[go: up one dir, main page]

CN104635151A - Cascade full-bridge direct-current circuit breaker low-voltage equivalent test circuit and detection method thereof - Google Patents

Cascade full-bridge direct-current circuit breaker low-voltage equivalent test circuit and detection method thereof Download PDF

Info

Publication number
CN104635151A
CN104635151A CN201410849554.9A CN201410849554A CN104635151A CN 104635151 A CN104635151 A CN 104635151A CN 201410849554 A CN201410849554 A CN 201410849554A CN 104635151 A CN104635151 A CN 104635151A
Authority
CN
China
Prior art keywords
voltage
low
equivalent
branch
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410849554.9A
Other languages
Chinese (zh)
Other versions
CN104635151B (en
Inventor
查鲲鹏
杨兵建
高阳
客金坤
汤广福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
North China Grid Co Ltd
China EPRI Electric Power Engineering Co Ltd
Original Assignee
State Grid Corp of China SGCC
North China Grid Co Ltd
China EPRI Electric Power Engineering Co Ltd
State Grid Smart Grid Research Institute of SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, North China Grid Co Ltd, China EPRI Electric Power Engineering Co Ltd, State Grid Smart Grid Research Institute of SGCC filed Critical State Grid Corp of China SGCC
Priority to CN201410849554.9A priority Critical patent/CN104635151B/en
Publication of CN104635151A publication Critical patent/CN104635151A/en
Application granted granted Critical
Publication of CN104635151B publication Critical patent/CN104635151B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

本发明公开了一种级联全桥直流断路器低压等效试验电路及其检测方法,本发明提出的等效试验电路及其检测方法根据电流转移和关断过程时间等效原则,通过阻抗等效,使用低压器件和线路对级联全桥高压直流断路器的动作过程进行模拟,可以实现对级联全桥高压直流断路器两次换流时间的等效,从而准确地验证对控制保护设备时序的要求,通过简化等效条件,在电压比,电流比,阻抗比满足比例关系的条件下,转移子模块数可以不相同,也能实现两次换流时间的等效,本发明提出的等效实验电路利用较低成本,实现对级联全桥高压直流断路器工作原理和二次控制保护设备的验证,能够很好的表现高压直流断路器的工作过程。

The invention discloses a low-voltage equivalent test circuit of a cascaded full-bridge DC circuit breaker and its detection method. The equivalent test circuit and its detection method proposed by the invention are based on the time equivalent principle of current transfer and shutdown process, through impedance, etc. Using low-voltage devices and lines to simulate the action process of the cascaded full-bridge HVDC circuit breaker, the equivalent of the two commutation times of the cascaded full-bridge HVDC circuit breaker can be realized, thereby accurately verifying the control and protection equipment For timing requirements, by simplifying the equivalent conditions, under the condition that the voltage ratio, current ratio, and impedance ratio satisfy the proportional relationship, the number of transfer sub-modules can be different, and the equivalent of two commutation times can also be realized. The invention proposes The equivalent experimental circuit realizes the verification of the working principle of the cascaded full-bridge high-voltage DC circuit breaker and the secondary control and protection equipment at a lower cost, and can well represent the working process of the high-voltage DC circuit breaker.

Description

一种级联全桥直流断路器低压等效试验电路及其检测方法A low-voltage equivalent test circuit of a cascaded full-bridge DC circuit breaker and its detection method

技术领域technical field

本发明涉及一种电力电子器件,具体涉及一种级联全桥直流断路器低压等效试验电路及其检测方法。The invention relates to a power electronic device, in particular to a low-voltage equivalent test circuit of a cascaded full-bridge DC circuit breaker and a detection method thereof.

背景技术Background technique

随着高压大电流半导体器件和电力电子技术的发展,高压直流输电技术,柔性直流输电技术,直流电网技术等得到了越来越多的关注和应用。由于柔性直流输电线路在发生直流侧双极短路时,直流电流快速上升,电流上升率高达3kA/ms,并且不能通过柔性直流换流阀自身有效阻止短路电流的上升,如果不采取有效措施,会导致换流阀设备的损坏。针对柔性直流输电设备的高压直流断路器能够在短时间内切断故障电流,隔离故障,保护换流阀。With the development of high-voltage and high-current semiconductor devices and power electronics technology, high-voltage DC transmission technology, flexible DC transmission technology, and DC grid technology have received more and more attention and applications. When a bipolar short circuit occurs on the DC side of the flexible DC transmission line, the DC current rises rapidly, and the current rise rate is as high as 3kA/ms, and the rise of the short-circuit current cannot be effectively prevented by the flexible DC converter valve itself. If no effective measures are taken, it will Cause damage to the diverter valve equipment. The HVDC circuit breaker for flexible DC transmission equipment can cut off the fault current in a short time, isolate the fault, and protect the converter valve.

由于柔性直流输电线路发生双极短路时电流上升速度快,要求高压直流断路器能够快速动作。因此,故障电流的分断时间是直流断路器重要指标。Since the current rises rapidly when a bipolar short circuit occurs on a flexible direct current transmission line, it is required that the high voltage direct current circuit breaker can act quickly. Therefore, the breaking time of fault current is an important index of DC circuit breaker.

机械开关和电力电子器件混合方式的直流断路器,正常运行由机械开关通流,故障时将主支路的电流转移至并联连接的电力电子器件支路中,然后由电力电子器件分断电流。该类型的断路器正常运行时,通态损耗小,分断时间断。CN103280763A号战力披露的级联全桥直流断路器是该类型直流断路器的一个实例,其电路拓扑如图1,2所示。图1为现有技术中级联全桥直流断路器电路拓扑图;图2为图1中的子模块(SM)的内部电路图;级联全桥直流断路器采用串联的IGBT全桥子模块分断故障电流,避免了分断过程中器件电压不均的问题。IGBT在关断时端电压为零,减小了开关损耗。A DC circuit breaker with a combination of mechanical switches and power electronic devices. In normal operation, the mechanical switch passes the current. When a fault occurs, the current of the main branch is transferred to the parallel connected power electronic device branch, and then the power electronic device breaks the current. When this type of circuit breaker is in normal operation, the on-state loss is small and the breaking time is short. The cascaded full-bridge DC circuit breaker disclosed in CN103280763A is an example of this type of DC circuit breaker, and its circuit topology is shown in Figures 1 and 2. Fig. 1 is the circuit topological diagram of the cascaded full-bridge DC circuit breaker in the prior art; Fig. 2 is the internal circuit diagram of the submodule (SM) in Fig. 1; The fault current avoids the problem of uneven device voltage during the breaking process. When the IGBT is turned off, the terminal voltage is zero, which reduces the switching loss.

级联全桥直流断路器分断过程中,需要按照控制流程和时序,协调控制主支路子模块,转移支路子模块,快速隔离开关,并针对不同阶段出现的故障,执行不同的故障处理程序。而所有的检测、处理、动作需要在2~3ms内完成,级联全桥直流断路器对控制系统的控制时序要求很严格。因此,在进行高压试验之前,很有必要在低电压小电流条件下,在时间上对高压直流断路器进行等效代替,对断路器工作原理和二次控制保护设备进行验证。During the breaking process of the cascaded full-bridge DC circuit breaker, it is necessary to coordinate and control the main branch sub-module, the transfer branch sub-module, and the fast isolation switch according to the control process and timing, and execute different fault handling procedures for faults that occur in different stages. And all detection, processing, and actions need to be completed within 2 to 3 ms, and the cascaded full-bridge DC circuit breaker has strict requirements on the control timing of the control system. Therefore, before the high-voltage test, it is necessary to replace the high-voltage DC circuit breaker equivalently in time under the condition of low voltage and low current, and verify the working principle of the circuit breaker and the secondary control and protection equipment.

因此,需要提出一种级联全桥直流断路器低压等效方法来实现在对实际断路器进行高压大电流试验前在低电压、小电流下实现对级联全桥直流断路器原理时序、控制方法和故障处理措施进行检测。Therefore, it is necessary to propose a low-voltage equivalent method for cascaded full-bridge DC circuit breakers to realize the principle timing and control of cascaded full-bridge DC circuit breakers at low voltage and low current before conducting high-voltage and high-current tests on the actual circuit breaker. methods and troubleshooting measures.

发明内容Contents of the invention

针对现有技术的不足,本发明提供一种级联全桥直流断路器低压等效试验电路,所述等效试验电路由依次连接的直流电源Vdc、等效电抗器Llv_3、固态继电器、电感Llv_1、主支路低压等效子模块SMlv、负载投切开关S1、负载电阻RL和限流电阻RX组成主回路,所述固态继电器、所述电感Llv_和所述主支路低压等效子模块SMlv构成主支路,并联在所述主支路两端的分别有转移支路和耗能支路,所述转移支路由串联连接的二极管Dlv、电感Llv_2和转移支路低压等效子模块构成,所述耗能支路上连接有压敏电阻,所述负载电阻RL的两端并联有故障模拟开关S2。Aiming at the deficiencies of the prior art, the present invention provides a low-voltage equivalent test circuit for a cascaded full-bridge DC circuit breaker. The equivalent test circuit is composed of DC power supply V dc , equivalent reactor L lv_3 , solid state relay, Inductor L lv_1 , main branch low-voltage equivalent sub-module SM lv , load switching switch S1, load resistor R L and current limiting resistor R X form the main circuit, the solid state relay, the inductor L lv_ and the main branch A low-voltage equivalent sub-module SM lv constitutes the main branch, and there are transfer branches and energy consumption branches connected in parallel at both ends of the main branch. The transfer branch is composed of diode D lv , inductor L lv_2 and transfer The branch low-voltage equivalent sub-module is composed, the energy-consuming branch is connected with a varistor, and the two ends of the load resistance RL are connected in parallel with a fault analog switch S2.

优选地,所述试验电路的电压等级为100~200V,电流等级为5~10A。Preferably, the voltage level of the test circuit is 100-200V, and the current level is 5-10A.

优选地,所述压敏电阻的动作电压高于所述直流电压源Vdc的电压,残压不能超过所述转移支路子模块额定电压之和。Preferably, the operating voltage of the varistor is higher than the voltage of the DC voltage source V dc , and the residual voltage cannot exceed the sum of the rated voltages of the transfer branch sub-modules.

一种级联全桥直流断路器低压等效试验电路的检测方法,所述检测方法包括以下步骤:A detection method for a low-voltage equivalent test circuit of a cascaded full-bridge DC circuit breaker, the detection method comprising the following steps:

开通所述级联全桥直流断路器低压等效试验电路中的主支路低压等效子模块,并将所述转移支路低压等效子模块闭锁,开通所述固态继电器;Opening the main branch low-voltage equivalent submodule in the low-voltage equivalent test circuit of the cascaded full-bridge DC circuit breaker, locking the transfer branch low-voltage equivalent submodule, and opening the solid state relay;

断开所述故障模拟开关S1,闭合所述负载投切开关S2;Opening the fault simulation switch S1, closing the load switching switch S2;

给所述直流稳压电源通电,调整电压至100~200V,回路电流ibreaker_lv流经主回路,回到所述直流稳压电源;Powering on the DC stabilized power supply, adjusting the voltage to 100-200V, the loop current i breaker_lv flows through the main loop, and returns to the DC stabilized power supply;

闭合所述故障模拟开关S2;Closing the fault simulation switch S2;

当所述回路电流ibreaker_lv超过过流限值Ilim_lv时,导通所述转移支路低压等效子模块,闭锁所述主支路低压等效子模块,使回路电流ibreaker_lv由所述主支路转移至转移支路;When the loop current i breaker_lv exceeds the overcurrent limit value I lim_lv , turn on the transfer branch low-voltage equivalent sub-module, block the main branch low-voltage equivalent sub-module, so that the loop current i breaker_lv is controlled by the main branch transfer to transfer branch;

当主支路电流imain_lv降为0后,断开固态继电器;When the main branch current i main_lv drops to 0, disconnect the solid state relay;

延时2ms后,闭锁所述转移支路低压等效子模块,转移支路低压等效子模块电容Clv充电,转移支路和耗能支路电压开始上升;After a delay of 2 ms, the low-voltage equivalent sub-module of the transfer branch is blocked, the capacitor C lv of the low-voltage equivalent sub-module of the transfer branch is charged, and the voltage of the transfer branch and the energy-consuming branch starts to rise;

当耗能支路电压上升至压敏电阻的动作电压后,压敏电阻逐渐导通,随着耗能支路电压进一步上升,耗能支路流过压敏电阻的电流iMOV_lv上升,转移支路电流icomm_lv逐渐下降到0;When the voltage of the energy-consuming branch rises to the operating voltage of the varistor, the varistor is gradually turned on. As the voltage of the energy-consuming branch rises further, the current iMOV_lv flowing through the varistor in the energy-consuming branch rises, and the transfer branch The current icomm_lv gradually drops to 0;

所述耗能支路流过压敏电阻的电流iMOV_lv在达到峰值后开始下降,最终到0,结束检测;The current iMOV_lv flowing through the piezoresistor in the energy-consuming branch begins to drop after reaching a peak value, and finally reaches 0, and the detection is ended;

优选地,所述检测方法包括两次换流时间等效:Preferably, the detection method includes two commutation time equivalents:

第一次换流的时间等效,断路器检测到线路过流后,启动第一次换流,闭锁所述主支路,开通所述转移支路,电流由所述主支路转移至所述转移支路,低压等效模型的第一次换流时间与实际高压直流断路器的换流时间相等;The time of the first commutation is equivalent. After the circuit breaker detects the overcurrent of the line, it starts the first commutation, blocks the main branch, opens the transfer branch, and the current is transferred from the main branch to the The transfer branch described above, the first commutation time of the low-voltage equivalent model is equal to the commutation time of the actual high-voltage DC circuit breaker;

第二次换流的时间等效,转移支路闭锁后,转移支路子模块电压上升,上升至避雷器的动作电压后,避雷器开始泄放电流,低压等效模型的第二次换流时间与实际高压直流断路器的换流时间相等。The time of the second commutation is equivalent. After the transfer branch is blocked, the voltage of the sub-module of the transfer branch rises. After rising to the operating voltage of the arrester, the arrester starts to discharge the current. The second commutation time of the low-voltage equivalent model is the same as the actual The commutation time of HVDC circuit breakers is equal.

优选地,所述检测方法在进行第一次换流的时间等效时,满足以下公式:Preferably, the detection method satisfies the following formula when performing the time equivalent of the first commutation:

(L1+L2)C=(L1_lv+L2_lv)Clv       (1)(L 1 +L 2 )C=(L 1_lv +L 2_lv )C lv (1)

式(1)中C为实际断路器中子模块电容值,L1,L2分别为实际断路器中主支路寄生电感和转移支路寄生电感,Clv为低压等效模型中子模块电容,Llv_1,Llv_2分别为低压等效模型中主支路寄生电感和转移支路寄生电感。In formula (1), C is the capacitance value of the sub-module in the actual circuit breaker, L 1 and L 2 are the parasitic inductance of the main branch and the transfer branch in the actual circuit breaker, respectively, and C lv is the capacitance of the sub-module in the low-voltage equivalent model , L lv_1 , L lv_2 are the parasitic inductance of the main branch and the transfer branch in the low-voltage equivalent model, respectively.

优选地,所述检测方法在进行第二次换流的时间等效时,满足以下公式:Preferably, the detection method satisfies the following formula when performing the time equivalent of the second commutation:

CVMOVIbreak_lv=ClvVMOV_lvIbreak      (2)CV MOV I break_lv = C lv V MOV_lv I break (2)

式(2)中VMOV为避雷器动作电压,Ibreak为断路器最大分段电流,C为实际直流断路器中子模块电容值,VMOV_lv为低压等效模型中压敏电阻动作电压,Ibreak_lv为断路器最大分段电流,Clv为低压等效模型中子模块电容值。In formula (2), V MOV is the operating voltage of the arrester, I break is the maximum segment current of the circuit breaker, C is the capacitance value of the neutron module of the actual DC circuit breaker, V MOV_lv is the operating voltage of the varistor in the low-voltage equivalent model, I break_lv is the maximum sub-section current of the circuit breaker, and C lv is the capacitance value of the sub-module in the low-voltage equivalent model.

和最接近的现有技术比,本发明的有益效果为:Compared with the closest prior art, the beneficial effects of the present invention are:

1用低压器件和线路代替级联全桥高压直流断路器及其所连接的高压线路,能够在低电压下,利用较低成本,实现对级联全桥高压直流断路器工作原理和二次控制保护设备的验证;1Using low-voltage devices and lines to replace the cascaded full-bridge HVDC circuit breaker and the high-voltage line connected to it can realize the working principle and secondary control of the cascaded full-bridge HVDC circuit breaker at low voltage and at a lower cost verification of protective equipment;

2、对高压直流断路器的电气参数降低一定的比例进行等效,对高压直流断路器中的器件按照比例关系选择具有相似电气特性的低压器件进行等效,能够很好的表现高压直流断路器的工作过程;2. Equivalently reduce the electrical parameters of the high-voltage DC circuit breaker by a certain ratio, and select low-voltage devices with similar electrical characteristics for the devices in the high-voltage DC circuit breaker to perform equivalents according to the proportional relationship, which can well represent the high-voltage DC circuit breaker working process;

3、低压等效代替方法可以实现对级联全桥高压直流断路器两次换流时间的等效,从而准确地验证对控制保护设备时序的要求;3. The low-voltage equivalent replacement method can realize the equivalent of the two-time commutation time of the cascaded full-bridge high-voltage DC circuit breaker, thereby accurately verifying the timing requirements for control and protection equipment;

4、通过简化等效条件,在电压比,电流比,阻抗比满足比例关系的条件下,转移子模块数可以不相同,也能实现两次换流时间的等效。4. By simplifying the equivalent conditions, under the condition that the voltage ratio, current ratio, and impedance ratio satisfy the proportional relationship, the number of transfer sub-modules can be different, and the equivalent of two commutation times can also be realized.

附图说明Description of drawings

下面结合附图和具体实施方式对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.

图1为现有技术中级联全桥直流断路器电路拓扑图;Fig. 1 is a circuit topology diagram of a cascaded full-bridge DC circuit breaker in the prior art;

图2为图1中的子模块的内部电路图;Fig. 2 is the internal circuit diagram of the submodule in Fig. 1;

图3为本发明级联全桥直流断路器低压等效试验电路图;Fig. 3 is the low-voltage equivalent test circuit diagram of the cascaded full-bridge DC circuit breaker of the present invention;

图4为图3中的等效子模块的内部电路图。FIG. 4 is an internal circuit diagram of the equivalent sub-module in FIG. 3 .

具体实施方式Detailed ways

下面结合附图对本发明的具体实施方式作进一步的详细说明。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.

为了彻底了解本发明实施例,将在下列的描述中提出详细的结构。显然,本发明实施例的施行并不限定于本领域的技术人员所熟习的特殊细节。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。In order to thoroughly understand the embodiments of the present invention, the detailed structure will be set forth in the following description. Obviously, the practice of the embodiments of the invention is not limited to specific details familiar to those skilled in the art. Preferred embodiments of the present invention are described in detail below, however, the present invention may have other embodiments besides these detailed descriptions.

参照图3和图4,图3为本发明级联全桥直流断路器低压等效试验电路图;图4为图3中的等效子模块的内部电路图。图3中直流断路器低压等效试验电路分为主支路、转移支路和耗能支路,主回路由依次电气连接的直流电源Vdc、等效电抗器Llv_3、固态继电器、电感Llv_1、主支路低压等效子模块SMlv、负载投切开关S1、负载电阻RL和限流电阻RX组成,主支路由所述固态继电器、所述电感Llv_和所述主支路低压等效子模块SMlv串联构成,转移支路和耗能支路并联在所述主支路两端的分别有,所述转移支路由串联连接的二极管Dlv、电感Llv_2和转移支路低压等效子模块SMlv构成,所述耗能支路由压敏电阻构成,所述负载电阻RL的两端并联有故障模拟开关S2。Referring to Fig. 3 and Fig. 4, Fig. 3 is a low-voltage equivalent test circuit diagram of the cascaded full-bridge DC circuit breaker of the present invention; Fig. 4 is an internal circuit diagram of the equivalent sub-module in Fig. 3 . The DC circuit breaker low-voltage equivalent test circuit in Figure 3 is divided into main branch, transfer branch and energy consumption branch. The main circuit is composed of DC power supply V dc , equivalent reactor L lv_3 , solid state relay, and inductor L lv_1 , main branch low-voltage equivalent sub-module SM lv , load switching switch S1, load resistor R L and current limiting resistor R X , the main branch is composed of the solid state relay, the inductor L lv_ and the main branch The low-voltage equivalent sub - module SM lv is connected in series, and the transfer branch and the energy consumption branch are connected in parallel at both ends of the main branch. The equivalent sub-module SM lv is formed, the energy consumption branch is composed of a varistor, and a fault analog switch S2 is connected in parallel at both ends of the load resistance RL .

为了使得等效实验电路在低压环境中运行,将所述级联全桥直流断路器低压等效模型的电压等级在100~200V左右,电流等级在5~10A左右。In order to make the equivalent experimental circuit operate in a low-voltage environment, the voltage level of the low-voltage equivalent model of the cascaded full-bridge DC circuit breaker is about 100-200V, and the current level is about 5-10A.

级联全桥直流断路器低压等效子模块SMlv电路使用低压MOSFET代替实际子模块SM(见图2)中的IGBT,使用低压电容Clv代替实际装置中的高压电容C,使用低压电阻Rlv代替实际装置中的高压放电电阻R。由于MOSFET的导通压降相对IGBT小很多,甚至转移支路中多个串联子模块的导通压降有可能小于通流支路中固态继电器的导通压降。为了让低压等效模型的换流过程与实际装置相同,根据需要在转移支路中串联二极管Dlv,增大导通压降,使得低压等效模型中两个支路的导通电阻关系与实际装置相同。The low-voltage equivalent sub-module SM lv circuit of the cascaded full-bridge DC circuit breaker uses a low-voltage MOSFET to replace the IGBT in the actual sub-module SM (see Figure 2), uses a low-voltage capacitor C lv to replace the high-voltage capacitor C in the actual device, and uses a low-voltage resistor R lv replaces the high voltage discharge resistor R in the actual device. Since the turn-on voltage drop of the MOSFET is much smaller than that of the IGBT, even the turn-on voltage drop of multiple series-connected sub-modules in the transfer branch may be smaller than the turn-on voltage drop of the solid state relay in the flow branch. In order to make the commutation process of the low-voltage equivalent model the same as that of the actual device, a diode D lv is connected in series in the transfer branch as required to increase the conduction voltage drop, so that the relationship between the conduction resistance of the two branches in the low-voltage equivalent model is the same as The actual device is the same.

在高压直流断路器中,快速机械开关能够在2ms内分断。低压等效模型中用分断时间较短的固态继电器代替,取得相同的效果。In HVDC circuit breakers, fast mechanical switches can break within 2ms. The low-voltage equivalent model is replaced by a solid-state relay with a shorter breaking time to achieve the same effect.

在低压等效模型中的直流线路需要对直流电压和短路后的对应的电流上升率进行模拟。采用直流电压源代替直流换流站,为直流线路提供直流电压,在直流线路中串入电抗器,限制短路时的故障电流上升率。The DC link in the low-voltage equivalent model needs to simulate the DC voltage and the corresponding current rise rate after a short circuit. A DC voltage source is used instead of a DC converter station to provide a DC voltage for the DC line, and a reactor is connected in series in the DC line to limit the fault current rise rate during a short circuit.

对避雷器的替换。在高压直流断路器中,避雷器用于消耗线路短路后在电抗中产生的能量。低压等效模型中用压敏电阻代替避雷器。选用的压敏电阻动作电压高于直流电压源Vdc的电压,残压应不能超过转移支路子模块额定电压之和。Replacement for lightning arrestors. In high-voltage DC circuit breakers, arresters are used to dissipate the energy generated in the reactance after the line is short-circuited. In the low-voltage equivalent model, the varistor is used instead of the arrester. The action voltage of the selected varistor is higher than the voltage of the DC voltage source V dc , and the residual voltage should not exceed the sum of the rated voltages of the transfer branch sub-modules.

对直流负载的替换。在高压直流断路器中,直流负载提供正常运行电流。低压等效模型中用滑动变阻器代替直流负载。Replacement for DC loads. In a HVDC circuit breaker, the DC load supplies the normal operating current. In the low-voltage equivalent model, a sliding rheostat is used to replace the DC load.

对故障电流的模拟。在实际线路中发生双极时,直流电流会按照一定的斜率上升。在低压等效模型中用,为模拟线路双极短路,用直流空气开关将代替直流负载的滑动变阻器旁路。为试验安全,限制直流电流幅值,在线路中需要再固定串入一个限流电阻。Simulation of fault currents. When bipolar occurs in the actual circuit, the DC current will rise according to a certain slope. In the low-voltage equivalent model, in order to simulate the bipolar short circuit of the line, the sliding rheostat that replaces the DC load is bypassed by a DC air switch. For the safety of the test and to limit the magnitude of the DC current, a current-limiting resistor needs to be fixed in series in the line.

一种级联全桥直流断路器低压等效电路的检测方法,所述等效电路为上述等效电路,所述检测方法包括以下步骤:A method for detecting a low-voltage equivalent circuit of a cascaded full-bridge DC circuit breaker, wherein the equivalent circuit is the above-mentioned equivalent circuit, and the method for detecting comprises the following steps:

1)将级联全桥直流断路器低压等效试验电路中的主支路低压等效子模块开通,转移支路低压等效子模块闭锁,固态继电器开通,使断路器处于导通状态;1) Open the low-voltage equivalent sub-module of the main branch in the low-voltage equivalent test circuit of the cascaded full-bridge DC circuit breaker, lock the low-voltage equivalent sub-module of the transfer branch, and open the solid-state relay to make the circuit breaker in a conducting state;

2)断开故障模拟开关S1,闭合负载投切开关S2,使负载电阻RL,限流电阻Rx都串入试验回路中;2) Open the fault simulation switch S1, close the load switching switch S2, so that the load resistance RL and the current limiting resistance Rx are connected in series into the test circuit;

3)直流稳压电源上电,调整电压至试验电压100~200V之间,回路电流ibreaker_lv流过等效电抗器Llv_3,电感Llv_1,主支路低压等效子模块,负载投切开关S1,负载电阻RL,限流电阻Rx,回到直流稳压电源;3) Power on the DC stabilized power supply, adjust the voltage to the test voltage between 100 and 200V, the loop current i breaker_lv flows through the equivalent reactor L lv_3 , the inductance L lv_1 , the main branch low-voltage equivalent sub-module, and the load switching switch S1, the load resistor RL , the current limiting resistor Rx, returns to the DC regulated power supply;

4)闭合故障模拟开关S2,将负载电阻RL旁路,回路电流ibreaker_lv开始迅速上升;4) Close the fault analog switch S2, bypass the load resistor RL , and the loop current i breaker_lv starts to rise rapidly;

5)当回路电流ibreaker_lv超过过流限值Ilim_lv时,导通转移支路低压等效子模块,闭锁主支路低压等效子模块,使回路电流由主支路转移至转移支路;5) When the loop current i breaker_lv exceeds the overcurrent limit value Ilim_lv , the low-voltage equivalent sub-module of the transfer branch is turned on, and the low-voltage equivalent sub-module of the main branch is blocked, so that the loop current is transferred from the main branch to the transfer branch;

6)当主支路电流imain_lv降为0后,断开固态继电器;6) When the main branch current i main_lv drops to 0, disconnect the solid state relay;

7)延时2ms后,闭锁转移支路低压等效子模块,转移支路低压等效子模块电容Clv充电,转移支路和耗能支路电压开始上升;7) After a delay of 2 ms, the low-voltage equivalent sub-module of the transfer branch is blocked, the capacitor C lv of the low-voltage equivalent sub-module of the transfer branch is charged, and the voltage of the transfer branch and the energy-consuming branch starts to rise;

8)当耗能支路电压上升至压敏电阻的动作电压,压敏电阻逐渐导通,随着耗能支路电压进一步上升,耗能支路流过压敏电阻的电流iMOV_lv上升,转移支路电流icomm_lv逐渐下降到0;8) When the voltage of the energy-consuming branch rises to the operating voltage of the varistor, the varistor is gradually turned on. As the voltage of the energy-consuming branch rises further, the current i MOV_lv flowing through the varistor in the energy-consuming branch rises and transfers The branch current i comm_lv gradually drops to 0;

9)耗能支路流过压敏电阻的电流iMOV_lv在达到峰值后开始下降,最终到0,试验结束;9) The current i MOV_lv flowing through the varistor in the energy-consuming branch begins to decline after reaching the peak value, and finally reaches 0, the test ends;

其中,在上述的实验方法中包括两次换流时间等效:Among them, the above-mentioned experimental method includes two commutation time equivalents:

第一次换流的时间等效。断路器检测到线路过流后,启动第一次换流,闭锁主支路,开通转移支路,电流由主支路转移至转移支路。低压等效模型需要在换换流时间上和实际断路器相近。The time for the first commutation is equivalent. After the circuit breaker detects the overcurrent of the line, it starts the first commutation, blocks the main branch, opens the transfer branch, and the current is transferred from the main branch to the transfer branch. The low-voltage equivalent model needs to be close to the actual circuit breaker in terms of commutation time.

为实现第一换流时间的等效,需要使低压等效模型的第一次换流时间与实际高压直流断路器相等,应满足:In order to realize the equivalence of the first commutation time, it is necessary to make the first commutation time of the low-voltage equivalent model equal to the actual high-voltage DC circuit breaker, which should satisfy:

(L1+L2)C=(L1_lv+L2_lv)Clv      (1)(L 1 +L 2 )C=(L 1_lv +L 2_lv )C lv (1)

式(1)中C为实际断路器中子模块电容值,L1,L2分别为实际断路器中主支路寄生电感和转移支路寄生电感,Clv为低压等效模型中子模块电容,Llv_1,Llv_2分别为低压等效模型中主支路寄生电感和转移支路寄生电感。In formula (1), C is the capacitance value of the sub-module in the actual circuit breaker, L 1 and L 2 are the parasitic inductance of the main branch and the transfer branch in the actual circuit breaker, respectively, and C lv is the capacitance of the sub-module in the low-voltage equivalent model , L lv_1 , L lv_2 are the parasitic inductance of the main branch and the transfer branch in the low-voltage equivalent model, respectively.

第二次换流的时间等效。转移支路闭锁后,转移支路子模块电压上升,上升至避雷器的动作电压后,避雷器开始泄放电流。该过程为转移直流子模块电容充电过程,为实现第二换流时间的等效,需要使低压等效模型的第二次换流时间与实际高压直流断路器相等,应满足:The time of the second commutation is equivalent. After the transfer branch is blocked, the voltage of the sub-module of the transfer branch rises to the operating voltage of the arrester, and the arrester starts to discharge the current. This process is the capacitor charging process of the transferred DC sub-module. In order to realize the equivalent of the second commutation time, it is necessary to make the second commutation time of the low-voltage equivalent model equal to the actual high-voltage DC circuit breaker, which should satisfy:

CVMOVIbreak_lv=ClvVMOV_lvIbreak    (2)CV MOV I break_lv = C lv V MOV_lv I break (2)

式(2)中VMOV为避雷器动作电压,Ibreak为断路器最大分段电流,C为实际直流断路器中子模块电容值,VMOV_lv为低压等效模型中压敏电阻动作电压,Ibreak_lv为断路器最大分段电流,Clv为低压等效模型中子模块电容值。In formula (2), V MOV is the operating voltage of the arrester, I break is the maximum segment current of the circuit breaker, C is the capacitance value of the neutron module of the actual DC circuit breaker, V MOV_lv is the operating voltage of the varistor in the low-voltage equivalent model, I break_lv is the maximum sub-section current of the circuit breaker, and C lv is the capacitance value of the sub-module in the low-voltage equivalent model.

定义实际断路器和低压等效模型的电压比例,电流比例,阻抗比例分别为:Define the voltage ratio, current ratio, and impedance ratio of the actual circuit breaker and the low-voltage equivalent model as:

NN vv == VV MOVMOV VV MOVMOV __ lvlv -- -- -- (( 33 ))

NN ii == II breakbreak II brakbrak __ lvlv -- -- -- (( 44 ))

NN zz == LL 11 ++ LL 22 LL 11 __ lvlv ++ LL 22 __ lvlv == CC lvlv CC -- -- -- (( 55 ))

则当满足:Then when satisfying:

NN zz == NN vv NN ii -- -- -- (( 66 ))

时,式(1)和(2)也满足,因此,是两次换流时间等效的充分条件。因此,可按照的比例关系,对子模块电容,回路电感,子模块电压和断路器分断电流等参数进行选择。When , formulas (1) and (2) are also satisfied, therefore, It is a sufficient condition for two commutation times to be equivalent. Therefore, according to The proportional relationship of the sub-module, the loop inductance, the sub-module voltage and the circuit breaker breaking current and other parameters are selected.

式(6)中不含转移支路子模块数,因此,低压等效模型中的转移支路子模块数可以和实际高压直流断路器不相同,也能在时间上对换流过程进行等效。Equation (6) does not include the number of transfer branch sub-modules. Therefore, the number of transfer branch sub-modules in the low-voltage equivalent model can be different from that of the actual high-voltage DC circuit breaker, and the commutation process can also be equivalent in time.

本发明提出的等效实验电路利用较低成本,实现对级联全桥高压直流断路器工作原理和二次控制保护设备的验证,能够很好的表现高压直流断路器的工作过程,本发明提出的等效检测方法根据电流转移和关断过程时间等效原则,通过阻抗等效,使用低压器件和线路对级联全桥高压直流断路器的动作过程进行模拟,可以实现对级联全桥高压直流断路器两次换流时间的等效,从而准确地验证对控制保护设备时序的要求,通过简化等效条件,在电压比,电流比,阻抗比满足比例关系的条件下,转移子模块数可以不相同,也能实现两次换流时间的等效。The equivalent experimental circuit proposed by the present invention uses relatively low cost to realize the verification of the working principle and secondary control and protection equipment of the cascaded full-bridge high-voltage DC circuit breaker, and can well represent the working process of the high-voltage DC circuit breaker. The present invention proposes The equivalent detection method is based on the time equivalent principle of current transfer and shutdown process, through impedance equivalent, using low-voltage devices and lines to simulate the action process of cascaded full-bridge high-voltage DC circuit breakers, which can realize the cascaded full-bridge high-voltage The equivalent of the two commutation times of the DC circuit breaker, so as to accurately verify the requirements for the timing of the control and protection equipment, by simplifying the equivalent conditions, under the condition that the voltage ratio, current ratio, and impedance ratio satisfy the proportional relationship, the number of sub-modules can be transferred It can be different, and the equivalent of the two commutation times can also be realized.

最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的权利要求保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art can still implement the present invention Any modification or equivalent replacement that does not deviate from the spirit and scope of the present invention is within the protection scope of the pending claims.

Claims (7)

1.一种级联全桥直流断路器低压等效试验电路,其特征在于,所述等效试验电路由依次连接的直流电源Vdc、等效电抗器Llv_3、固态继电器、电感Llv_1、主支路低压等效子模块SMlv、负载投切开关S1、负载电阻RL和限流电阻RX组成主回路,所述固态继电器、所述电感Llv_和所述主支路低压等效子模块SMlv构成主支路,并联在所述主支路两端的分别有转移支路和耗能支路,所述转移支路由串联连接的二极管Dlv、电感Llv_2和转移支路低压等效子模块构成,所述耗能支路上连接有压敏电阻,所述负载电阻RL的两端并联有故障模拟开关S2。 1. A low-voltage equivalent test circuit of a cascaded full-bridge DC circuit breaker, characterized in that, the equivalent test circuit consists of successively connected DC power supply V dc , equivalent reactor L lv_3 , solid state relay, inductor L lv_1 , The main branch low-voltage equivalent sub-module SM lv , load switching switch S1, load resistance R L and current limiting resistor R X form the main circuit, and the solid state relay, the inductor L lv_ and the main branch low-voltage equivalent The sub - module SM lv constitutes the main branch, and there are transfer branches and energy consumption branches connected in parallel at both ends of the main branch. A varistor is connected to the energy-consuming branch, and a fault analog switch S2 is connected in parallel to both ends of the load resistance RL . 2.根据权利要求1所述的级联全桥直流断路器低压等效试验电路,其特征在于,所述试验电路的电压等级为100~200V,电流等级为5~10A。 2. The low-voltage equivalent test circuit of cascaded full-bridge DC circuit breaker according to claim 1, characterized in that, the voltage level of the test circuit is 100-200V, and the current level is 5-10A. 3.根据权利要求1所述的级联全桥直流断路器低压等效试验电路,其特征在于,所述压敏电阻的动作电压高于所述直流电压源Vdc的电压,残压不能超过所述转移支路子模块额定电压之和。 3. cascaded full-bridge DC circuit breaker low-voltage equivalent test circuit according to claim 1, is characterized in that, the operating voltage of described varistor is higher than the voltage of described DC voltage source V dc , and residual voltage can not exceed The sum of the rated voltages of the transfer branch sub-modules. 4.一种级联全桥直流断路器低压等效试验电路的检测方法,所述等效电路为权利要求1-3任意一项所述的等效试验电路,其特征在于,所述检测方法包括以下步骤: 4. A detection method of a low-voltage equivalent test circuit of a cascaded full-bridge DC circuit breaker, said equivalent circuit being the equivalent test circuit described in any one of claims 1-3, characterized in that said detection method Include the following steps: 开通所述级联全桥直流断路器低压等效试验电路中的主支路低压等效子模块,并将所述转移支路低压等效子模块闭锁,开通所述固态继电器; Opening the main branch low-voltage equivalent submodule in the low-voltage equivalent test circuit of the cascaded full-bridge DC circuit breaker, locking the transfer branch low-voltage equivalent submodule, and opening the solid state relay; 断开所述故障模拟开关S1,闭合所述负载投切开关S2; Opening the fault simulation switch S1, closing the load switching switch S2; 给所述直流稳压电源通电,调整电压至100~200V,回路电流ibreaker_lv流经主回路,回到所述直流稳压电源; Powering on the DC stabilized power supply, adjusting the voltage to 100-200V, the loop current i breaker_lv flows through the main loop, and returns to the DC stabilized power supply; 闭合所述故障模拟开关S2; Closing the fault simulation switch S2; 当所述回路电流ibreaker_lv超过过流限值Ilim_lv时,导通所述转移支路低压等效子模块,闭锁所述主支路低压等效子模块,使回路电流ibreaker_lv由所述主支路转移至转移支路; When the loop current i breaker_lv exceeds the overcurrent limit value I lim_lv , turn on the transfer branch low-voltage equivalent sub-module, block the main branch low-voltage equivalent sub-module, so that the loop current i breaker_lv is controlled by the main branch transfer to transfer branch; 当主支路电流imain_lv降为0后,断开固态继电器; When the main branch current i main_lv drops to 0, disconnect the solid state relay; 延时2ms后,闭锁所述转移支路低压等效子模块,转移支路低压等效子模块电容Clv充电,转移支路和耗能支路电压开始上升; After a delay of 2 ms, the low-voltage equivalent sub-module of the transfer branch is blocked, the capacitor C lv of the low-voltage equivalent sub-module of the transfer branch is charged, and the voltage of the transfer branch and the energy-consuming branch starts to rise; 当耗能支路电压上升至压敏电阻的动作电压后,压敏电阻逐渐导通,随着耗能支路电压进一步上升,耗能支路流过压敏电阻的电流iMOV_lv上升,转移支路电流icomm_lv逐渐下降到0; When the voltage of the energy-consuming branch rises to the operating voltage of the varistor, the varistor is gradually turned on. As the voltage of the energy-consuming branch rises further, the current i MOV_lv flowing through the varistor in the energy-consuming branch rises, and the transfer branch The circuit current i comm_lv gradually drops to 0; 所述耗能支路流过压敏电阻的电流iMOV_lv在达到峰值后开始下降,最终到0,结束 检测。 The current iMOV_lv flowing through the piezoresistor in the energy-consuming branch begins to drop after reaching a peak value, and finally reaches 0, and the detection ends. 5.根据权利要求4所述的级联全桥直流断路器低压等效电路的检测方法,其特征在于,所述检测方法包括两次换流时间等效: 5. The detection method of the low-voltage equivalent circuit of the cascaded full-bridge DC circuit breaker according to claim 4, wherein the detection method comprises two commutation time equivalents: 第一次换流的时间等效,断路器检测到线路过流后,启动第一次换流,闭锁所述主支路,开通所述转移支路,电流由所述主支路转移至所述转移支路,低压等效模型的第一次换流时间与实际高压直流断路器的换流时间相等; The time of the first commutation is equivalent. After the circuit breaker detects the overcurrent of the line, it starts the first commutation, blocks the main branch, opens the transfer branch, and the current is transferred from the main branch to the The transfer branch described above, the first commutation time of the low-voltage equivalent model is equal to the commutation time of the actual high-voltage DC circuit breaker; 第二次换流的时间等效,转移支路闭锁后,转移支路子模块电压上升,上升至避雷器的动作电压后,避雷器开始泄放电流,低压等效模型的第二次换流时间与实际高压直流断路器的换流时间相等。 The time of the second commutation is equivalent. After the transfer branch is blocked, the voltage of the sub-module of the transfer branch rises. After rising to the operating voltage of the arrester, the arrester starts to discharge the current. The second commutation time of the low-voltage equivalent model is the same as the actual The commutation time of HVDC circuit breakers is equal. 6.根据权利要求5所述的级联全桥直流断路器低压等效电路的检测方法,其特征在于,所述检测方法在进行第一次换流的时间等效时,满足以下公式: 6. The detection method of the low-voltage equivalent circuit of the cascaded full-bridge DC circuit breaker according to claim 5, wherein the detection method satisfies the following formula when performing the time equivalent of the first commutation: (L1+L2)C=(L1_lv+L2_lv)Clv  (1) (L 1 +L 2 )C=(L 1_lv +L 2_lv )C lv (1) 式(1)中C为实际断路器中子模块电容值,L1,L2分别为实际断路器中主支路寄生电感和转移支路寄生电感,Clv为低压等效模型中子模块电容,Llv_1,Llv_2分别为低压等效模型中主支路寄生电感和转移支路寄生电感。 In formula (1), C is the capacitance value of the sub-module in the actual circuit breaker, L1 and L2 are the parasitic inductance of the main branch and the transfer branch in the actual circuit breaker, respectively, and Clv is the capacitance of the sub-module in the low-voltage equivalent model, Llv_1, Llv_2 is the parasitic inductance of the main branch and the parasitic inductance of the transfer branch in the low-voltage equivalent model, respectively. 7.根据权利要求6所述的级联全桥直流断路器低压等效电路的检测方法,其特征在于,所述检测方法在进行第二次换流的时间等效时,满足以下公式: 7. The detection method of the low-voltage equivalent circuit of the cascaded full-bridge DC circuit breaker according to claim 6, wherein the detection method satisfies the following formula when performing the time equivalent of the second commutation: CVMOVIbreak_lv=ClvVMOV_lvIbreak  (2) CV MOV I break_lv = C lv V MOV_lv I break (2) 式(2)中VMOV为避雷器动作电压,Ibreak为断路器最大分段电流,C为实际直流断路器中子模块电容值,VMOV_lv为低压等效模型中压敏电阻动作电压,Ibreak_lv为断路器最大分段电流,Clv为低压等效模型中子模块电容值。 In formula (2), V MOV is the operating voltage of the arrester, I break is the maximum segment current of the circuit breaker, C is the capacitance value of the neutron module of the actual DC circuit breaker, V MOV_lv is the operating voltage of the varistor in the low-voltage equivalent model, I break_lv is the maximum sub-section current of the circuit breaker, and C lv is the capacitance value of the sub-module in the low-voltage equivalent model.
CN201410849554.9A 2014-12-29 2014-12-29 A kind of cascade full-bridge direct current breaker low pressure equivalent test circuit and its detection method Active CN104635151B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410849554.9A CN104635151B (en) 2014-12-29 2014-12-29 A kind of cascade full-bridge direct current breaker low pressure equivalent test circuit and its detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410849554.9A CN104635151B (en) 2014-12-29 2014-12-29 A kind of cascade full-bridge direct current breaker low pressure equivalent test circuit and its detection method

Publications (2)

Publication Number Publication Date
CN104635151A true CN104635151A (en) 2015-05-20
CN104635151B CN104635151B (en) 2018-07-20

Family

ID=53214114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410849554.9A Active CN104635151B (en) 2014-12-29 2014-12-29 A kind of cascade full-bridge direct current breaker low pressure equivalent test circuit and its detection method

Country Status (1)

Country Link
CN (1) CN104635151B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105896492A (en) * 2016-06-16 2016-08-24 南方电网科学研究院有限责任公司 Hybrid direct current breaker
CN106301307A (en) * 2016-10-13 2017-01-04 全球能源互联网研究院 A kind of New Cascading full-bridge high voltage DC breaker and control method thereof
CN106483408A (en) * 2016-10-14 2017-03-08 中国科学院合肥物质科学研究院 A kind of high power DC electric apparatus equipment detection method
CN106532661A (en) * 2016-11-22 2017-03-22 平高集团有限公司 Opening control method for high-voltage direct-current circuit breaker
WO2017050103A1 (en) * 2015-09-25 2017-03-30 全球能源互联网研究院 Cascaded full-bridge high-voltage dc circuit breaker, quick reclosing method, and storage medium
CN106558864A (en) * 2015-09-25 2017-04-05 国网智能电网研究院 A kind of hybrid Fast DC Circuit Breaker
CN106711977A (en) * 2016-11-22 2017-05-24 平高集团有限公司 High-voltage DC circuit breaker and through-flow branch for high-voltage DC circuit breaker
CN106970322A (en) * 2017-05-26 2017-07-21 华北电力科学研究院有限责任公司 Hybrid high voltage DC breaker Fast mechanical switch dynamic voltage balancing test system
CN107291974A (en) * 2017-05-02 2017-10-24 华南理工大学 A kind of parameter tuning method of spring operation formula vacuum circuit breaker high frequency transient simulation model
CN107482575A (en) * 2017-08-01 2017-12-15 全球能源互联网研究院 A fault self-processing control method and system for a high-voltage direct current circuit breaker
CN107565520A (en) * 2017-08-22 2018-01-09 全球能源互联网研究院 A kind of dc circuit breaker principal and subordinate cooperative control method and control system
CN107645291A (en) * 2016-07-21 2018-01-30 全球能源互联网研究院 A kind of the Unidirectional direct-current breaker and its application process of IGBT module cascade
CN107656196A (en) * 2017-08-16 2018-02-02 全球能源互联网研究院有限公司 A kind of dc circuit breaker routine testing equipment
CN107800119A (en) * 2017-09-26 2018-03-13 全球能源互联网研究院有限公司 A kind of dc circuit breaker simulation model and method
CN109061451A (en) * 2018-06-25 2018-12-21 许继集团有限公司 A kind of monitoring method and system of hybrid dc circuit breaker arrester
CN109245030A (en) * 2018-09-30 2019-01-18 许继电气股份有限公司 The capacitor's capacity of dc circuit breaker full-bridge submodule determines method and system
CN109327021A (en) * 2018-11-28 2019-02-12 天津大学 Economical fault current limiter and control strategy for multi-terminal flexible DC grid
CN109981092A (en) * 2019-01-14 2019-07-05 全球能源互联网研究院有限公司 The hybrid dc circuit breaker and application method of a kind of full-bridge modules, full-bridge modules
CN110427660A (en) * 2019-07-15 2019-11-08 许继电气股份有限公司 A kind of high voltage DC breaker emulation mode
CN113030716A (en) * 2021-03-09 2021-06-25 国家电网有限公司 Simulation test system and method for hybrid direct current breaker
CN113809724A (en) * 2020-06-15 2021-12-17 许继集团有限公司 Method and device for protecting main branch electronic switch of hybrid high-voltage direct-current circuit breaker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1508935A (en) * 2002-12-19 2004-06-30 中国科学院电工研究所 A current limiting energy storage circuit
US20040174169A1 (en) * 2002-03-22 2004-09-09 Ernst Slamecka Synthetic test circuit for circuit breaker testing
CN101710704A (en) * 2009-12-17 2010-05-19 清华大学 Electric energy adjustment device for active and reactive power adjustment of high-voltage system
CN103117196A (en) * 2013-01-17 2013-05-22 国网智能电网研究院 Series coupling inductance high-voltage direct current breaker and control method thereof
CN103280763A (en) * 2013-02-27 2013-09-04 国网智能电网研究院 Direct current circuit breaker and realization method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040174169A1 (en) * 2002-03-22 2004-09-09 Ernst Slamecka Synthetic test circuit for circuit breaker testing
CN1508935A (en) * 2002-12-19 2004-06-30 中国科学院电工研究所 A current limiting energy storage circuit
CN101710704A (en) * 2009-12-17 2010-05-19 清华大学 Electric energy adjustment device for active and reactive power adjustment of high-voltage system
CN103117196A (en) * 2013-01-17 2013-05-22 国网智能电网研究院 Series coupling inductance high-voltage direct current breaker and control method thereof
CN103280763A (en) * 2013-02-27 2013-09-04 国网智能电网研究院 Direct current circuit breaker and realization method thereof

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3355431B1 (en) * 2015-09-25 2024-05-08 Global Energy Interconnection Research Institute Co., Ltd. Cascaded full-bridge high-voltage dc circuit breaker
CN106558864A (en) * 2015-09-25 2017-04-05 国网智能电网研究院 A kind of hybrid Fast DC Circuit Breaker
CN106558865B (en) * 2015-09-25 2019-03-15 全球能源互联网研究院 A kind of modified cascade full-bridge high voltage DC breaker and its quick coincidence method
CN106558864B (en) * 2015-09-25 2019-03-15 全球能源互联网研究院 A kind of hybrid Fast DC Circuit Breaker
WO2017050103A1 (en) * 2015-09-25 2017-03-30 全球能源互联网研究院 Cascaded full-bridge high-voltage dc circuit breaker, quick reclosing method, and storage medium
CN106558865A (en) * 2015-09-25 2017-04-05 全球能源互联网研究院 A kind of modified cascade full-bridge high voltage DC breaker and its quick coincidence method
CN105896492A (en) * 2016-06-16 2016-08-24 南方电网科学研究院有限责任公司 Hybrid direct current breaker
CN107645291B (en) * 2016-07-21 2022-08-05 全球能源互联网研究院 One-way DC circuit breaker with cascaded IGBT modules and application method thereof
CN107645291A (en) * 2016-07-21 2018-01-30 全球能源互联网研究院 A kind of the Unidirectional direct-current breaker and its application process of IGBT module cascade
CN106301307A (en) * 2016-10-13 2017-01-04 全球能源互联网研究院 A kind of New Cascading full-bridge high voltage DC breaker and control method thereof
CN106301307B (en) * 2016-10-13 2022-04-29 全球能源互联网研究院 A novel cascaded full-bridge high-voltage DC circuit breaker and its control method
CN106483408A (en) * 2016-10-14 2017-03-08 中国科学院合肥物质科学研究院 A kind of high power DC electric apparatus equipment detection method
CN106532661A (en) * 2016-11-22 2017-03-22 平高集团有限公司 Opening control method for high-voltage direct-current circuit breaker
CN106711977A (en) * 2016-11-22 2017-05-24 平高集团有限公司 High-voltage DC circuit breaker and through-flow branch for high-voltage DC circuit breaker
CN106532661B (en) * 2016-11-22 2019-08-06 平高集团有限公司 Opening control method of a high-voltage direct current circuit breaker
CN106711977B (en) * 2016-11-22 2019-04-12 平高集团有限公司 A kind of high voltage DC breaker and the through-flow branch for high voltage DC breaker
CN107291974A (en) * 2017-05-02 2017-10-24 华南理工大学 A kind of parameter tuning method of spring operation formula vacuum circuit breaker high frequency transient simulation model
CN107291974B (en) * 2017-05-02 2020-06-19 华南理工大学 A parameter setting method for high frequency transient simulation model of spring-operated vacuum circuit breaker
CN106970322A (en) * 2017-05-26 2017-07-21 华北电力科学研究院有限责任公司 Hybrid high voltage DC breaker Fast mechanical switch dynamic voltage balancing test system
CN106970322B (en) * 2017-05-26 2023-09-05 华北电力科学研究院有限责任公司 Dynamic voltage-equalizing test system for quick mechanical switch of hybrid high-voltage direct-current circuit breaker
CN107482575A (en) * 2017-08-01 2017-12-15 全球能源互联网研究院 A fault self-processing control method and system for a high-voltage direct current circuit breaker
CN107482575B (en) * 2017-08-01 2020-01-24 全球能源互联网研究院 A fault self-processing control method and system for a high-voltage DC circuit breaker
CN107656196A (en) * 2017-08-16 2018-02-02 全球能源互联网研究院有限公司 A kind of dc circuit breaker routine testing equipment
CN107656196B (en) * 2017-08-16 2023-09-19 全球能源互联网研究院有限公司 A kind of routine test equipment for DC circuit breaker
CN107565520B (en) * 2017-08-22 2019-04-30 全球能源互联网研究院 A master-slave cooperative control method and control system of a DC circuit breaker
CN107565520A (en) * 2017-08-22 2018-01-09 全球能源互联网研究院 A kind of dc circuit breaker principal and subordinate cooperative control method and control system
CN107800119A (en) * 2017-09-26 2018-03-13 全球能源互联网研究院有限公司 A kind of dc circuit breaker simulation model and method
WO2019062172A1 (en) * 2017-09-26 2019-04-04 全球能源互联网研究院有限公司 Simulation model and method for direct current circuit breaker, and storage medium
CN109061451B (en) * 2018-06-25 2020-10-30 许继集团有限公司 Monitoring method and system for lightning arrester of hybrid direct current circuit breaker
CN109061451A (en) * 2018-06-25 2018-12-21 许继集团有限公司 A kind of monitoring method and system of hybrid dc circuit breaker arrester
CN109245030A (en) * 2018-09-30 2019-01-18 许继电气股份有限公司 The capacitor's capacity of dc circuit breaker full-bridge submodule determines method and system
CN109327021A (en) * 2018-11-28 2019-02-12 天津大学 Economical fault current limiter and control strategy for multi-terminal flexible DC grid
CN109981092A (en) * 2019-01-14 2019-07-05 全球能源互联网研究院有限公司 The hybrid dc circuit breaker and application method of a kind of full-bridge modules, full-bridge modules
CN110427660B (en) * 2019-07-15 2022-12-23 许继电气股份有限公司 A Simulation Method for HVDC Circuit Breaker
CN110427660A (en) * 2019-07-15 2019-11-08 许继电气股份有限公司 A kind of high voltage DC breaker emulation mode
CN113809724A (en) * 2020-06-15 2021-12-17 许继集团有限公司 Method and device for protecting main branch electronic switch of hybrid high-voltage direct-current circuit breaker
CN113809724B (en) * 2020-06-15 2023-10-20 许继集团有限公司 Main branch electronic switch protection method and device for hybrid high-voltage direct-current breaker
CN113030716B (en) * 2021-03-09 2023-06-02 国家电网有限公司 A simulation test system and method for hybrid DC breaker
CN113030716A (en) * 2021-03-09 2021-06-25 国家电网有限公司 Simulation test system and method for hybrid direct current breaker

Also Published As

Publication number Publication date
CN104635151B (en) 2018-07-20

Similar Documents

Publication Publication Date Title
CN104635151B (en) A kind of cascade full-bridge direct current breaker low pressure equivalent test circuit and its detection method
Han et al. Transient Characteristics Under Ground and Short-Circuit Faults in a ${\pm\text {500}\,\text {kV}} $ MMC-Based HVDC System With Hybrid DC Circuit Breakers
RU2740012C1 (en) Longitudinal compensator and control method
CN103219699B (en) High-voltage mixing type direct-current breaker
CN104756338B (en) Circuit interrupting equipment
KR102235415B1 (en) Closing control method of high voltage DC circuit breaker
CN105659465B (en) AC side electrical protection of HVDC
CN104242265A (en) All-solid-state direct-current circuit breaker of direct-current power distribution network
CN106558865A (en) A kind of modified cascade full-bridge high voltage DC breaker and its quick coincidence method
CN105811369B (en) A kind of bypass protector and its guard method for high voltage DC breaker
CN107565506A (en) A kind of dc circuit breaker reclosing control method and device
CN105680411B (en) DC solid circuit breaker and breaking control method
CN106301307B (en) A novel cascaded full-bridge high-voltage DC circuit breaker and its control method
Tang et al. Topology of current-limiting and energy-transferring DC circuit breaker for DC distribution networks
CN111244905A (en) A DC circuit breaker reclosing method and system based on the voltage at both ends of the circuit breaker
CN110518545B (en) Hybrid high-voltage direct-current circuit breaker based on bidirectional current limiting module
Martinez et al. EMTP modeling of hybrid HVDC breakers
CN102195281B (en) Method for testing control system of thyristor of fault current limiter
CN104638619B (en) A kind of control method cascading full-bridge direct current breaker control system
CN113783173A (en) High-voltage solid-state semiconductor switching device and method and application for improving the voltage utilization rate
CN204967222U (en) Overcurrent protection structure
Yu et al. A novel current-limiting hybrid DC breaker based on thyristors
CN103124063B (en) Arrester overvoltage protection device with variable voltage ratio and implementation method
CN202949205U (en) Lightning arrester overvoltage protection device with variable voltage ratio
CN206211547U (en) Bipolar flexible direct current transmission system and converter station thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170523

Address after: 100031 Xicheng District West Chang'an Avenue, No. 86, Beijing

Applicant after: State Grid Corporation of China

Applicant after: China-EPRI Electric Power Engineering Co., Ltd.

Applicant after: North China Grid Co., Ltd.

Address before: 100031 Xicheng District West Chang'an Avenue, No. 86, Beijing

Applicant before: State Grid Corporation of China

Applicant before: State Grid Smart Grid Institute

Applicant before: China-EPRI Electric Power Engineering Co., Ltd.

Applicant before: North China Grid Co., Ltd.

GR01 Patent grant
GR01 Patent grant