CN104644160A - Electrocardiogram pseudo-difference signal identification method and device - Google Patents
Electrocardiogram pseudo-difference signal identification method and device Download PDFInfo
- Publication number
- CN104644160A CN104644160A CN201510119315.2A CN201510119315A CN104644160A CN 104644160 A CN104644160 A CN 104644160A CN 201510119315 A CN201510119315 A CN 201510119315A CN 104644160 A CN104644160 A CN 104644160A
- Authority
- CN
- China
- Prior art keywords
- signal
- information parameter
- ecg
- segmentation
- ecg signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000011218 segmentation Effects 0.000 claims description 50
- 238000001228 spectrum Methods 0.000 claims description 26
- 230000000747 cardiac effect Effects 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims 10
- 239000000470 constituent Substances 0.000 claims 4
- 238000000205 computational method Methods 0.000 claims 3
- 238000004148 unit process Methods 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 24
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 238000004458 analytical method Methods 0.000 abstract description 4
- 238000010219 correlation analysis Methods 0.000 abstract description 4
- 238000000513 principal component analysis Methods 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 230000000875 corresponding effect Effects 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000033764 rhythmic process Effects 0.000 description 3
- 206010003119 arrhythmia Diseases 0.000 description 2
- 230000006793 arrhythmia Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000000718 qrs complex Methods 0.000 description 1
- 230000002336 repolarization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
技术领域technical field
本发明涉及心电信号处理领域,特别涉及一种心电图伪差信号识别方法及装置。The invention relates to the field of electrocardiogram signal processing, in particular to a method and device for identifying an electrocardiogram artifact signal.
背景技术Background technique
心电图(electrocardiogram,ECG)是心脏激动时所产生于体表的电位差,它能够反应心脏电生理活动情况。采集ECG的方法主要有3导联心电图、5导联心电图和12导联心电图。现有研究表明,无论哪种方法采集到的ECG信号均可能包含多种干扰,这些干扰不是由于心脏激动而发生于ECG上的改变,因此被称为“伪差”。产生伪差的原因很多,例如,被采集人身体移动将导致ECG中出现运动伪差;一个人的呼吸会在ECG中产生呼吸伪差;在ECG采集过程中如果电极脱落,则记录的ECG中只有干扰。从受干扰的严重程度大致可以把伪差信号分为两类:一类是仅对原始ECG形成较小干扰的信号,该类伪差信号可以通过一定方法被滤除;另一类则是对ECG产生严重干扰或者完全记录的噪声信号,这类伪差信号会使ECG不含任何有用信息。本发明主要针对第二类伪差信号。Electrocardiogram (ECG) is the potential difference generated on the body surface when the heart is excited, and it can reflect the electrophysiological activity of the heart. The methods of collecting ECG mainly include 3-lead ECG, 5-lead ECG and 12-lead ECG. Existing studies have shown that the ECG signal collected by any method may contain various interferences, which are not changes on the ECG due to cardiac excitation, so they are called "artifacts". There are many reasons for artifacts, for example, the body movement of the person being collected will cause motion artifacts in the ECG; a person's breathing will cause respiratory artifacts in the ECG; if the electrodes fall off during the ECG acquisition process, the recorded ECG Only distraction. From the severity of the interference, the artifact signal can be roughly divided into two categories: one is the signal that only causes minor interference to the original ECG, and this type of artifact signal can be filtered out by certain methods; The ECG produces a heavily disturbed or completely recorded noise signal, such artifacts can render the ECG devoid of any useful information. The present invention is mainly directed to the second type of artifact signal.
ECG中的这类伪差信号不仅没有利用价值,而且还会增加基于ECG的心脏疾病诊断的误诊率,降低心电监护的准确率。从长时间(如48小时、7天甚至1个月)记录的ECG信号中人工筛选伪差信号片段即费时又费力,而且准确性低。因此,我们迫切需要一种实时和自动化的计算方法对ECG信号中受到严重干扰的片段(即ECG伪差)进行识别和标记,为ECG的进一步利用提供坚实保障。Such false signals in ECG are not only useless, but also increase the misdiagnosis rate of heart disease diagnosis based on ECG and reduce the accuracy of ECG monitoring. Manual screening of artifact signal fragments from ECG signals recorded for a long time (such as 48 hours, 7 days or even 1 month) is time-consuming and laborious, and the accuracy is low. Therefore, we urgently need a real-time and automatic calculation method to identify and mark the severely disturbed fragments (ie, ECG artifacts) in the ECG signal, so as to provide a solid guarantee for the further utilization of ECG.
由于识别ECG伪差有十分重要的实际意义,所以近年来一部分学者已经开始将研究的视野转移到如何从ECG数据中找到被干扰淹没且无法被后续算法继续使用的ECG成分(即ECG伪差)。心电周期方法是最近提出的一种能够自动检测ECG伪差的方法,该方法是基于模糊分析、复极分析和多参数决策理论设计的,其优点是在判断过程中不需要经验阈值的设定,然而它必须依靠ECG先验知识才能够完成伪差检测,对输入数据长度有所限制,因此它对较短的ECG记录无法取得很好的伪差定位效果。基于最小二乘法原理的动态ECG信号伪差识别算法能够快速、有效的识别ECG信号中由于多种原因引起的伪差成分,但该方法容易将心律失常病人的ECG误判为伪差,这可能引起后续疾病诊断的高漏诊率。基于小波变换的自动伪差识别方法通过对输入信号作小波变换,在尺度5和尺度6上能够有效和准确的识别突变性伪差,但该方法计算复杂度较高,对于缓变性伪差识别效果差,因此该方法的鲁棒性和适应性差。Since the identification of ECG artifacts has very important practical significance, in recent years some scholars have begun to shift their research horizons to how to find ECG components that are submerged by interference and cannot be continued to be used by subsequent algorithms (ie, ECG artifacts) from ECG data. . The ECG cycle method is a recently proposed method that can automatically detect ECG artifacts. This method is designed based on fuzzy analysis, repolarization analysis and multi-parameter decision-making theory. Its advantage is that it does not require the setting of empirical thresholds in the judgment process. However, it must rely on ECG prior knowledge to complete artifact detection, and the length of input data is limited, so it cannot achieve good artifact location results for shorter ECG records. The dynamic ECG signal artifact recognition algorithm based on the principle of least squares can quickly and effectively identify the artifact components in the ECG signal caused by various reasons, but this method is easy to misjudge the ECG of arrhythmia patients as artifacts, which may Causes a high rate of missed diagnoses in subsequent disease diagnoses. The automatic artefact identification method based on wavelet transform can effectively and accurately identify sudden change artefacts at scales 5 and 6 by performing wavelet transform on the input signal. The effect is poor, so the robustness and adaptability of the method are poor.
由此可知,现有ECG伪差识别方法要么需要先验知识,对待检测的数据长度有限制,要么不能适应于心律失常病人ECG的伪差识别,要么计算复杂高、鲁棒性和适应性差。It can be seen that the existing ECG artifact recognition methods either require prior knowledge, have a limit on the length of the data to be detected, or cannot be adapted to the ECG artifact recognition of arrhythmia patients, or have high computational complexity, poor robustness, and poor adaptability.
发明内容Contents of the invention
【要解决的技术问题】【Technical problems to be solved】
本发明的目的是提供一种心电图伪差信号识别方法及装置,以至少解决上述技术问题之一。The object of the present invention is to provide a method and a device for identifying an electrocardiogram artifact signal, so as to at least solve one of the above technical problems.
【技术方案】【Technical solutions】
本发明是通过以下技术方案实现的。The present invention is achieved through the following technical solutions.
本发明首先涉及一种心电图伪差信号识别方法,该方法包括:The present invention at first relates to a kind of electrocardiogram false difference signal recognition method, and this method comprises:
步骤A:对ECG信号进行分段得到多个分段ECG信号,选择一个分段ECG信号,所述分段得到的每个分段ECG信号的长度均大于2s;Step A: Segment the ECG signal to obtain a plurality of segmented ECG signals, select a segmented ECG signal, and the length of each segmented ECG signal obtained by the segment is greater than 2s;
步骤B:分别计算所选择的分段ECG信号的第一信息参数Rmax、第二信息参数Pλ1和第三信息参数Psn,所述第一信息参数Rmax为分段ECG信号的时间窗内移位相关系数的最大值,所述第二信息参数Pλ1为对分段ECG信号进行PCA运算后所得到的第一个主成分的贡献率,所述第三信息参数Psn为分段ECG信号的频谱在0.5~40Hz之间的信号总幅值与全频率段信号总幅值的比值;Step B: respectively calculate the first information parameter R max , the second information parameter P λ1 and the third information parameter P sn of the selected segmental ECG signal, the first information parameter R max is the time window of the segmental ECG signal The maximum value of the internal shift correlation coefficient, the second information parameter P λ1 is the contribution rate of the first principal component obtained after performing PCA operation on the segmented ECG signal, and the third information parameter P sn is the segmental The ratio of the total signal amplitude of the spectrum of the ECG signal between 0.5 and 40 Hz to the total signal amplitude of the full frequency band;
步骤C:判断第二信息参数Pλ1是否满足:Pλ1>0.9,如果满足则所选择的分段ECG信号为ECG非伪差信号并转入执行步骤G,反之则执行步骤D;Step C: Judging whether the second information parameter P λ1 satisfies: P λ1 >0.9, if it is satisfied, the selected segmented ECG signal is an ECG non-artifact signal and transfers to step G, otherwise, executes step D;
步骤D:判断第一信息参数Rmax是否满足:Rmax>0.61,判断第二信息参数Pλ1是否满足:Psn>0.85,判断第三信息参数Psn是否满足:Psn<0.44,判断分段ECG信号的频谱的最大幅度值POW是否满足:POW>70,如果第一信息参数Rmax、第二信息参数Pλ1、第三信息参数Psn和最大幅度值POW均不满足对应的不等式则执行步骤F,反之则执行步骤E;Step D: Judging whether the first information parameter R max satisfies: R max >0.61, judging whether the second information parameter P λ1 satisfies: P sn >0.85, judging whether the third information parameter P sn satisfies: P sn <0.44, judging the score Whether the maximum amplitude value POW of the spectrum of the segment ECG signal satisfies: POW>70, if the first information parameter R max , the second information parameter P λ1 , the third information parameter P sn and the maximum amplitude value POW do not satisfy the corresponding inequality then Execute step F, otherwise, execute step E;
步骤E:判断第一信息参数Rmax、第二信息参数Pλ1和第三信息参数Psn是否满足:0.54*Rmax+0.42*Pλ1+0.04*Psn>0.5,如果满足则所选择的分段ECG信号为ECG非伪差信号,反之则所选择的分段ECG信号为ECG伪差信号,步骤E执行完后转入执行步骤G;Step E: Judging whether the first information parameter R max , the second information parameter P λ1 and the third information parameter P sn meet: 0.54*R max +0.42*P λ1 +0.04*P sn >0.5, if satisfied, the selected The segmented ECG signal is an ECG non-artifact signal, otherwise the selected segmented ECG signal is an ECG artefact signal, and step E is transferred to step G after execution;
步骤F:判断第三信息参数Psn是否满足:0.77<Psn<0.85,如果满足则所选择的分段ECG信号为ECG伪差信号,反之则所选择的分段ECG信号为ECG非伪差信号;Step F: Determine whether the third information parameter P sn satisfies: 0.77<P sn <0.85, if satisfied, the selected segmented ECG signal is an ECG artifact signal, otherwise, the selected segmented ECG signal is an ECG non-artifacted signal Signal;
步骤G:重新选择一个分段ECG信号,重复步骤B至步骤F直至完成所述ECG信号中的每个分段ECG信号的识别。Step G: reselecting a segmented ECG signal, and repeating steps B to F until the identification of each segmented ECG signal in the ECG signals is completed.
作为一种优选的实施方式,所述步骤B中的第一信息参数Rmax的计算方法为:As a preferred embodiment, the calculation method of the first information parameter R max in the step B is:
提取分段ECG信号的前2s时间窗内的ECG信号作为模板;将所述模板的时间窗在分段ECG信号内以一个采样点为步长逐点移位,将移位后的时间窗内的ECG信号与模板进行相关运算,求解得到分段ECG信号在各个时间窗内的移位相关系数;在排除数值为1的移位相关系数后,对剩余的移位相关系数取最大值得到第一信息参数Rmax。Extract the ECG signal in the first 2s time window of the segmented ECG signal as a template; the time window of the template is shifted point by point in the segmented ECG signal with a sampling point as a step, and the shifted time window Correlation operation is performed between the ECG signal and the template, and the shift correlation coefficient of the segmented ECG signal in each time window is obtained by solving; after excluding the shift correlation coefficient with a value of 1, the maximum value of the remaining shift correlation coefficient is obtained to obtain An information parameter R max .
作为另一种优选的实施方式,所述步骤B中的时间窗的长度为2s。As another preferred implementation manner, the length of the time window in the step B is 2s.
作为另一种优选的实施方式,所述步骤B中的第二信息参数Pλ1的计算方法为:As another preferred implementation manner, the calculation method of the second information parameter P λ1 in the step B is:
对分段ECG信号按照心动周期再次分段得到二次分段ECG信号;对二次分段ECG信号进行PCA运算并提取第一个主成分的贡献率作为第二信息参数Pλ1。Segment the segmented ECG signal again according to the cardiac cycle to obtain the second segmented ECG signal; perform PCA operation on the second segmented ECG signal and extract the contribution rate of the first principal component as the second information parameter P λ1 .
作为另一种优选的实施方式,所述步骤B中的第三信息参数Psn的计算方法为:As another preferred implementation manner, the calculation method of the third information parameter Psn in the step B is:
计算分段ECG信号的频谱;求解分段ECG信号的频谱在0.5~40Hz之间的信号总幅值与全频率段信号总幅值的比值,将该比值作为第三信息参数Psn。Calculate the frequency spectrum of the segmented ECG signal; calculate the ratio of the total signal amplitude of the segmented ECG signal spectrum between 0.5 and 40 Hz to the total amplitude of the full-frequency signal, and use the ratio as the third information parameter P sn .
作为另一种优选的实施方式,所述步骤B中采用快速FFT算法计算所述分段ECG信号的频谱。As another preferred implementation manner, in the step B, a fast FFT algorithm is used to calculate the frequency spectrum of the segmented ECG signal.
本发明还涉及一种心电图伪差信号识别装置,该装置包括:The present invention also relates to an electrocardiogram artifact signal identification device, which comprises:
初始化模块,用于对ECG信号进行分段得到多个分段ECG信号,所述分段得到的每个分段ECG信号的长度均大于2s;The initialization module is used to segment the ECG signal to obtain a plurality of segmented ECG signals, and the length of each segmented ECG signal obtained by the segment is greater than 2s;
第一信息参数Rmax计算模块,用于计算分段ECG信号的时间窗内移位相关系数的最大值;The first information parameter R max calculation module is used to calculate the maximum value of the shift correlation coefficient in the time window of the segmented ECG signal;
第二信息参数Pλ1计算模块,用于对分段ECG信号进行PCA运算后得到第一个主成分的贡献率;The second information parameter P λ1 calculation module is used to obtain the contribution rate of the first principal component after performing PCA operation on the segmented ECG signal;
第三信息参数Psn计算模块,用于计算分段ECG信号的频谱在0.5~40Hz之间的信号总幅值与全频率段信号总幅值的比值;The third information parameter P sn calculation module is used to calculate the ratio of the total amplitude of the signal in the frequency spectrum of the segmented ECG signal between 0.5 and 40 Hz to the total amplitude of the signal in all frequency bands;
第一判断模块,用于判断第二信息参数Pλ1是否满足:Pλ1>0.9,如果满足则所选择的分段ECG信号为ECG非伪差信号,反之则通知第二判断模块;The first judging module is used to judge whether the second information parameter P λ1 satisfies: P λ1 >0.9, if satisfied, the segmented ECG signal selected is an ECG non-artifact signal, otherwise, the second judging module is notified;
第二判断模块,用于判断第一信息参数Rmax是否满足:Rmax>0.61,判断第二信息参数Pλ1是否满足:Psn>0.85,判断第三信息参数Psn是否满足:Psn<0.44,判断分段ECG信号的频谱的最大幅度值POW是否满足:POW>70,如果第一信息参数Rmax、第二信息参数Pλ1、第三信息参数Psn和最大幅度值POW均不满足对应的不等式则通知第四判断模块,反之则通知第三判断模块;The second judging module is used to judge whether the first information parameter R max satisfies: R max >0.61, judges whether the second information parameter P λ1 satisfies: P sn >0.85, and judges whether the third information parameter P sn satisfies: P sn < 0.44, judging whether the maximum amplitude value POW of the spectrum of the segmented ECG signal is satisfied: POW>70, if the first information parameter R max , the second information parameter P λ1 , the third information parameter P sn and the maximum amplitude value POW are not satisfied The corresponding inequality then notifies the fourth judging module, otherwise notifies the third judging module;
第三判断模块,用于判断第一信息参数Rmax、第二信息参数Pλ1和第三信息参数Psn是否满足:0.54*Rmax+0.42*Pλ1+0.04*Psn>0.5,如果满足则所选择的分段ECG信号为ECG非伪差信号,反之则所选择的分段ECG信号为ECG伪差信号;The third judging module is used to judge whether the first information parameter R max , the second information parameter P λ1 and the third information parameter P sn satisfy: 0.54*R max +0.42*P λ1 +0.04*P sn >0.5, if satisfied Then the selected segmented ECG signal is an ECG non-aliased signal, otherwise the selected segmented ECG signal is an ECG artifacted signal;
第四判断模块,用于判断第三信息参数Psn是否满足:0.77<Psn<0.85,如果满足则所选择的分段ECG信号为ECG伪差信号,反之则所选择的分段ECG信号为ECG非伪差信号。The fourth judging module is used to judge whether the third information parameter P sn satisfies: 0.77<P sn <0.85, if satisfied, the selected segment ECG signal is an ECG artifact signal, otherwise the selected segment ECG signal is ECG non-artifact signal.
作为一种优选的实施方式,所述第一信息参数Rmax计算模块具体包括:As a preferred implementation manner, the first information parameter R max calculation module specifically includes:
模板提取单元,用于提取每一个分段ECG信号前2s时间窗内的ECG信号作为模板;A template extraction unit is used to extract the ECG signal in the 2s time window before each segmented ECG signal as a template;
相关运算单元,用于将所述模板的时间窗在分段ECG信号内以一个采样点为步长逐点移位,并将移位后的时间窗内的ECG信号与模板进行相关运算,求解得到分段ECG信号在时间窗内的移位相关系数;A correlation operation unit is used to shift the time window of the template point by point in the segmented ECG signal with a sampling point as a step, and perform a correlation operation on the ECG signal in the shifted time window with the template to solve Obtain the shift correlation coefficient of the segmented ECG signal in the time window;
取最大值单元,用于排除数值为1的移位相关系数后对剩余的移位相关系数取最大值得到第一信息参数Rmax。The maximum value unit is configured to obtain the maximum value of the remaining shifted correlation coefficients after excluding shifted correlation coefficients with a value of 1 to obtain the first information parameter R max .
作为另一种优选的实施方式,所述第二信息参数Pλ1计算模块具体包括:As another preferred implementation manner, the second information parameter P λ1 calculation module specifically includes:
分段单元,用于对分段ECG信号按照心动周期再次分段得到二次分段ECG信号;The segmentation unit is used to segment the segmented ECG signal again according to the cardiac cycle to obtain a second segmented ECG signal;
PCA运算单元,用于对分段单元处理得到的二次分段ECG信号进行PCA运算并提取第一个主成分的贡献率作为第二信息参数Pλ1。The PCA operation unit is used to perform PCA operation on the secondary segmented ECG signal processed by the segmentation unit and extract the contribution rate of the first principal component as the second information parameter P λ1 .
作为另一种优选的实施方式,所述第三信息参数Psn计算模块具体包括:As another preferred implementation manner, the third information parameter P sn calculation module specifically includes:
快速FFT单元,用于对分段ECG信号进行快速FFT,得到分段ECG信号的频谱;The fast FFT unit is used to perform fast FFT to the segmented ECG signal to obtain the frequency spectrum of the segmented ECG signal;
除法单元,用于求解分段ECG信号的频谱在0.5~40Hz之间的信号总幅值与全频率段信号总幅值的比值。The dividing unit is used to calculate the ratio of the total amplitude of the signal in the frequency spectrum of the segmented ECG signal between 0.5 and 40 Hz to the total amplitude of the signal in all frequency segments.
【有益效果】【Beneficial effect】
本发明提出的技术方案具有以下有益效果:The technical scheme proposed by the present invention has the following beneficial effects:
(1)本发明采用了相关分析来揭示ECG信号的节律性,并运用了PCA技术来表征输入信号中的心电主成分对全体信号的贡献,还通过频域分析从频率上来辨别ECG非伪差信号和ECG伪差信号,不同技术的综合使用增强了本发明方法的鲁棒性和适用性;(1) The present invention uses correlation analysis to reveal the rhythmicity of the ECG signal, and uses PCA technology to characterize the contribution of the ECG principal component in the input signal to the overall signal, and also distinguishes the ECG from the frequency through the frequency domain analysis. Difference signal and ECG pseudo-difference signal, the comprehensive use of different technologies enhances the robustness and applicability of the method of the present invention;
(2)本发明采用了相关系数局部最大值、第一主成分的贡献率和频谱信噪比三种特征参数从不同的维度对ECG信号加以表征,三种特征参数在伪差检测上很好地起到了互补作用,规避了采用单一特征参数带来的误识别风险,提高了本发明方法的准确性;(2) The present invention uses three characteristic parameters of the local maximum of the correlation coefficient, the contribution rate of the first principal component and the spectral signal-to-noise ratio to characterize the ECG signal from different dimensions, and the three characteristic parameters are very good in the detection of artifacts played a complementary role, avoiding the risk of misidentification brought by the use of a single characteristic parameter, and improving the accuracy of the method of the present invention;
(3)本发明能够在很短的时间窗和不需要先验信息的情况下完成对ECG伪差信号的识别,具有很好的实时性、鲁棒性和适应性。(3) The present invention can complete the identification of ECG artifact signals in a very short time window and without prior information, and has good real-time performance, robustness and adaptability.
附图说明Description of drawings
图1为本发明的实施例一提供的心电图伪差信号识别装置的结构示意图。FIG. 1 is a schematic structural diagram of an electrocardiogram artifact signal identification device provided by Embodiment 1 of the present invention.
图2为本发明的实施例二提供的心电图伪差信号识别方法的流程图。FIG. 2 is a flow chart of a method for identifying an electrocardiogram artifact signal provided by Embodiment 2 of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图,对本发明的具体实施方式进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例,也不是对本发明的限制。基于本发明的实施例,本领域普通技术人员在不付出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。In order to make the purpose, technical solutions and advantages of the present invention clearer, the specific implementation manners of the present invention will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the described embodiments are part of the embodiments of the present invention, rather than All examples are not limitations of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
图1为本发明实施例一提供的心电图伪差信号识别装置的结构示意图。如图1所示,该装置包括初始化模块11、第一信息参数Rmax计算模块12、第二信息参数Pλ1计算模块13、第三信息参数Psn计算模块14、第一判断模块15、第二判断模块16、第三判断模块17和第四判断模块18。FIG. 1 is a schematic structural diagram of an electrocardiogram artifact signal identification device provided by Embodiment 1 of the present invention. As shown in Figure 1, the device includes an initialization module 11, a first information parameter R max calculation module 12, a second information parameter P λ1 calculation module 13, a third information parameter P sn calculation module 14, a first judgment module 15, a first information parameter The second judging module 16 , the third judging module 17 and the fourth judging module 18 .
初始化模块11用于对ECG信号进行分段得到多个分段ECG信号,并选择一个分段ECG信号作为待识别的分段ECG信号,其中分段得到的每个分段ECG信号的长度均大于2s。The initialization module 11 is used to segment the ECG signal to obtain a plurality of segmented ECG signals, and select a segmented ECG signal as the segmented ECG signal to be identified, wherein the length of each segmented ECG signal obtained by segmenting is greater than 2s.
第一信息参数Rmax计算模块12用于计算分段ECG信号的时间窗内移位相关系数的最大值。具体地,第一信息参数Rmax计算模块包括模板提取单元、相关运算单元和取最大值单元,其中模板提取单元用于提取每一个分段ECG信号前2s时间窗内的ECG信号作为模板,相关运算单元用于将所述模板在分段ECG信号内以一个采样点为步长逐点移位,并将移位后的时间窗内的ECG信号与模板进行相关运算,求解得到分段ECG信号在时间窗内的移位相关系数,取最大值单元用于排除数值为1的移位相关系数后对所述剩余移位相关系数取最大值得到第一信息参数Rmax。The first information parameter R max calculation module 12 is used to calculate the maximum value of the shifted correlation coefficient within the time window of the segmented ECG signal. Specifically, the first information parameter R max calculation module includes a template extraction unit, a correlation operation unit, and a maximum value unit, wherein the template extraction unit is used to extract the ECG signal within the 2s time window before each segmented ECG signal as a template, and the correlation The operation unit is used to shift the template point by point in the segmented ECG signal with a sampling point as the step size, and perform a correlation operation on the ECG signal in the shifted time window and the template to obtain the segmented ECG signal The unit for obtaining the maximum value of the shifted correlation coefficients within the time window is configured to obtain the maximum value of the remaining shifted correlation coefficients after excluding the shifted correlation coefficients with a value of 1 to obtain the first information parameter R max .
第二信息参数Pλ1计算模块13用于对分段ECG信号进行PCA运算后得到第一个主成分的贡献率。具体地,第二信息参数Pλ1计算模块包括分段单元和PCA运算单元,其中分段单元用于对分段ECG信号按照心动周期再次分段;PCA运算单元用于对分段单元处理得到的二次分段ECG信号进行PCA运算并提取第一个主成分的贡献率作为第二信息参数Pλ1。The second information parameter P λ1 calculation module 13 is used to obtain the contribution rate of the first principal component after performing PCA operation on the segmented ECG signal. Specifically, the second information parameter P λ1 calculation module includes a segmentation unit and a PCA operation unit, wherein the segmentation unit is used to segment the segmented ECG signal again according to the cardiac cycle; the PCA operation unit is used to process the segmented unit. The secondary segmented ECG signal is subjected to PCA operation and the contribution rate of the first principal component is extracted as the second information parameter P λ1 .
第三信息参数Psn计算模块14用于计算分段ECG信号的频谱在0.5~40Hz之间的信号总幅值与全频率段信号总幅值的比值。具体地,第三信息参数Psn计算模块包括快速FFT单元和除法单元,其中快速FFT单元用于对分段ECG信号进行快速FFT,得到分段ECG信号的频谱,除法单元用于求解分段ECG信号的频谱在0.5~40Hz之间的信号总幅值与全频率段信号总幅值的比值。The third information parameter P sn calculation module 14 is used to calculate the ratio of the total signal amplitude of the spectrum of the segmented ECG signal between 0.5 and 40 Hz to the total signal amplitude of all frequency bands. Specifically, the third information parameter P sn calculation module includes a fast FFT unit and a division unit, wherein the fast FFT unit is used to perform fast FFT on the segmented ECG signal to obtain the spectrum of the segmented ECG signal, and the division unit is used to solve the segmented ECG The ratio of the total amplitude of the signal whose frequency spectrum is between 0.5 and 40 Hz to the total amplitude of the signal in all frequency bands.
第一判断模块15用于判断第二信息参数Pλ1是否满足:Pλ1>0.9,如果满足则所选择的分段ECG信号为ECG非伪差信号,反之则通知第二判断模块。The first judging module 15 is used to judge whether the second information parameter P λ1 satisfies: P λ1 >0.9, if so, the selected segment ECG signal is an ECG non-aliased signal, otherwise, inform the second judging module.
第二判断模块16用于判断第一信息参数Rmax是否满足:Rmax>0.61,判断第二信息参数Pλ1是否满足:Psn>0.85,判断第三信息参数Psn是否满足:Psn<0.44,判断分段ECG信号的频谱的最大幅度值POW是否满足:POW>70,如果第一信息参数Rmax、第二信息参数Pλ1、第三信息参数Psn和最大幅度值POW均不满足对应的不等式则通知第四判断模块,反之则通知第三判断模块。The second judging module 16 is used to judge whether the first information parameter R max satisfies: R max > 0.61, judges whether the second information parameter P λ1 satisfies: P sn > 0.85, and judges whether the third information parameter P sn satisfies: P sn < 0.44, judging whether the maximum amplitude value POW of the spectrum of the segmented ECG signal is satisfied: POW>70, if the first information parameter R max , the second information parameter P λ1 , the third information parameter P sn and the maximum amplitude value POW are not satisfied The corresponding inequality is notified to the fourth judging module, otherwise, the third judging module is notified.
第三判断模块17用于判断第一信息参数Rmax、第二信息参数Pλ1和第三信息参数Psn是否满足:0.54*Rmax+0.42*Pλ1+0.04*Psn>0.5,如果满足则所选择的分段ECG信号为ECG非伪差信号,反之则所选择的分段ECG信号为ECG伪差信号。The third judging module 17 is used to judge whether the first information parameter R max , the second information parameter P λ1 and the third information parameter P sn satisfy: 0.54*R max +0.42*P λ1 +0.04*P sn >0.5, if satisfied Then the selected segment ECG signal is an ECG non-artifact signal, otherwise, the selected segment ECG signal is an ECG artifact signal.
第四判断模块18用于判断第三信息参数Psn是否满足:0.77<Psn<0.85,如果满足则所选择的分段ECG信号为ECG伪差信号,反之则所选择的分段ECG信号为ECG非伪差信号。The fourth judging module 18 is used to judge whether the third information parameter P sn satisfies: 0.77<P sn <0.85, if satisfied, the selected segment ECG signal is an ECG artifact signal, otherwise the selected segment ECG signal is ECG non-artifact signal.
采用实施例一提供的装置对心电图伪差信号进行识别的方法可以参考下述具体方法实施例。For the method of using the device provided in Embodiment 1 to identify the electrocardiogram artifact signal, reference may be made to the following specific method embodiments.
图2为本发明实施例二提供的心电图伪差信号识别方法的流程图。如图2所示,该方法包括步骤S1至步骤S7,下面分别对每个步骤进行详细说明。FIG. 2 is a flowchart of a method for identifying an electrocardiogram artifact signal provided by Embodiment 2 of the present invention. As shown in Fig. 2, the method includes step S1 to step S7, each step will be described in detail below.
步骤S1:初始化ECG信号。Step S1: Initialize the ECG signal.
步骤S1主要包括对ECG信号进行分段得到多个分段ECG信号。具体地,首先对ECG信号进行均匀分段,每个分段ECG信号的长度为3s。需要说明,在步骤S1中,每个分段ECG信号的长度应大于2s。Step S1 mainly includes segmenting the ECG signal to obtain a plurality of segmented ECG signals. Specifically, the ECG signal is uniformly segmented first, and the length of each segmented ECG signal is 3s. It should be noted that in step S1, the length of each segmented ECG signal should be greater than 2s.
步骤S2:选择一个分段ECG信号,计算第一信息参数Rmax、第二信息参数Pλ1和第三信息参数Psn。Step S2: Select a segmented ECG signal, and calculate the first information parameter R max , the second information parameter P λ1 and the third information parameter P sn .
步骤S2首先选择一个分段ECG信号作为待识别的分段ECG信号,然后分别计算所选择的分段ECG信号的第一信息参数Rmax、第二信息参数Pλ1和第三信息参数Psn,其中第一信息参数Rmax为分段ECG信号的时间窗内移位相关系数的最大值,第二信息参数Pλ1为对分段ECG信号进行PCA运算后所得到的第一个主成分的贡献率,第三信息参数Psn为分段ECG信号的频谱在0.5~40Hz之间的信号总幅值与全频率段信号总幅值的比值。Step S2 first selects a segmented ECG signal as the segmented ECG signal to be identified, and then respectively calculates the first information parameter R max , the second information parameter P λ1 and the third information parameter P sn of the selected segmented ECG signal, Among them, the first information parameter R max is the maximum value of the shifted correlation coefficient in the time window of the segmented ECG signal, and the second information parameter P λ1 is the contribution of the first principal component obtained after PCA operation on the segmented ECG signal rate, and the third information parameter P sn is the ratio of the total amplitude of the signal in the frequency spectrum of the segmented ECG signal between 0.5 and 40 Hz to the total amplitude of the signal in all frequency bands.
具体地,第一信息参数Rmax的计算方法为:Specifically, the calculation method of the first information parameter R max is:
首先提取分段ECG信号前2s时间窗内的ECG信号作为模板,模板长度选择2s的原因是ECG非伪差信号的一个心电周期在1s左右,因此可以保证绝大多数情况下模板中包含了至少一个心电周期的ECG信号,而ECG伪差信号由于呈现随机性而不具备此特征,需要说明,本实施例中的时间窗的类型为矩形窗,时间窗的长度与模板长度相同,均为2s;Firstly, extract the ECG signal within the 2s time window before the segmented ECG signal as a template. The reason why the template length is 2s is that one ECG cycle of the ECG non-artifact signal is about 1s, so it can be guaranteed that in most cases the template contains The ECG signal of at least one electrocardiographic cycle, and the ECG artifact signal does not have this feature due to its randomness. It should be noted that the type of time window in this embodiment is a rectangular window, and the length of the time window is the same as the length of the template. is 2s;
然后将该模板在该分段ECG信号内以一个采样点为步长逐点移位,将移位后的时间窗内的ECG信号与模板进行相关运算,求解得到分段ECG信号在时间窗内的移位相关系数,如果待识别ECG信号为ECG非伪差信号,则其相关系数存在一个局部最大值Rmax,即表现出逐拍的形态相似性。而ECG伪差信号由于其具备随机性,相关系数在相关运算的求解过程中将一直维持在一个较低的值。因此,ECG非伪差信号的第一信息参数Rmax数值较大,而ECG伪差信号的第一信息参数Rmax数值很小,二者存在较大差别,可以采用第一信息参数Rmax区分两类信号;Then the template is shifted point by point in the segmented ECG signal with a sampling point as the step length, and the ECG signal in the shifted time window is correlated with the template to solve the problem that the segmented ECG signal is in the time window If the ECG signal to be identified is an ECG non-artifact signal, its correlation coefficient has a local maximum value R max , which shows a beat-by-beat morphological similarity. However, due to the randomness of the ECG artifact signal, the correlation coefficient will always maintain a low value during the solving process of the correlation operation. Therefore, the value of the first information parameter R max of the ECG non-artifact signal is relatively large, while the value of the first information parameter R max of the ECG artifact signal is very small. There is a large difference between the two, and the first information parameter R max can be used to distinguish two types of signals;
最后在排除数值为1的移位相关系数后,对剩余移位相关系数取最大值得到第一信息参数Rmax。需要说明因为模板和移位前的时间窗内的ECG信号完全相同,所以它们的自相关值始终为1,因此在求解第一信息参数Rmax时,需要将时间窗内自相关产生的这个局部极大值排除,因为它不能真实反映ECG非伪差信号的逐拍相似性。Finally, after excluding the shifted correlation coefficients with a value of 1, the maximum value of the remaining shifted correlation coefficients is obtained to obtain the first information parameter R max . It should be explained that because the template and the ECG signal in the time window before the shift are exactly the same, their autocorrelation value is always 1, so when solving the first information parameter R max , it is necessary to use the local autocorrelation generated in the time window The maximum value is excluded because it does not truly reflect the beat-by-beat similarity of the ECG non-artifacted signal.
第二信息参数Pλ1的计算方法为:The calculation method of the second information parameter P λ1 is:
首先对分段ECG信号按照心动周期再次分段,具体的再次分段方法为:首先对分段ECG信号的每一个心动周期内的R峰进行定位,每一段二次分段ECG信号从R峰前0.3倍RR间期开始,到R峰后0.7倍RR间期结束,经过再次分段可以得到二次分段ECG信号,需要说明,PCA在实际应用中,要求输入矩阵应当为多次测量的数据或多个个体单次测量的数据,即要求输入数据是多维的,然而对于实时采集的ECG信号,这一点很难实现,本实施例通过对分段ECG信号再次分段可以得到符合PCA运算的输入数据;First, segment the segmented ECG signal again according to the cardiac cycle. The specific re-segmentation method is as follows: firstly, locate the R peak in each cardiac cycle of the segmented ECG signal, and each segment of the second segmented ECG signal starts from the R peak The first 0.3 times the RR interval starts, and the end of the 0.7 times the RR interval after the R peak. After re-segmentation, the second segmented ECG signal can be obtained. It should be noted that in practical application of PCA, the input matrix should be measured multiple times. The data or the data of a single measurement of multiple individuals requires that the input data be multi-dimensional. However, for real-time collected ECG signals, this is difficult to achieve. In this embodiment, the PCA calculation can be obtained by segmenting the segmented ECG signals again. input data;
然后对该二次分段ECG信号进行PCA运算并提取第一个主成分的贡献率作为第二信息参数Pλ1,需要说明,由于ECG非伪差信号中的主要成分对总体的贡献率较高,而对于ECG伪差信号来说,其各个主成分分布很分散,其主成分的总体贡献率较低,因此可以采用第二信息参数Pλ1区分两类信号。Then PCA operation is performed on the secondary segmented ECG signal and the contribution rate of the first principal component is extracted as the second information parameter P λ1 . , while for the ECG artifact signal, the distribution of each principal component is very scattered, and the overall contribution rate of the principal components is low, so the second information parameter P λ1 can be used to distinguish the two types of signals.
第三信息参数Psn的计算方法为:The calculation method of the third information parameter P sn is:
首先对待识别的分段ECG信号进行快速FFT,得到分段ECG信号的频谱;First, fast FFT is performed on the segmented ECG signal to be identified to obtain the spectrum of the segmented ECG signal;
然后求解分段ECG信号的频谱在0.5~40Hz之间的信号总幅值与全频率段信号总幅值的比值,该比值即为第三信息参数Psn,另外需要说明,由于在ECG非伪差信号功率谱中,QRS波群的频率范围集中在3~40Hz,P波和T波的频率范围主要集中在0.7~10Hz之间,因此本实施例选择0.5~40Hz的频率范围计算第三信息参数Psn,该参数能够衡量待识别的分段ECG信号中有用心电信息被噪声淹没的程度,如果噪声强度越大,则其第三信息参数Psn就越低,反之如果噪声强度越小,则第三信息参数Psn就越高。因此,ECG伪差信号与ECG非伪差信号的第三信息参数Psn存在较大差异。Then solve the ratio of the total signal amplitude of the spectrum of the segmented ECG signal between 0.5 and 40 Hz to the total signal amplitude of the full frequency band. This ratio is the third information parameter P sn . In the power spectrum of the difference signal, the frequency range of the QRS complex is concentrated in the range of 3-40 Hz, and the frequency range of the P wave and the T wave is mainly concentrated in the range of 0.7-10 Hz, so this embodiment selects the frequency range of 0.5-40 Hz to calculate the third information Parameter P sn , which can measure the extent to which the useful ECG information in the segmented ECG signal to be identified is submerged by noise. If the noise intensity is greater, the third information parameter P sn will be lower. Conversely, if the noise intensity is smaller , the third information parameter P sn is higher. Therefore, there is a large difference between the third information parameter P sn of the ECG artifact signal and the ECG non-artifact signal.
步骤S3:通过PCA进行识别,判断第二信息参数Pλ1是否满足:Pλ1>0.9。Step S3: Identify by PCA, and judge whether the second information parameter P λ1 satisfies: P λ1 >0.9.
步骤S3主要判断第二信息参数Pλ1是否满足:Pλ1>0.9,如果满足该不等式,则所选择的分段ECG信号为ECG非伪差信号并转入执行步骤S7,如果不满足该不等式,则执行步骤S4。Step S3 mainly judges whether the second information parameter P λ1 satisfies: P λ1 >0.9, if the inequality is satisfied, the selected segmented ECG signal is an ECG non-artifact signal and then proceeds to step S7, if the inequality is not satisfied, Then step S4 is executed.
步骤S4:通过相关分析、PCA和频谱分析共同识别,判断各个信息参数是否均不满足对应的不等式。Step S4: Through the joint identification of correlation analysis, PCA and spectrum analysis, it is judged whether each information parameter does not satisfy the corresponding inequality.
步骤S4包括判断第一信息参数Rmax是否满足:Rmax>0.61,判断第二信息参数Pλ1是否满足:Psn>0.85,判断第三信息参数Psn是否满足:Psn<0.44,判断分段ECG信号的频谱的最大幅度值POW是否满足:POW>70,如果第一信息参数Rmax、第二信息参数Pλ1、第三信息参数Psn和最大幅度值POW均不满足对应的不等式则执行步骤S6,反之如果第一信息参数Rmax、第二信息参数Pλ1、第三信息参数Psn和最大幅度值POW中有一个参数满足对应的不等式则执行步骤S5。在步骤S4中,仅依靠输入信号的主成分并不能充分地判断其类型,需要考虑从相关系数和频域上寻找其节律性和频率特征来共同判断,如果信息参数满足对应的条件,则表示该分段ECG信号或者具有相对较强的节律性(Rmax>0.61),或者在频率上与含噪较高的ECG信号(Psn>0.85或者Psn<0.44或者POW>70)较为类似。Step S4 includes judging whether the first information parameter R max satisfies: R max >0.61, judging whether the second information parameter P λ1 satisfies: P sn >0.85, judging whether the third information parameter P sn satisfies: P sn <0.44, judging the score Whether the maximum amplitude value POW of the spectrum of the segment ECG signal satisfies: POW>70, if the first information parameter R max , the second information parameter P λ1 , the third information parameter P sn and the maximum amplitude value POW do not satisfy the corresponding inequality then Execute step S6, otherwise, if one of the first information parameter R max , the second information parameter P λ1 , the third information parameter P sn and the maximum amplitude value POW satisfies the corresponding inequality, then execute step S5. In step S4, only relying on the principal components of the input signal cannot fully judge its type, and it is necessary to consider finding its rhythm and frequency characteristics from the correlation coefficient and frequency domain to jointly judge. If the information parameters meet the corresponding conditions, it means This segmental ECG signal either has a relatively strong rhythm (R max >0.61), or is similar in frequency to a noisy ECG signal (P sn >0.85 or P sn <0.44 or POW>70).
步骤S5:通过经验公式识别,步骤S5执行完后执行步骤S7。Step S5: identify by empirical formula, execute step S7 after step S5 is executed.
步骤S5主要判断第一信息参数Rmax、第二信息参数Pλ1和第三信息参数Psn是否满足经验公式:0.54*Rmax+0.42*Pλ1+0.04*Psn>0.5,如果满足该不等式,则所选择的分段ECG信号为ECG非伪差信号,如果不满足该不等式,则所选择的分段ECG信号为ECG伪差信号,步骤S5执行完后转入执行步骤S7。该经验公式通过分别对第一信息参数Rmax、第二信息参数Pλ1和第三信息参数Psn施加不同权重而得到。Step S5 mainly judges whether the first information parameter R max , the second information parameter P λ1 and the third information parameter P sn satisfy the empirical formula: 0.54*R max +0.42*P λ1 +0.04*P sn >0.5, if the inequality is satisfied , the selected segmented ECG signal is an ECG non-artifact signal, if the inequality is not satisfied, the selected segmented ECG signal is an ECG artifact signal, and step S7 is executed after step S5 is executed. The empirical formula is obtained by applying different weights to the first information parameter R max , the second information parameter P λ1 and the third information parameter P sn respectively.
步骤S6:通过频谱分析识别。Step S6: identification by spectrum analysis.
步骤S6主要判断第三信息参数Psn是否满足:0.77<Psn<0.85,如果满足该不等式,则所选择的分段ECG信号为ECG伪差信号,如果不满足该不等式,则所选择的分段ECG信号为ECG非伪差信号。由于ECG伪差信号的频率范围大多覆盖了正常ECG信号的频率范围,因此其频率分布随机性强且较为分散,并没有集中分布在0.5~40Hz的频率范围内,所以通过步骤S6可以进一步提高本实施例的准确率。Step S6 mainly judges whether the third information parameter P sn satisfies: 0.77<P sn <0.85, if the inequality is satisfied, the selected segment ECG signal is an ECG artifact signal, if the inequality is not satisfied, the selected segment ECG signal is The segment ECG signal is an ECG non-artifact signal. Since the frequency range of the ECG artifact signal mostly covers the frequency range of the normal ECG signal, its frequency distribution is highly random and relatively scattered, and is not concentrated in the frequency range of 0.5-40 Hz, so step S6 can further improve this Example accuracy.
步骤S7:判断是否已完成每个分段ECG信号的识别。Step S7: Judging whether the identification of each segmented ECG signal has been completed.
具体地,步骤S7首先判断是否已完成每个分段ECG信号的识别,如果已完成每个分段ECG信号的识别,则ECG信号的识别结束,反之返回步骤S2继续选择未识别的分段ECG信号进行识别。Specifically, step S7 first judges whether the identification of each segmented ECG signal has been completed, if the identification of each segmented ECG signal has been completed, the identification of the ECG signal ends, otherwise return to step S2 and continue to select unidentified segmental ECG The signal is identified.
为了更好的对实施例二进行说明,下面采用实施例二提供的方法进行伪差识别实验,该实验包括对训练数据的伪差识别和对独立数据的伪差识别。In order to better describe Embodiment 2, the method provided in Embodiment 2 is used to conduct an artifact recognition experiment. The experiment includes artifact recognition for training data and artifact recognition for independent data.
实验数据描述如下:The experimental data is described as follows:
训练数据:通过向正常人窦性ECG信号中加入高斯白噪声生成训练数据。具体地,采用了40组正常人窦性ECG信号,该ECG信号从公开的MIT-BIH正常窦性心律数据库中下载。其中每一组记录时间长度为5分钟,采样率均为128Hz,通过MIT-BIH数据库的注释文件确保其中每一个心动周期都是正常可用。存在噪声干扰的ECG伪差信号的位置随机生成,噪声时长为30~150s之间不等,添加时记录形成的伪差起始位置和终止点位置,并标注为ECG伪差信号。Training data: The training data is generated by adding Gaussian white noise to normal human sinus ECG signals. Specifically, 40 groups of normal human sinus ECG signals are used, and the ECG signals are downloaded from the public MIT-BIH normal sinus rhythm database. The recording time of each group is 5 minutes, and the sampling rate is 128Hz. The annotation files of the MIT-BIH database ensure that each cardiac cycle is normally available. The position of the ECG artifact signal with noise interference was randomly generated, and the duration of the noise ranged from 30 to 150 s. When adding it, the start position and end point of the generated artifact were recorded and marked as the ECG artifact signal.
独立数据:该数据由25组包含真实伪差的实测心电记录数据组成,每一组记录数据时间长度不等,采样频率均为250Hz,数据总长度为2395s,其中,标记为ECG的信号有11段,共计2227s,标记为ECG伪差的信号有6段,共计168s。Independent data: This data consists of 25 sets of measured ECG record data containing real artifacts. Each set of recorded data has a different time length, the sampling frequency is 250Hz, and the total data length is 2395s. Among them, the signal marked as ECG has There are 11 segments, a total of 2227s, and the signal marked as ECG artifact has 6 segments, a total of 168s.
采用实施例二提供的方法进行伪差信号识别实验,在训练数据上识别伪差信号的实验结果如表1所示。实验结果表明,对于在不同信噪比下形成的伪差信号,实施例二识别的准确度、敏感度和阳性预测率分别达到了(0.9864±0.0017)、(0.9899±0.0027)和(0.9925±0.0008),表现出很强的鲁棒性,并且识别伪差信号的能力很强、性能好,这说明本发明实施例二在实施方案中阈值参数的选择达到了最优。The method provided in Embodiment 2 is used to carry out the false signal recognition experiment, and the experimental results of the false signal recognition on the training data are shown in Table 1. The experimental results show that, for the artifact signals formed under different signal-to-noise ratios, the recognition accuracy, sensitivity and positive predictive rate of Embodiment 2 reached (0.9864±0.0017), (0.9899±0.0027) and (0.9925±0.0008) respectively. ), shows strong robustness, and has a strong ability to identify artifact signals and good performance, which shows that the selection of the threshold parameter in the embodiment of the second embodiment of the present invention has reached the optimum.
表1 不同信噪比下实施例二识别伪差信号的实验结果Table 1 Experimental results of identifying artifact signals in Embodiment 2 under different signal-to-noise ratios
本发明实施例二在独立数据上识别伪差信号的实验结果如表2所示。Table 2 shows the experimental results of identifying artifact signals on independent data in Embodiment 2 of the present invention.
表2 实施例二识别真实伪差信号的实验结果Table 2 Example 2 The experimental results of identifying real artifact signals
表二的实验结果表明,实施例二识别ECG伪差信号的准确率、敏感度和阳性预测率分别为97.42%、69.21%和92.06%,因此实施例二识别真实伪差信号的准确性很高,虽然识别ECG伪差信号的敏感度为69.21%,即可能会将少量ECG伪差信号误判为ECG非伪差信号,但是该参数依然优于同类其他方法,且不易导致漏诊。另外,实施例二识别ECG非伪差信号的敏感度达到99.55%,再加上很好的鲁棒性和实时性,因此,本发明实施例二能够满足实际应用需要。The experimental results in Table 2 show that the accuracy, sensitivity and positive predictive rate of embodiment two identifying ECG artifact signals are 97.42%, 69.21% and 92.06% respectively, so the accuracy of embodiment two identifying real artifact signals is very high , although the sensitivity of identifying ECG artifact signals is 69.21%, that is, a small amount of ECG artifact signals may be misjudged as ECG non-artifact signals, but this parameter is still better than other methods of the same kind, and it is not easy to cause missed diagnosis. In addition, the second embodiment has a sensitivity of 99.55% for identifying non-artifacted ECG signals, coupled with good robustness and real-time performance, therefore, the second embodiment of the present invention can meet the needs of practical applications.
从以上实施例可以看出,本发明实施例采用了相关分析来揭示ECG信号的节律性,并运用了PCA技术来表征输入信号中的心电主成分对全体信号的贡献,还通过频域分析从频率上来辨别ECG和ECG伪差两类信号,不同技术的综合使用增强了本发明实施例的鲁棒性和适用性;另外,本发明实施例采用了相关系数局部最大值、第一主成分的贡献率和频谱信噪比三种特征参数从不同的维度对ECG信号加以表征,三种特征参数在伪差检测上很好地起到了互补作用,规避了采用单一特征参数带来的误识别风险,提高了本实施例的准确性;最后,本实施例能够在很短的时间窗和不需要先验信息的情况下完成对ECG伪差信号的识别,具有很好的实时性、鲁棒性和适应性。It can be seen from the above embodiments that the embodiment of the present invention uses correlation analysis to reveal the rhythmicity of the ECG signal, and uses PCA technology to characterize the contribution of the ECG principal component in the input signal to the overall signal. From the frequency to distinguish two types of signals, ECG and ECG artifacts, the comprehensive use of different technologies enhances the robustness and applicability of the embodiment of the present invention; in addition, the embodiment of the present invention adopts the local maximum value of the correlation coefficient, the first principal component The three characteristic parameters of the contribution rate and the spectral signal-to-noise ratio characterize the ECG signal from different dimensions. The three characteristic parameters play a complementary role in the detection of artifacts, avoiding the misidentification caused by the use of a single characteristic parameter risk, improves the accuracy of this embodiment; finally, this embodiment can complete the identification of ECG artifact signals in a very short time window and without prior information, and has good real-time performance and robustness. and adaptability.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510119315.2A CN104644160A (en) | 2015-03-18 | 2015-03-18 | Electrocardiogram pseudo-difference signal identification method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510119315.2A CN104644160A (en) | 2015-03-18 | 2015-03-18 | Electrocardiogram pseudo-difference signal identification method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104644160A true CN104644160A (en) | 2015-05-27 |
Family
ID=53236173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510119315.2A Pending CN104644160A (en) | 2015-03-18 | 2015-03-18 | Electrocardiogram pseudo-difference signal identification method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104644160A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106667479A (en) * | 2016-12-12 | 2017-05-17 | 厦门纳龙科技有限公司 | Method and device for analyzing electrocardiogram containing artifact |
CN106709256A (en) * | 2016-12-29 | 2017-05-24 | 上海微创电生理医疗科技股份有限公司 | ECG data processing system and method thereof |
CN107536599A (en) * | 2016-06-29 | 2018-01-05 | 三星电子株式会社 | The System and method for of live signal segmentation and datum mark alignment framework is provided |
CN107811631A (en) * | 2017-11-27 | 2018-03-20 | 乐普(北京)医疗器械股份有限公司 | Electrocardiosignal method for evaluating quality |
CN107920770A (en) * | 2015-07-31 | 2018-04-17 | 美敦力公司 | Identification is used for the fuzzy heart signal of electro physiology mapping |
CN108577823A (en) * | 2018-04-27 | 2018-09-28 | 京东方科技集团股份有限公司 | A kind of arrhythmia detection device and arrhythmia detection system |
CN108830865A (en) * | 2018-05-08 | 2018-11-16 | 南京伟思医疗科技股份有限公司 | A kind of determination method of the stabilization up-and-down boundary for Ambulatory EEG image |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5715829A (en) * | 1995-11-29 | 1998-02-10 | Hewlett-Packard Company | Method and apparatus for detecting heartbeats in an ECG waveform using an activity function and on-time search |
CN102389306A (en) * | 2011-06-27 | 2012-03-28 | 北京高懋电子信息技术有限公司 | Automatic identification method of electroencephalogram artifact and automatic identification electroencephalograph using same |
CN103020472A (en) * | 2012-12-27 | 2013-04-03 | 中国科学院深圳先进技术研究院 | Physiological signal quality evaluation method and system based on constrained estimation |
CN103431857A (en) * | 2013-09-09 | 2013-12-11 | 苏州百慧华业精密仪器有限公司 | Method for automatically scanning suspicious T wave alteration (TWA) positive sections of Holter |
CN103720468A (en) * | 2013-12-05 | 2014-04-16 | 深圳先进技术研究院 | Artifact identification method and device applied to dynamic electrocardiogram data |
-
2015
- 2015-03-18 CN CN201510119315.2A patent/CN104644160A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5715829A (en) * | 1995-11-29 | 1998-02-10 | Hewlett-Packard Company | Method and apparatus for detecting heartbeats in an ECG waveform using an activity function and on-time search |
CN102389306A (en) * | 2011-06-27 | 2012-03-28 | 北京高懋电子信息技术有限公司 | Automatic identification method of electroencephalogram artifact and automatic identification electroencephalograph using same |
CN103020472A (en) * | 2012-12-27 | 2013-04-03 | 中国科学院深圳先进技术研究院 | Physiological signal quality evaluation method and system based on constrained estimation |
CN103431857A (en) * | 2013-09-09 | 2013-12-11 | 苏州百慧华业精密仪器有限公司 | Method for automatically scanning suspicious T wave alteration (TWA) positive sections of Holter |
CN103720468A (en) * | 2013-12-05 | 2014-04-16 | 深圳先进技术研究院 | Artifact identification method and device applied to dynamic electrocardiogram data |
Non-Patent Citations (2)
Title |
---|
YUEWEN TU,ETAL: "《A Novel Method for Automatic Identification of Motion Artifact Beats in ECG Recording》", 《ANNALS OF BIOMEDICAL ENGINEERING》》 * |
杜晓川: "《房颤T波末端定位方法研究》", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107920770A (en) * | 2015-07-31 | 2018-04-17 | 美敦力公司 | Identification is used for the fuzzy heart signal of electro physiology mapping |
CN107536599A (en) * | 2016-06-29 | 2018-01-05 | 三星电子株式会社 | The System and method for of live signal segmentation and datum mark alignment framework is provided |
CN106667479A (en) * | 2016-12-12 | 2017-05-17 | 厦门纳龙科技有限公司 | Method and device for analyzing electrocardiogram containing artifact |
CN106667479B (en) * | 2016-12-12 | 2018-02-16 | 厦门纳龙科技有限公司 | A kind of method and apparatus for analyzing the electrocardiogram containing artifact |
CN106709256A (en) * | 2016-12-29 | 2017-05-24 | 上海微创电生理医疗科技股份有限公司 | ECG data processing system and method thereof |
CN106709256B (en) * | 2016-12-29 | 2019-07-23 | 上海远心医疗科技有限公司 | ECG data processing system and method |
CN107811631A (en) * | 2017-11-27 | 2018-03-20 | 乐普(北京)医疗器械股份有限公司 | Electrocardiosignal method for evaluating quality |
US11253204B2 (en) | 2017-11-27 | 2022-02-22 | Shanghai Lepu CloudMed Co., Ltd. | Method for assessing electrocardiogram signal quality |
CN108577823A (en) * | 2018-04-27 | 2018-09-28 | 京东方科技集团股份有限公司 | A kind of arrhythmia detection device and arrhythmia detection system |
CN108577823B (en) * | 2018-04-27 | 2021-02-02 | 京东方科技集团股份有限公司 | Arrhythmia detection device and arrhythmia detection system |
CN108830865A (en) * | 2018-05-08 | 2018-11-16 | 南京伟思医疗科技股份有限公司 | A kind of determination method of the stabilization up-and-down boundary for Ambulatory EEG image |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110840402B (en) | Atrial fibrillation signal identification method and system based on machine learning | |
CN109171712B (en) | Atrial fibrillation identification method, atrial fibrillation identification device, atrial fibrillation identification equipment and computer readable storage medium | |
CN109907752B (en) | Electrocardiogram diagnosis and monitoring system for removing motion artifact interference and electrocardio characteristic detection | |
Merah et al. | R-peaks detection based on stationary wavelet transform | |
CN104644160A (en) | Electrocardiogram pseudo-difference signal identification method and device | |
CN101856225B (en) | Method for detecting R wave crest of electrocardiosignal | |
Sayadi et al. | A model-based Bayesian framework for ECG beat segmentation | |
CN107041743B (en) | Real-time R wave detection method for electrocardiosignals | |
US9050007B1 (en) | Extraction of cardiac signal data | |
JP5271718B2 (en) | How to identify fetal and maternal ECGs across multiple time segments | |
CN101828918B (en) | ECG Signal R Peak Detection Method Based on Waveform Feature Matching | |
Liu et al. | A combination method of improved impulse rejection filter and template matching for identification of anomalous intervals in RR sequences | |
WO2019100563A1 (en) | Method for assessing electrocardiogram signal quality | |
CN102885616A (en) | Method for removing baseline drift from pulse wave signal | |
CN107622259B (en) | A T wave detection method, electrocardiographic data analysis method and device | |
TW201717845A (en) | Devices, systems, and methods for determining heart rate of a subject from noisy electrocardiogram data | |
Liu et al. | A novel P-QRS-T wave localization method in ECG signals based on hybrid neural networks | |
KR20130085632A (en) | R-peak detection method of ecg signal using adaptive local threshold | |
Sadhukhan et al. | Detection of ECG characteristic features using slope thresholding and relative magnitude comparison | |
Lee et al. | A real-time abnormal beat detection method using a template cluster for the ECG diagnosis of IoT devices | |
CN105877739A (en) | Clinical examination method of electrocardio intelligent analyzing system | |
WO2018023697A1 (en) | Fetal electrocardiosignal separation method and device | |
Satija et al. | Low-complexity detection and classification of ECG noises for automated ECG analysis system | |
Karvounis et al. | Detection of fetal heart rate through 3-D phase space analysis from multivariate abdominal recordings | |
Dessì et al. | Identification of fetal QRS complexes in low density non-invasive biopotential recordings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150527 |