进行选择,优选情况下,所述石墨烯和/或石墨烯氧化物膜的厚度为5-50nm。In the present invention, the graphene and/or graphene oxide film can be obtained by depositing a graphene and/or graphene oxide film on a substrate with a graphene and/or graphene oxide dispersion. The present invention does not require the substrate, for example, silicon, glass, quartz and metal (copper, nickel, iron) substrates may be used. The thickness of the graphene and/or graphene oxide film is not required in the present invention, and can be selected according to actual needs. Preferably, the thickness of the graphene and/or graphene oxide film is 5-50 nm.
本发明中,对石墨烯和/或石墨烯氧化物的应用形式没有特别要求,石墨烯和/或石墨烯氧化物可以以粉体形式与刻蚀剂混合,也可以以分散液的形式与刻蚀剂混合,优选情况下,所述石墨烯和/或石墨烯氧化物以分散液的形式与刻蚀剂混合,以便使石墨烯和/或石墨烯氧化物与刻蚀剂混合的更均匀,从而获得孔分布更均匀的多孔石墨烯。In the present invention, there is no special requirement on the application form of graphene and/or graphene oxide. Graphene and/or graphene oxide can be mixed with etchant in the form of powder, or mixed with etchant in the form of dispersion liquid. etchant, preferably, the graphene and/or graphene oxide is mixed with the etchant in the form of a dispersion, so that the graphene and/or graphene oxide is mixed with the etchant more uniformly, Porous graphene with more uniform pore distribution is thus obtained.
当所述石墨烯和/或石墨烯氧化物以分散液的形式与刻蚀剂混合时,所述石墨烯和/或石墨烯氧化物的分散液的浓度优选为0.1-20mg/mL,更优选为0.5-4mg/mL。所述石墨烯和/或石墨烯氧化物的分散液可以由石墨烯和/或石墨烯氧化物分散在分散介质中形成。所述分散介质本发明没有特别要求,只要能形成所述石墨烯和/或石墨烯氧化物的分散液即可,优选情况下,所述分散介质可以为水、甲醇、乙醇或N,N-二甲基甲酰胺。形成所述石墨烯和/或石墨烯氧化物的分散液的方法本发明没有特别要求,优选情况下,将所述石墨烯和/或石墨烯氧化物与分散介质混合后进行超声处理,可以获得较均匀的所述石墨烯和/或石墨烯氧化物的分散液。When the graphene and/or graphene oxide is mixed with the etchant in the form of a dispersion, the concentration of the dispersion of the graphene and/or graphene oxide is preferably 0.1-20 mg/mL, more preferably 0.5-4mg/mL. The dispersion of graphene and/or graphene oxide may be formed by dispersing graphene and/or graphene oxide in a dispersion medium. The dispersion medium is not particularly required in the present invention, as long as it can form a dispersion liquid of the graphene and/or graphene oxide, preferably, the dispersion medium can be water, methanol, ethanol or N,N- dimethylformamide. The method for forming the dispersion liquid of the graphene and/or graphene oxide is not particularly required in the present invention. Preferably, the graphene and/or graphene oxide is mixed with a dispersion medium and subjected to ultrasonic treatment to obtain A relatively uniform dispersion of the graphene and/or graphene oxide.
本发明中,所述刻蚀剂可以以粉体形式分散在石墨烯和/或石墨烯氧化物膜上,也可以以溶液或分散液的形式分散在石墨烯和/或石墨烯氧化物膜上,优选情况下,所述刻蚀剂以溶液或分散液的形式分散在石墨烯和/或石墨烯氧化物膜上,最终实现刻蚀剂均匀分散在石墨烯和/或石墨烯氧化物膜上。刻蚀剂溶液或刻蚀剂分散液的浓度优选为0.01-10mol/L,更优选为0.1-1mol/L。所述刻蚀剂溶液或刻蚀剂分散液的形成由所述刻蚀剂确定。当所述刻蚀剂能够溶于分散液时,即形成所述刻蚀剂溶液,当所述刻蚀剂不溶于分散液时,即形成刻蚀剂分散液。In the present invention, the etchant can be dispersed on the graphene and/or graphene oxide film in the form of powder, or can be dispersed on the graphene and/or graphene oxide film in the form of solution or dispersion , preferably, the etchant is dispersed on the graphene and/or graphene oxide film in the form of a solution or a dispersion, and finally the etchant is uniformly dispersed on the graphene and/or graphene oxide film . The concentration of the etchant solution or etchant dispersion is preferably 0.01-10 mol/L, more preferably 0.1-1 mol/L. The formation of the etchant solution or etchant dispersion is determined by the etchant. When the etchant is soluble in the dispersion, the etchant solution is formed, and when the etchant is insoluble in the dispersion, the etchant dispersion is formed.
本发明中,将刻蚀剂分散在石墨烯和/或石墨烯氧化物膜上,得到混合物,为了保持混合物中石墨烯和/或石墨烯氧化物膜的片层结构,优选情况下,对所述混合物进行冷冻干燥。所述冷冻干燥的条件本发明没有特别要求,可以采用本领域技术人员已知的冷冻干燥的条件即可。优选情况下,所述冷冻干燥的条件包括:温度为(-80)-(-50)℃,时间为6-72h。In the present invention, the etchant is dispersed on the graphene and/or graphene oxide film to obtain a mixture, in order to keep the sheet structure of the graphene and/or graphene oxide film in the mixture, preferably, for all The mixture was freeze-dried. The freeze-drying conditions are not particularly required in the present invention, and freeze-drying conditions known to those skilled in the art can be used. Preferably, the freeze-drying conditions include: the temperature is (-80)-(-50)°C, and the time is 6-72h.
根据本发明所述的方法,所述碳热反应条件可以为本领域技术人员已知的任意一种反应条件,只要能够使石墨烯和/或石墨烯氧化物与刻蚀剂能够发生碳热反应即可,优选情况下,所述碳热反应条件包括:温度300-1000℃,优选为350-650℃,时间为5-300分钟,优选为30-120分钟。According to the method of the present invention, the carbothermal reaction conditions can be any reaction conditions known to those skilled in the art, as long as the carbon thermal reaction of graphene and/or graphene oxide and etchant can occur That is, preferably, the carbothermal reaction conditions include: a temperature of 300-1000° C., preferably 350-650° C., and a time of 5-300 minutes, preferably 30-120 minutes.
本发明中,在多孔石墨烯膜的制备方法中,可以使用加热的方法获得如上的处理温度,另外,本发明还可以使用电子束刻蚀的方法以提供能量使得反应体系达到碳热反应的条件。电子束可以为热发射电子、场发射电子和肖特基发射电子三种电子束,其可以通过电子枪中阴极与阳极灯丝间的高压产生高能量的电子束获得。所述电子束刻蚀的条件优选包括:刻蚀电压为1-20KV,优选为6-10KV,时间为0.5-10分钟,时间为3-5分钟。In the present invention, in the preparation method of the porous graphene film, the method of heating can be used to obtain the above treatment temperature. In addition, the present invention can also use the method of electron beam etching to provide energy so that the reaction system reaches the conditions of carbon thermal reaction . The electron beams can be thermal emission electrons, field emission electrons and Schottky emission electrons, which can be obtained by generating high-energy electron beams through the high voltage between the cathode and anode filaments in the electron gun. The conditions of the electron beam etching preferably include: the etching voltage is 1-20KV, preferably 6-10KV, the time is 0.5-10 minutes, and the time is 3-5 minutes.
本发明中,所述无氧条件指的是没有氧气存在的条件,以免在氧气存在下,碳被氧化成CO和/或CO2造成碳消耗。所述无氧条件可以为惰性气体(例如氮气和/或氩气)存在的条件也可以为真空条件,本发明没有特别要求。In the present invention, the oxygen-free condition refers to a condition without oxygen, so as to prevent carbon from being oxidized to CO and/or CO 2 in the presence of oxygen to cause carbon consumption. The oxygen-free condition may be a condition in the presence of an inert gas (such as nitrogen and/or argon) or a vacuum condition, which is not particularly required in the present invention.
所述酸处理,指的是将经过碳热反应的产物用酸浸泡,以除去未反应的或反应后的刻蚀剂。所述酸可以采用本领域技术人员已知的任意一种酸,例如盐酸、磷酸、硫酸、硝酸等等,优选为盐酸。所述酸的用量本发明没有特别要求,只要能将所述碳热反应的产物中未反应的或反应后的刻蚀剂完全去除即可,优选情况下,所述酸与最初加入的刻蚀剂的摩尔比为10-50:1。The acid treatment refers to soaking the carbothermal reaction product with acid to remove unreacted or reacted etchant. The acid can be any acid known to those skilled in the art, such as hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, etc., preferably hydrochloric acid. The amount of the acid used in the present invention is not particularly required, as long as the unreacted or reacted etchant in the product of the carbothermal reaction can be completely removed, preferably, the acid is mixed with the initially added etching agent. The molar ratio of the agent is 10-50:1.
本发明中,石墨烯、石墨烯氧化物、金属氧酸盐、金属氢氧化物和金属氧化物、可以如前所述,在此不再赘述。In the present invention, graphene, graphene oxide, metal oxo salt, metal hydroxide and metal oxide may be as described above, and will not be repeated here.
根据本发明所述的方法,所述碳热反应条件可以为本领域技术人员已知的任意一种反应条件,只要能够使石墨烯和/或石墨烯氧化物与刻蚀剂能够发生碳热反应即可,优选情况下,所述碳热反应条件包括:温度300-1000℃,优选为350-650℃,时间为5-300分钟,优选为30-120分钟。According to the method of the present invention, the carbothermal reaction conditions can be any reaction conditions known to those skilled in the art, as long as the carbon thermal reaction of graphene and/or graphene oxide and etchant can occur That is, preferably, the carbothermal reaction conditions include: a temperature of 300-1000° C., preferably 350-650° C., and a time of 5-300 minutes, preferably 30-120 minutes.
以下将通过实施例对本发明进行详细描述。The present invention will be described in detail below by way of examples.
预备实施例1制备石墨烯氧化物的超纯水溶液 Preliminary Example 1 prepares the ultrapure aqueous solution of graphene oxide
在20℃下,取2.0g细度为325目的鳞片状石墨和1.5g硝酸钠加到80mL浓硫酸(98重量%)中,将得到的混合物放置在500mL的烧杯中且用0℃冰水浴冷却30min,至温度为8℃,得到悬浮液。At 20°C, add 2.0g of flake graphite with a fineness of 325 mesh and 1.5g of sodium nitrate to 80mL of concentrated sulfuric acid (98% by weight), place the resulting mixture in a 500mL beaker and cool it with an ice-water bath at 0°C After 30 minutes, until the temperature reached 8°C, a suspension was obtained.
在5℃下,在700rpm的搅拌速度下(搅拌子的大小:6cm),将9.0g高锰酸钾加到上述悬浮液中(每隔15分钟加一次,每次加入1.5g),然后将冰水浴撤走,保持120小时,将150mL超纯水加入(每隔5分钟加一次,每次加入50mL),半小时后,加入250mL3质量%的双氧水,得到亮黄色的溶液。用超纯水离心洗涤至亮黄色的溶液中没有硫酸根离子的存在,然后将溶液离心分离(2560×g,3000rpm),得到6mg/mL的石墨烯氧化物超纯水溶液,然后加入超纯水稀释得到4mg/mL的石墨烯氧化物超纯水溶液,石墨烯氧化物的碳原子数与氧原子数的比值为C/O=2。At 5°C, at a stirring speed of 700rpm (the size of the stirring bar: 6cm), add 9.0g of potassium permanganate to the above suspension (adding once every 15 minutes, adding 1.5g each time), and then Remove the ice-water bath and keep it for 120 hours, then add 150mL of ultrapure water (50mL every 5 minutes), and half an hour later, add 250mL of 3% by mass hydrogen peroxide to obtain a bright yellow solution. Centrifuge and wash with ultrapure water until there is no sulfate ion in the bright yellow solution, then centrifuge the solution (2560×g, 3000rpm) to obtain a 6 mg/mL graphene oxide ultrapure aqueous solution, and then add ultrapure water Diluted to obtain a 4 mg/mL ultrapure aqueous solution of graphene oxide, the ratio of the number of carbon atoms of the graphene oxide to the number of oxygen atoms is C/O=2.
预备实施例2制备石墨烯 Preparatory embodiment 2 prepares graphene
预备实施例2.1Preliminary Example 2.1
水热方法制备石墨烯Graphene prepared by hydrothermal method
将预备实施例1得到的石墨烯氧化物超纯水溶液稀释至2mg/mL,取30mL,超声30分钟(功率80W),装入容积为50mL的高压反应釜,180℃加热6小时,得到黑色固体,过滤收集,用超纯水洗涤一次,用液氮浴冷冻15分钟后,使用冷冻干燥机进行干燥(48小时,温度为-50℃,压力为7.5Pa)。最后得到42mg石墨烯黑色固体。Dilute the graphene oxide ultrapure aqueous solution obtained in Preliminary Example 1 to 2 mg/mL, take 30 mL, ultrasonicate for 30 minutes (power 80 W), put it into a 50 mL autoclave, and heat at 180 ° C for 6 hours to obtain a black solid , collected by filtration, washed once with ultrapure water, frozen in a liquid nitrogen bath for 15 minutes, and then dried using a freeze dryer (48 hours, at a temperature of -50°C and a pressure of 7.5Pa). Finally, 42mg of graphene black solid was obtained.
预备实施例2.2Preliminary Example 2.2
高温热还原方法制备石墨烯Preparation of Graphene by High Temperature Thermal Reduction Method
将预备实施例1得到的石墨烯氧化物超纯水溶液用液氮浴冷冻15分钟后,使用冷冻干燥机进行干燥(48小时,温度为-50℃,压力为7.5Pa)。将得到的石墨烯氧化物(100mg)放在将其置于管式炉中,在氮气保护的条件下,升温至650℃,升温速率为10℃/min,保温120分钟,自然冷却至室温。最后得到69mg石墨烯黑色固体。The graphene oxide ultrapure aqueous solution obtained in Preliminary Example 1 was frozen in a liquid nitrogen bath for 15 minutes, and then dried using a freeze dryer (48 hours, at a temperature of -50° C. and a pressure of 7.5 Pa). The obtained graphene oxide (100mg) was placed in a tube furnace, under the condition of nitrogen protection, the temperature was raised to 650°C, the heating rate was 10°C/min, kept for 120 minutes, and naturally cooled to room temperature. Finally, 69mg of graphene black solid was obtained.
预备实施例2.3Preliminary Example 2.3
水合肼还原制备石墨烯Preparation of graphene by reduction of hydrazine hydrate
预备实施例1得到的石墨烯氧化物超纯水溶液稀释至2mg/mL,取30mL,超声30分钟(功率80W),加入0.5mL水合肼溶液(85质量%),温度为40℃,搅拌12小时。过滤收集,使用超纯水洗涤三次,乙醇冲洗一次,60℃干燥12小时,最后得到40mg石墨烯黑色固体。。Dilute the ultrapure aqueous solution of graphene oxide obtained in Preliminary Example 1 to 2 mg/mL, take 30 mL, ultrasonicate for 30 minutes (power 80 W), add 0.5 mL of hydrazine hydrate solution (85% by mass), and stir for 12 hours at a temperature of 40 °C . It was collected by filtration, washed three times with ultrapure water, washed once with ethanol, and dried at 60° C. for 12 hours to finally obtain 40 mg of graphene black solid. .
预备实施例3制备金属氢氧化物纳米颗粒 Preliminary Example 3 Preparation of Metal Hydroxide Nanoparticles
预备实施例3.1Preliminary Example 3.1
制备氢氧化铈纳米颗粒悬浮液Preparation of cerium hydroxide nanoparticle suspension
将氢氧化钠的超纯水溶液(25mol/L)滴加到硝酸铈(1mol/L,50mL)的超纯水溶液中,调节溶液pH至10,搅拌30分钟,得到1mol/L白色的氢氧化铈纳米颗粒悬浊液。Add the ultrapure aqueous solution of sodium hydroxide (25mol/L) dropwise to the ultrapure aqueous solution of cerium nitrate (1mol/L, 50mL), adjust the pH of the solution to 10, and stir for 30 minutes to obtain 1mol/L white cerium hydroxide nanoparticle suspension.
预备实施例3.2-3.21Preliminary Example 3.2-3.21
按照预备实施例3.1制备金属氢氧化物的方法,不同的是,使用的金属盐由硝酸铈变为硫酸亚铁、氯化亚铁、硫酸铁、氯化铝、氯化锌、氯化钌、氯化镁、三氯化钼、二氯化钼、氯化锆、硫酸铜、氯化铜、四氯化钛、氯化镍、氯化镍、氯化镉、氯化镧、氯化钴、氯化钒、氯化铌,制备相应的氢氧化物纳米颗粒悬浮液。According to the method for preparing metal hydroxide in preliminary example 3.1, the difference is that the metal salt used is changed from cerium nitrate to ferrous sulfate, ferrous chloride, ferric sulfate, aluminum chloride, zinc chloride, ruthenium chloride, Magnesium chloride, molybdenum trichloride, molybdenum dichloride, zirconium chloride, copper sulfate, copper chloride, titanium tetrachloride, nickel chloride, nickel chloride, cadmium chloride, lanthanum chloride, cobalt chloride, chloride Vanadium and niobium chloride were used to prepare the corresponding hydroxide nanoparticle suspensions.
预备实施例3.22-3.25Preliminary Example 3.22-3.25
按照预备实施例3.1的方法制备氢氧化铈纳米颗粒,不同的是硝酸铈超纯水溶液的浓度为0.01mol/L、0.1mol/L、0.5mol/L和10mol/L。Cerium hydroxide nanoparticles were prepared according to the method of Preliminary Example 3.1, except that the concentration of cerium nitrate ultrapure aqueous solution was 0.01 mol/L, 0.1 mol/L, 0.5 mol/L and 10 mol/L.
预备实施例4制备金属氧化物纳米颗粒 Preliminary Example 4 Prepares Metal Oxide Nanoparticles
预备实施例4.1Preliminary Example 4.1
制备四氧化三铁纳米颗粒Preparation of Ferric Oxide Nanoparticles
将乙酰丙酮铁溶解在N,N-二甲基甲酰胺(DMF)中,溶液浓度为0.5mol/L,搅拌4小时后,取30mL装入容积为50mL的高压反应釜,200℃加热24小时,得到黑色固体,过滤收集,用超纯水洗涤一次,乙醇洗涤三次,60℃干燥12小时,得到四氧化三铁纳米颗粒。Dissolve iron acetylacetonate in N,N-dimethylformamide (DMF), the solution concentration is 0.5mol/L, after stirring for 4 hours, take 30mL into a high-pressure reactor with a volume of 50mL, and heat at 200°C for 24 hours , to obtain a black solid, which was collected by filtration, washed once with ultrapure water, washed three times with ethanol, and dried at 60° C. for 12 hours to obtain ferric oxide nanoparticles.
预备实施例4.2-4.9Preliminary Example 4.2-4.9
按照实施例4.1的方法制备金属氧化物纳米颗粒,不同的是步骤(1)使用的金属前驱物不同,即金属配合物分别是乙酰丙酮铝、乙酰丙酮钒、乙酰丙酮镍、乙酰丙酮锆、乙酰丙酮钴、乙酰丙酮锌、乙酰丙酮铜、乙酰丙酮铬。得到相应的金属氧化物纳米颗粒。Metal oxide nanoparticles were prepared according to the method in Example 4.1, except that the metal precursors used in step (1) were different, that is, the metal complexes were aluminum acetylacetonate, vanadium acetylacetonate, nickel acetylacetonate, zirconium acetylacetonate, acetylacetonate Cobalt acetonate, zinc acetylacetonate, copper acetylacetonate, chromium acetylacetonate. The corresponding metal oxide nanoparticles were obtained.
预备实施例4.10-4.12Preliminary Example 4.10-4.12
按照预备实施例4.1的方法制备四氧化三铁纳米颗粒,不同的是,乙酰丙酮铁的DMF溶液的浓度分别为0.1mol/L、1mol/L和10mol/L。Ferric oxide nanoparticles were prepared according to the method of Preliminary Example 4.1, except that the concentrations of the DMF solutions of iron acetylacetonate were 0.1 mol/L, 1 mol/L and 10 mol/L, respectively.
预备实施例5制备石墨烯氧化物薄膜及石墨烯薄膜 Preliminary Example 5 Prepares Graphene Oxide Film and Graphene Film
预备实施例5.1Preliminary Example 5.1
旋涂法制备石墨烯氧化物薄膜Fabrication of Graphene Oxide Thin Films by Spin Coating
石墨烯氧化物薄膜采用旋涂方法制备,使用硅片或玻璃片为基底(规格:1cm×1cm)。基底在浸泡在浓硫酸(98重量)和双氧水(30重量)的混合溶液(浓硫酸:双氧水=7:3,体积比)中,70℃反应30分钟,自然冷却至室温后,用超纯水冲洗。将预备实施例1制备得到的石墨烯氧化物配制成浓度为1.5mg/mL的水和乙醇混合溶液(水和乙醇的体积比为1:3),取30mL,超声30分钟(功率80W)。将0.5mL石墨烯氧化物溶液滴在基底上,启动旋涂仪(匀胶速度为100rpm,15s;旋涂速度为3000rpm,60s),旋涂步骤重复3次。将制备好的石墨烯氧化物薄膜放在烘箱中干燥,温度为60℃。The graphene oxide thin film is prepared by spin-coating method, using a silicon wafer or a glass wafer as the substrate (specification: 1cm×1cm). The substrate was soaked in a mixed solution of concentrated sulfuric acid (98 wt.) and hydrogen peroxide (30 wt.) (concentrated sulfuric acid: hydrogen peroxide = 7:3, volume ratio), reacted at 70°C for 30 minutes, cooled naturally to room temperature, and rinsed with ultrapure water rinse. The graphene oxide prepared in Preliminary Example 1 was prepared into a mixed solution of water and ethanol with a concentration of 1.5 mg/mL (the volume ratio of water and ethanol was 1:3), and 30 mL was taken and ultrasonicated for 30 minutes (power 80W). Drop 0.5mL graphene oxide solution on the substrate, start the spin coater (uniform coating speed is 100rpm, 15s; spin coating speed is 3000rpm, 60s), and the spin coating step is repeated 3 times. The prepared graphene oxide film was dried in an oven at a temperature of 60°C.
预备实施例5.2Preliminary Example 5.2
高温热还原制备石墨烯薄膜Preparation of Graphene Thin Films by Thermal Reduction at High Temperature
将预备实施例5.1制备的石墨烯氧化物薄膜置于管式炉中,在氮气保护的条件下,升温至400℃,升温速率为10℃/min,保温30分钟,自然冷却至室温。得到黑色的石墨烯薄膜。Put the graphene oxide film prepared in Preliminary Example 5.1 in a tube furnace, and raise the temperature to 400°C under nitrogen protection at a heating rate of 10°C/min, keep it warm for 30 minutes, and cool down to room temperature naturally. A black graphene film is obtained.
预备实施例5.3Preliminary Example 5.3
水热还原制备石墨烯薄膜Preparation of Graphene Films by Hydrothermal Reduction
将预备实施例5.1制备的石墨烯氧化物薄膜悬浮在反应釜(容积为50mL)中,在反应釜中加入15mL超纯水(石墨烯氧化物薄膜未浸泡在超纯水中),将反应釜置于烘箱中,180℃加热6小时。得到黑色的石墨烯薄膜。Suspend the graphene oxide film prepared in Preliminary Example 5.1 in a reaction kettle (volume 50mL), add 15mL of ultrapure water into the reaction kettle (the graphene oxide film is not soaked in ultrapure water), and put the reaction kettle Place in an oven and heat at 180°C for 6 hours. A black graphene film is obtained.
预备实施例5.4Preliminary Example 5.4
水合肼蒸汽还原制备石墨烯薄膜Preparation of graphene thin films by vapor reduction of hydrazine hydrate
将预备实施例5.1制备的石墨烯氧化物薄膜置于水合肼蒸汽中(饱和蒸汽压),在温度为40℃条件下,反应6小时。得到黑色的石墨烯薄膜。The graphene oxide film prepared in Preliminary Example 5.1 was placed in hydrazine hydrate vapor (saturated vapor pressure), and reacted for 6 hours at a temperature of 40°C. A black graphene film is obtained.
预备实施例5.5Preliminary Example 5.5
物理剥离方法制备石墨烯薄膜Graphene film prepared by physical exfoliation method
使用高定向裂解石墨为原料,使用胶带撕石墨的方法制备单层石墨烯,并将其转移到硅基底(1cm×1cm)上。Using highly oriented pyrolysis graphite as raw material, single-layer graphene was prepared by tearing graphite with tape, and transferred to a silicon substrate (1cm×1cm).
预备实施例5.6Preliminary Example 5.6
化学气相沉积法制备石墨烯薄膜Graphene film prepared by chemical vapor deposition
使用铜箔或镍箔为基底,使用甲烷或乙炔(高纯气体)为碳源,生长温度为1000℃,载气为氢气和氩气的混合气体(1:99),降温速度为10℃/分钟。Use copper foil or nickel foil as the substrate, use methane or acetylene (high-purity gas) as the carbon source, the growth temperature is 1000°C, the carrier gas is a mixture of hydrogen and argon (1:99), and the cooling rate is 10°C/ minute.
(一)制备多孔石墨烯(1) Preparation of porous graphene
实施例1使用金属氧酸盐为刻蚀剂制备多孔石墨烯(路线一) Example 1 Preparation of Porous Graphene Using Oxometalate as an Etchant (Route 1)
实施例1.1Example 1.1
(1)制备石墨烯氧化物与钼酸钠的混合物(1) Preparation of a mixture of graphene oxide and sodium molybdate
将预备实施例1所得到的石墨烯氧化物超纯水溶液(4mg/mL,50mL)与钼酸钠超纯水溶液(0.02mol/L,50mL)混合。在摇床中振荡12小时,转速为100rpm。用液氮浴将混合溶液冷冻15分钟后,使用冷冻干燥机进行干燥(48小时,温度为-50℃,压力为7.5Pa),制备得到石墨烯氧化物与钼酸钠的混合物。The graphene oxide ultrapure aqueous solution (4 mg/mL, 50 mL) obtained in Preliminary Example 1 was mixed with the sodium molybdate ultrapure aqueous solution (0.02 mol/L, 50 mL). Shake in a shaker for 12 hours at 100 rpm. After the mixed solution was frozen in a liquid nitrogen bath for 15 minutes, it was dried using a freeze dryer (48 hours, the temperature was -50°C, and the pressure was 7.5Pa), and a mixture of graphene oxide and sodium molybdate was prepared.
(2)制备多孔石墨烯(2) Preparation of porous graphene
将步骤(1)得到的石墨烯氧化物与钼酸钠的混合物作为前驱体(200mg)置于管式炉中,在氮气保护的条件下,升温至650℃,升温速率为10℃/min,保温120分钟,自然冷却至室温。将得到的黑色固体,分散在稀盐酸中(0.5mol/L,50mL),搅拌3天,过滤收集,使用超纯水洗涤三次,乙醇冲洗一次,60℃干燥12小时,得到的黑色固体粉末即为多孔石墨烯样品,样品质量约为45mg。得到的多孔石墨烯样品的TEM(Tecnai G220S-TWIN透射电子显微镜,美国FEI公司),照片如图1所示。Put the mixture of graphene oxide and sodium molybdate obtained in step (1) as a precursor (200mg) in a tube furnace, and raise the temperature to 650°C under nitrogen protection at a heating rate of 10°C/min. Keep warm for 120 minutes and cool down to room temperature naturally. The obtained black solid was dispersed in dilute hydrochloric acid (0.5mol/L, 50mL), stirred for 3 days, collected by filtration, washed three times with ultrapure water, washed once with ethanol, and dried at 60°C for 12 hours. The obtained black solid powder was It is a porous graphene sample, and the sample mass is about 45mg. The TEM (Tecnai G 2 20S-TWIN transmission electron microscope, FEI Company, USA) of the obtained porous graphene sample is shown in Figure 1.
实施例1.2-1.5Example 1.2-1.5
按照实施例1.1的方法制备多孔石墨烯样品,不同的是,步骤(1)使用的钼酸钠超纯水溶液的浓度为0.01mol/L、0.1mol/L、1mol/L和10mol/L。得到黑色固体分别为50mg、49、46和43mg。Porous graphene samples were prepared according to the method of Example 1.1, except that the concentration of sodium molybdate ultrapure aqueous solution used in step (1) was 0.01mol/L, 0.1mol/L, 1mol/L and 10mol/L. 50 mg, 49, 46 and 43 mg of black solids were obtained.
实施例1.6-1.8Example 1.6-1.8
按照实施例1.1的方法制备多孔石墨烯样品,不同的是,步骤(2)高温处理步骤使用的温度分别为300℃、350℃和1000℃,得到黑色固体分别为54mg、54mg和34mg。Porous graphene samples were prepared according to the method of Example 1.1, except that the temperatures used in the high temperature treatment step (2) were 300°C, 350°C, and 1000°C, respectively, and the obtained black solids were 54mg, 54mg, and 34mg respectively.
实施例1.9-1.11Example 1.9-1.11
按照实施例1.1的方法制备多孔石墨烯样品,不同的是,步骤(2)高温处理的时间分别为5分钟、60分钟和300分钟,得到黑色固体分别为53mg、40mg和34mg。Porous graphene samples were prepared according to the method of Example 1.1, except that the time of high temperature treatment in step (2) was 5 minutes, 60 minutes and 300 minutes respectively, and the obtained black solids were 53mg, 40mg and 34mg respectively.
实施例1.12-1.16Example 1.12-1.16
按照实施例1.1的方法制备多孔石墨烯样品,不同的是,步骤(1)使用的石墨烯氧化物超纯水溶液浓度分别为0.5mg/mL、2mg/mL、8mg/mL、10mg/mL和20mg/mL。得到黑色固体分别为52mg、53mg、53mg、52mg和54mg。Porous graphene samples were prepared according to the method of Example 1.1, except that the concentrations of graphene oxide ultrapure aqueous solutions used in step (1) were 0.5mg/mL, 2mg/mL, 8mg/mL, 10mg/mL and 20mg /mL. Black solids were obtained as 52mg, 53mg, 53mg, 52mg and 54mg respectively.
实施例1.17-1.77Example 1.17-1.77
按照实施例1.1的方法制备多孔石墨烯样品,不同的是,步骤(1)使用的金属氧酸盐分别是钼酸钾、钨酸锂、钨酸钠、钨酸钾、锡酸锂、锡酸钠、锡酸钾、铝酸锂、铝酸钠、铝酸钾、钛酸锂、钛酸钠、钛酸钾、钛酸锂、钒酸钠、钒酸钾、铋酸锂、铋酸钠、铋酸钾、高锰酸锂、高锰酸钾、高锰酸钠、锰酸锂、锰酸钾、锰酸钠、重铬酸钾、重铬酸钠、铬酸锂、铬酸钾、铬酸钠、锆酸锂、锆酸钠、锆酸钾、高铁酸锂、高铁酸钠、高铁酸钾、锌酸锂、锌酸钠、锌酸钾、铌酸锂、铌酸钠、铌酸钾、钴酸锂、钴酸钠、钴酸钾、镍酸锂、镍酸钠、镍酸钾、硅钼酸、硅钨酸、硅钒酸、钼酸铵、钨酸铵、钒酸铵、锰酸铵、重铬酸铵、铬酸铵、镍酸铵、磷钨酸、磷钼和磷钒酸。得到的黑色固体质量约为51、53、46、47、53、47、46、45、49、47、49、53、55、53、49、50、51、47、54、54、51、53、49、46、47、51、51、47、53、47、54、46、46、53、53、49、46、47、50、51、47、53、51、49、54、46、51、53、46、47、50、51、47、51、47、50、51、47、53、51和53mg。Prepare porous graphene samples according to the method in Example 1.1, the difference is that the metal oxolate used in step (1) is potassium molybdate, lithium tungstate, sodium tungstate, potassium tungstate, lithium stannate, stannic acid Sodium, potassium stannate, lithium aluminate, sodium aluminate, potassium aluminate, lithium titanate, sodium titanate, potassium titanate, lithium titanate, sodium vanadate, potassium vanadate, lithium bismuthate, sodium bismuthate, Potassium bismuthate, lithium permanganate, potassium permanganate, sodium permanganate, lithium manganate, potassium manganate, sodium manganate, potassium dichromate, sodium dichromate, lithium chromate, potassium chromate, chromium Sodium zirconate, lithium zirconate, sodium zirconate, potassium zirconate, lithium ferrate, sodium ferrate, potassium ferrate, lithium zincate, sodium zincate, potassium zincate, lithium niobate, sodium niobate, potassium niobate , Lithium cobaltate, sodium cobaltate, potassium cobaltate, lithium nickelate, sodium nickelate, potassium nickelate, silicomomolybdic acid, silicotungstic acid, silicovanadate, ammonium molybdate, ammonium tungstate, ammonium vanadate, manganese ammonium dichromate, ammonium chromate, ammonium nickelate, phosphotungstic acid, phosphomolybdenum and phosphovanadate. The black solid mass obtained is about 51, 53, 46, 47, 53, 47, 46, 45, 49, 47, 49, 53, 55, 53, 49, 50, 51, 47, 54, 54, 51, 53 , 49, 46, 47, 51, 51, 47, 53, 47, 54, 46, 46, 53, 53, 49, 46, 47, 50, 51, 47, 53, 51, 49, 54, 46, 51 , 53, 46, 47, 50, 51, 47, 51, 47, 50, 51, 47, 53, 51 and 53 mg.
实施例1.77Example 1.77
按照实施例1.1的方法制备多孔石墨烯样品,不同的是,步骤(2)中,氮气保护条件变为真空条件(小于10Pa)。The porous graphene sample was prepared according to the method of Example 1.1, except that in step (2), the nitrogen protection condition was changed to vacuum condition (less than 10Pa).
实施例2使用金属氧酸盐为刻蚀剂制备多孔石墨烯(路线二) Example 2 Preparation of porous graphene using oxometalate as etchant (Route 2)
实施例2.1Example 2.1
(1)制备石墨烯与钼酸钠的混合物(1) Preparation of a mixture of graphene and sodium molybdate
按照实施例1的方法制备多孔石墨烯样品,不同的是,本实施例中使用的为预备实施例2.1获得的石墨烯(200mg)。得到的黑色固体粉末,质量为56mg。The porous graphene sample was prepared according to the method of Example 1, except that the graphene (200 mg) obtained in Preliminary Example 2.1 was used in this example. The obtained black solid powder has a mass of 56 mg.
实施例2.2-2.3Example 2.2-2.3
按照实施例2.1的方法制备多孔石墨烯样品,不同的是,步骤(1)使用的石墨烯使用的分别是预备实施例2.2和2.3制备得到的石墨烯,得到黑色固体的质量分别为55mg和57mg。Prepare porous graphene samples according to the method of Example 2.1, the difference is that the graphene used in step (1) is the graphene prepared in Preliminary Example 2.2 and 2.3 respectively, and the quality of the black solid obtained is 55 mg and 57 mg respectively .
实施例2.4-2.6Example 2.4-2.6
按照实施例2.1的方法制备多孔石墨烯样品,不同的是,步骤(1)使用的钼酸钠超纯水溶液的浓度分别为0.01mol/L、0.5mol/L和10mol/L,得到黑色固体的质量分别为60mg、48mg和34mg。Prepare porous graphene sample according to the method of embodiment 2.1, difference is, the concentration of the sodium molybdate ultrapure aqueous solution that step (1) uses is respectively 0.01mol/L, 0.5mol/L and 10mol/L, obtains the black solid The masses are 60mg, 48mg and 34mg respectively.
实施例2.7-2.9Example 2.7-2.9
按照实施例2.1的方法制备多孔石墨烯样品,不同的是,步骤(2)高温处理步骤使用的温度分别为450℃、300℃和1000℃,得到黑色固体分别为56mg、55mg和37mg。其中,450℃制备得到的多孔石墨烯样品的TEM(Tecnai G220S-TWIN透射电子显微镜,美国FEI公司),其中,在450℃下制备得到的多空石墨烯如图2所示。Porous graphene samples were prepared according to the method of Example 2.1, except that the temperatures used in the high temperature treatment step (2) were 450°C, 300°C, and 1000°C, respectively, and the obtained black solids were 56mg, 55mg, and 37mg respectively. Among them, the TEM of the porous graphene sample prepared at 450°C (Tecnai G 2 20S-TWIN transmission electron microscope, American FEI Company), among which, the porous graphene prepared at 450°C is shown in Figure 2.
实施例2.10-2.12Example 2.10-2.12
按照实施例2.1的方法制备多孔石墨烯样品,不同的是,步骤(2)高温处理的时间分别为5分钟、60分钟和300分钟,得到黑色固体分别为56mg、52mg和37mg。Porous graphene samples were prepared according to the method of Example 2.1, except that the time of high temperature treatment in step (2) was 5 minutes, 60 minutes and 300 minutes respectively, and the obtained black solids were 56mg, 52mg and 37mg respectively.
实施例2.13-2.73Example 2.13-2.73
按照实施例2.1的方法制备多孔石墨烯样品,不同的是,步骤(1)使用的金属氧酸盐分别是钼酸钾、钨酸锂、钨酸钠、钨酸钾、锡酸锂、锡酸钠、锡酸钾、铝酸锂、铝酸钠、铝酸钾、钛酸锂、钛酸钠、钛酸钾、钛酸锂、钒酸钠、钒酸钾、铋酸锂、铋酸钠、铋酸钾、高锰酸锂、高锰酸钾、高锰酸钠、锰酸锂、锰酸钾、锰酸钠、重铬酸钾、重铬酸钠、铬酸锂、铬酸钾、铬酸钠、锆酸锂、锆酸钠、锆酸钾、高铁酸锂、高铁酸钠、高铁酸钾、锌酸锂、锌酸钠、锌酸钾、铌酸锂、铌酸钠、铌酸钾、钴酸锂、钴酸钠、钴酸钾、镍酸锂、镍酸钠、镍酸钾、硅钼酸、硅钨酸、硅钒酸、钼酸铵、钨酸铵、钒酸铵、锰酸铵、重铬酸铵、铬酸铵、镍酸铵、磷钨酸、磷钼酸和磷钒酸。得到的黑色固体质量约为48-60mg。Porous graphene samples were prepared according to the method in Example 2.1. The difference is that the metal oxolates used in step (1) were potassium molybdate, lithium tungstate, sodium tungstate, potassium tungstate, lithium stannate, and stannic acid. Sodium, potassium stannate, lithium aluminate, sodium aluminate, potassium aluminate, lithium titanate, sodium titanate, potassium titanate, lithium titanate, sodium vanadate, potassium vanadate, lithium bismuthate, sodium bismuthate, Potassium bismuthate, lithium permanganate, potassium permanganate, sodium permanganate, lithium manganate, potassium manganate, sodium manganate, potassium dichromate, sodium dichromate, lithium chromate, potassium chromate, chromium Sodium zirconate, lithium zirconate, sodium zirconate, potassium zirconate, lithium ferrate, sodium ferrate, potassium ferrate, lithium zincate, sodium zincate, potassium zincate, lithium niobate, sodium niobate, potassium niobate , Lithium cobaltate, sodium cobaltate, potassium cobaltate, lithium nickelate, sodium nickelate, potassium nickelate, silicomomolybdic acid, silicotungstic acid, silicovanadate, ammonium molybdate, ammonium tungstate, ammonium vanadate, manganese ammonium dichromate, ammonium chromate, ammonium nickelate, phosphotungstic acid, phosphomolybdic acid and phosphovanadate. The mass of the obtained black solid was about 48-60 mg.
实施例2.74Example 2.74
按照实施例2.1的方法制备多孔石墨烯样品,不同的是,步骤(2)中,氮气保护条件变为真空条件(小于10Pa)。The porous graphene sample was prepared according to the method of Example 2.1, except that in step (2), the nitrogen protection condition was changed to vacuum condition (less than 10Pa).
实施例3使用金属氢氧化物为刻蚀剂制备多孔石墨烯(路线一) Example 3 Preparation of Porous Graphene Using Metal Hydroxide as an Etchant (Route 1)
实施例3.1Example 3.1
(1)制备石墨烯氧化物和氢氧化铈的混合物(1) Preparation of a mixture of graphene oxide and cerium hydroxide
将预备实施例3.1得到的氢氧化铈悬浮液(0.1mol/L,50mL)滴加到石墨烯氧化物的超纯水溶液(4mg/mL,50mL)中,超声30分钟(功率80W),搅拌12小时。将得到的均一混合物溶液用液氮浴将混合溶液冷冻15分钟后,使用冷冻干燥机进行干燥(48小时,温度为-50℃,压力为7.5Pa)。Add the cerium hydroxide suspension (0.1mol/L, 50mL) obtained in Preliminary Example 3.1 dropwise into the ultrapure aqueous solution of graphene oxide (4mg/mL, 50mL), ultrasonicate for 30 minutes (power 80W), and stir for 12 Hour. The obtained homogeneous mixture solution was frozen in a liquid nitrogen bath for 15 minutes, and then dried using a freeze dryer (48 hours, temperature: -50° C., pressure: 7.5 Pa).
(2)制备多孔石墨烯(2) Preparation of porous graphene
将步骤(1)得到的石墨烯与氢氧化铈的混合物作为前驱体(200mg),将其置于管式炉中,在氮气保护的条件下,升温至650℃,升温速率为10℃/min,保温120分钟,自然冷却至室温。The mixture of graphene and cerium hydroxide obtained in step (1) was used as a precursor (200mg), and it was placed in a tube furnace. Under the condition of nitrogen protection, the temperature was raised to 650°C, and the heating rate was 10°C/min , keep warm for 120 minutes, and cool down to room temperature naturally.
将得到的黑色固体,分散在稀盐酸中(0.5mol/L,50mL),搅拌3天,过滤收集,使用超纯水洗涤三次,乙醇冲洗一次,60℃干燥12小时,得到的黑色固体质量为52mg。制备得到的多孔石墨烯样品的SEM(Hitachi S-4800扫描电子显微镜,日本日立公司)照片如图3所示。The obtained black solid was dispersed in dilute hydrochloric acid (0.5mol/L, 50mL), stirred for 3 days, collected by filtration, washed three times with ultrapure water, washed once with ethanol, and dried at 60°C for 12 hours. The mass of the obtained black solid was 52 mg. The SEM (Hitachi S-4800 scanning electron microscope, Hitachi, Japan) photo of the prepared porous graphene sample is shown in Figure 3.
实施例3.2-3.5Example 3.2-3.5
按照实施例3.1的方法制备多孔石墨烯样品,不同的是,步骤(2)高温处理步骤使用的温度分别为900℃、450℃、300℃和1000℃,得到黑色固体分别为35mg、52mg、54mg和33mg。Prepare porous graphene samples according to the method of Example 3.1, the difference is that the temperatures used in step (2) high-temperature treatment step are 900°C, 450°C, 300°C and 1000°C respectively, and the obtained black solids are 35mg, 52mg, 54mg respectively and 33mg.
实施例3.6-3.9Example 3.6-3.9
按照实施例3.1的方法制备多孔石墨烯样品,不同的是,步骤(2)高温处理的时间分别为5分钟、60分钟、200分钟和300分钟,得到黑色固体分别为52mg、49mg、38mg和33mg。Prepare porous graphene samples according to the method of Example 3.1, the difference is that the time of step (2) high temperature treatment is 5 minutes, 60 minutes, 200 minutes and 300 minutes respectively, and the obtained black solids are 52mg, 49mg, 38mg and 33mg respectively .
实施例3.10-3.14Example 3.10-3.14
按照实施例3.1的方法制备多孔石墨烯样品,不同的是,步骤(1)使用的石墨烯氧化物超纯水溶液的浓度分别为2mg/mL、6mg/mL、8mg/mL、10mg/mL和20mg/mL。得到黑色固体分别为35mg、62mg、78mg、89mg和118mg。Porous graphene samples were prepared according to the method of Example 3.1, except that the concentrations of the graphene oxide ultrapure aqueous solutions used in step (1) were 2mg/mL, 6mg/mL, 8mg/mL, 10mg/mL and 20mg /mL. Black solids were obtained as 35mg, 62mg, 78mg, 89mg and 118mg respectively.
实施例3.15-3.38Example 3.15-3.38
按照实施例3.1的方法制备多孔石墨烯样品,不同的是,步骤(1)使用的金属氢氧化物不同,分别为预备实施例3.2-3.25制备得到的金属氢氧化物纳米颗粒悬浮液。得到的黑色固体质量分别为45、47、46、45、49、47、49、53、55、49、50、51、47、54、46、51、53、49、46、47、50、51、47和53mg。Porous graphene samples were prepared according to the method in Example 3.1, except that the metal hydroxides used in step (1) were different, which were the metal hydroxide nanoparticle suspensions prepared in Preliminary Examples 3.2-3.25. The obtained black solid masses were 45, 47, 46, 45, 49, 47, 49, 53, 55, 49, 50, 51, 47, 54, 46, 51, 53, 49, 46, 47, 50, 51 , 47 and 53 mg.
实施例3.39Example 3.39
按照实施例3.1的方法制备多孔石墨烯样品,不同的是,步骤(2)中,氮气保护条件变为真空条件(小于10Pa)。The porous graphene sample was prepared according to the method of Example 3.1, except that in step (2), the nitrogen protection condition was changed to vacuum condition (less than 10Pa).
实施例4使用金属氧化物为刻蚀剂制备多孔石墨烯(路线一) Example 4 Preparation of Porous Graphene Using Metal Oxide as an Etchant (Route 1)
实施例4.1Example 4.1
(1)制备四氧化三铁纳米颗粒修饰的石墨烯(1) Preparation of graphene modified with Fe3O4 nanoparticles
将预备实施例1所得到的石墨烯氧化物超纯水溶液浓度调节至8mg/mL,将乙酰丙酮铁溶解在N,N-二甲基甲酰胺(DMF)中,溶液浓度为0.1mol/L,将两种溶液以体积比为1:1进行混合(分别为50mL)。搅拌4小时后,取30mL装入容积为50mL的高压反应釜,200℃加热24小时,得到黑色固体,过滤收集,用超纯水洗涤一次,乙醇洗涤三次,60℃干燥12小时。Adjust the concentration of the graphene oxide ultrapure aqueous solution obtained in Preliminary Example 1 to 8 mg/mL, dissolve iron acetylacetonate in N,N-dimethylformamide (DMF), and the solution concentration is 0.1 mol/L, The two solutions were mixed in a volume ratio of 1:1 (50 mL each). After stirring for 4 hours, take 30 mL into a 50 mL autoclave and heat at 200°C for 24 hours to obtain a black solid, which is collected by filtration, washed once with ultrapure water and three times with ethanol, and dried at 60°C for 12 hours.
(2)制备多孔石墨烯(2) Preparation of porous graphene
将步骤(1)得到的四氧化三铁纳米颗粒修饰的石墨烯作为前驱体(200mg),将其置于管式炉中,在氮气保护的条件下,升温至650℃,升温速率为10℃/min,保温120分钟,自然冷却至室温。The graphene modified with ferric oxide nanoparticles obtained in step (1) was used as a precursor (200mg), and placed in a tube furnace, under the condition of nitrogen protection, the temperature was raised to 650°C, and the heating rate was 10°C /min, keep warm for 120 minutes, and cool down to room temperature naturally.
将得到的黑色固体,分散在稀盐酸中(0.5mol/L,50mL),搅拌3天,过滤收集,使用超纯水洗涤三次,乙醇冲洗一次,60℃干燥12小时,得到的黑色固体粉末即为多孔石墨烯样品。The obtained black solid was dispersed in dilute hydrochloric acid (0.5mol/L, 50mL), stirred for 3 days, collected by filtration, washed three times with ultrapure water, washed once with ethanol, and dried at 60°C for 12 hours. The obtained black solid powder was for porous graphene samples.
实施例4.2-4.4Example 4.2-4.4
按照实施例4.1的方法制备多孔石墨烯样品,不同的是,步骤(1)的乙酰丙酮铁的DMF溶液的浓度分别为0.5mol/L、1mol/L和10mol/L。得到黑色固体分别为63mg、54mg和44mg。Porous graphene samples were prepared according to the method in Example 4.1, except that the concentrations of the DMF solutions of iron acetylacetonate in step (1) were 0.5 mol/L, 1 mol/L and 10 mol/L, respectively. Black solids were obtained as 63mg, 54mg and 44mg respectively.
实施例4.5-4.7Example 4.5-4.7
按照实施例4.1的方法制备多孔石墨烯样品,不同的是,步骤(2)高温处理步骤使用的温度分别为300℃、450℃和1000℃,得到黑色固体分别为54mg、52mg和33mg。Porous graphene samples were prepared according to the method of Example 4.1, except that the temperatures used in the high temperature treatment step (2) were 300°C, 450°C, and 1000°C, respectively, and the obtained black solids were 54mg, 52mg, and 33mg respectively.
实施例4.8-4.10Example 4.8-4.10
按照实施例4.1的方法制备多孔石墨烯样品,不同的是,步骤(2)高温处理的时间分别为5分钟、60分钟和300分钟,得到黑色固体分别为52mg、49mg和33mg。Porous graphene samples were prepared according to the method of Example 4.1, except that the high temperature treatment time in step (2) was 5 minutes, 60 minutes and 300 minutes respectively, and black solids of 52 mg, 49 mg and 33 mg were obtained, respectively.
实施例4.11-4.14Example 4.11-4.14
按照实施例4.1的方法制备多孔石墨烯样品,不同的是,步骤(1)使用的石墨烯氧化物超纯水溶液的浓度分别为4mg/mL、10mg/mL、16mg/mL和20mg/mL。得到黑色固体分别为38mg、45mg、58mg和98mg。Porous graphene samples were prepared according to the method of Example 4.1, except that the concentrations of the graphene oxide ultrapure aqueous solutions used in step (1) were 4 mg/mL, 10 mg/mL, 16 mg/mL and 20 mg/mL. 38mg, 45mg, 58mg and 98mg of black solids were obtained respectively.
实施例4.15-4.22Example 4.15-4.22
按照实施例4.1的方法制备多孔石墨烯样品,不同的是,步骤(1)使用的金属前驱物不同,即金属配合物分别是乙酰丙酮铝、乙酰丙酮钒、乙酰丙酮镍、乙酰丙酮锆、乙酰丙酮钴、乙酰丙酮锌、乙酰丙酮铜、乙酰丙酮铬。得到的黑色固体质量约为45-55mg。Prepare porous graphene samples according to the method of Example 4.1, the difference is that the metal precursors used in step (1) are different, that is, the metal complexes are aluminum acetylacetonate, vanadium acetylacetonate, nickel acetylacetonate, zirconium acetylacetonate, acetylacetonate Cobalt acetonate, zinc acetylacetonate, copper acetylacetonate, chromium acetylacetonate. The mass of the obtained black solid was about 45-55 mg.
实施例4.23Example 4.23
按照实施例4.1的方法制备多孔石墨烯样品,不同的是,步骤(2)中,氮气保护条件变为真空条件(小于10Pa)。The porous graphene sample was prepared according to the method of Example 4.1, except that in step (2), the nitrogen protection condition was changed to vacuum condition (less than 10Pa).
实施例5使用金属氧化物为刻蚀剂制备多孔石墨烯(路线二) Example 5 Preparation of Porous Graphene Using Metal Oxide as an Etchant (Route 2)
实施例5.1Example 5.1
(1)制备石墨烯氧化物与四氧化三铁的混合物(1) Preparation of a mixture of graphene oxide and ferric oxide
将预备实施例4.1得到的四氧化三铁纳米颗粒(100mg)分散在超纯水(25mL)中,超声30分钟(功率80W)后,加入到石墨烯氧化物的超纯水溶液(4mg/mL,25mL)中,石墨烯氧化物与四氧化三铁纳米颗粒的质量比为1:1,超声1小时(功率80W),然后搅拌12小时。将得到的均一混合物溶液用液氮浴将混合溶液冷冻15分钟后,使用冷冻干燥机进行干燥(48小时,温度为-50℃,压力为7.5Pa)。Disperse the iron ferric oxide nanoparticles (100mg) obtained in Preliminary Example 4.1 in ultrapure water (25mL), and after ultrasonication for 30 minutes (power 80W), add it to the ultrapure aqueous solution of graphene oxide (4mg/mL, 25mL), the mass ratio of graphene oxide to ferric oxide nanoparticles was 1:1, sonicated for 1 hour (power 80W), and then stirred for 12 hours. The obtained homogeneous mixture solution was frozen in a liquid nitrogen bath for 15 minutes, and then dried using a freeze dryer (48 hours, temperature: -50° C., pressure: 7.5 Pa).
(2)制备多孔石墨烯(2) Preparation of porous graphene
将步骤(1)得到的四氧化三铁纳米颗粒修饰的石墨烯作为前驱体(200mg),将其置于管式炉中,在氮气保护的条件下,升温至650℃,升温速率为10℃/min,保温120分钟,自然冷却至室温。The graphene modified with ferric oxide nanoparticles obtained in step (1) was used as a precursor (200mg), and placed in a tube furnace, under the condition of nitrogen protection, the temperature was raised to 650°C, and the heating rate was 10°C /min, keep warm for 120 minutes, and cool down to room temperature naturally.
将得到的黑色固体,分散在稀盐酸中(0.5mol/L,50mL),搅拌3天,过滤收集,使用超纯水洗涤三次,乙醇冲洗一次,60℃干燥12小时,得到的黑色固体粉末的质量为56mg。The obtained black solid was dispersed in dilute hydrochloric acid (0.5mol/L, 50mL), stirred for 3 days, collected by filtration, washed three times with ultrapure water, washed once with ethanol, and dried at 60°C for 12 hours. The obtained black solid powder The mass is 56mg.
实施例5.2-5.4Example 5.2-5.4
按照实施例5.1的方法制备多孔石墨烯样品,不同的是,步骤(2)高温处理步骤使用的温度分别为300℃、450℃和1000℃,得到黑色固体分别为58mg、54mg和35mg。Porous graphene samples were prepared according to the method of Example 5.1, except that the temperatures used in the high temperature treatment step (2) were 300°C, 450°C, and 1000°C, respectively, and the obtained black solids were 58mg, 54mg, and 35mg respectively.
实施例5.5-5.7Example 5.5-5.7
按照实施例5.1的方法制备多孔石墨烯样品,不同的是,步骤(2)高温处理的时间分别为5分钟、60分钟和300分钟,得到黑色固体分别为56mg、52mg和36mg。Porous graphene samples were prepared according to the method of Example 5.1, except that the time of high temperature treatment in step (2) was 5 minutes, 60 minutes and 300 minutes, respectively, and the obtained black solids were 56 mg, 52 mg and 36 mg, respectively.
实施例5.8-5.11Example 5.8-5.11
按照实施例5.1的方法制备多孔石墨烯样品,不同的是,步骤(2)使用的石墨烯氧化物超纯水溶液的浓度分别为2mg/mL、8mg/mL、16mg/mL和20mg/mL。得到黑色固体分别为36mg、76mg、98mg和112mg。Porous graphene samples were prepared according to the method in Example 5.1, except that the concentrations of the graphene oxide ultrapure aqueous solutions used in step (2) were 2 mg/mL, 8 mg/mL, 16 mg/mL and 20 mg/mL. Black solids were obtained as 36mg, 76mg, 98mg and 112mg respectively.
实施例5.12-5.22Example 5.12-5.22
按照实施例5.1的方法制备多孔石墨烯样品,不同的是,金属氧化物纳米颗粒不同,即分别为预备实施例4.2-4.12制备得到的金属氧化物。得到的黑色固体质量为45-55mg。Porous graphene samples were prepared according to the method in Example 5.1, except that the metal oxide nanoparticles were different, that is, the metal oxides prepared in Preliminary Examples 4.2-4.12. The mass of the obtained black solid was 45-55 mg.
实施例5.23Example 5.23
按照实施例5.1的方法制备多孔石墨烯样品,不同的是,步骤(2)中,氮气保护条件变为真空条件(小于10Pa)。The porous graphene sample was prepared according to the method of Example 5.1, except that in step (2), the nitrogen protection condition was changed to vacuum condition (less than 10Pa).
对比例1电子束辐射法制备多孔石墨烯 Comparative example 1 electron beam radiation method prepares porous graphene
通过化学气相沉积方法制备石墨烯,并将石墨烯转移到铜网上(该步骤参考文献:Li,X.;Cai,W.;An,J.;Kim,S.;Nah,J.;Yang,D.;Piner,R.;Velamakanni,A.;Jung,I.;Tutuc,E.;Banerjee,S.K.;Colombo,L.;Ruoff,R.S.Large-Area Synthesis of High-Qualityand Uniform Graphene Films on Copper Foils.Science2009,324,1312-1314.)。通过电子束蒸镀的方法,在石墨烯表面沉积钯纳米粒子。将铜网转移进入电镜样品舱(UltraSTEM100像差校正扫描透射电子显微镜),在真空条件下(5×10-9Torr),通过电子束辐射石墨烯(60keV),石墨烯表面出现缺陷结构,即制备得到多孔石墨烯样品(Zan,R.;Ramasse,Q.M.;Bangert,U.;Novoselov,K.S.Graphene Reknits Its Holes.Nano Lett.2012,12(8),3936-3940.)。该方法是在单片石墨烯上进行操作加工,制备得到的多孔石墨烯产量极低,以“片”计。Graphene was prepared by chemical vapor deposition and transferred onto a copper grid (references for this step: Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, SK; Colombo, L.; Ruoff, RS Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. , 324, 1312-1314.). Palladium nanoparticles were deposited on the graphene surface by electron beam evaporation. Transfer the copper grid into the electron microscope sample compartment (UltraSTEM100 aberration-corrected scanning transmission electron microscope), and irradiate graphene (60keV) with electron beams under vacuum conditions (5×10 -9 Torr), and a defect structure appears on the graphene surface, namely Porous graphene samples were prepared (Zan, R.; Ramasse, QM; Bangert, U.; Novoselov, KS Graphene Reknits Its Holes. Nano Lett. 2012, 12(8), 3936-3940.). This method is to operate and process on a single sheet of graphene, and the yield of the prepared porous graphene is extremely low, which is calculated as a "sheet".
对比例2氦离子轰击法制备多孔石墨烯 Comparative Example 2 Preparation of Porous Graphene by Helium Ion Bombardment
通过机械剥离方法制备石墨烯并转移到SiO2基底上(该步骤参考文献:Novoselov,K.;Geim,A.;Morozov,S.;Jiang,D.;Zhang,Y.;Dubonos,S.;Grigorieva,I.;Firsov,A.Electric Field Effect in Atomically Thin Carbon Films.Science2004,306,666-669.)。将石墨烯样品置于氦离子显微镜样品舱中(Zeiss ORION system),测试之前用空气等离子体清洗样品舱(Evactron等离子清洗机,12W,10小时(15分钟工作,休息45分钟,循环10次))。使用氦离子对石墨烯进行轰击,电压为30kV,即可制备得到多孔石墨烯(Bell,D.C.;Lemme,M.C.;Stern,L.A.;Williams,J.R.;Marcus,C.M.PrecisionCutting and Patterning of Graphene with Helium Ions.Nanotechnology2009,20(45),455301.)。该方法是在单片石墨烯上进行操作加工,制备得到的多孔石墨烯产量极低,以“片”计。Graphene was prepared by a mechanical exfoliation method and transferred onto a SiO2 substrate (references for this step: Novoselov, K.; Geim, A.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.). The graphene sample was placed in the sample compartment of a helium ion microscope (Zeiss ORION system), and the sample compartment was cleaned with air plasma before testing (Evactron plasma cleaner, 12W, 10 hours (15 minutes of work, 45 minutes of rest, 10 cycles) ). Use helium ions to bombard graphene with a voltage of 30kV to prepare porous graphene (Bell, DC; Lemme, MC; Stern, LA; Williams, JR; Marcus, CM Precision Cutting and Patterning of Graphene with Helium Ions.Nanotechnology2009, 20(45), 455301.). This method is to operate and process on a single sheet of graphene, and the yield of the prepared porous graphene is extremely low, which is calculated as a "sheet".
(二)制备多孔石墨烯薄膜(2) Preparation of porous graphene film
实施例6碳热反应制备多孔石墨烯薄膜Embodiment 6 carbothermal reaction prepares porous graphene film
实施例6.1Example 6.1
将钼酸铵的超纯水溶液(1mol/mL,0.1mL)覆盖在预备实施例5.2所得到的石墨烯薄膜上,40℃静置干燥。将薄膜样品置于管式炉中,在氮气保护的条件下,升温至400℃,升温速率为10℃/min,保温30分钟,自然冷却至室温。将得到的黑色薄膜,浸泡在稀盐酸中(0.5mol/L,20mL),使用超纯水冲洗三次,乙醇冲洗一次,60℃干燥12小时。得到的即为多孔石墨烯薄膜。照片如图4所示。An ultrapure aqueous solution of ammonium molybdate (1 mol/mL, 0.1 mL) was covered on the graphene film obtained in Preliminary Example 5.2, and left to dry at 40°C. The thin film sample was placed in a tube furnace, heated to 400°C under the protection of nitrogen, at a heating rate of 10°C/min, kept for 30 minutes, and then naturally cooled to room temperature. The obtained black film was soaked in dilute hydrochloric acid (0.5mol/L, 20mL), washed three times with ultrapure water and once with ethanol, and dried at 60°C for 12 hours. The result is a porous graphene film. The photos are shown in Figure 4.
实施例6.2-6.5Example 6.2-6.5
按照实施例6.1的方法制备多孔石墨烯薄膜样品,不同的是,钼酸铵的超纯水溶液浓度分别为0.01mol/L、2mol/L、5mol/L和10mol/L。Porous graphene film samples were prepared according to the method in Example 6.1, except that the concentrations of the ultrapure aqueous solutions of ammonium molybdate were 0.01mol/L, 2mol/L, 5mol/L and 10mol/L, respectively.
实施例6.6-6.10Example 6.6-6.10
按照实施例6.1的方法制备多孔石墨烯薄膜样品,不同的是,高温处理步骤的温度分别为300℃、350℃、500℃、650℃和1000℃。Porous graphene film samples were prepared according to the method of Example 6.1, except that the temperatures of the high temperature treatment step were 300°C, 350°C, 500°C, 650°C and 1000°C, respectively.
实施例6.11-6.15Example 6.11-6.15
按照实施例6.1的方法制备多孔石墨烯薄膜样品,不同的是,高温处理步骤的时间分别为5分钟、30分钟、60分钟、120分钟和300分钟。Porous graphene film samples were prepared according to the method of Example 6.1, except that the time of the high temperature treatment step was 5 minutes, 30 minutes, 60 minutes, 120 minutes and 300 minutes respectively.
实施例6.16-6.76Example 6.16-6.76
按照实施例6.1的方法制备多孔石墨烯样品,不同的是,使用的金属氧酸盐分别是钼酸钾、钨酸锂、钨酸钠、钨酸钾、锡酸锂、锡酸钠、锡酸钾、铝酸锂、铝酸钠、铝酸钾、钛酸锂、钛酸钠、钛酸钾、钛酸锂、钒酸钠、钒酸钾、铋酸锂、铋酸钠、铋酸钾、高锰酸锂、高锰酸钾、高锰酸钠、锰酸锂、锰酸钾、锰酸钠、重铬酸钾、重铬酸钠、铬酸锂、铬酸钾、铬酸钠、锆酸锂、锆酸钠、锆酸钾、高铁酸锂、高铁酸钠、高铁酸钾、锌酸锂、锌酸钠、锌酸钾、铌酸锂、铌酸钠、铌酸钾、钴酸锂、钴酸钠、钴酸钾、镍酸锂、镍酸钠、镍酸钾、硅钼酸、硅钨酸、硅钒酸、钼酸铵、钨酸铵、钒酸铵、锰酸铵、重铬酸铵、铬酸铵、镍酸铵、磷钨酸、磷钼酸和磷钒酸。Porous graphene samples were prepared according to the method in Example 6.1, except that the oxometalates used were potassium molybdate, lithium tungstate, sodium tungstate, potassium tungstate, lithium stannate, sodium stannate, stannic acid Potassium, lithium aluminate, sodium aluminate, potassium aluminate, lithium titanate, sodium titanate, potassium titanate, lithium titanate, sodium vanadate, potassium vanadate, lithium bismuthate, sodium bismuthate, potassium bismuthate, Lithium permanganate, potassium permanganate, sodium permanganate, lithium manganate, potassium manganate, sodium manganate, potassium dichromate, sodium dichromate, lithium chromate, potassium chromate, sodium chromate, zirconium Lithium oxide, sodium zirconate, potassium zirconate, lithium ferrate, sodium ferrate, potassium ferrate, lithium zincate, sodium zincate, potassium zincate, lithium niobate, sodium niobate, potassium niobate, lithium cobaltate , Sodium cobaltate, Potassium cobaltate, Lithium nickelate, Sodium nickelate, Potassium nickelate, Silicon molybdenum acid, Silicon tungstic acid, Silicon vanadium acid, Ammonium molybdate, Ammonium tungstate, Ammonium vanadate, Ammonium manganate, Heavy Ammonium chromate, ammonium chromate, ammonium nickelate, phosphotungstic acid, phosphomolybdic acid, and phosphovanadic acid.
实施例6.77-80Example 6.77-80
按照实施例6.1的方法制备多孔石墨烯薄膜样品,不同的是,使用的石墨烯薄膜样品分别为预备实施例5.3-5.6制备的石墨烯薄膜样品。Porous graphene film samples were prepared according to the method in Example 6.1, except that the graphene film samples used were the graphene film samples prepared in Preliminary Examples 5.3-5.6.
实施例6.81-106Example 6.81-106
按照实施例6.1的方法制备多孔石墨烯薄膜样品,不同的是,使用的刻蚀剂由钼酸铵变分别为由预备实施例3.1-3.26制备得到的氢氧化铈悬浮液,悬浮液浓度均为稀释为0.1mol/L。Porous graphene film samples are prepared according to the method of Example 6.1, the difference is that the etchant used is changed from ammonium molybdate to the cerium hydroxide suspension prepared by preliminary examples 3.1-3.26, and the concentration of the suspension is Dilute to 0.1mol/L.
实施例6.107-114Example 6.107-114
按照实施例6.1的方法制备多孔石墨烯薄膜样品,不同的是,使用的刻蚀剂由钼酸铵变为分别由预备实施例4.1-4.8制备得到的四氧化三铁纳米颗粒。四氧化三铁纳米颗粒超纯水溶液浓度均为0.1mol/L。Porous graphene film samples were prepared according to the method of Example 6.1, except that the etchant used was changed from ammonium molybdate to iron ferric oxide nanoparticles prepared in Preliminary Examples 4.1-4.8. The concentrations of the ultrapure aqueous solution of ferric oxide nanoparticles are all 0.1mol/L.
实施例6.115Example 6.115
按照实施例6.1的方法制备多孔石墨烯样品,不同的是,氮气保护条件变为真空条件(小于10Pa)。Porous graphene samples were prepared according to the method in Example 6.1, except that the nitrogen protection conditions were changed to vacuum conditions (less than 10Pa).
实施例7电子束辅助法制备多孔石墨烯薄膜Example 7 Preparation of Porous Graphene Film by Electron Beam Assisted Method
实施例7.1Example 7.1
将钼酸铵的超纯水溶液(1mol/mL,0.1mL)覆盖在预备实施例5.2所得到的石墨烯薄膜上,40℃静置干燥。将薄膜样品置于真空条件中,使用电子束进行辐射(电子束电压为6KV,)5分钟。将得到的黑色薄膜,浸泡在稀盐酸中(0.5mol/L,20mL),使用超纯水冲洗三次,乙醇冲洗一次,60℃干燥12小时。得到的即为多孔石墨烯薄膜。制备的多孔石墨烯薄膜样品的SEM(Hitachi S-4800扫描电子显微镜,日本日立公司)照片如图5所示。An ultrapure aqueous solution of ammonium molybdate (1 mol/mL, 0.1 mL) was covered on the graphene film obtained in Preliminary Example 5.2, and left to dry at 40°C. The thin film samples were placed in a vacuum condition and irradiated with an electron beam (electron beam voltage 6KV,) for 5 minutes. The obtained black film was soaked in dilute hydrochloric acid (0.5mol/L, 20mL), washed three times with ultrapure water and once with ethanol, and dried at 60°C for 12 hours. The result is a porous graphene film. The SEM (Hitachi S-4800 scanning electron microscope, Hitachi, Japan) photo of the prepared porous graphene film sample is shown in Figure 5.
实施例7.2-7.5Example 7.2-7.5
按照实施例7.1的方法制备多孔石墨烯薄膜样品,不同的是,钼酸铵的超纯水溶液浓度分别为0.01mol/L、2mol/L、5mol/L和10mol/L。Porous graphene film samples were prepared according to the method in Example 7.1, except that the concentration of the ultrapure aqueous solution of ammonium molybdate was 0.01mol/L, 2mol/L, 5mol/L and 10mol/L, respectively.
实施例7.6-7.9Example 7.6-7.9
按照实施例7.1的方法制备多孔石墨烯薄膜样品,不同的是,电子束电压分别为1KV、10KV、15KV和20KV。Porous graphene film samples were prepared according to the method in Example 7.1, except that the electron beam voltages were 1KV, 10KV, 15KV and 20KV, respectively.
实施例7.10-7.12Example 7.10-7.12
按照实施例7.1的方法制备多孔石墨烯薄膜样品,不同的是,电子束辐射时间分别为0.5分钟、3分钟10分钟。Porous graphene film samples were prepared according to the method in Example 7.1, except that the electron beam irradiation time was 0.5 minutes, 3 minutes and 10 minutes respectively.
实施例7.13-1.73Example 7.13-1.73
按照实施例7.1的方法制备多孔石墨烯样品,不同的是,使用的金属氧酸盐分别是钼酸钠、钼酸钾、钨酸锂、钨酸钠、钨酸钾、锡酸锂、锡酸钠、锡酸钾、铝酸锂、铝酸钠、铝酸钾、钛酸锂、钛酸钠、钛酸钾、钛酸锂、钒酸钠、钒酸钾、铋酸锂、铋酸钠、铋酸钾、高锰酸锂、高锰酸钾、高锰酸钠、锰酸锂、锰酸钾、锰酸钠、重铬酸钾、重铬酸钠、铬酸锂、铬酸钾、铬酸钠、锆酸锂、锆酸钠、锆酸钾、高铁酸锂、高铁酸钠、高铁酸钾、锌酸锂、锌酸钠、锌酸钾、铌酸锂、铌酸钠、铌酸钾、钴酸锂、钴酸钠、钴酸钾、镍酸锂、镍酸钠、镍酸钾、硅钼酸、硅钨酸、硅钒酸、钼酸铵、钨酸铵、钒酸铵、锰酸铵、重铬酸铵、铬酸铵或镍酸铵、磷钨酸、磷钼酸和磷钒酸。Porous graphene samples were prepared according to the method of Example 7.1, the difference being that the oxometalates used were sodium molybdate, potassium molybdate, lithium tungstate, sodium tungstate, potassium tungstate, lithium stannate, stannic acid Sodium, potassium stannate, lithium aluminate, sodium aluminate, potassium aluminate, lithium titanate, sodium titanate, potassium titanate, lithium titanate, sodium vanadate, potassium vanadate, lithium bismuthate, sodium bismuthate, Potassium bismuthate, lithium permanganate, potassium permanganate, sodium permanganate, lithium manganate, potassium manganate, sodium manganate, potassium dichromate, sodium dichromate, lithium chromate, potassium chromate, chromium Sodium zirconate, lithium zirconate, sodium zirconate, potassium zirconate, lithium ferrate, sodium ferrate, potassium ferrate, lithium zincate, sodium zincate, potassium zincate, lithium niobate, sodium niobate, potassium niobate , Lithium cobaltate, sodium cobaltate, potassium cobaltate, lithium nickelate, sodium nickelate, potassium nickelate, silicomomolybdic acid, silicotungstic acid, silicovanadate, ammonium molybdate, ammonium tungstate, ammonium vanadate, manganese ammonium dichromate, ammonium chromate or nickelate, phosphotungstic acid, phosphomolybdic acid and phosphovanadic acid.
实施例7.74-7.77Example 7.74-7.77
按照实施例7.1的方法制备多孔石墨烯薄膜样品,不同的是,使用的石墨烯薄膜样品分别为由预备实施例5.3-5.6制备获得。The porous graphene film samples were prepared according to the method of Example 7.1, except that the graphene film samples used were obtained from the preparatory examples 5.3-5.6.
实施例7.78-7.99Example 7.78-7.99
按照实施例7.1的方法制备多孔石墨烯薄膜样品,不同的是,使用的刻蚀剂由钼酸铵变分别为由预备实施例3.1-3.22得到的氢氧化铈悬浮液,悬浮液浓度均为稀释为0.1mol/L。Prepare the porous graphene film sample according to the method of embodiment 7.1, the difference is that the etchant used is changed from ammonium molybdate to the cerium hydroxide suspension obtained by preliminary embodiment 3.1-3.22, and the concentration of the suspension is diluted 0.1mol/L.
实施例7.100-7.107Examples 7.100-7.107
按照实施例7.1的方法制备多孔石墨烯薄膜样品,不同的是,使用的刻蚀剂由钼酸铵变为由预备实施例4.1-4.8制备得到的四氧化三铁纳米颗粒。四氧化三铁纳米颗粒超纯水溶液浓度为0.1mol/L。The porous graphene film sample was prepared according to the method of Example 7.1, except that the etchant used was changed from ammonium molybdate to ferric oxide nanoparticles prepared in preliminary examples 4.1-4.8. The concentration of the ultrapure aqueous solution of iron ferric oxide nanoparticles is 0.1mol/L.
由以上实施例可以看出,采用本申请的技术方案均能够成功的制备多孔石墨烯或多孔石墨烯薄膜,并且本发明能够实现多孔石墨烯较大量的制备。与之前报道的多孔石墨烯的制备方法相比,本方法具有以下优点:It can be seen from the above examples that porous graphene or porous graphene films can be successfully prepared by adopting the technical solutions of the present application, and the present invention can realize a large amount of porous graphene preparation. Compared with the previously reported preparation methods of porous graphene, this method has the following advantages:
(1)产量高。本方法制备的多孔石墨烯产量受投料量影响,提高前驱物的投料量,产量可以达到克级,多孔石墨烯表面的孔径大小以及孔密度可以通过调整前驱物中刻蚀剂石墨烯的比例进行调控。对比例中制备多孔石墨烯的方法主要是针对单片石墨烯或者石墨烯薄膜进行的加工,在其表面造孔进行研究,产量很低,通常以“片”计。(1) High output. The yield of the porous graphene prepared by this method is affected by the amount of feed, increasing the feed amount of the precursor, the yield can reach the gram level, and the pore size and pore density on the surface of the porous graphene can be adjusted by adjusting the ratio of etchant graphene in the precursor regulation. The method for preparing porous graphene in the comparative example is mainly aimed at the processing of single-sheet graphene or graphene film, and researches on making holes on its surface, and the output is very low, usually counted as "sheet".
(2)设备简单。本发明只需要使用管式炉(<2000元)、真空泵(<1万元),就可以完成多孔石墨烯或石墨烯薄膜的制备。对比例中需要使用到扫描透射电镜和氦离子显微镜这些大型的设备,设备价格非常高(通常在几十到几百万元不等)。同时,对比例中的方法对于样品舱的真空度、清洁度也有很高的要求。(2) The equipment is simple. The present invention only needs to use a tube furnace (<2000 yuan) and a vacuum pump (<10,000 yuan) to complete the preparation of porous graphene or graphene film. In the comparison example, large-scale equipment such as scanning transmission electron microscope and helium ion microscope are needed, and the equipment price is very high (usually ranging from tens to several million yuan). At the same time, the method in the comparative example also has high requirements for the vacuum degree and cleanliness of the sample chamber.
由图4和图5可以看出,实施例6.1制备得到的多孔墨烯薄膜,使用的刻蚀剂为金属氧酸盐,通过热处理进行造孔,孔径约为100nm,孔较密,SEM照片中还能观察到石墨烯的褶皱。图5为使用电子束刻蚀方法制备得到的多孔石墨烯薄膜,通过使用电子束提供能量,刻蚀剂也能在石墨烯薄膜表面刻蚀造孔,相比热还原方法,其孔径和孔密度都较小。It can be seen from Figure 4 and Figure 5 that the porous graphene film prepared in Example 6.1 uses an etchant of oxometalate, and heat treatment is used to create pores. The pore diameter is about 100 nm, and the pores are relatively dense. Wrinkles of graphene can also be observed. Figure 5 shows the porous graphene film prepared by the electron beam etching method. By using the electron beam to provide energy, the etchant can also etch holes on the surface of the graphene film. Compared with the thermal reduction method, the pore size and pore density Both are smaller.
因此,本发明提供了一种成本较低的大量制备多孔石墨烯的方法,对于多孔石墨烯在材料科学领域的应用研究具有较为重要的意义。Therefore, the present invention provides a method for preparing porous graphene in large quantities with relatively low cost, which is of great significance for the application research of porous graphene in the field of material science.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the specific details in the above embodiments. Within the scope of the technical concept of the present invention, various simple modifications can be made to the technical solutions of the present invention. These simple modifications All belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。In addition, it should be noted that the various specific technical features described in the above specific embodiments can be combined in any suitable way if there is no contradiction. The combination method will not be described separately.
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。In addition, various combinations of different embodiments of the present invention can also be combined arbitrarily, as long as they do not violate the idea of the present invention, they should also be regarded as the disclosed content of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310581279.2A CN104649253A (en) | 2013-11-18 | 2013-11-18 | Preparing methods of porous graphene and porous graphene film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310581279.2A CN104649253A (en) | 2013-11-18 | 2013-11-18 | Preparing methods of porous graphene and porous graphene film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104649253A true CN104649253A (en) | 2015-05-27 |
Family
ID=53240971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310581279.2A Pending CN104649253A (en) | 2013-11-18 | 2013-11-18 | Preparing methods of porous graphene and porous graphene film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104649253A (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104900418A (en) * | 2015-05-29 | 2015-09-09 | 上海交通大学 | Electrode material of super capacitor, preparation method and application of electrode material |
CN105523547A (en) * | 2016-01-25 | 2016-04-27 | 浙江大学 | Graphene film with ultrahigh flexibility and high thermal conductivity and preparation method of graphene film |
CN105731435A (en) * | 2016-01-25 | 2016-07-06 | 浙江碳谷上希材料科技有限公司 | High-strength flexible graphene composite heat conduction film and preparation method thereof |
CN105948032A (en) * | 2016-07-04 | 2016-09-21 | 烟台市烯能新材料股份有限公司 | Method for etching multilayer graphene |
CN106185880A (en) * | 2016-06-07 | 2016-12-07 | 黑龙江省宝泉岭农垦帝源矿业有限公司 | A kind of method that porous graphene directly prepared by graphene oxide slurry utilizing pre-purification |
CN106517993A (en) * | 2016-10-18 | 2017-03-22 | 中国科学院宁波材料技术与工程研究所 | Graphene/montmorillonite compound porous thin film and preparation method thereof |
CN106610400A (en) * | 2017-01-04 | 2017-05-03 | 太原理工大学 | Method for detecting amaranth in food by using porous graphene |
CN106986333A (en) * | 2017-05-25 | 2017-07-28 | 华中科技大学 | A kind of method that magnanimity controllable preparation graphene nano sieves material |
CN107051228A (en) * | 2017-06-02 | 2017-08-18 | 大连理工大学 | A kind of method of the ultra-thin porous graphene seperation film of direct growth |
CN107089656A (en) * | 2017-05-24 | 2017-08-25 | 华中科技大学 | A kind of method for preparing large-area graphene nanometer sieve film |
CN107353171A (en) * | 2017-08-03 | 2017-11-17 | 北京理工大学 | A kind of Al/CuO/ porous graphenes Nanocomposite Energetic Materials and preparation method thereof |
CN107827103A (en) * | 2017-12-07 | 2018-03-23 | 太原理工大学 | The preparation method and applications of N doping porous graphene |
CN107887328A (en) * | 2016-09-30 | 2018-04-06 | 昆山国显光电有限公司 | Array base palte and its manufacture method, OLED structure |
CN108480655A (en) * | 2018-04-10 | 2018-09-04 | 河南大学 | A kind of carbon-supported metal tungsten nano particle |
CN108550903A (en) * | 2018-05-07 | 2018-09-18 | 杭州高烯科技有限公司 | A kind of aluminium ion battery |
WO2018218644A1 (en) * | 2017-06-02 | 2018-12-06 | 大连理工大学 | Method for directly growing ultrathin porous graphene separation membrane |
WO2019007062A1 (en) * | 2017-07-05 | 2019-01-10 | 京东方科技集团股份有限公司 | Influenza virus detection chip and method for detecting influenza virus using same |
CN109368620A (en) * | 2018-12-11 | 2019-02-22 | 中国科学院兰州化学物理研究所 | A kind of preparation method of ultra-small sub-nanopore porous graphene |
CN110247032A (en) * | 2019-05-28 | 2019-09-17 | 北京汽车股份有限公司 | Nitrogen-doped graphene negative electrode material and preparation method thereof and lithium ion battery |
CN110711070A (en) * | 2019-09-25 | 2020-01-21 | 张小伏 | Preparation method of far infrared graphene condom |
CN110877907A (en) * | 2019-09-26 | 2020-03-13 | 中国科学院长春光学精密机械与物理研究所 | Graphene material with regularly-arranged pore structure and preparation method thereof |
CN111447694A (en) * | 2020-04-15 | 2020-07-24 | 广东康烯科技有限公司 | A kind of palladium quantum dot doped graphene-based electric heating plate and electric heating device |
CN111732102A (en) * | 2019-12-04 | 2020-10-02 | 中国科学院上海硅酸盐研究所 | A method for preparing porous carbon material by ruthenium particle-assisted etching in a strong alkali environment |
CN111874886A (en) * | 2020-06-18 | 2020-11-03 | 华南理工大学 | A nitrogen-doped porous carbon material and its preparation method and application |
CN112142113A (en) * | 2020-09-29 | 2020-12-29 | 攀钢集团研究院有限公司 | Preparation method of spherical ammonium manganese vanadate particles |
CN113666366A (en) * | 2020-05-13 | 2021-11-19 | 中国科学技术大学 | Method for preparing graphene through electrochemical anode stripping |
CN113830755A (en) * | 2021-09-14 | 2021-12-24 | 广西师范大学 | Method for electrochemically preparing cobalt simple substance-graphene intercalation compound by one-step method |
CN114014306A (en) * | 2021-12-15 | 2022-02-08 | 陇东学院 | Preparation method and application of oxygen-enriched layered porous graphene |
CN115188600A (en) * | 2022-03-01 | 2022-10-14 | 天津理工大学 | Low-temperature alternating-current filtering supercapacitor based on carbon nano onion/graphene composite structure |
CN115215328A (en) * | 2022-07-26 | 2022-10-21 | 中国科学院上海硅酸盐研究所 | A kind of bamboo forest-like graphene tube array and preparation method and application thereof |
CN119639425A (en) * | 2025-02-17 | 2025-03-18 | 内蒙古博冉科技有限责任公司 | Graphene dust suppressant and preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102867650A (en) * | 2012-09-03 | 2013-01-09 | 中国科学院大连化学物理研究所 | High-magnification supercapacitor composite electrode material and preparation method thereof |
-
2013
- 2013-11-18 CN CN201310581279.2A patent/CN104649253A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102867650A (en) * | 2012-09-03 | 2013-01-09 | 中国科学院大连化学物理研究所 | High-magnification supercapacitor composite electrode material and preparation method thereof |
Non-Patent Citations (4)
Title |
---|
JUN YAN ET AL.: "Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes", 《CARBON》, vol. 48, 25 June 2010 (2010-06-25) * |
LI LI ZHANG ET AL.: "Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors", 《NANO LETTERS》, vol. 12, 28 February 2012 (2012-02-28) * |
THANGAVELU PALANISELVAM ET AL.: "An efficient oxygen reduction electrocatalyst from graphene by simultaneously generating pores and nitrogen doped active sites", 《JOURNAL OF MATERIALS CHEMISTRY》, vol. 22, 24 September 2012 (2012-09-24), XP055136917, DOI: doi:10.1039/c2jm35128e * |
YANWU ZHU ET AL.: "Carbon-Based Supercapacitors Produced by Activation of Graphene", 《SCIENCE》, vol. 332, 24 June 2011 (2011-06-24), XP055158805, DOI: doi:10.1126/science.1200770 * |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104900418A (en) * | 2015-05-29 | 2015-09-09 | 上海交通大学 | Electrode material of super capacitor, preparation method and application of electrode material |
CN105731435B (en) * | 2016-01-25 | 2017-11-28 | 浙江碳谷上希材料科技有限公司 | A kind of high tensile flexible graphene composite heat conduction film and preparation method thereof |
CN105523547A (en) * | 2016-01-25 | 2016-04-27 | 浙江大学 | Graphene film with ultrahigh flexibility and high thermal conductivity and preparation method of graphene film |
CN105731435A (en) * | 2016-01-25 | 2016-07-06 | 浙江碳谷上希材料科技有限公司 | High-strength flexible graphene composite heat conduction film and preparation method thereof |
CN105523547B (en) * | 2016-01-25 | 2017-09-29 | 浙江大学 | A kind of super flexible high heat conduction graphene film and preparation method thereof |
CN106185880A (en) * | 2016-06-07 | 2016-12-07 | 黑龙江省宝泉岭农垦帝源矿业有限公司 | A kind of method that porous graphene directly prepared by graphene oxide slurry utilizing pre-purification |
CN105948032A (en) * | 2016-07-04 | 2016-09-21 | 烟台市烯能新材料股份有限公司 | Method for etching multilayer graphene |
CN107887328A (en) * | 2016-09-30 | 2018-04-06 | 昆山国显光电有限公司 | Array base palte and its manufacture method, OLED structure |
CN107887328B (en) * | 2016-09-30 | 2020-08-25 | 昆山国显光电有限公司 | Array substrate, manufacturing method thereof, and OLED structure |
CN106517993A (en) * | 2016-10-18 | 2017-03-22 | 中国科学院宁波材料技术与工程研究所 | Graphene/montmorillonite compound porous thin film and preparation method thereof |
CN106517993B (en) * | 2016-10-18 | 2018-12-18 | 中国科学院宁波材料技术与工程研究所 | A kind of graphene/montmorillonite Composite porous membrane and preparation method thereof |
CN106610400A (en) * | 2017-01-04 | 2017-05-03 | 太原理工大学 | Method for detecting amaranth in food by using porous graphene |
CN106610400B (en) * | 2017-01-04 | 2019-06-28 | 太原理工大学 | Utilize the method for amaranth in porous graphene detection food |
CN107089656A (en) * | 2017-05-24 | 2017-08-25 | 华中科技大学 | A kind of method for preparing large-area graphene nanometer sieve film |
CN106986333A (en) * | 2017-05-25 | 2017-07-28 | 华中科技大学 | A kind of method that magnanimity controllable preparation graphene nano sieves material |
CN106986333B (en) * | 2017-05-25 | 2019-07-19 | 华中科技大学 | A kind of macro-controllable method for preparing graphene nanosieve material |
CN107051228A (en) * | 2017-06-02 | 2017-08-18 | 大连理工大学 | A kind of method of the ultra-thin porous graphene seperation film of direct growth |
CN107051228B (en) * | 2017-06-02 | 2020-04-07 | 大连理工大学 | Method for directly growing ultrathin porous graphene separation membrane |
WO2018218644A1 (en) * | 2017-06-02 | 2018-12-06 | 大连理工大学 | Method for directly growing ultrathin porous graphene separation membrane |
US11701621B2 (en) | 2017-06-02 | 2023-07-18 | Dalian University Of Technology | Method for directly growing ultrathin porous graphene separation membrane |
US11585812B2 (en) | 2017-07-05 | 2023-02-21 | Beijing Boe Optoelectronics Technology Co., Ltd. | Influenza virus detection chip and method for detecting influenza virus therewith |
WO2019007062A1 (en) * | 2017-07-05 | 2019-01-10 | 京东方科技集团股份有限公司 | Influenza virus detection chip and method for detecting influenza virus using same |
CN109212206A (en) * | 2017-07-05 | 2019-01-15 | 京东方科技集团股份有限公司 | Influenza virus detection chip and the method for detecting influenza virus using it |
CN107353171A (en) * | 2017-08-03 | 2017-11-17 | 北京理工大学 | A kind of Al/CuO/ porous graphenes Nanocomposite Energetic Materials and preparation method thereof |
CN107827103A (en) * | 2017-12-07 | 2018-03-23 | 太原理工大学 | The preparation method and applications of N doping porous graphene |
CN108480655A (en) * | 2018-04-10 | 2018-09-04 | 河南大学 | A kind of carbon-supported metal tungsten nano particle |
CN108550903A (en) * | 2018-05-07 | 2018-09-18 | 杭州高烯科技有限公司 | A kind of aluminium ion battery |
CN109368620A (en) * | 2018-12-11 | 2019-02-22 | 中国科学院兰州化学物理研究所 | A kind of preparation method of ultra-small sub-nanopore porous graphene |
CN110247032A (en) * | 2019-05-28 | 2019-09-17 | 北京汽车股份有限公司 | Nitrogen-doped graphene negative electrode material and preparation method thereof and lithium ion battery |
CN110247032B (en) * | 2019-05-28 | 2022-04-29 | 北京汽车股份有限公司 | Nitrogen-doped graphene negative electrode material, preparation method thereof and lithium ion battery |
CN110711070A (en) * | 2019-09-25 | 2020-01-21 | 张小伏 | Preparation method of far infrared graphene condom |
CN110877907A (en) * | 2019-09-26 | 2020-03-13 | 中国科学院长春光学精密机械与物理研究所 | Graphene material with regularly-arranged pore structure and preparation method thereof |
CN111732102A (en) * | 2019-12-04 | 2020-10-02 | 中国科学院上海硅酸盐研究所 | A method for preparing porous carbon material by ruthenium particle-assisted etching in a strong alkali environment |
CN111732102B (en) * | 2019-12-04 | 2021-06-15 | 中国科学院上海硅酸盐研究所 | Method for preparing porous carbon material by ruthenium particle assisted etching in strong alkaline environment |
CN111447694A (en) * | 2020-04-15 | 2020-07-24 | 广东康烯科技有限公司 | A kind of palladium quantum dot doped graphene-based electric heating plate and electric heating device |
CN113666366A (en) * | 2020-05-13 | 2021-11-19 | 中国科学技术大学 | Method for preparing graphene through electrochemical anode stripping |
CN111874886B (en) * | 2020-06-18 | 2022-03-25 | 华南理工大学 | Nitrogen-doped porous carbon material and preparation method and application thereof |
CN111874886A (en) * | 2020-06-18 | 2020-11-03 | 华南理工大学 | A nitrogen-doped porous carbon material and its preparation method and application |
CN112142113A (en) * | 2020-09-29 | 2020-12-29 | 攀钢集团研究院有限公司 | Preparation method of spherical ammonium manganese vanadate particles |
CN113830755A (en) * | 2021-09-14 | 2021-12-24 | 广西师范大学 | Method for electrochemically preparing cobalt simple substance-graphene intercalation compound by one-step method |
CN113830755B (en) * | 2021-09-14 | 2023-08-08 | 广西师范大学 | Method for electrochemically preparing cobalt simple substance-graphene intercalation compound by one-step method |
CN114014306A (en) * | 2021-12-15 | 2022-02-08 | 陇东学院 | Preparation method and application of oxygen-enriched layered porous graphene |
CN114014306B (en) * | 2021-12-15 | 2022-08-09 | 陇东学院 | Preparation method and application of oxygen-enriched layered porous graphene |
CN115188600A (en) * | 2022-03-01 | 2022-10-14 | 天津理工大学 | Low-temperature alternating-current filtering supercapacitor based on carbon nano onion/graphene composite structure |
CN115215328A (en) * | 2022-07-26 | 2022-10-21 | 中国科学院上海硅酸盐研究所 | A kind of bamboo forest-like graphene tube array and preparation method and application thereof |
CN115215328B (en) * | 2022-07-26 | 2023-09-08 | 中国科学院上海硅酸盐研究所 | A bamboo forest-shaped graphene tube array and its preparation method and application |
CN119639425A (en) * | 2025-02-17 | 2025-03-18 | 内蒙古博冉科技有限责任公司 | Graphene dust suppressant and preparation method and application thereof |
CN119639425B (en) * | 2025-02-17 | 2025-05-16 | 内蒙古博冉科技有限责任公司 | A graphene dust suppressant and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104649253A (en) | Preparing methods of porous graphene and porous graphene film | |
Liang et al. | Applications of plasma in energy conversion and storage materials | |
CN102515152B (en) | Method for preparing spheroidal graphene | |
Fang et al. | Janus electrochemical exfoliation of two-dimensional materials | |
CN109956463B (en) | A kind of carbon nanotube and preparation method thereof | |
Wang et al. | Phase transformation guided single-layer β-Co (OH) 2 nanosheets for pseudocapacitive electrodes | |
Park et al. | A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO 2 nanoparticles onto graphene for lithium ion batteries | |
Chen et al. | Platinum nanoflowers supported on graphene oxide nanosheets: their green synthesis, growth mechanism, and advanced electrocatalytic properties for methanol oxidation | |
CN102586869B (en) | Three-dimensional grapheme tube and preparation method thereof | |
KR101801789B1 (en) | Porous carbon materials and methods of manufacturing the same | |
CN112542577B (en) | A nano-bismuth/nitrogen-doped carbon foam nanosheet two-dimensional composite material and its preparation method and application | |
Liu et al. | The preparation of holey phosphorene by electrochemical assistance | |
CN107572511A (en) | A kind of method of green large-scale production graphene | |
KR20170070031A (en) | Graphene oxide prepared by electrochemically oxidizing and cutting end face of carbon-based three-dimensional material and method therefor | |
AU2021201413A1 (en) | Graphene electrode | |
Ouyang et al. | MoS2 anchored free-standing three dimensional vertical graphene foam based binder-free electrodes for enhanced lithium-ion storage | |
KR20160092987A (en) | Bulk preparation of holey carbon allotropes via controlled catalytic oxidation | |
WO2016138385A1 (en) | Two-dimensional nanosheets and methods of making and use thereof | |
KR101888743B1 (en) | Composite including porous grapheme and carbonaceous material | |
Tian et al. | Recent advances in the template-confined synthesis of two-dimensional materials for aqueous energy storage devices | |
CN106145094A (en) | A kind of Graphene-inorganic nanoparticles composite membrane and preparation method thereof | |
CN108699684A (en) | Three-dimensional foam-like structures constructed by chemical vapor deposition | |
He et al. | Fabrication and electrochemical properties of 3D nano-network LiFePO4@ multiwalled carbon nanotube composite using risedronic acid as the phosphorus source | |
Saulnier et al. | Investigation of CVD multilayered graphene as negative electrode for lithium-ion batteries | |
Peng et al. | TiO2 nanomaterials for enhanced photocatalysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150527 |