CN104638950A - AC to DC conversion device and method of operation thereof - Google Patents
AC to DC conversion device and method of operation thereof Download PDFInfo
- Publication number
- CN104638950A CN104638950A CN201310554566.4A CN201310554566A CN104638950A CN 104638950 A CN104638950 A CN 104638950A CN 201310554566 A CN201310554566 A CN 201310554566A CN 104638950 A CN104638950 A CN 104638950A
- Authority
- CN
- China
- Prior art keywords
- coupled
- output switch
- voltage
- energy
- side control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000004146 energy storage Methods 0.000 claims abstract description 192
- 238000004804 winding Methods 0.000 claims abstract description 106
- 238000012544 monitoring process Methods 0.000 claims abstract description 38
- 230000001360 synchronised effect Effects 0.000 claims description 24
- 230000003287 optical effect Effects 0.000 claims description 8
- 230000004907 flux Effects 0.000 claims 2
- 239000003990 capacitor Substances 0.000 description 61
- 238000010586 diagram Methods 0.000 description 14
- 239000013589 supplement Substances 0.000 description 9
- 230000000875 corresponding effect Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000001502 supplementing effect Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/23—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种电力供应电路,且特别是有关于一种交流直流转换装置及其操作方法。The present invention relates to a power supply circuit, and in particular to an AC-DC conversion device and its operating method.
背景技术Background technique
现今的电子装置内部电路往往使用多种不同电压电平的直流电压,故常在电子装置内设置交流直流转换器以供电给所述内部电路。交流直流转换器可以将市电(交流电)转换为直流电,即可让电子装置得到运作所需的直流电压。图1为已知返驰式转换器(Flyback Converter)的电路示意图。已知返驰式转换器包括有变压器110、整流二极管131与输出电容132。变压器110的二次侧绕组(secondary-side winding)112的第一端与第二端分别耦接至整流二极管131的阳极与参考电压。输出电容132的两端分别耦接至整流二极管131的阴极与参考电压。Internal circuits of today's electronic devices often use a variety of DC voltages of different voltage levels, so an AC-DC converter is often provided in the electronic device to supply power to the internal circuits. The AC-DC converter can convert the mains power (alternating current) into direct current, so that the electronic device can obtain the required DC voltage for operation. FIG. 1 is a schematic circuit diagram of a known flyback converter (Flyback Converter). A known flyback converter includes a transformer 110 , a rectifier diode 131 and an output capacitor 132 . A first terminal and a second terminal of a secondary-side winding 112 of the transformer 110 are respectively coupled to the anode of the rectifier diode 131 and the reference voltage. Both ends of the output capacitor 132 are respectively coupled to the cathode of the rectifier diode 131 and the reference voltage.
市电提供交流电能至整流器120。整流器120将交流电能转换成直流电后传输至变压器110的一次侧绕组(primary-side winding)111。晶体管140控制端耦接至控制导通电路150。当晶体管140导通时,整流器120所输出的电能储存在变压器110的一次侧绕组111内。当晶体管140截止时,电能从变压器110的一次侧绕组111传输至二次侧绕组112,使得整流二极管131顺向导通而对输出电容132充电,并在第一输出端OUT_HV产生第一输出电压。控制导通电路150可以通过控制晶体管140的导通时间来调整第一输出端OUT_HV的电压电平,进而最佳化(Optimal)第一输出端OUT_HV的电压。The mains supply AC power to the rectifier 120 . The rectifier 120 converts the AC power into DC power and transmits it to the primary-side winding 111 of the transformer 110 . The control terminal of the transistor 140 is coupled to the control conduction circuit 150 . When the transistor 140 is turned on, the electric energy output by the rectifier 120 is stored in the primary winding 111 of the transformer 110 . When the transistor 140 is turned off, electric energy is transmitted from the primary winding 111 to the secondary winding 112 of the transformer 110 , so that the rectifier diode 131 conducts forward to charge the output capacitor 132 and generate a first output voltage at the first output terminal OUT_HV. The turn-on control circuit 150 can adjust the voltage level of the first output terminal OUT_HV by controlling the turn-on time of the transistor 140 , so as to optimize the voltage of the first output terminal OUT_HV.
唯,如想利用同一绕组产生多个不同大小的输出电压,已知转换电路必须配置对应电压转换器以进一步将第一输出端OUT_HV的电压转换为其它目标电压。例如,图1所示返驰式转换器经设置而使第一输出端OUT_HV的电压维持于A伏特。转换器160(例如Boost converter)可以将第一输出端OUT_HV的电压升压至B伏特以供电至第二输出端OUT_LED。然而,额外配置的转换器160除了使成本提高,且转换效率也会降低。再者,图1所示已知返驰式转换器只能对第一输出端OUT_HV的电压进行最佳化,而不能同时对第一输出端OUT_HV的第一输出电压与第二输出端OUT_LED的第二输出电压做最佳化。However, if the same winding is to be used to generate multiple output voltages of different magnitudes, the known conversion circuit must be configured with a corresponding voltage converter to further convert the voltage of the first output terminal OUT_HV into other target voltages. For example, the flyback converter shown in FIG. 1 is configured to maintain the voltage of the first output terminal OUT_HV at A volts. The converter 160 (such as Boost converter) can boost the voltage of the first output terminal OUT_HV to B volts to supply power to the second output terminal OUT_LED. However, the extra converter 160 not only increases the cost, but also reduces the conversion efficiency. Furthermore, the known flyback converter shown in FIG. 1 can only optimize the voltage of the first output terminal OUT_HV, but cannot simultaneously optimize the first output voltage of the first output terminal OUT_HV and the voltage of the second output terminal OUT_LED. The second output voltage is optimized.
以上所述皆为既有技术未臻理想之处,实有待进一步检讨,并谋求可行的解决方案。The above are all unsatisfactory parts of the existing technology, and it is necessary to further review and seek a feasible solution.
发明内容Contents of the invention
本发明提出一种交流直流转换装置及其操作方法,其可以利用同一绕组产生多个不同大小的输出电压。The present invention provides an AC-DC conversion device and an operation method thereof, which can generate multiple output voltages of different magnitudes by using the same winding.
本发明实施例提出一种交流直流转换装置,包括变压器、第一储能单元、第一输出开关、第二储能单元、第二输出开关与二次侧控制模块。变压器包括至少一个一次侧绕组(primary-side winding)与至少一个二次侧绕组(secondary-side winding)。第一输出开关的第一端与第二端分别耦接至第一储能单元与二次侧绕组的第一端。第二输出开关的第一端与第二端分别耦接至所述第二储能单元与所述二次侧绕组的所述第一端。二次侧控制模块耦接至第一储能单元以监测第一储能单元的第一电性特征,并耦接至第二储能单元以监测第二储能单元的第二电性特征。所述二次侧控制模块依据对所述第一电性特征的监测结果而对应决定第一输出开关的导通期间的时间长度,以及依据对所述第二电性特征的监测结果而对应决定第二输出开关的导通期间的时间长。An embodiment of the present invention provides an AC/DC conversion device, including a transformer, a first energy storage unit, a first output switch, a second energy storage unit, a second output switch, and a secondary side control module. The transformer includes at least one primary-side winding and at least one secondary-side winding. The first terminal and the second terminal of the first output switch are respectively coupled to the first energy storage unit and the first terminal of the secondary winding. A first end and a second end of the second output switch are respectively coupled to the second energy storage unit and the first end of the secondary winding. The secondary side control module is coupled to the first energy storage unit to monitor a first electrical characteristic of the first energy storage unit, and is coupled to the second energy storage unit to monitor a second electrical characteristic of the second energy storage unit. The secondary-side control module correspondingly determines the duration of the conduction period of the first output switch according to the monitoring result of the first electrical characteristic, and correspondingly determines according to the monitoring result of the second electrical characteristic The time of the conduction period of the second output switch is long.
本发明实施例提供一种交流直流转换装置的操作方法,包括以下步骤。于交流直流转换装置配置变压器,其中变压器包括至少一个一次侧绕组与至少一个二次侧绕组。于交流直流转换装置配置第一储能单元与第一输出开关,其中第一输出开关的第一端与第二端分别耦接至二次侧绕组的第一端与第一储能单元。于交流直流转换装置配置第二储能单元与第二输出开关,其中第二输出开关的第一端与第二端分别耦接至第二储能单元与二次侧绕组的第一端。于第一输出开关的导通期间将变压器所储存电能传输至第一储能单元,并监测第一储能单元的第一电性特征,以及依据对第一电性特征的监测结果而对应决定第一输出开关的导通期间的时间长度。于第二输出开关的导通期间将变压器所储存电能传输至第二储能单元,并监测第二储能单元的第二电性特征,以及依据对第二电性特征的监测结果而对应决定第二输出开关的导通期间的时间长度。An embodiment of the present invention provides an operation method of an AC-DC conversion device, including the following steps. A transformer is configured on the AC/DC conversion device, wherein the transformer includes at least one primary winding and at least one secondary winding. A first energy storage unit and a first output switch are configured in the AC-DC conversion device, wherein the first end and the second end of the first output switch are respectively coupled to the first end of the secondary winding and the first energy storage unit. A second energy storage unit and a second output switch are configured in the AC-DC conversion device, wherein the first end and the second end of the second output switch are respectively coupled to the second energy storage unit and the first end of the secondary winding. During the conduction period of the first output switch, the electric energy stored in the transformer is transmitted to the first energy storage unit, and the first electrical characteristic of the first energy storage unit is monitored, and a corresponding decision is made according to the monitoring result of the first electrical characteristic The length of time during which the first output switch is on. During the conduction period of the second output switch, the electric energy stored in the transformer is transmitted to the second energy storage unit, and the second electrical characteristic of the second energy storage unit is monitored, and a corresponding decision is made according to the monitoring result of the second electrical characteristic The length of time during which the second output switch is on.
基于上述,本发明提供一种交流直流转换装置及其操作方法,此交流直流转换装置使用二次侧控制模块监测第一储能单元及第二储能单元,并依监测结果决定第一输出开关与第二输出开关的导通时间长度,故只需使用变压器的同一个二次侧绕组即可产生多组可作最佳化及精确调整的输出电压,而不需配置额外的电压转换器。Based on the above, the present invention provides an AC-DC conversion device and its operating method. The AC-DC conversion device uses a secondary-side control module to monitor the first energy storage unit and the second energy storage unit, and determines the first output switch according to the monitoring results. and the length of the conduction time of the second output switch, so only the same secondary side winding of the transformer can be used to generate multiple sets of output voltages that can be optimized and precisely adjusted without configuring additional voltage converters.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图式作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.
附图说明Description of drawings
图1是既有交流直流转换器的示意图。FIG. 1 is a schematic diagram of an existing AC-DC converter.
图2绘示为本发明一示范性实施例的交流直流转换装置的示意图。FIG. 2 is a schematic diagram of an AC-DC conversion device according to an exemplary embodiment of the present invention.
图3为根据本发明一示范性实施例所绘示的交流直流转换装置操作方法的流程图。FIG. 3 is a flowchart illustrating an operation method of an AC/DC conversion device according to an exemplary embodiment of the present invention.
图4绘示为图2的交流直流转换装置的第一实施例示意图。FIG. 4 is a schematic diagram of a first embodiment of the AC-DC conversion device shown in FIG. 2 .
图5为根据本发明第一实施例所绘示的波形图。FIG. 5 is a waveform diagram according to the first embodiment of the present invention.
图6绘示为图2的交流直流转换装置的第二实施例示意图。FIG. 6 is a schematic diagram of a second embodiment of the AC-DC conversion device shown in FIG. 2 .
图7绘示为图2的交流直流转换装置的第三实施例示意图。FIG. 7 is a schematic diagram of a third embodiment of the AC-DC converting device shown in FIG. 2 .
图8绘示为图2的交流直流转换装置的第四实施例示意图。FIG. 8 is a schematic diagram of a fourth embodiment of the AC-DC converting device shown in FIG. 2 .
[标号说明][Description of labels]
具体实施方式Detailed ways
现将详细参考本发明的示范性实施例,在附图中说明所述示范性实施例的实例。在本案说明书全文(包括申请专利范围)中所使用的「耦接」一词可指任何直接或间接的连接手段。举例而言,若文中描述第一装置耦接于第二装置,则应该被解释成该第一装置可以直接连接于该第二装置,或者该第一装置可以通过其它装置或某种连接手段而间接地连接至该第二装置。另外,凡可能之处,在图式及实施方式中使用相同标号的元件/构件/步骤代表相同或类似部分。不同实施例中使用相同标号或使用相同用语的元件/构件/步骤可以相互参照相关说明。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. The term "coupling" used throughout the specification of this case (including the scope of claims) may refer to any direct or indirect means of connection. For example, if it is described that a first device is coupled to a second device, it should be interpreted that the first device can be directly connected to the second device, or the first device can be connected through other devices or some kind of connection means. indirectly connected to the second device. In addition, wherever possible, elements/components/steps using the same reference numerals in the drawings and embodiments represent the same or similar parts. Elements/components/steps using the same symbols or using the same terms in different embodiments can refer to related descriptions.
图2绘示为本发明一示范性实施例的交流直流转换装置20的示意图。交流直流转换装置20耦接在交流电源30与负载41、42之间。交流直流转换装置20包括变压器T1、储能单元220、输出开关230、储能单元240与输出开关250。在此示范性实施例中,交流直流转换装置20的拓扑型态(topology)可以是反驰式(flyback)电源转换拓扑,但并不限制于此。FIG. 2 is a schematic diagram of an AC-DC conversion device 20 according to an exemplary embodiment of the present invention. The AC-DC conversion device 20 is coupled between the AC power source 30 and the loads 41 , 42 . The AC-DC conversion device 20 includes a transformer T1 , an energy storage unit 220 , an output switch 230 , an energy storage unit 240 and an output switch 250 . In this exemplary embodiment, the topology of the AC-DC conversion device 20 may be a flyback power conversion topology, but is not limited thereto.
变压器T1包括至少一个一次侧绕组211与至少一个二次侧绕组212。在此示范性实施例中,交流电源30的电能经由一次侧电路270而传输至变压器T1的一次侧绕组211。输出开关230的第一端耦接至储能单元220,输出开关230的第二端耦接至二次侧绕组212的第一端。输出开关250的第一端耦接至储能单元240,输出开关250的第二端耦接至所述二次侧绕组212的第一端。在此示范性实施例中,一次侧绕组211的第一端与第二端分别为同名端(common-polarity terminal,即打点端)与异名端(opposite-polarity terminal,即未打点端),二次侧绕组212的第一端与第二端分别为异名端与同名端。The transformer T1 includes at least one primary winding 211 and at least one secondary winding 212 . In this exemplary embodiment, the power of the AC power source 30 is transmitted to the primary winding 211 of the transformer T1 through the primary circuit 270 . A first terminal of the output switch 230 is coupled to the energy storage unit 220 , and a second terminal of the output switch 230 is coupled to the first terminal of the secondary winding 212 . A first end of the output switch 250 is coupled to the energy storage unit 240 , and a second end of the output switch 250 is coupled to the first end of the secondary winding 212 . In this exemplary embodiment, the first end and the second end of the primary side winding 211 are respectively a common-polarity terminal (ie a dotted end) and an opposite-polarity terminal (ie an undotted end), The first end and the second end of the secondary side winding 212 are the opposite end and the same end respectively.
二次侧控制模块260耦接至储能单元220以监测储能单元220的一电性特征,并耦接至所述储能单元240以监测储能单元240的一电性特征。在此示范性实施例中,储能单元220的电性特征可为储能单元220与二次侧参考电压(例如二次侧接地电压)的电压差,储能单元240的电性特征可为储能单元240与二次侧参考电压的电压差,但并不限制于此。二次侧控制模块260依据对储能单元220的所述电性特征的监测结果而对应决定所述输出开关230的导通期间的时间长度,以及依据对储能单元240的所述电性特征的监测结果而对应决定输出开关250的导通期间的时间长度。The secondary side control module 260 is coupled to the energy storage unit 220 to monitor an electrical characteristic of the energy storage unit 220 , and is coupled to the energy storage unit 240 to monitor an electrical characteristic of the energy storage unit 240 . In this exemplary embodiment, the electrical characteristic of the energy storage unit 220 may be the voltage difference between the energy storage unit 220 and the secondary side reference voltage (such as the secondary side ground voltage), and the electrical characteristic of the energy storage unit 240 may be The voltage difference between the energy storage unit 240 and the secondary side reference voltage is not limited thereto. The secondary-side control module 260 determines the duration of the conduction period of the output switch 230 according to the monitoring result of the electrical characteristics of the energy storage unit 220 , and according to the electrical characteristics of the energy storage unit 240 The time length of the conduction period of the output switch 250 is correspondingly determined according to the monitoring result of the output switch 250 .
图3为根据本发明一示范性实施例说明图2所示交流直流转换装置20的操作方法流程图。请同时参照图2及图3,于输出开关230的导通期间,变压器T1所储存的电能被传输至储能单元220,并且二次侧控制模块260监测储能单元220的电性特征(步骤S310)。这里的储能单元220的电性特征可以为储能单元220的电压、电流或其它电性特征,但并不限制于此。因此,储能单元220可以供电给负载41。于步骤S312中,二次侧控制模块260依据对储能单元220的所述电性特征的监测结果而对应决定输出开关230的导通期间的时间长度。因此,交流直流转换装置20可产生经最佳化的精确输出电压给负载41。FIG. 3 is a flowchart illustrating an operation method of the AC-DC conversion device 20 shown in FIG. 2 according to an exemplary embodiment of the present invention. Please refer to FIG. 2 and FIG. 3 at the same time. During the conduction period of the output switch 230, the electric energy stored in the transformer T1 is transmitted to the energy storage unit 220, and the secondary side control module 260 monitors the electrical characteristics of the energy storage unit 220 (step S310). The electrical characteristic of the energy storage unit 220 here may be the voltage, current or other electrical characteristics of the energy storage unit 220 , but is not limited thereto. Therefore, the energy storage unit 220 can supply power to the load 41 . In step S312 , the secondary-side control module 260 determines the duration of the conduction period of the output switch 230 according to the monitoring result of the electrical characteristics of the energy storage unit 220 . Therefore, the AC-DC conversion device 20 can generate an optimized and precise output voltage to the load 41 .
于输出开关250的导通期间,变压器T1所储存电能被传输至储能单元240,并且二次侧控制模块260监测储能单元240的储能单元240的电性特征(步骤S314)。这里的储能单元240的电性特征可以指储能单元240上的电压、电流或其它电性特征,但并不限制于此。因此,储能单元240可以供电给负载42。依据实际产品的设计需求,所述输出开关230的导通期间与所述输出开关250的导通期间可以部分重迭或互不重迭。于步骤S316,二次侧控制模块260依据对储能单元240的所述电性特征的监测结果而对应决定输出开关250的导通期间的时间长度。因此,交流直流转换装置20可产生经最佳化的精确输出电压给负载42。During the turn-on period of the output switch 250 , the electric energy stored in the transformer T1 is transmitted to the energy storage unit 240 , and the secondary side control module 260 monitors the electrical characteristics of the energy storage unit 240 of the energy storage unit 240 (step S314 ). The electrical characteristics of the energy storage unit 240 here may refer to voltage, current or other electrical characteristics on the energy storage unit 240 , but is not limited thereto. Therefore, the energy storage unit 240 can supply power to the load 42 . According to design requirements of actual products, the conduction period of the output switch 230 and the conduction period of the output switch 250 may partially overlap or may not overlap each other. In step S316 , the secondary-side control module 260 determines the duration of the conduction period of the output switch 250 according to the monitoring result of the electrical characteristics of the energy storage unit 240 . Therefore, the AC-DC conversion device 20 can generate an optimized and precise output voltage to the load 42 .
综上所述,本实施例所述交流直流转换装置20及其操作方法利用能量分布的概念,在变压器T1的一次侧绕组211先储存电能量,再将储存在变压器T1的电能量依序分配至交流直流转换装置20的多个输出。例如,使输出开关230导通而让储存在变压器T1的电能量可以分配至储能单元220与负载41。本实施例使用了二次侧控制模块260监测储能单元220及储能单元240的电性特征(例如电压),并依监测结果对应地控制输出开关230与输出开关250的导通时间长度。例如,当分配至储能单元220的电能量到达预设值时,二次侧控制模块260即关闭输出开关230,并使输出开关250导通而让储存在变压器T1的电能量可以对下一组供电电路(储能单元240与负载42)进行电能量补充。因此,交流直流转换装置20只需使用变压器T1的同一个二次侧绕组212即可产生多组经个别最佳化及精确调整的输出电压,而不需配置额外的电压转换器。To sum up, the AC-DC conversion device 20 and its operation method described in this embodiment utilize the concept of energy distribution, first store electrical energy in the primary side winding 211 of the transformer T1, and then distribute the electrical energy stored in the transformer T1 sequentially Multiple outputs to the AC-DC conversion device 20 . For example, the output switch 230 is turned on so that the electric energy stored in the transformer T1 can be distributed to the energy storage unit 220 and the load 41 . In this embodiment, the secondary side control module 260 is used to monitor the electrical characteristics (such as voltage) of the energy storage unit 220 and the energy storage unit 240 , and correspondingly control the on-time length of the output switch 230 and the output switch 250 according to the monitoring result. For example, when the electric energy distributed to the energy storage unit 220 reaches a preset value, the secondary side control module 260 closes the output switch 230 and turns on the output switch 250 so that the electric energy stored in the transformer T1 can be used for the next The group power supply circuit (the energy storage unit 240 and the load 42 ) supplements electric energy. Therefore, the AC-DC conversion device 20 can generate multiple sets of individually optimized and precisely adjusted output voltages only by using the same secondary winding 212 of the transformer T1 , without additional voltage converters.
图4为依照本发明实施例绘示图2的交流直流转换装置20的第一实施例示意图。所述交流直流转换装置20耦接在交流电源30与负载41、42、43之间。负载42例如是发光二极管串。在此实施例中,二次侧控制模块260可包括信号感应调节(Sensor Signal Conditioner)集成电路261与比较器OP1,但并不限制于此,在其它实施例中也可为误差放大器(Error Amplifier)或其它可判断输出电压的反馈调整形式。比较器OP1的输出端耦接至信号感应调节集成电路261,且信号感应调节集成电路261耦接至观测点Sync。FIG. 4 is a schematic diagram illustrating a first embodiment of the AC-DC conversion device 20 shown in FIG. 2 according to an embodiment of the present invention. The AC-DC conversion device 20 is coupled between the AC power source 30 and the loads 41 , 42 , 43 . The load 42 is, for example, a string of light emitting diodes. In this embodiment, the secondary side control module 260 may include a sensor signal conditioner (Sensor Signal Conditioner) integrated circuit 261 and a comparator OP1, but is not limited thereto, and may also be an error amplifier (Error Amplifier) in other embodiments ) or other feedback adjustment forms that can judge the output voltage. The output terminal of the comparator OP1 is coupled to the signal sensing and adjusting integrated circuit 261 , and the signal sensing and adjusting integrated circuit 261 is coupled to the observation point Sync.
在此实施例中,储能单元220是以电容C1为例,而输出开关230可以是晶体管、导通门(transmission gate)或其它种类的开关,但不限于此。输出开关230的第一端耦接至二次侧绕组212第一端。输出开关230的第二端耦接至电容C1的第一端,且输出开关230的控制端耦接至二次侧控制模块260的信号感应调节集成电路261。电容C1的第二端耦接至二次侧参考电压(例如二次侧接地电压或其它固定电压)。储能单元240在此实施例是以电容C2为例,而输出开关250可以是晶体管、导通门或其它种类的开关,但不限于此。输出开关250的第一端与第二端分别耦接至二次侧绕组212第一端及电容C2的第一端,且输出开关250的控制端耦接至二次侧控制模块260的信号感应调节集成电路261。电容C2的第二端耦接至二次侧参考电压。在此实施例中,所述二次侧绕组212的数量为一个,但不限于此,所述二次侧绕组212的数量也可为多个。In this embodiment, the energy storage unit 220 is a capacitor C1 as an example, and the output switch 230 may be a transistor, a transmission gate or other types of switches, but is not limited thereto. The first end of the output switch 230 is coupled to the first end of the secondary winding 212 . The second terminal of the output switch 230 is coupled to the first terminal of the capacitor C1 , and the control terminal of the output switch 230 is coupled to the signal sensing and regulating integrated circuit 261 of the secondary side control module 260 . The second end of the capacitor C1 is coupled to a secondary reference voltage (such as a secondary ground voltage or other fixed voltage). The energy storage unit 240 in this embodiment takes the capacitor C2 as an example, and the output switch 250 may be a transistor, a pass gate or other types of switches, but is not limited thereto. The first terminal and the second terminal of the output switch 250 are respectively coupled to the first terminal of the secondary side winding 212 and the first terminal of the capacitor C2, and the control terminal of the output switch 250 is coupled to the signal sensor of the secondary side control module 260 regulation integrated circuit 261 . The second end of the capacitor C2 is coupled to the secondary side reference voltage. In this embodiment, the number of the secondary side winding 212 is one, but not limited thereto, and the number of the secondary side winding 212 may also be multiple.
交流直流转换装置20在此实施例进一步包括同步整流单元281、储能单元282与输出开关283。在此实施例中,储能单元282以电容C3为例,而输出开关283可以是晶体管、导通门或其它种类的开关,但不限于此。输出开关283的第一端耦接至二次侧绕组212的第一端,输出开关283的第二端耦接至电容C3的第一端,而电容C3的第二端则与二次侧参考电压耦接。同步整流单元281在此实施例包括同步整流开关,此同步整流开关在此实施例为晶体管Q1,但不限于此。晶体管Q1的第一端与第二端分别耦接至二次侧绕组212的第二端与二次侧参考电压(例如二次侧接地电压或其它固定电压),而晶体管Q1的控制端(栅极)耦接至二次侧控制模块260的信号感应调节集成电路261。在此实施例中,二次侧控制模块260的信号感应调节集成电路261耦接至二次侧绕组212的第二端(即观测点Sync)以监测一电压特征,其中二次侧控制模块260依据对所述电压特征的监测结果而对应控制所述输出开关230、输出开关250及/或输出开关283的导通状态。The AC-DC conversion device 20 in this embodiment further includes a synchronous rectification unit 281 , an energy storage unit 282 and an output switch 283 . In this embodiment, the capacitor C3 is used as an example for the energy storage unit 282 , and the output switch 283 may be a transistor, a pass gate or other types of switches, but is not limited thereto. The first terminal of the output switch 283 is coupled to the first terminal of the secondary side winding 212, the second terminal of the output switch 283 is coupled to the first terminal of the capacitor C3, and the second terminal of the capacitor C3 is referenced to the secondary side. voltage coupling. The synchronous rectification unit 281 includes a synchronous rectification switch in this embodiment, and the synchronous rectification switch is a transistor Q1 in this embodiment, but is not limited thereto. The first terminal and the second terminal of the transistor Q1 are respectively coupled to the second terminal of the secondary side winding 212 and the secondary side reference voltage (such as the secondary side ground voltage or other fixed voltages), and the control terminal (gate pole) is coupled to the signal sensing and conditioning integrated circuit 261 of the secondary side control module 260 . In this embodiment, the signal sensing and regulating integrated circuit 261 of the secondary side control module 260 is coupled to the second end of the secondary side winding 212 (ie, the observation point Sync) to monitor a voltage characteristic, wherein the secondary side control module 260 The conducting state of the output switch 230 , the output switch 250 and/or the output switch 283 is correspondingly controlled according to the monitoring result of the voltage characteristic.
在此实施例中,储能单元240供电给负载42的一电流路径,且交流直流转换装置20进一步包括电流检测器284。电流检测器284配置于负载42的电流路径中以检测负载42的电流,并输出一电流检测结果至二次侧控制模块260。电流检测器284在此实施例中与负载42串联。其中二次侧控制模块260的比较器OP1的第一非反相输入端耦接至电流检测器284,以接收所述电流检测结果。比较器OP1的反相输入端接收参考电压Vref。比较器OP1可以比较电流检测器284所输出的电流检测结果与参考电压Vref,以及将比较结果传送至信号感应调节集成电路261。信号感应调节集成电路261可以依据电流检测器284所输出的电流检测结果与参考电压Vref二者的关系而对应调整输出开关250的导通期间的时间长度。因此,二次侧控制模块260可以依据所述电流检测结果(即对储能单元240的所述电性特征的监测结果)而对应控制与决定所述输出开关250的导通时间长度。依此,交流直流转换装置20可对储能单元240的输出电能进行最佳化。In this embodiment, the energy storage unit 240 supplies power to a current path of the load 42 , and the AC-DC conversion device 20 further includes a current detector 284 . The current detector 284 is disposed in the current path of the load 42 to detect the current of the load 42 and output a current detection result to the secondary side control module 260 . Current detector 284 is in series with load 42 in this embodiment. The first non-inverting input terminal of the comparator OP1 of the secondary side control module 260 is coupled to the current detector 284 to receive the current detection result. The inverting input terminal of the comparator OP1 receives the reference voltage Vref. The comparator OP1 can compare the current detection result output by the current detector 284 with the reference voltage Vref, and transmit the comparison result to the signal sensing and regulating integrated circuit 261 . The signal sensing and adjusting integrated circuit 261 can correspondingly adjust the duration of the conduction period of the output switch 250 according to the relationship between the current detection result output by the current detector 284 and the reference voltage Vref. Therefore, the secondary-side control module 260 can correspondingly control and determine the conduction time length of the output switch 250 according to the current detection result (ie, the monitoring result of the electrical characteristic of the energy storage unit 240 ). Accordingly, the AC-DC converting device 20 can optimize the output electric energy of the energy storage unit 240 .
储能单元220的第一端耦接至二次侧控制模块260的比较器OP1的第二非反相输入端。比较器OP1可以比较储能单元220的第一端的电性特征与参考电压Vref,以及将比较结果传送至信号感应调节集成电路261。图4所示实施例虽将比较器OP1的第二非反相输入端直接耦接至储能单元220的第一端,然而本发明的实现方式不应以此为限。例如,在其它实施例中,比较器OP1的第二非反相输入端至储能单元220的第一端之间可以配置分压电路,其中此分压电路将储能单元220的第一端的电压进行分压而产生反馈电压至比较器OP1的第二非反相输入端。因此,信号感应调节集成电路261可以依据储能单元220的第一端的电性特征与参考电压Vref二者的关系而对应调整输出开关230的导通期间的时间长度。因此,二次侧控制模块260可以依据对储能单元220的电性特征的监测结果而对应控制与决定所述输出开关230的导通时间长度。依此,交流直流转换装置20可对储能单元220的输出电能进行最佳化。The first terminal of the energy storage unit 220 is coupled to the second non-inverting input terminal of the comparator OP1 of the secondary side control module 260 . The comparator OP1 can compare the electrical characteristic of the first terminal of the energy storage unit 220 with the reference voltage Vref, and transmit the comparison result to the signal sensing and adjusting integrated circuit 261 . Although the embodiment shown in FIG. 4 directly couples the second non-inverting input end of the comparator OP1 to the first end of the energy storage unit 220 , the implementation of the present invention should not be limited thereto. For example, in other embodiments, a voltage divider circuit may be configured between the second non-inverting input terminal of the comparator OP1 and the first terminal of the energy storage unit 220, wherein the voltage divider circuit divides the first terminal of the energy storage unit 220 into The voltage is divided to generate a feedback voltage to the second non-inverting input terminal of the comparator OP1. Therefore, the signal sensing and adjusting integrated circuit 261 can correspondingly adjust the duration of the conduction period of the output switch 230 according to the relationship between the electrical characteristics of the first end of the energy storage unit 220 and the reference voltage Vref. Therefore, the secondary side control module 260 can correspondingly control and determine the conduction time length of the output switch 230 according to the monitoring result of the electrical characteristic of the energy storage unit 220 . Accordingly, the AC-DC conversion device 20 can optimize the output electric energy of the energy storage unit 220 .
而一次侧电路270在此实施例进一步包括有整流电路271、一次侧控制开关272与一次侧控制模块273。整流电路271的第一直流端与第二直流端分别耦接至所述一次侧绕组211的第一端及一次侧参考电压(例如一次侧接地电压),而整流电路271的第一交流端与第二交流端分别耦接至交流电源30。整流电路271可以将从交流电源30输入的交流电转换成直流电。一次侧控制开关272在此实施例以晶体管Q2为例,但不限于此。晶体管Q2的第一端与第二端分别耦接至一次侧绕组211的第二端及一次侧参考电压。一次侧控制模块273耦接一次侧控制开关272的晶体管Q2的控制端,且一次侧控制模块273通过控制一次侧控制开关272的晶体管Q2的导通期间的时间长度,来决定储存在变压器T1的电能量。二次侧控制模块260通过控制输出开关230、输出开关250与输出开关283的导通期间的时间长度来决定从变压器T1释放出的电能量。一次侧控制模块273与所述二次侧控制模块260可以配置于同一集成电路中,也可配置在不同集成电路中。例如,在一些实施例中,一次侧控制模块273的功能可以被整并至二次侧控制模块260中,以便省去图4所示一次侧控制模块273。在其它实施例中,输出开关230、输出开关250、输出开关283与作为同步整流开关的晶体管Q1也可视实际产品的设计需求而被集成进信号感应调节集成电路261内。In this embodiment, the primary side circuit 270 further includes a rectification circuit 271 , a primary side control switch 272 and a primary side control module 273 . The first DC end and the second DC end of the rectification circuit 271 are respectively coupled to the first end of the primary side winding 211 and the primary side reference voltage (such as the primary side ground voltage), and the first AC end of the rectification circuit 271 and the second AC end are respectively coupled to the AC power source 30 . The rectification circuit 271 can convert the AC power input from the AC power supply 30 into DC power. The embodiment of the primary side control switch 272 takes the transistor Q2 as an example, but it is not limited thereto. The first terminal and the second terminal of the transistor Q2 are respectively coupled to the second terminal of the primary winding 211 and the primary reference voltage. The primary-side control module 273 is coupled to the control terminal of the transistor Q2 of the primary-side control switch 272, and the primary-side control module 273 determines the time length of the conduction period of the transistor Q2 of the primary-side control switch 272 to determine the voltage stored in the transformer T1. electrical energy. The secondary side control module 260 determines the electric energy released from the transformer T1 by controlling the duration of the conduction period of the output switch 230 , the output switch 250 and the output switch 283 . The primary side control module 273 and the secondary side control module 260 can be configured in the same integrated circuit, or in different integrated circuits. For example, in some embodiments, the functions of the primary-side control module 273 can be integrated into the secondary-side control module 260 so as to omit the primary-side control module 273 shown in FIG. 4 . In other embodiments, the output switch 230 , the output switch 250 , the output switch 283 and the transistor Q1 as a synchronous rectification switch can also be integrated into the signal sensing and adjusting integrated circuit 261 according to the design requirements of actual products.
图5为本发明第一实施例的波形图。请同时参照图4与图5,以下讲解此交流直流转换装置20运作的过程。信号VG代表一次侧控制开关272的控制端电位。当信号VG为高电压电平时,代表一次侧控制开关272导通;当信号VG为低电压电平时,则代表一次侧控制开关272不导通。在时间点t1至t2的期间中,一次侧控制开关272导通,使得此时一次侧绕组211上的电流Ip增加。也就是说,一次侧电路270在时间点t1至t2的期间中将电能储存在变压器T1。在时间点t1至t2的期间中,晶体管Q1的控制端电位VSW_SR、输出开关230的控制端电位VSW_1、输出开关250的控制端电位VSW_2与输出开关283的控制端电位VSW_3皆为低电压电平,代表作为同步整流开关的晶体管Q1、输出开关230、输出开关250、输出开关283皆未导通。充电期间(即时间点t1至t2的期间)通过导通一次侧控制开关272将整流电路271所输出的电能储存在变压器T1。FIG. 5 is a waveform diagram of the first embodiment of the present invention. Please refer to FIG. 4 and FIG. 5 at the same time, and the operation process of the AC-DC conversion device 20 will be explained below. The signal VG represents the potential of the control terminal of the primary side control switch 272 . When the signal VG is at a high voltage level, it means that the primary side control switch 272 is turned on; when the signal VG is at a low voltage level, it means that the primary side control switch 272 is not turned on. During the period from time point t1 to t2 , the primary side control switch 272 is turned on, so that the current Ip on the primary side winding 211 increases at this time. That is to say, the primary side circuit 270 stores electric energy in the transformer T1 during the time point t1 to t2. During the period from time point t1 to t2, the control terminal potential VSW_SR of the transistor Q1, the control terminal potential VSW_1 of the output switch 230, the control terminal potential VSW_2 of the output switch 250, and the control terminal potential VSW_3 of the output switch 283 are all low voltage levels. , which means that the transistor Q1 serving as the synchronous rectification switch, the output switch 230 , the output switch 250 , and the output switch 283 are all off. During the charging period (ie, the period from time point t1 to t2 ), the electric energy output from the rectification circuit 271 is stored in the transformer T1 by turning on the primary side control switch 272 .
在充电期间结束后,接着进入释能期间(即时间点t2至t5的期间)。在时间点t2至t5的期间中,信号VG降为低电压电平,使得一次侧控制开关272不导通。在时间点t2至t5的期间中,同步整流开关的晶体管Q1的控制端电位VSW_SR由低电平变为高电平,使得晶体管Q1导通,以备将储存在变压器T1的电能分配给储能单元220、240与282。在时间点t2晶体管Q1导通时,观测点Sync的电压因为二次侧绕组212的电动势而下降至负电压并低于一预设基准值,例如-0.7V。观测点Sync的电压电平响应于(相关于)储存在变压器T1中电能的量,因此二次侧控制模块260可以依据观测点Sync的电压电平而判断储存在变压器T1中电能的量。当二次侧控制模块260的信号感应调节集成电路261接收到观测点Sync的电压低于所述预设基准值,便输出一导通信号至在时间点t2至t5的期间中需要最先导通的输出开关。在此实施例输出开关250为最先导通的输出开关,但并不限制于此。当观测点Sync电压为负电压电平时,二次侧控制模块260依序导通输出开关250、输出开关230与输出开关283,以将储存在变压器T1的电能量分配至储能单元240(与负载42)、储能单元220(与负载41)以及储能单元282(与负载43)。在时间点t2至t5的期间中的操作方式详述如下。After the charging period ends, the discharging period (ie, the period from time point t2 to t5 ) enters. During the period from time point t2 to t5, the signal VG drops to a low voltage level, so that the primary side control switch 272 is not turned on. During the period from time point t2 to t5, the potential VSW_SR of the control terminal of the transistor Q1 of the synchronous rectification switch changes from low level to high level, so that the transistor Q1 is turned on, so that the electric energy stored in the transformer T1 can be distributed to the energy storage Units 220, 240 and 282. When the transistor Q1 is turned on at the time point t2, the voltage at the observation point Sync drops to a negative voltage due to the electromotive force of the secondary winding 212 and is lower than a preset reference value, such as -0.7V. The voltage level of the observation point Sync is responsive to (correlated with) the amount of electric energy stored in the transformer T1 , so the secondary side control module 260 can determine the amount of electric energy stored in the transformer T1 according to the voltage level of the observation point Sync . When the signal sensing and regulating integrated circuit 261 of the secondary side control module 260 receives the voltage of the observation point Sync lower than the preset reference value, it outputs a conduction signal to be the first to conduct during the period from time point t2 to t5 output switch. In this embodiment, the output switch 250 is the output switch that is turned on first, but it is not limited thereto. When the Sync voltage at the observation point is a negative voltage level, the secondary side control module 260 turns on the output switch 250, the output switch 230 and the output switch 283 in order to distribute the electric energy stored in the transformer T1 to the energy storage unit 240 (with load 42), the energy storage unit 220 (and the load 41), and the energy storage unit 282 (and the load 43). The manner of operation during the period from time point t2 to t5 is described in detail as follows.
在时间点t2至t3的期间中,信号感应调节集成电路261将输出开关250控制端电位VSW_2拉升为高电平,使得输出开关250导通。因此,储存在变压器T1的电能可以在时间点t2至t3的期间中分配给储能单元240与负载42,使得二次侧绕组212上的电流Is减少(如图5所示)。在输出开关250导通的期间,二次侧控制模块260监控储能单元240的电压及/或流经负载42的电流,以对储能单元240的输出电能进行最佳化。当分配至储能单元240的电能量到达预设值时,例如当储能单元240的电压达到负载42的额定电压电平时以及/或者当流经负载42的电流达到负载42的额定电流电平时,二次侧控制模块260即关闭输出开关250,并使输出开关230导通(进入时间点t3至t4的期间)而让储存在变压器T1的电能量可以对下一组供电电路(储能单元220与负载41)进行电能量补充。During the period from time point t2 to t3 , the signal sensing and adjusting integrated circuit 261 pulls up the potential VSW_2 of the control terminal of the output switch 250 to a high level, so that the output switch 250 is turned on. Therefore, the electric energy stored in the transformer T1 can be distributed to the energy storage unit 240 and the load 42 during the time point t2 to t3, so that the current Is on the secondary winding 212 decreases (as shown in FIG. 5 ). When the output switch 250 is turned on, the secondary side control module 260 monitors the voltage of the energy storage unit 240 and/or the current flowing through the load 42 to optimize the output power of the energy storage unit 240 . When the electric energy distributed to the energy storage unit 240 reaches a preset value, for example, when the voltage of the energy storage unit 240 reaches the rated voltage level of the load 42 and/or when the current flowing through the load 42 reaches the rated current level of the load 42 , the secondary side control module 260 closes the output switch 250, and turns on the output switch 230 (from time point t3 to t4), so that the electric energy stored in the transformer T1 can be used for the next group of power supply circuits (energy storage unit 220 and the load 41) to supplement electric energy.
信号感应调节集成电路261将输出开关230的控制端电位VSW_1在时间点t3至t4的期间拉升为高电压电平,使得输出开关230在时间点t3至t4的期间导通。因此,储存在变压器T1的电能可以在时间点t3至t4的期间中分配给储能单元220与负载41,使得二次侧绕组212上的电流Is减少。在输出开关230导通的期间,二次侧控制模块260监控储能单元220的电压,以对储能单元220的输出电能进行最佳化。当分配至储能单元220的电能量到达预设值时,例如当储能单元220的电压达到负载41的额定电压电平时,二次侧控制模块260即关闭输出开关230,并使输出开关283导通(进入时间点t4至t5的期间)而让储存在变压器T1的电能量可以对下一组供电电路(储能单元282与负载43)进行电能量补充。The signal sensing and adjusting integrated circuit 261 pulls up the control terminal potential VSW_1 of the output switch 230 to a high voltage level during the time point t3 to t4, so that the output switch 230 is turned on during the time point t3 to t4. Therefore, the electric energy stored in the transformer T1 can be distributed to the energy storage unit 220 and the load 41 during the time point t3 to t4, so that the current Is on the secondary winding 212 decreases. During the conduction period of the output switch 230 , the secondary side control module 260 monitors the voltage of the energy storage unit 220 to optimize the output power of the energy storage unit 220 . When the electric energy distributed to the energy storage unit 220 reaches a preset value, for example, when the voltage of the energy storage unit 220 reaches the rated voltage level of the load 41, the secondary side control module 260 closes the output switch 230 and makes the output switch 283 Turning on (entering the period from time point t4 to t5 ) allows the electric energy stored in the transformer T1 to supplement electric energy for the next group of power supply circuits (the energy storage unit 282 and the load 43 ).
信号感应调节集成电路261将输出开关283的控制端电位VSW_3在时间点t4至t5的期间拉升为高电压电平,使得输出开关283在时间点t4至t5的期间导通。因此,储存在变压器T1的电能可以在时间点t4至t5的期间中分配给储能单元282与负载43,使得二次侧绕组212上的电流Is减少。在输出开关283导通的期间,二次侧控制模块260监控储能单元282的电压,以对储能单元282的输出电能进行最佳化。当分配至储能单元282的电能量到达预设值时,例如当储能单元282的电压达到负载43的额定电压电平时,二次侧控制模块260即关闭输出开关283。The signal sensing and adjusting integrated circuit 261 pulls up the control terminal potential VSW_3 of the output switch 283 to a high voltage level during the time point t4 to t5, so that the output switch 283 is turned on during the time point t4 to t5. Therefore, the electric energy stored in the transformer T1 can be distributed to the energy storage unit 282 and the load 43 during the time point t4 to t5, so that the current Is on the secondary winding 212 decreases. During the conduction period of the output switch 283 , the secondary side control module 260 monitors the voltage of the energy storage unit 282 to optimize the output power of the energy storage unit 282 . When the electric energy distributed to the energy storage unit 282 reaches a preset value, for example, when the voltage of the energy storage unit 282 reaches the rated voltage level of the load 43 , the secondary side control module 260 closes the output switch 283 .
通过观察图4所示电路中共同电压观测点VCOM的电压(例如图5所示),可以知道交流直流转换装置20能对储能单元220的电压、储能单元240的电压以及储能单元282的电压进行个别调整,而不需要配置额外的电压转换器。因此,交流直流转换装置20使用变压器的同一个二次侧绕组即可产生多组可作最佳化及精确调整的输出电压。By observing the voltage of the common voltage observation point VCOM in the circuit shown in FIG. 4 (such as shown in FIG. 5 ), it can be known that the AC-DC conversion device 20 can control the voltage of the energy storage unit 220, the voltage of the energy storage unit 240, and the energy storage unit 282. The voltage can be individually adjusted without the need for an additional voltage converter. Therefore, the AC-DC conversion device 20 can generate multiple sets of optimized and precisely adjusted output voltages by using the same secondary winding of the transformer.
在此实施例中,充电期间(即时间点t1至t2的期间)、输出开关230的导通期间、输出开关250的导通期间与输出开关283的导通期间互不重迭。输出开关230、输出开关250与输出开关283的动作彼此无相依性。然而本发明的实施方式不应限制于此。例如在其它实施例中,开关230、250与283的导通期间也可以视实际设计/应用需求而被设定为彼此部分重迭。又例如,虽然在图5所示实施例是由输出开关250、输出开关230与输出开关283的顺序依序导通,但在其它实施例也可以视实际设计/应用需求而使用其它的顺序导通。例如依序导通输出开关230、输出开关250与输出开关283。In this embodiment, the charging period (ie, the period from time point t1 to t2 ), the conduction period of the output switch 230 , the conduction period of the output switch 250 , and the conduction period of the output switch 283 do not overlap each other. The actions of the output switch 230 , the output switch 250 and the output switch 283 are independent of each other. However, the embodiments of the present invention should not be limited thereto. For example, in other embodiments, the conduction periods of the switches 230 , 250 and 283 may also be set to partially overlap each other according to actual design/application requirements. As another example, although the embodiment shown in FIG. 5 is sequentially turned on by the output switch 250, the output switch 230 and the output switch 283, in other embodiments, other order may be used depending on actual design/application requirements. Pass. For example, the output switch 230 , the output switch 250 and the output switch 283 are turned on in sequence.
请参照图5,在本实施例中,当对第一个功率输出通道补充电能量的期间(即时间点t2至t3的期间)结束时,观测点Sync电压上升至-310mV(仅为示例,但并不限制于此)。当对第二个功率输出通道补充电能量的期间(即时间点t3至t4的期间)结束时,观测点Sync电压上升至-12mV(仅为示例,但并不限制于此)。而当对第三个功率输出通道补充电能量的期间(即时间点t4至t5的期间)结束时,观测点Sync电压上升至0V(仅为示例,但并不限制于此)。观察此现象可以得知,观测点Sync的电压电平响应于(相关于)储存在变压器T1中电能的剩余量。因此,二次侧控制模块260可以依据观测点Sync的电压电平而判断当释能期间结束时(例如图5所示时间点t5)储存在变压器T1中电能的剩余量,以及将变压器T1中电能的剩余量告知一次侧控制模块273。一次侧控制模块273可以依据在释能期间结束时变压器T1中电能的剩余量来对应调整一次侧控制开关272的导通时间长度,也就是调整充电期间(例如图5所示时间点t1至t2的期间)的时间长度。Please refer to FIG. 5 , in this embodiment, when the period of supplementing electric energy to the first power output channel (that is, the period from time point t2 to t3) ends, the Sync voltage at the observation point rises to -310mV (for example only, but not limited thereto). When the period of supplementing electric energy to the second power output channel (ie, the period from time point t3 to t4) ends, the Sync voltage at the observation point rises to -12mV (just an example, but not limited thereto). And when the period of supplementing electric energy to the third power output channel (ie, the period from time point t4 to t5 ) ends, the voltage at the observation point Sync rises to 0V (just an example, but not limited thereto). Observing this phenomenon, it can be seen that the voltage level of the observation point Sync is responsive to (relative to) the remaining amount of electric energy stored in the transformer T1. Therefore, the secondary side control module 260 can determine the remaining amount of electric energy stored in the transformer T1 when the energy release period ends (such as time point t5 shown in FIG. 5 ) according to the voltage level of the observation point Sync, and transfer The remaining amount of electric energy is notified to the primary side control module 273 . The primary side control module 273 can adjust the conduction time length of the primary side control switch 272 according to the remaining amount of electric energy in the transformer T1 at the end of the discharge period, that is, adjust the charging period (for example, time points t1 to t2 shown in FIG. 5 period) the length of time.
图6为依照本发明实施例绘示图2的交流直流转换装置20的第二实施例示意图。图6所示实施例可以参照图4至图5的相关说明而类推之。在此图6所示实施例中,此交流直流转换装置20可进一步包括一反馈模块285。反馈模块285的感测端耦接至储能单元240,以监测储能单元240的电性特征。在此实施例中,第三电性特征为储能单元240上的电压。反馈模块285的输出端耦接至一次侧控制模块273以提供储能单元240的电性特征的一对应信息。一次侧控制模块273依据所述对应信息而对应控制与决定一次侧控制开关272的导通时间长度。FIG. 6 is a schematic diagram illustrating a second embodiment of the AC-DC conversion device 20 shown in FIG. 2 according to an embodiment of the present invention. The embodiment shown in FIG. 6 can be deduced by referring to the relevant descriptions in FIG. 4 to FIG. 5 . In the embodiment shown in FIG. 6 , the AC-DC conversion device 20 may further include a feedback module 285 . The sensing terminal of the feedback module 285 is coupled to the energy storage unit 240 to monitor the electrical characteristics of the energy storage unit 240 . In this embodiment, the third electrical characteristic is the voltage on the energy storage unit 240 . The output terminal of the feedback module 285 is coupled to the primary-side control module 273 to provide a corresponding information of the electrical characteristic of the energy storage unit 240 . The primary side control module 273 correspondingly controls and determines the conduction time length of the primary side control switch 272 according to the corresponding information.
在此实施例中,反馈模块285包括光耦合器PC1、电阻R1~R3、电容C4与C5以及齐纳二极管ZD1。电阻R1的第一端耦接至储能单元240。电阻R2的第一端与第二端分别耦接至电阻R1的第二端与二次侧参考电压(例如二次侧接地电压或其它固定电压)。电阻R3的第一端耦接至储能单元240。电阻R3的第一端即为反馈模块285的感测端。电容C4第一端耦接至电阻R1的第二端。齐纳二极管ZD1的阴极耦接至所述电容C4的第二端,齐纳二极管ZD1的阳极耦接至二次侧参考电压。而齐纳二极管ZD1的参考端耦接至电阻R1的第二端及电阻R2的第一端。在此实施例中齐纳二极管ZD1型号可为德州仪器或其它厂牌的TL431齐纳二极管,但不限制于此。光耦合器PC1的发光部的第一端耦接至电阻R3的第二端,光耦合器PC1的发光部的第二端耦接至电容C4的第二端。光耦合器PC1的感光部的第一端耦接至一次侧控制模块273以提供所述对应信息,且光耦合器PC1的发光部的第一端即为反馈模块285的输出端。光耦合器PC1的感光部的第二端耦接至一次侧参考电压。电容C5的第一端耦接至光耦合器PC1的感光部的第一端,电容C5的第二端耦接至光耦合器PC1的感光部的第二端。In this embodiment, the feedback module 285 includes an optocoupler PC1, resistors R1-R3, capacitors C4 and C5, and a Zener diode ZD1. A first end of the resistor R1 is coupled to the energy storage unit 240 . The first terminal and the second terminal of the resistor R2 are respectively coupled to the second terminal of the resistor R1 and a secondary reference voltage (such as the secondary ground voltage or other fixed voltages). A first end of the resistor R3 is coupled to the energy storage unit 240 . The first end of the resistor R3 is the sensing end of the feedback module 285 . The first end of the capacitor C4 is coupled to the second end of the resistor R1. The cathode of the Zener diode ZD1 is coupled to the second terminal of the capacitor C4, and the anode of the Zener diode ZD1 is coupled to the secondary side reference voltage. The reference terminal of the Zener diode ZD1 is coupled to the second terminal of the resistor R1 and the first terminal of the resistor R2. In this embodiment, the Zener diode ZD1 can be a TL431 Zener diode from Texas Instruments or other brands, but is not limited thereto. The first terminal of the light emitting part of the optical coupler PC1 is coupled to the second terminal of the resistor R3, and the second terminal of the light emitting part of the optical coupler PC1 is coupled to the second terminal of the capacitor C4. The first end of the light-sensing portion of the optocoupler PC1 is coupled to the primary-side control module 273 to provide the corresponding information, and the first end of the light-emitting portion of the optocoupler PC1 is the output end of the feedback module 285 . The second terminal of the photosensitive part of the photocoupler PC1 is coupled to the primary side reference voltage. The first end of the capacitor C5 is coupled to the first end of the light-sensing portion of the photocoupler PC1 , and the second end of the capacitor C5 is coupled to the second end of the light-sensing portion of the photocoupler PC1 .
当反馈模块285的感测端感测到储能单元240上的电压时,电流会流经光耦合器PC1的发光部与齐纳二极管ZD1。当储能单元240上的电压改变,则流经光耦合器PC1的发光部的电流改变,让发光部的发光强度作相对应的改变。反馈模块285输出至一次侧控制模块273的输出电压也会随之改变,进而改变一次侧控制开关272的导通时间。例如,当储能单元240上的电压变大,则电阻R1与电阻R2的分压变大。齐纳二极管ZD1参考端的电压增加,故流经齐纳二极管ZD1与光耦合器PC1的发光部的电流变大。于是光耦合器PC1发光部的发光强度增加,使反馈模块285输出端的输出电压增加。一次侧控制模块273接受到增加输出电压则减少一次侧控制开关272的导通时间。使用光耦合反馈技术可输出一个可变化或可自我优化的电压。综上所述,第二实施例所述的交流直流转换装置20可使用光耦合反馈技术对电压进行反馈,故可进一步提升本发明的转换效率。When the sensing terminal of the feedback module 285 senses the voltage on the energy storage unit 240 , the current will flow through the light emitting part of the optocoupler PC1 and the Zener diode ZD1 . When the voltage on the energy storage unit 240 changes, the current flowing through the light emitting part of the optocoupler PC1 changes, so that the luminous intensity of the light emitting part changes correspondingly. The output voltage output from the feedback module 285 to the primary side control module 273 will also change accordingly, thereby changing the conduction time of the primary side control switch 272 . For example, when the voltage on the energy storage unit 240 becomes larger, the voltage division between the resistor R1 and the resistor R2 becomes larger. The voltage at the reference end of the Zener diode ZD1 increases, so the current flowing through the Zener diode ZD1 and the light-emitting part of the photocoupler PC1 increases. Therefore, the luminous intensity of the light emitting part of the optical coupler PC1 increases, so that the output voltage of the output terminal of the feedback module 285 increases. The primary-side control module 273 reduces the conduction time of the primary-side control switch 272 after receiving an increase in the output voltage. A variable or self-optimizing voltage can be output using optocoupled feedback technology. To sum up, the AC-DC conversion device 20 described in the second embodiment can use the optical coupling feedback technology to feed back the voltage, so the conversion efficiency of the present invention can be further improved.
图7为依照本发明实施例绘示图2的交流直流转换装置20的第三实施例示意图。图7所示实施例可以参照图4至图6的相关说明而类推之。在此图7所示实施例中,一次侧电路270包括整流电路271、一次侧控制开关272、滤波电路274、芯片启动(Startup)电路275、辅助电压电路276与缓震电路(snubber)277。且此实施例中进一步包括有储能单元282、输出开关283、监测电路287、监测电路288、放电电路289与缓震电路290。在此实施例中,变压器T1的一次侧绕组进一步包括第一一次侧绕组211与第二一次侧绕组(在此称为一次侧辅助绕组213)。此一次侧辅助绕组213与芯片启动电路275耦接即为一次侧调整(Primary-side Regulator,PSR)反馈电路。FIG. 7 is a schematic diagram illustrating a third embodiment of the AC-DC conversion device 20 shown in FIG. 2 according to an embodiment of the present invention. The embodiment shown in FIG. 7 can be deduced by referring to the related descriptions in FIG. 4 to FIG. 6 . In the embodiment shown in FIG. 7 , the primary side circuit 270 includes a rectifier circuit 271 , a primary side control switch 272 , a filter circuit 274 , a chip startup circuit 275 , an auxiliary voltage circuit 276 and a snubber circuit (snubber) 277 . And this embodiment further includes an energy storage unit 282 , an output switch 283 , a monitoring circuit 287 , a monitoring circuit 288 , a discharging circuit 289 and a buffer circuit 290 . In this embodiment, the primary winding of the transformer T1 further includes a first primary winding 211 and a second primary winding (herein referred to as the primary auxiliary winding 213 ). The primary-side auxiliary winding 213 is coupled to the chip start-up circuit 275 to form a primary-side regulator (PSR) feedback circuit.
整流电路271在此实施例中包括有二极管D3~D6。二极管D3的阳极耦接至整流电路271的第一交流端与二极管D4的阴极,二极管D3的阴极耦接至整流电路271的第一直流端与二极管D5的阴极。二极管D4的阳极耦接至整流电路271的第二直流端及二极管D6的阳极。二极管D5的阳极耦接至整流电路271的第二交流端与二极管D6的阴极。交流电源30提供的交流电从整流电路271的第一交流端与第二交流端流入整流电路271,经二极管D3~D6处理后由第一直流端流出直流电流供给交流直流转换装置20使用。The rectification circuit 271 in this embodiment includes diodes D3-D6. The anode of the diode D3 is coupled to the first AC end of the rectification circuit 271 and the cathode of the diode D4 , and the cathode of the diode D3 is coupled to the first DC end of the rectification circuit 271 and the cathode of the diode D5 . The anode of the diode D4 is coupled to the second DC terminal of the rectifier circuit 271 and the anode of the diode D6. The anode of the diode D5 is coupled to the second AC terminal of the rectifier circuit 271 and the cathode of the diode D6. The AC power provided by the AC power source 30 flows into the rectifier circuit 271 from the first AC end and the second AC end of the rectifier circuit 271 , and after being processed by the diodes D3 - D6 , the DC current flows out from the first DC end to be used by the AC-DC conversion device 20 .
一次侧辅助绕组213的第一端与第二端在此实施例中分别为异名端与同名端。一次侧辅助绕组213有两个用途,其中一个是作一次侧调整(Primary-side Regulator,PSR)反馈,另一用途是产生一辅助电压供一次侧控制模块(未绘示,可参考图4中一次侧控制模块273的相关说明而类推之)使用。In this embodiment, the first end and the second end of the primary side auxiliary winding 213 are the opposite end and the same end respectively. The primary-side auxiliary winding 213 has two purposes, one of which is for primary-side regulation (Primary-side Regulator, PSR) feedback, and the other is to generate an auxiliary voltage for the primary-side control module (not shown, refer to FIG. 4 The relevant description of the primary side control module 273 is used by analogy).
一次侧控制开关272包括晶体管Q2、电阻R12与电阻R13。晶体管Q2的第一端耦接至第一一次侧绕组211的第二端。晶体管Q2的控制端耦接至一次侧控制模块以接收控制信号VSW。电阻R12的第一端耦接至晶体管Q2的第二端。电阻R12的第二端耦接至一次侧参考电压(例如一次侧接地电压或其它固定电压)。电阻R13的第一端耦接至晶体管Q2的控制端。电阻R13的第二端耦接至一次侧参考电压。电阻R13为下拉(Pull-down)电阻,其可让晶体管Q2的控制端平时保持在接近一次侧参考电压的电位。设置于电阻R12第一端的电流检测点VCS是用来检测电流大小,如电流过大就要启动过电流保护装置。一次侧参考电压与二次侧参考电压在此实施例为共点,代表一次侧参考电压即为二次侧参考电压,但在其它实施例中也可不共点。The primary side control switch 272 includes a transistor Q2, a resistor R12 and a resistor R13. A first terminal of the transistor Q2 is coupled to a second terminal of the first primary winding 211 . The control terminal of the transistor Q2 is coupled to the primary side control module to receive the control signal VSW. A first end of the resistor R12 is coupled to a second end of the transistor Q2. A second end of the resistor R12 is coupled to a primary reference voltage (such as a primary ground voltage or other fixed voltage). A first terminal of the resistor R13 is coupled to the control terminal of the transistor Q2. The second end of the resistor R13 is coupled to the primary side reference voltage. The resistor R13 is a pull-down (Pull-down) resistor, which can keep the control terminal of the transistor Q2 at a potential close to the reference voltage of the primary side at ordinary times. The current detection point VCS set at the first end of the resistor R12 is used to detect the magnitude of the current. If the current is too large, the overcurrent protection device will be activated. The primary-side reference voltage and the secondary-side reference voltage are at the same point in this embodiment, which means that the primary-side reference voltage is the secondary-side reference voltage, but they may not be at the same point in other embodiments.
滤波电路274在此实施例包括电容C7。电容C7的第一端耦接至整流电路271的第一直流端以及变压器T1一次侧绕组211的第一端。电容C7的第二端耦接至整流电路271的第二直流端以及一次侧参考电压。滤波电路274的电容用以滤除从整流电路271的第一直流端与第二直流端输出电能量的噪声。The filter circuit 274 in this embodiment includes a capacitor C7. The first end of the capacitor C7 is coupled to the first DC end of the rectification circuit 271 and the first end of the primary winding 211 of the transformer T1 . The second end of the capacitor C7 is coupled to the second DC end of the rectification circuit 271 and the primary reference voltage. The capacitor of the filter circuit 274 is used to filter out the noise of the electric energy output from the first DC end and the second DC end of the rectification circuit 271 .
芯片启动电路275两端分别耦接至整流电路271的第一直流端与一次侧控制模块(可参考图4中一次侧控制模块273的相关说明而类推之)。在此实施例中,芯片启动电路275包括电阻R14、电容C8与二极管D7。电阻R14的第一端耦接至一次侧绕组211的第一端以及整流电路271的第一直流端,电阻R14的第二端耦接至一次侧控制模块的电源脚位VDD。电源脚位VDD可以供电给一次侧控制模块(可参考图4中一次侧控制模块273的相关说明而类推之)及/或二次侧控制模块260(请参阅图2)。二极管D7的阴极耦接至电阻R14的第二端。二极管D7的阳极耦接至一次侧辅助绕组213的第一端。电容C8的第一端耦接至电阻R14的第二端,电容C8的第二端耦接至一次侧参考电压。一次侧辅助绕组213的第二端耦接至一次侧参考电压。电阻R14在此实施例可为上拉(Pull-up)电阻,可让一次侧控制模块273的电源脚位VDD平时保持在高电平。当电源启动时,输入电压会经过电阻R14为电容C8充电。当电容C8第一端的电压到达启动临界电压时,一次侧控制模块便会启动。一次侧辅助绕组213通过二极管D7整流后的电压也会传输至一次侧控制模块273,并对电容C8充电。Two ends of the chip start-up circuit 275 are respectively coupled to the first DC terminal of the rectification circuit 271 and the primary-side control module (referring to the relevant description of the primary-side control module 273 in FIG. 4 and analogously). In this embodiment, the chip startup circuit 275 includes a resistor R14, a capacitor C8 and a diode D7. The first terminal of the resistor R14 is coupled to the first terminal of the primary winding 211 and the first DC terminal of the rectifier circuit 271 , and the second terminal of the resistor R14 is coupled to the power pin VDD of the primary control module. The power pin VDD can supply power to the primary-side control module (refer to the relevant description of the primary-side control module 273 in FIG. 4 ) and/or the secondary-side control module 260 (refer to FIG. 2 ). The cathode of the diode D7 is coupled to the second terminal of the resistor R14. The anode of the diode D7 is coupled to the first end of the primary side auxiliary winding 213 . The first terminal of the capacitor C8 is coupled to the second terminal of the resistor R14, and the second terminal of the capacitor C8 is coupled to the primary reference voltage. The second end of the primary side auxiliary winding 213 is coupled to the primary side reference voltage. In this embodiment, the resistor R14 can be a pull-up resistor, which can keep the power pin VDD of the primary side control module 273 at a high level at ordinary times. When the power supply is turned on, the input voltage will charge the capacitor C8 through the resistor R14. When the voltage at the first terminal of the capacitor C8 reaches the startup critical voltage, the primary side control module will start. The voltage rectified by the primary side auxiliary winding 213 through the diode D7 will also be transmitted to the primary side control module 273 to charge the capacitor C8.
辅助电压电路276包括电阻R15、电阻R16与电容C9。电阻R15的第一端耦接至一次侧辅助绕组213的异名端,电阻R15的第二端耦接至一次侧控制模块(可参考图4中一次侧控制模块273的相关说明而类推之)。电阻R16的第一端耦接至电阻R15的第二端。电阻R16的第二端耦接至一次侧辅助绕组213的同名端以及一次侧参考电压。电容C9的第一端耦接至电阻R16第一端,电容C9的第二端耦接至一次侧参考电压。辅助电压电路276经配置以提供的辅助电压VAUX(关联于一次侧辅助绕组213两端电压),供一次侧控制模块使用。The auxiliary voltage circuit 276 includes a resistor R15, a resistor R16 and a capacitor C9. The first end of the resistor R15 is coupled to the opposite end of the primary side auxiliary winding 213, and the second end of the resistor R15 is coupled to the primary side control module (referring to the related description of the primary side control module 273 in FIG. 4 and analogously) . A first end of the resistor R16 is coupled to a second end of the resistor R15. The second end of the resistor R16 is coupled to the same-named end of the primary side auxiliary winding 213 and the primary side reference voltage. The first terminal of the capacitor C9 is coupled to the first terminal of the resistor R16, and the second terminal of the capacitor C9 is coupled to the primary side reference voltage. The auxiliary voltage circuit 276 is configured to provide an auxiliary voltage VAUX (associated with the voltage across the primary side auxiliary winding 213 ) for use by the primary side control module.
缓震电路277的第一端耦接至一次侧绕组211的第一端。缓震电路277的第二端耦接至一次侧绕组211的第二端。本实施例的缓震电路277是利用包括电阻R17、电容C10以及二极管D8的电路架构来实现。电阻R17的第一端耦接至整流电路271以及变压器T1的一次侧绕组211的第一端。电容C10的第一端耦接至一次侧绕组211的第一端。电容C10的第二端耦接至电阻R17的第二端。二极管D8的阴极耦接至电阻R17的第二端以及电容C10的第二端。二极管D8的阳极端耦接至变压器T1的一次侧绕组211的第二端。具体而言,缓震电路277是用以吸收变压器T1的漏电感所产生的能量。A first end of the buffer circuit 277 is coupled to a first end of the primary winding 211 . The second end of the buffer circuit 277 is coupled to the second end of the primary winding 211 . The buffer circuit 277 of this embodiment is realized by using a circuit structure including a resistor R17, a capacitor C10 and a diode D8. A first end of the resistor R17 is coupled to the rectifier circuit 271 and the first end of the primary winding 211 of the transformer T1 . The first end of the capacitor C10 is coupled to the first end of the primary winding 211 . The second terminal of the capacitor C10 is coupled to the second terminal of the resistor R17. The cathode of the diode D8 is coupled to the second terminal of the resistor R17 and the second terminal of the capacitor C10 . The anode terminal of the diode D8 is coupled to the second terminal of the primary winding 211 of the transformer T1. Specifically, the snubber circuit 277 is used to absorb the energy generated by the leakage inductance of the transformer T1.
输出开关230耦接至二次侧绕组212的第一端。输出开关230可为晶体管Q3,但并不限制于此。储能单元220的电容C1耦接至输出开关230。监测电路287耦接至储能单元220的电容C1。监测电路287包括电阻R4与R5。电阻R4的第一端耦接至储能单元220中电容C1第一端。电阻R4的第二端耦接于电阻R5第一端。电阻R5第二端耦接于二次侧参考电压(例如二次侧接地电压或其它固定电压)。监测电路287用来将储能单元220的电容C1的电压进行分压,以及将分压电压VAUDIO传送至二次侧控制模块260(请参阅图2)。二次侧控制模块可以依据分压电压VAUDIO而获知储能单元220的电性特征(例如电压)。The output switch 230 is coupled to the first end of the secondary winding 212 . The output switch 230 can be a transistor Q3, but is not limited thereto. The capacitor C1 of the energy storage unit 220 is coupled to the output switch 230 . The monitoring circuit 287 is coupled to the capacitor C1 of the energy storage unit 220 . The monitoring circuit 287 includes resistors R4 and R5. The first end of the resistor R4 is coupled to the first end of the capacitor C1 in the energy storage unit 220 . The second end of the resistor R4 is coupled to the first end of the resistor R5. The second end of the resistor R5 is coupled to the secondary reference voltage (eg, the secondary ground voltage or other fixed voltages). The monitoring circuit 287 is used to divide the voltage of the capacitor C1 of the energy storage unit 220 and transmit the divided voltage VAUDIO to the secondary side control module 260 (refer to FIG. 2 ). The secondary side control module can obtain the electrical characteristics (such as voltage) of the energy storage unit 220 according to the divided voltage VAUDIO.
在此实施例中,输出开关250为二极管D2,但不限于此。二极管D2的阳极耦接至二次侧绕组212的第一端,二极管D2的阴极耦接至储能单元240。当二极管D2的阴极电压大于阳极电压时,二极管D2为截止状态,因此二极管D2也可视为一种输出开关。监测电路288耦接至储能单元240的电容C2。监测电路288包括电阻R8与R9。电阻R8的第一端耦接至储能单元240中电容C2第一端,电阻R8的第二端耦接于电阻R9第一端。电阻R9第二端耦接于二次侧参考电压(例如二次侧接地电压或其它固定电压)。监测电路288用来将储能单元240中电容C2的电压进行分压,以及将分压电压VLED传送至二次侧控制模块(可参考图4中二次侧控制模块260的相关说明而类推之)。In this embodiment, the output switch 250 is a diode D2, but not limited thereto. The anode of the diode D2 is coupled to the first end of the secondary winding 212 , and the cathode of the diode D2 is coupled to the energy storage unit 240 . When the cathode voltage of the diode D2 is greater than the anode voltage, the diode D2 is in a cut-off state, so the diode D2 can also be regarded as an output switch. The monitoring circuit 288 is coupled to the capacitor C2 of the energy storage unit 240 . The monitoring circuit 288 includes resistors R8 and R9. The first terminal of the resistor R8 is coupled to the first terminal of the capacitor C2 in the energy storage unit 240 , and the second terminal of the resistor R8 is coupled to the first terminal of the resistor R9 . The second terminal of the resistor R9 is coupled to a secondary reference voltage (such as the secondary ground voltage or other fixed voltages). The monitoring circuit 288 is used to divide the voltage of the capacitor C2 in the energy storage unit 240, and transmit the divided voltage VLED to the secondary side control module (refer to the related description of the secondary side control module 260 in FIG. ).
缓震电路290的两端分别耦接至二极管D2的阳极端与阴极端。缓震电路290包括电阻R10与电容C6。电阻R10的第一端耦接至二极管D2的阳极端。电阻R10的第二端耦接至电容C6的第一端。电容C6的第二端耦接至二极管D2的阴极端。缓震电路290可以滤除二极管D2在切换导通与截止状态时所产生的突波。Two ends of the buffer circuit 290 are respectively coupled to the anode end and the cathode end of the diode D2. The buffer circuit 290 includes a resistor R10 and a capacitor C6. A first terminal of the resistor R10 is coupled to an anode terminal of the diode D2. The second end of the resistor R10 is coupled to the first end of the capacitor C6. The second terminal of the capacitor C6 is coupled to the cathode terminal of the diode D2. The buffer circuit 290 can filter out the surge generated when the diode D2 is switched on and off.
输出开关283耦接至二次侧绕组212的第一端。输出开关283可为晶体管Q4,但并不限制于此。储能单元282的电容C3耦接至输出开关283。本实施例中使用一次侧调整(PSR)技术来控制并调整储能单元282的输出电压。此技术是利用芯片启动电路275与辅助电压电路276中,包括二极管D7、电阻R15与R16、电容C8与C9的电路架构来实现。一次侧调整的原理是通过检测一次侧辅助绕组213的电压变化,来检测二次侧输出电压变化的情形。在释能期间,输出电压与同步整流单元281的正向导通压降会被反射到一次侧辅助绕组213,且一次侧辅助绕组213两端电压响应于输出电压。在释能期间储存在变压器T1中电能的剩余量,会反映在最后导通的输出开关283的输出电压。故在此实施例中,一次侧辅助绕组213两端电压相关于最后导通的输出开关283的输出电压。响应于一次侧辅助绕组213两端电压的辅助电压VAUX被反馈至一次侧控制模块(可参考图4中一次侧控制模块273的相关说明而类推之)。因此,一次侧控制模块即能依据辅助电压VAUX调整一次侧控制开关272中晶体管Q2的导通期间的时间长度,以及对应调整输出开关283的导通期间的时间长度。通过使用一次侧调整反馈技术,最后导通的输出开关283的输出电压可以被维持为定电压。The output switch 283 is coupled to the first end of the secondary winding 212 . The output switch 283 can be a transistor Q4, but is not limited thereto. The capacitor C3 of the energy storage unit 282 is coupled to the output switch 283 . In this embodiment, the primary side regulation (PSR) technology is used to control and adjust the output voltage of the energy storage unit 282 . This technology is realized by utilizing the circuit structure of the chip start-up circuit 275 and the auxiliary voltage circuit 276 including the diode D7, the resistors R15 and R16, and the capacitors C8 and C9. The principle of the primary side adjustment is to detect the change of the secondary side output voltage by detecting the voltage change of the primary side auxiliary winding 213 . During the discharge period, the output voltage and the forward conduction voltage drop of the synchronous rectification unit 281 are reflected to the primary side auxiliary winding 213 , and the voltage across the primary side auxiliary winding 213 responds to the output voltage. The remaining amount of electrical energy stored in the transformer T1 during the discharge period will be reflected in the output voltage of the output switch 283 that was turned on last. Therefore, in this embodiment, the voltage at both ends of the primary-side auxiliary winding 213 is related to the output voltage of the output switch 283 that is turned on last. The auxiliary voltage VAUX corresponding to the voltage across the primary-side auxiliary winding 213 is fed back to the primary-side control module (refer to the relevant description of the primary-side control module 273 in FIG. 4 and analogize it). Therefore, the primary-side control module can adjust the duration of the conduction period of the transistor Q2 in the primary-side control switch 272 according to the auxiliary voltage VAUX, and correspondingly adjust the duration of the conduction period of the output switch 283 . By using the primary-side regulation feedback technique, the output voltage of the output switch 283 that is turned on last can be maintained at a constant voltage.
在此实施例中,当开关230与283均为截止时,储存在变压器T1的电能量会被传输至储能单元240,以使输出电压VOUT维持于负载42(请参阅图2)的额定电压(例如为55V,但并不限制于此)。二次侧控制模块260(请参阅图2)可以通过监测电路288来监测储能单元240的电容C2的跨压。当储能单元240中电容C2的电压达到与电容C2耦接的负载42的额定电压电平时,以及/或者当流经与电容C2耦接的负载42的电流达到负载42的额定电流电平时,二次侧控制模块260可以使输出开关230导通而让储存在变压器T1的电能量可以对下一组供电电路(储能单元220与其负载)进行电能量补充。由于输出开关230导通而使二极管D2的阳极电压被拉下。当二极管D2的阴极电压大于阳极电压时,二极管D2为截止状态,因此二极管D2可以保持储能单元240中电容C2的电压。In this embodiment, when the switches 230 and 283 are both turned off, the electric energy stored in the transformer T1 will be transferred to the energy storage unit 240, so that the output voltage VOUT can maintain the rated voltage of the load 42 (see FIG. 2 ). (eg 55V, but not limited thereto). The secondary side control module 260 (see FIG. 2 ) can monitor the voltage across the capacitor C2 of the energy storage unit 240 through the monitoring circuit 288 . When the voltage of the capacitor C2 in the energy storage unit 240 reaches the rated voltage level of the load 42 coupled to the capacitor C2, and/or when the current flowing through the load 42 coupled to the capacitor C2 reaches the rated current level of the load 42, The secondary side control module 260 can turn on the output switch 230 so that the electric energy stored in the transformer T1 can supplement electric energy for the next group of power supply circuits (the energy storage unit 220 and its load). Since the output switch 230 is turned on, the anode voltage of the diode D2 is pulled down. When the cathode voltage of the diode D2 is greater than the anode voltage, the diode D2 is in a cut-off state, so the diode D2 can maintain the voltage of the capacitor C2 in the energy storage unit 240 .
在输出开关230的导通期间,二次侧控制模块可以通过监测电路287来监测储能单元220的电容C1的跨压。当输出电压VOUTA达到第一负载(未绘示,可参考图4中负载41的相关说明而类推之)的额定电压电平时,二次侧控制模块即关闭输出开关230,并通知一次侧控制模块(可参考图4中一次侧控制模块273的相关说明而类推之)使输出开关283导通而让储存在变压器T1的电能量可以对下一组供电电路(储能单元282与其负载)进行电能量补充。一次侧控制模块可以使用一次侧调整(PSR)技术来控制输出开关283以调整储能单元282的输出电压VOUTB。During the conduction period of the output switch 230 , the secondary side control module can monitor the voltage across the capacitor C1 of the energy storage unit 220 through the monitoring circuit 287 . When the output voltage VOUTA reaches the rated voltage level of the first load (not shown, refer to the relevant description of the load 41 in FIG. 4 and be analogized), the secondary-side control module closes the output switch 230 and notifies the primary-side control module (Refer to the relevant description of the primary side control module 273 in FIG. 4 and analogize it) Turn on the output switch 283 so that the electric energy stored in the transformer T1 can power the next group of power supply circuits (energy storage unit 282 and its load). Energy supplement. The primary side control module may use a primary side regulation (PSR) technique to control the output switch 283 to adjust the output voltage VOUTB of the energy storage unit 282 .
放电电路289在此实施例中是以晶体管Q5为例,但并不限制于此。且晶体管Q5第一端与第二端分别耦接至二极管D2的阴极与储能单元282。晶体管Q5控制端则耦接至二次侧控制模块260(请参阅图2)。在此实施例中,输出电压VOUT是输出电压VOUT、输出电压VOUTA及输出电压VOUTB中最大的电压。当需要释放储能单元240的电容C2电能时,二次侧控制模块260控制晶体管Q5导通,电能量可以经由晶体管Q5流至电位较低的VOUTB,以达到快速释能的目的。In this embodiment, the discharge circuit 289 is an example of the transistor Q5, but it is not limited thereto. And the first terminal and the second terminal of the transistor Q5 are respectively coupled to the cathode of the diode D2 and the energy storage unit 282 . The control terminal of the transistor Q5 is coupled to the secondary side control module 260 (refer to FIG. 2 ). In this embodiment, the output voltage VOUT is the largest voltage among the output voltage VOUT, the output voltage VOUTA and the output voltage VOUTB. When the electric energy of the capacitor C2 of the energy storage unit 240 needs to be released, the secondary side control module 260 controls the transistor Q5 to be turned on, and the electric energy can flow to VOUTB with a lower potential through the transistor Q5 to achieve the purpose of quick energy release.
在此实施例中,同步整流单元281包括同步整流二极管D1、电阻R6与电阻R7。同步整流二极管D1阴极与阳极分别耦接至二次侧绕组212的第二端与二次侧参考电压(例如二次侧接地电压或其它固定电压)。当二极管D1的阴极电压大于阳极电压时,二极管D1为截止状态,因此同步整流二极管D1也可视为一种同步整流开关。电阻R6第一端耦接至同步整流二极管D1的阴极。电阻R7第一端与第二端分别耦接至电阻R6的第二端与同步整流二极管D1的阳极。电阻R6与电阻R7串联是用来分压。二次侧控制模块(可参考图4中二次侧控制模块260的相关说明而类推之)可以撷取位于电阻R6第二端与电阻R7第一端耦接处的监测点VSYNC上的电压信号。二次侧控制模块260可以依据观测点Sync的电压电平而判断在所述释能期间结束时储存在变压器T1中电能剩余量,以及依据在释能期间结束时变压器T1中电能剩余量来对应调整一次侧控制开关272的导通时间长度,也就是调整充电期间的时间长度。In this embodiment, the synchronous rectification unit 281 includes a synchronous rectification diode D1, a resistor R6 and a resistor R7. The cathode and the anode of the synchronous rectification diode D1 are respectively coupled to the second terminal of the secondary winding 212 and a secondary reference voltage (such as the secondary ground voltage or other fixed voltages). When the cathode voltage of the diode D1 is greater than the anode voltage, the diode D1 is in a cut-off state, so the synchronous rectification diode D1 can also be regarded as a synchronous rectification switch. The first end of the resistor R6 is coupled to the cathode of the synchronous rectification diode D1. The first end and the second end of the resistor R7 are respectively coupled to the second end of the resistor R6 and the anode of the synchronous rectification diode D1. The resistor R6 is connected in series with the resistor R7 to divide the voltage. The secondary-side control module (referring to the related description of the secondary-side control module 260 in FIG. 4 and analogously) can capture the voltage signal on the monitoring point VSYNC at the coupling position between the second end of the resistor R6 and the first end of the resistor R7. . The secondary side control module 260 can judge the remaining amount of electric energy stored in the transformer T1 at the end of the energy release period according to the voltage level of the observation point Sync, and respond according to the remaining amount of electric energy in the transformer T1 at the end of the energy release period. Adjusting the conduction time length of the primary side control switch 272 is to adjust the time length of the charging period.
图8为依照本发明实施例绘示图2的交流直流转换装置20的第四实施例示意图。图8所示实施例可以参照图4至图7的相关说明而类推之。第四实施例为应用在显示(monitor)系统的实施例。第四实施例另外包括有储能单元292、输出开关293、监测电路291、监测电路294、低压降稳压器(Low-dropoutregulator,LDO)295与低压降稳压器296。第四实施例可以用来提供显示系统的显示驱动板(Scalar Board)的电源。在此实施例中,监测电路291包括有电阻R18与R19。电阻R18的第一端耦接至储能单元282的电容C3的第一端以及输出开关283的晶体管Q4的第二端。电阻R18的第二端耦接于电阻R19第一端。电阻R19第二端耦接于二次侧参考电压(例如二次侧接地电压或其它固定电压)。监测电路291用来将储能单元282的电容C3的电压进行分压,以及将分压电压传送至二次侧控制模块260(如图2所示)。二次侧控制模块260可以依据电阻R18与R19所产生的分压电压而获知储能单元282的电性特征(例如电压)。FIG. 8 is a schematic diagram illustrating a fourth embodiment of the AC-DC conversion device 20 shown in FIG. 2 according to an embodiment of the present invention. The embodiment shown in FIG. 8 can be deduced by referring to the relevant descriptions in FIG. 4 to FIG. 7 . The fourth embodiment is an embodiment applied in a monitor system. The fourth embodiment further includes an energy storage unit 292 , an output switch 293 , a monitoring circuit 291 , a monitoring circuit 294 , a low-dropout regulator (LDO) 295 and a low-dropout regulator 296 . The fourth embodiment can be used to provide power for a display driver board (Scalar Board) of a display system. In this embodiment, the monitoring circuit 291 includes resistors R18 and R19. The first terminal of the resistor R18 is coupled to the first terminal of the capacitor C3 of the energy storage unit 282 and the second terminal of the transistor Q4 of the output switch 283 . The second terminal of the resistor R18 is coupled to the first terminal of the resistor R19. The second end of the resistor R19 is coupled to a secondary reference voltage (such as the secondary ground voltage or other fixed voltages). The monitoring circuit 291 is used to divide the voltage of the capacitor C3 of the energy storage unit 282 and transmit the divided voltage to the secondary side control module 260 (as shown in FIG. 2 ). The secondary side control module 260 can obtain the electrical characteristics (such as voltage) of the energy storage unit 282 according to the divided voltage generated by the resistors R18 and R19 .
储能单元292包括有电容C11。输出开关293包括有晶体管Q6。监测电路294包括有电阻R20与R21。电阻R20的第一端耦接至储能单元292的电容C11的第一端以及输出开关293的晶体管Q6的第二端。电阻R21的第一端耦接至电阻R20的第二端。电阻R21的第二端耦接至二次侧参考电压(例如二次侧接地电压)。储能单元292除了可提供输出电压给负载46,还可提供电能给低压降稳压器295、296。低压降稳压器295、296接收电能后便可分别输出不同的电压给负载44、45。The energy storage unit 292 includes a capacitor C11. The output switch 293 includes a transistor Q6. The monitoring circuit 294 includes resistors R20 and R21. The first terminal of the resistor R20 is coupled to the first terminal of the capacitor C11 of the energy storage unit 292 and the second terminal of the transistor Q6 of the output switch 293 . A first end of the resistor R21 is coupled to a second end of the resistor R20. A second end of the resistor R21 is coupled to a secondary reference voltage (eg, a secondary ground voltage). In addition to providing the output voltage to the load 46 , the energy storage unit 292 can also provide power to the LDO regulators 295 , 296 . The LDO voltage regulators 295 and 296 can output different voltages to the loads 44 and 45 respectively after receiving electric energy.
充电期间通过导通一次侧控制开关272将整流电路271所输出的电能储存在变压器T1。在充电期间结束后,接着进入释能期间。在释能期间中,储存在变压器T1的电能可以分配给储能单元220、240、282与292。During charging, the electric energy output by the rectifier circuit 271 is stored in the transformer T1 by turning on the primary side control switch 272 . After the charging period is over, it then enters the energy releasing period. During the discharge period, the electric energy stored in the transformer T1 can be distributed to the energy storage units 220 , 240 , 282 and 292 .
当开关230、283与293均为截止时,输出开关250的二极管D2的阳极电压会被变压器T1拉高,因此储存在变压器T1的电能量可以对储能单元240与负载42进行电能量补充。在开关230、283与293均为截止的期间,二次侧控制模块260(如图2所示)监控储能单元240的电压,以及/或者监控流经负载42的电流,以对储能单元240的输出电能进行最佳化。例如,二次侧控制模块260可以将储能单元240的电压维持于负载42的额定电压电平。又例如,二次侧控制模块260可以将流经负载42的电流维持于负载42的额定电流电平。负载42可为显示器的发光二极管背光(LED Backlight)模块,输出至负载42的电压可为30~60V,最大电流可为0.3~0.4A,但并不限制于此。当分配至储能单元240的电能量到达预设值时,例如当储能单元240的电压达到负载42的额定电压电平时,以及/或者当流经负载42的电流达到负载42的额定电流电平时,二次侧控制模块260即导通输出开关230,而让储存在变压器T1的电能量可以对下一组供电电路(储能单元220与负载41)进行电能量补充。由于输出开关230导通而使输出开关250的二极管D2的阳极电压被拉下。当二极管D2的阴极电压大于阳极电压时,二极管D2为截止状态,因此二极管D2可以保持储能单元240中电容C2的电压。When the switches 230 , 283 and 293 are all turned off, the anode voltage of the diode D2 of the output switch 250 will be pulled up by the transformer T1 , so the electric energy stored in the transformer T1 can supplement the electric energy of the energy storage unit 240 and the load 42 . During the period when the switches 230, 283 and 293 are all off, the secondary side control module 260 (as shown in FIG. 2 ) monitors the voltage of the energy storage unit 240, and/or monitors the current flowing through the load 42, so as to control the energy storage unit 240 output power is optimized. For example, the secondary control module 260 can maintain the voltage of the energy storage unit 240 at the rated voltage level of the load 42 . For another example, the secondary side control module 260 may maintain the current flowing through the load 42 at the rated current level of the load 42 . The load 42 can be an LED backlight module of a display, the voltage output to the load 42 can be 30-60V, and the maximum current can be 0.3-0.4A, but it is not limited thereto. When the electric energy distributed to the energy storage unit 240 reaches a preset value, for example, when the voltage of the energy storage unit 240 reaches the rated voltage level of the load 42, and/or when the current flowing through the load 42 reaches the rated current level of the load 42 Normally, the secondary side control module 260 turns on the output switch 230 so that the electric energy stored in the transformer T1 can supplement electric energy for the next set of power supply circuits (the energy storage unit 220 and the load 41 ). Since the output switch 230 is turned on, the anode voltage of the diode D2 of the output switch 250 is pulled down. When the cathode voltage of the diode D2 is greater than the anode voltage, the diode D2 is in a cut-off state, so the diode D2 can maintain the voltage of the capacitor C2 in the energy storage unit 240 .
在输出开关230导通的期间,二次侧控制模块260(如图2所示)监控储能单元220的电压,以对储能单元220的输出电能进行最佳化。例如,二次侧控制模块260可以将储能单元220的电压维持于负载41的额定电压电平。负载41可为显示器的音频(Audio)模块。输出至负载41的电压可为5V,最大电流可为1.2A,但并不限制于此。当分配至储能单元220的电能量到达预设值时,例如当储能单元220的电压达到负载41的额定电压电平时,二次侧控制模块260即关闭输出开关230,并使输出开关283导通而让储存在变压器T1的电能量可以对下一组供电电路(储能单元282与负载43)进行电能量补充。During the conduction period of the output switch 230 , the secondary side control module 260 (as shown in FIG. 2 ) monitors the voltage of the energy storage unit 220 to optimize the output electric energy of the energy storage unit 220 . For example, the secondary side control module 260 can maintain the voltage of the energy storage unit 220 at the rated voltage level of the load 41 . The load 41 can be an audio module of the display. The voltage output to the load 41 may be 5V, and the maximum current may be 1.2A, but not limited thereto. When the electric energy distributed to the energy storage unit 220 reaches a preset value, for example, when the voltage of the energy storage unit 220 reaches the rated voltage level of the load 41, the secondary side control module 260 closes the output switch 230 and makes the output switch 283 Turning on allows the electric energy stored in the transformer T1 to supplement electric energy for the next group of power supply circuits (the energy storage unit 282 and the load 43 ).
在输出开关283导通的期间,二次侧控制模块260(如图2所示)监控储能单元282的电压,以对储能单元282的输出电能进行最佳化。例如,二次侧控制模块260可以将储能单元282的电压维持于负载43的额定电压电平。负载43可为显示器的显示驱动板(Scalar Board)中的视频图形阵列(VideoGraphics Array,VGA)电路。输出至负载43的电压可为5V,最大电流可为1.5A,但并不限制于此。当分配至储能单元282的电能量到达预设值时,例如当储能单元282的电压达到负载43的额定电压电平时,二次侧控制模块260即关闭输出开关283,并使输出开关293导通而让储存在变压器T1的电能量可以对下一组供电电路(储能单元292、负载46、低压降稳压器295与低压降稳压器296)进行电能量补充。During the conduction period of the output switch 283 , the secondary side control module 260 (as shown in FIG. 2 ) monitors the voltage of the energy storage unit 282 to optimize the output power of the energy storage unit 282 . For example, the secondary side control module 260 can maintain the voltage of the energy storage unit 282 at the rated voltage level of the load 43 . The load 43 may be a video graphics array (Video Graphics Array, VGA) circuit in a display driver board (Scalar Board) of the display. The voltage output to the load 43 may be 5V, and the maximum current may be 1.5A, but not limited thereto. When the electric energy distributed to the energy storage unit 282 reaches a preset value, for example, when the voltage of the energy storage unit 282 reaches the rated voltage level of the load 43, the secondary side control module 260 closes the output switch 283 and makes the output switch 293 Turning on allows the electric energy stored in the transformer T1 to supplement electric energy for the next set of power supply circuits (the energy storage unit 292 , the load 46 , the LDO voltage regulator 295 and the LDO voltage regulator 296 ).
在输出开关293导通的期间,二次侧控制模块260(如图2所示)监控储能单元292的电压,以对储能单元292的输出电能进行最佳化。例如,二次侧控制模块260可以将储能单元292的电压维持于负载46的额定电压电平。负载46可为显示器的显示驱动板中的输入/输出(Input/Output,I/O)电路。输出至负载46的电压可为3.3V,最大电流可为0.8A,但并不限制于此。当分配至储能单元292的电能量到达预设值时,例如当储能单元292的电压达到负载46的额定电压电平时,二次侧控制模块260即关闭输出开关293。During the conduction period of the output switch 293 , the secondary side control module 260 (shown in FIG. 2 ) monitors the voltage of the energy storage unit 292 to optimize the output electric energy of the energy storage unit 292 . For example, the secondary control module 260 may maintain the voltage of the energy storage unit 292 at the rated voltage level of the load 46 . The load 46 may be an input/output (I/O) circuit in a display driver board of the display. The voltage output to the load 46 can be 3.3V, and the maximum current can be 0.8A, but not limited thereto. When the electric energy distributed to the energy storage unit 292 reaches a predetermined value, for example, when the voltage of the energy storage unit 292 reaches the rated voltage level of the load 46 , the secondary side control module 260 closes the output switch 293 .
低压降稳压器295包括有放大器OP2、晶体管Q7以及电阻R22、R23。放大器OP2的非反向输入端接收参考电压Vref1。放大器OP2的输出端耦接至晶体管Q7的控制端。晶体管Q7的第一端(即为低压降稳压器295的电能输入端)耦接至电容C11与晶体管Q6。晶体管Q7的第二端耦接至电阻R22的第一端。电阻R22的第二端耦接至放大器OP2的反向输入端与电阻R23的第一端。电阻R23的第二端耦接至二次侧参考电压。晶体管Q7的第二端为低压降稳压器295的输出端以供电给负载44。因此,低压降稳压器295可以依据参考电压Vref1,而将储能单元292的电压转换为负载44的额定电压。负载44可为显示器的显示驱动板中的动态随机存取存储器(Dynamic RandomAccess Memory,DRAM)。输出至负载44的电压可为2.5V,但并不限制于此。The LDO 295 includes an amplifier OP2, a transistor Q7, and resistors R22 and R23. The non-inverting input terminal of the amplifier OP2 receives the reference voltage Vref1. The output terminal of the amplifier OP2 is coupled to the control terminal of the transistor Q7. The first end of the transistor Q7 (ie, the power input end of the LDO voltage regulator 295 ) is coupled to the capacitor C11 and the transistor Q6 . The second terminal of the transistor Q7 is coupled to the first terminal of the resistor R22. The second terminal of the resistor R22 is coupled to the inverting input terminal of the amplifier OP2 and the first terminal of the resistor R23. The second end of the resistor R23 is coupled to the secondary side reference voltage. The second terminal of the transistor Q7 is the output terminal of the LDO voltage regulator 295 to supply power to the load 44 . Therefore, the low dropout voltage regulator 295 can convert the voltage of the energy storage unit 292 into the rated voltage of the load 44 according to the reference voltage Vref1 . The load 44 can be a dynamic random access memory (Dynamic Random Access Memory, DRAM) in the display driver board of the display. The voltage output to the load 44 may be 2.5V, but not limited thereto.
低压降稳压器296包括有放大器OP3、晶体管Q8以及电阻R24、R25。放大器OP3的非反向输入端接收参考电压Vref2。放大器OP3的输出端耦接至晶体管Q8的控制端。晶体管Q8的第一端(即为低压降稳压器296的电能输入端)耦接至电容C11与晶体管Q6。晶体管Q8的第二端耦接至电阻R24的第一端。电阻R24的第二端耦接至放大器OP3的反向输入端与电阻R25的第一端。电阻R25的第二端耦接至二次侧参考电压。晶体管Q8的第二端为低压降稳压器296的输出端以供电给负载45。因此,低压降稳压器296可以依据参考电压Vref2,而将储能单元292的电压转换为负载45的额定电压。负载45可为显示器的显示驱动板中的核心(Core)模块。输出至负载45的电压可为1.2V,但并不限制于此。另外在本实施例中,储能单元292的电压可以是各储能单元240、220、282、292的电压之中最小的,使得储能单元292的电压可以更接近低压降稳压器295与低压降稳压器296的输出电压。由于低压降稳压器的输入电压与输出电压之间的压差值可以进一步地降低,故可提升电压的转换效率。The LDO 296 includes an amplifier OP3, a transistor Q8, and resistors R24 and R25. The non-inverting input of the amplifier OP3 receives the reference voltage Vref2. The output terminal of the amplifier OP3 is coupled to the control terminal of the transistor Q8. The first end of the transistor Q8 (ie, the power input end of the LDO voltage regulator 296 ) is coupled to the capacitor C11 and the transistor Q6 . The second terminal of the transistor Q8 is coupled to the first terminal of the resistor R24. The second terminal of the resistor R24 is coupled to the inverting input terminal of the amplifier OP3 and the first terminal of the resistor R25. The second end of the resistor R25 is coupled to the secondary side reference voltage. The second terminal of the transistor Q8 is the output terminal of the LDO voltage regulator 296 to supply power to the load 45 . Therefore, the low dropout voltage regulator 296 can convert the voltage of the energy storage unit 292 into the rated voltage of the load 45 according to the reference voltage Vref2. The load 45 can be a core (Core) module in the display driver board of the display. The voltage output to the load 45 may be 1.2V, but not limited thereto. In addition, in this embodiment, the voltage of the energy storage unit 292 can be the smallest among the voltages of the energy storage units 240, 220, 282, and 292, so that the voltage of the energy storage unit 292 can be closer to the voltage of the low dropout regulator 295 and The output voltage of the low dropout regulator 296. Since the voltage difference between the input voltage and the output voltage of the LDO can be further reduced, the voltage conversion efficiency can be improved.
综上所述,本发明诸实施例提供一种交流直流转换装置20及其操作方法。此交流直流转换装置20使用二次侧控制模块260监测储能单元220及储能单元240,并依监测结果决定或控制输出开关230与输出开关250的导通时间长度。故只需使用变压器T1的同一个二次侧绕组212即可产生多组可作最佳化及精确调整的输出电压,而不需配置额外的电压转换器。而且本发明部分实施例可使用光耦合反馈技术或一次侧调整反馈技术对电压进行反馈,可进一步提升交流直流转换装置20及其操作方法的转换效率。In summary, various embodiments of the present invention provide an AC-DC conversion device 20 and an operation method thereof. The AC-DC conversion device 20 uses the secondary side control module 260 to monitor the energy storage unit 220 and the energy storage unit 240 , and determines or controls the on-time length of the output switch 230 and the output switch 250 according to the monitoring results. Therefore, only the same secondary side winding 212 of the transformer T1 can be used to generate multiple sets of output voltages that can be optimized and precisely adjusted without configuring additional voltage converters. Moreover, some embodiments of the present invention can use the optical coupling feedback technology or the primary-side adjustment feedback technology to feed back the voltage, which can further improve the conversion efficiency of the AC-DC conversion device 20 and its operation method.
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视所附的权利要求范围所界定者为准。Although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the appended claims.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310554566.4A CN104638950A (en) | 2013-11-07 | 2013-11-07 | AC to DC conversion device and method of operation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310554566.4A CN104638950A (en) | 2013-11-07 | 2013-11-07 | AC to DC conversion device and method of operation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104638950A true CN104638950A (en) | 2015-05-20 |
Family
ID=53217362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310554566.4A Pending CN104638950A (en) | 2013-11-07 | 2013-11-07 | AC to DC conversion device and method of operation thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104638950A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030086279A1 (en) * | 2001-11-05 | 2003-05-08 | Laurence Bourdillon | System and method for regulating multiple outputs in a dc-dc converter |
CN1910808A (en) * | 2004-01-05 | 2007-02-07 | 崇贸科技股份有限公司 | Power Mode Controlled Power Converters |
WO2009146064A2 (en) * | 2008-04-01 | 2009-12-03 | William Baker | Multiple bay battery chargers and circuitry |
CN101682264A (en) * | 2007-05-30 | 2010-03-24 | 宝威意大利股份公司 | multi-output synchronous flyback converter |
CN103312152A (en) * | 2012-03-09 | 2013-09-18 | 联咏科技股份有限公司 | Changing-over converter and related control method |
-
2013
- 2013-11-07 CN CN201310554566.4A patent/CN104638950A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030086279A1 (en) * | 2001-11-05 | 2003-05-08 | Laurence Bourdillon | System and method for regulating multiple outputs in a dc-dc converter |
CN1910808A (en) * | 2004-01-05 | 2007-02-07 | 崇贸科技股份有限公司 | Power Mode Controlled Power Converters |
CN101682264A (en) * | 2007-05-30 | 2010-03-24 | 宝威意大利股份公司 | multi-output synchronous flyback converter |
WO2009146064A2 (en) * | 2008-04-01 | 2009-12-03 | William Baker | Multiple bay battery chargers and circuitry |
CN103312152A (en) * | 2012-03-09 | 2013-09-18 | 联咏科技股份有限公司 | Changing-over converter and related control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI514745B (en) | Ac-dc converting apparatus and operating method thereof | |
US9893626B2 (en) | Switching mode power supply with selectable constant-voltage constant-current control | |
US7339359B2 (en) | Terminal for multiple functions in a power supply | |
US10536089B2 (en) | Switching power source apparatus and direct-current power source apparatus | |
US9596725B2 (en) | Method and circuit for constant current buck converter | |
KR101365100B1 (en) | Low power consumption start-up circuit with dynamic switching | |
US20160036340A1 (en) | Insulation-type synchronous dc/dc converter | |
US10250151B1 (en) | Flyback converter controlled from secondary side | |
US7167028B2 (en) | Voltage detection circuit, power supply unit and semiconductor device | |
WO2016125561A1 (en) | Switching power supply device | |
KR101789799B1 (en) | Feedback circuit and power supply device comprising the same | |
JP2008048515A (en) | Switching power supply device | |
US7573251B2 (en) | AC-to-DC voltage regulator | |
CN109742956A (en) | Flyback switching power supply with power limiting power supply protection function | |
CN112217399A (en) | Switch-type regulating driver and regulating driving method thereof | |
JP5619953B2 (en) | Switching power conversion circuit and power supply using the same | |
CN101127487B (en) | Secondary side control power converter | |
US12088207B2 (en) | Power supply circuit | |
CN102739057A (en) | Flyback Power Converter with Primary and Secondary Dual Feedback Control | |
CN211670787U (en) | Flyback converter | |
TWI489758B (en) | Power controller, power supply and control method capable of brownin and brownout detection | |
US12355342B2 (en) | Switch-mode converter, control method for the same, and control circuit for the same | |
TW201243352A (en) | Testing system for motherboard | |
CN100499340C (en) | Winding Voltage Sampling Control Power Converter | |
CN104638950A (en) | AC to DC conversion device and method of operation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150520 |
|
WD01 | Invention patent application deemed withdrawn after publication |