CN104634364A - Fiber-optic gyroscope scale factor self-calibration system based on step pulse modulation - Google Patents
Fiber-optic gyroscope scale factor self-calibration system based on step pulse modulation Download PDFInfo
- Publication number
- CN104634364A CN104634364A CN201510046553.5A CN201510046553A CN104634364A CN 104634364 A CN104634364 A CN 104634364A CN 201510046553 A CN201510046553 A CN 201510046553A CN 104634364 A CN104634364 A CN 104634364A
- Authority
- CN
- China
- Prior art keywords
- gyro
- turntable
- digital
- interior
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 40
- 239000013307 optical fiber Substances 0.000 claims abstract description 11
- 239000000835 fiber Substances 0.000 claims description 33
- 230000010363 phase shift Effects 0.000 claims description 25
- 238000012545 processing Methods 0.000 claims description 9
- 238000012360 testing method Methods 0.000 claims description 9
- 238000002474 experimental method Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000035945 sensitivity Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 6
- 238000005070 sampling Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
本发明属于惯性敏感元件领域,具体涉及一种数字闭环光纤陀螺阶梯波调制原理提出的基于阶梯波调制的光纤陀螺标度因数的自标定方法。本发明包括:记录陀螺输出的数字量;分别计算数据处理时用整圈标定法;将角速度输入对应的陀螺输出;光纤环路中传输方向不同的两束光将产生正比于旋转速率的萨格奈克相位差;将计算所得数字量利用VHDL语言加到FPGA上;用最小二乘法求出斜率。本发明所提出的标定方法不基于转台,可以解决转台标定的过程中转台输入角速率太小会使陀螺处于非线性区,标定出来的标度因数精度不高;角速率太大则增加了对转台的难度要求的问题,去除了惯性测量元件精度和性能的好坏对标定结果的影响。
The invention belongs to the field of inertial sensitive components, and in particular relates to a self-calibration method of the optical fiber gyroscope scale factor based on the step wave modulation proposed by the digital closed-loop optical fiber gyroscope step wave modulation principle. The invention includes: recording the digital quantity output by the gyroscope; using the full circle calibration method when calculating the data respectively; inputting the angular velocity into the corresponding gyroscope output; Naike phase difference; add the calculated digital quantity to the FPGA using VHDL language; use the least square method to find the slope. The calibration method proposed by the present invention is not based on the turntable, and can solve the problem that if the input angular rate of the turntable is too small during the calibration process of the turntable, the gyroscope will be in the nonlinear region, and the accuracy of the calibrated scaling factor is not high; The difficulty requirement of the turntable removes the influence of the accuracy and performance of the inertial measurement element on the calibration results.
Description
技术领域technical field
本发明属于惯性敏感元件领域,具体涉及一种数字闭环光纤陀螺阶梯波调制原理提出的基于阶梯波调制的光纤陀螺标度因数的自标定方法。The invention belongs to the field of inertial sensitive components, and in particular relates to a self-calibration method of the optical fiber gyroscope scale factor based on the step wave modulation proposed by the digital closed-loop optical fiber gyroscope step wave modulation principle.
背景技术Background technique
捷联惯性导航系统的工作原理是将其输出通过捷联矩阵转换到导航坐标系,结合一定的初始信息,再通过一定的导航解算,确定载体的速度、位置和姿态信息。然而,捷联惯导系统作为一种自主式的导航系统,在使用过程中会难免会存在一些系统误差,如果不及时对这些误差进行修正,最终度会影响系统的导航精度。若要对这些误差进行补偿,首先必须利用高精度的惯性测量器件对其进行标定,所以对标定技术的研究对提高整个系统的导航精度具有非常重要的意义。The working principle of the strapdown inertial navigation system is to convert its output to the navigation coordinate system through the strapdown matrix, combine certain initial information, and then determine the speed, position and attitude information of the carrier through certain navigation calculations. However, as an autonomous navigation system, the strapdown inertial navigation system will inevitably have some system errors during use. If these errors are not corrected in time, the navigation accuracy of the system will eventually be affected. To compensate these errors, it must first be calibrated with high-precision inertial measurement devices, so the research on calibration technology is of great significance to improve the navigation accuracy of the whole system.
现阶段捷联惯导系统中光纤陀螺标度因数的标定主要是通过转台速率实验完成。这种标定方法的优点是其原理简单,而且利于实验室实现。该方法通过分析惯性组件的误差方程,建立其输入与输出的关系,通过分析,设计合理的标定路径以激励出误差方程中的各项参数。在惯导系统的实际工作过程中,将标定所得的结果进行补偿以提高系统的导航精度。但其存在实验中,转台输入角速率太小会使陀螺处于非线性区,标定出来的标度因数精度不高;角速率太大则增加了对转台的难度要求;采样点太密则时间成本太高;采样点太疏则测量误差风险增大;这种标定方法基于转台,必须在实验室中进行,在实际应用中不能有效地提高工作效率,较为繁琐等问题。At the present stage, the calibration of the fiber optic gyroscope scale factor in the SINS is mainly done through the speed test of the turntable. The advantage of this calibration method is that its principle is simple, and it is convenient for laboratory implementation. This method establishes the relationship between its input and output by analyzing the error equation of the inertial component, and designs a reasonable calibration path through the analysis to stimulate the various parameters in the error equation. In the actual working process of the inertial navigation system, the calibration results are compensated to improve the navigation accuracy of the system. However, in the experiment of its existence, if the input angular rate of the turntable is too small, the gyro will be in the nonlinear region, and the accuracy of the calibrated scale factor is not high; if the angular rate is too large, the difficulty requirements for the turntable will be increased; if the sampling points are too dense, the time cost will be increased. Too high; too sparse sampling points will increase the risk of measurement error; this calibration method is based on a turntable and must be carried out in the laboratory. In practical applications, it cannot effectively improve work efficiency and is relatively cumbersome.
从以上问题可看出,目前光纤陀螺标度因数的标定效率并不高,需要新方法来提高效率,本文就标度因数的标定方法展开研究,旨在提高光纤陀螺标度因数的标定效率。From the above problems, it can be seen that the calibration efficiency of the fiber optic gyroscope’s scaling factor is not high at present, and new methods are needed to improve the efficiency.
发明内容Contents of the invention
本发明的目的在于提出一种基于阶梯波调制的光纤陀螺标度因数的自标定方法。The purpose of the present invention is to propose a self-calibration method of the optical fiber gyroscope scale factor based on step wave modulation.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
包括如下步骤:Including the following steps:
(1)通过现有的标定方法可以看出标定过程中,转台输入角速率在20°/s左右时的标度因数线性度好且标定精度高,并想以0.01°/s、0.1°/s、1°/s为步长找到其对应的阶梯波信号的数字量,通过转台速率实验,分别记录20°/s、20.01°/s、20.1°/s、21°/s这几种角速率输入情况下,陀螺输出的数字量;(1) Through the existing calibration method, it can be seen that during the calibration process, when the input angular rate of the turntable is around 20°/s, the scale factor has good linearity and high calibration accuracy. s and 1°/s are the step lengths to find the digital quantity of the corresponding staircase wave signal. Through the turntable speed experiment, the angles of 20°/s, 20.01°/s, 20.1°/s, and 21°/s are recorded respectively. In the case of speed input, the digital output of the gyro;
(2)分别计算不同速率条件下转台绕X、Y、Z轴转动时的陀螺输出均值数据处理时用整圈标定法,取整圈的数据使水平轴上地球自转角速度的分量能在在台体旋转一周时被平均掉,提高标定精度;(2) Calculate the mean value of the gyro output when the turntable rotates around the X, Y, and Z axes under different speed conditions The whole circle calibration method is used for data processing, and the data of the whole circle is taken so that the component of the earth's rotation angular velocity on the horizontal axis can be averaged out when the platform rotates one circle, and the calibration accuracy is improved;
输入角速率为20°/s时;以20°/s的角速度转动一周T=360/20=18s;分别截取Z轴正、反转的第20s—560s的数据,转动圈数N=30;在绕Z轴正反转时,计算得到了正、反转时陀螺输出数字量总和∑Ngz+、∑Ngz- When the input angular rate is 20°/s; rotate a circle at an angular velocity of 20°/s T=360/20=18s; intercept the data of the 20s-560s of the positive and negative Z-axis respectively, and the number of rotations N=30; When reversing around the Z axis, the sum of gyroscope output digital quantities ∑N gz+ , ∑N gz-
绕X轴正反转时,得 When reversing around the X axis, we get
绕Y轴正反转时,得 When turning forward and backward around the Y axis, we get
同时得到 get at the same time
(3)将步骤(2)得到的数字量均值做差,分别得到各轴0.01°/s、0.1°/s、1°/s的角速度输入对应的陀螺输出:(3) Make the difference between the digital value obtained in step (2), and obtain the gyro output corresponding to the angular velocity input of each axis of 0.01°/s, 0.1°/s, and 1°/s respectively:
(4)根据数字闭环光纤陀螺的阶梯波调制原理,当光纤环敏感到角速度时,光纤环路中传输方向不同的两束光将产生正比于旋转速率Ω的萨格奈克相位差Φs为(4) According to the step wave modulation principle of the digital closed-loop fiber optic gyroscope, when the fiber optic loop is sensitive to angular velocity, the two beams of light with different transmission directions in the fiber loop will produce a Sagnac phase difference Φ s proportional to the rotation rate Ω as
阶梯波加在Y波导的相位调制器上,引起的两束光之间的相位差为The step wave is added to the phase modulator of the Y waveguide, and the phase difference between the two beams of light caused by it is
Φj=Φm(t)-Φm(t-τ)Φ j =Φ m (t)-Φ m (t-τ)
其中,Φm(t)为阶梯波调制造成顺时针传输的光产生的附加相移,Φm(t-τ)为阶梯波调制造成逆时针传输的光所产生的附加相移;偏置信号是用方波,该方波信号的周期为2τ,方波调制信号作为偏置信号,在正负半周产生的相移为则阶梯波和方波,在萨格奈克干涉仪中产生的非互易相移为:Among them, Φ m (t) is the additional phase shift of light transmitted clockwise caused by step wave modulation, and Φ m (t-τ) is the additional phase shift of light transmitted counterclockwise caused by step wave modulation; the bias signal A square wave is used, the period of the square wave signal is 2τ, the square wave modulation signal is used as a bias signal, and the phase shift generated in the positive and negative half cycles is Then the non-reciprocal phase shift produced by the step wave and square wave in the Sagnac interferometer is:
ΔΦ=Φs+Φj+Φf,ΔΦ=Φ s +Φ j +Φ f ,
其中Φs为萨格奈克相移,Φj为阶梯波的附加相移,Φf为方波的附加相移;Where Φ s is the Sagnac phase shift, Φ j is the additional phase shift of the ladder wave, and Φ f is the additional phase shift of the square wave;
sagnac干涉仪的输出信号为The output signal of the sagnac interferometer is
I=A·[1+cos(Φs+Φj+Φf)],I=A·[1+cos(Φ s +Φ j +Φ f )],
在方波的正半周,sagnac干涉仪的输出信号为In the positive half cycle of the square wave, the output signal of the sagnac interferometer is
I=A·[1-sin(Φs+Φj)],I=A·[1-sin(Φ s +Φ j )],
在方波的负半周,sagnac干涉仪的输出信号为In the negative half cycle of the square wave, the output signal of the sagnac interferometer is
I=A·[1+sin(Φs+Φj)],I=A·[1+sin(Φ s +Φ j )],
将方波正半周和负半周输出的信号相减得Subtract the output signals of the positive half cycle and the negative half cycle of the square wave to get
ΔI=-2Asin(Φs+Φj),ΔI=-2Asin(Φ s +Φ j ),
当ΔI≠0时,便可用ΔI作为反馈量控制阶梯波高度,使得Φs+Φj趋近于0,在数字闭环光纤陀螺系统中,阶梯高度就是陀螺输出的角速率信号;When ΔI≠0, ΔI can be used as the feedback quantity to control the step wave height, so that Φ s + Φ j tends to 0. In the digital closed-loop fiber optic gyro system, the step height is the angular rate signal output by the gyro;
(5)将计算所得数字量利用VHDL语言加到FPGA上,产生梯度相等,时间间隔也相等的阶梯波,持续时间为1分钟,通过数字信号处理使光纤环在没有敏感到角速度的情况下产生非互易相移,记录下此时陀螺输出的数字量;(5) Add the calculated digital quantity to the FPGA using VHDL language to generate a staircase wave with equal gradients and equal time intervals. The duration is 1 minute. Through digital signal processing, the optical fiber ring is generated without being sensitive to angular velocity. Non-reciprocal phase shift, record the digital output of the gyro at this time;
(6)由步骤(5)得到输出数据点,依次取角速率ωj对应的输出数字量的一段数据求均值,得到该速率点对应的输出Nj0;截取测试开始时的部分光纤陀螺仪的输出量求均值N0,则Nj=Nj0-N0,消除地球自转角速度对测试结果的影响,用最小二乘法拟合直线Nj=K·ωj+N0,用最小二乘法可求出斜率K(6) Obtain the output data point by step (5), get the average value of a section of data of the output digital quantity corresponding to the angular rate ω j successively, obtain the output N j0 corresponding to the rate point; intercept the part of the fiber optic gyroscope when the test begins Calculate the average value N 0 of the output, then N j =N j0 -N 0 , eliminate the influence of the earth's rotation angular velocity on the test results, use the least square method to fit the straight line N j =K·ω j +N 0 , and use the least square method to obtain Find the slope K
其中M为输入角速率的个数,K即陀螺的标度因数。Among them, M is the number of input angular rates, and K is the scaling factor of the gyroscope.
步骤(1)以0.01°/s、0.1°/s、1°/s为步长找到对应的阶梯波信号的数字量,Step (1) Take 0.01°/s, 0.1°/s, 1°/s as the step size to find the digital quantity of the corresponding staircase wave signal,
在转台以20°/s转动时,测出陀螺输出数字量N外20°/s When the turntable rotates at 20°/s, the gyro output digital value N is measured to be 20°/s
N外20°/s=N内20°/s 20°/s outside N = 20°/s inside N
转台以20.01°/s转动时,测出陀螺输出数字量N外20.01°/s When the turntable rotates at 20.01°/s, the gyro output digital value N is measured to be 20.01°/s
N外20.01°/s=N内20.01°/s 20.01°/s outside N = 20.01°/s inside N
ΔN内0.01°/s=N内20.01°/s-N内20°/s=N外20.01°/s-N外20°/s ΔN inner 0.01°/s = N inner 20.01°/s -N inner 20°/s = N outer 20.01°/s -N outer 20°/s
以20.1°/s、21°/s的角速率转动时可得When rotating at angular rates of 20.1°/s and 21°/s, it can be obtained
ΔN内0.1°/s=N内20.1°/s-N内20°/s=N外20.1°/s-N外20°/s ΔN inner 0.1°/s = N inner 20.1°/s -N inner 20°/s = N outer 20.1°/s -N outer 20°/s
ΔN内1°/s=N内21°/s-N内20°/s=N外21°/s-N外20°/s。ΔN inner 1°/s = N inner 21°/s - N inner 20°/s = N outer 21°/s - N outer 20°/s .
本发明的有益效果在于:The beneficial effects of the present invention are:
(1)本发明所提出的标定方法不基于转台,可以解决转台标定的过程中转台输入角速率太小会使陀螺处于非线性区,标定出来的标度因数精度不高;角速率太大则增加了对转台的难度要求的问题,去除了惯性测量元件精度和性能的好坏对标定结果的影响。(1) The calibration method proposed by the present invention is not based on the turntable, and can solve the problem that the input angular rate of the turntable is too small during the calibration of the turntable, which will cause the gyroscope to be in the nonlinear region, and the accuracy of the calibrated scale factor is not high; The problem of the difficulty requirement of the turntable is added, and the influence of the accuracy and performance of the inertial measurement element on the calibration result is removed.
(2)在找到所加数字阶梯波信号梯度与其拟合的角速率输入之间的关系后便可任意设置采样点密度,解决了现有标定方法中采样点太密则时间成本太高;采样点太疏则测量误差风险增大的问题。(2) After finding the relationship between the gradient of the added digital staircase wave signal and the fitted angular rate input, the sampling point density can be set arbitrarily, which solves the problem that the time cost is too high if the sampling points are too dense in the existing calibration method; If the points are too sparse, the risk of measurement error increases.
(3)这种标定方法使标定不受场合的限制,可以用于现场标定,大大提高了标定效率。(3) This calibration method makes the calibration not limited by the occasion, and can be used for on-site calibration, which greatly improves the calibration efficiency.
附图说明Description of drawings
图1是本发明的方法流程图;Fig. 1 is method flowchart of the present invention;
图2是光纤陀螺标度因数的自标定原理图。Figure 2 is a schematic diagram of the self-calibration of the fiber optic gyroscope scale factor.
具体实施方式Detailed ways
下面结合附图对本发明作进一步描述。The present invention will be further described below in conjunction with the accompanying drawings.
本发明旨在提出一种新的标定方法使标定过程可以脱离转台实现,提高标定效率。该方法拟在闭环光纤陀螺的数字信号处理部分加入阶梯波信号,通过Y波导改变两光之间的相位差,用这种方法模拟转台角速度的输入,静基座下即可拟合标度因数并计算其非线性误差,以达到标定的目的。The invention aims at proposing a new calibration method so that the calibration process can be realized without a turntable and improves the calibration efficiency. This method intends to add a ladder wave signal to the digital signal processing part of the closed-loop fiber optic gyroscope, and change the phase difference between the two lights through the Y waveguide. In this way, the input of the angular velocity of the turntable is simulated, and the scale factor can be fitted under the static base. And calculate its non-linear error, in order to achieve the purpose of calibration.
本发明包括以下几个步骤:The present invention comprises the following steps:
步骤一、为找到以0.01°/s、0.1°/s、1°/s为步长对应的阶梯波信号的数字量,通过转台速率实验,分别记录20°/s、20.01°/s、20.1°/s、21°/s这几种角速率输入情况下,陀螺输出的数字量。Step 1. In order to find the digital quantity of the staircase wave signal corresponding to the step length of 0.01°/s, 0.1°/s, and 1°/s, record 20°/s, 20.01°/s, 20.1 °/s, 21°/s angular rate input, the digital output of the gyro.
步骤二、分别计算不同速率条件下转台绕X、Y、Z轴转动时的陀螺输出均值数据处理时用整圈标定法,取整圈的数据使水平轴上地球自转角速度的分量能在在台体旋转一周时被平均掉,以此提高标定精度。Step 2. Calculate the average value of the gyro output when the turntable rotates around the X, Y, and Z axes under different speed conditions The whole circle calibration method is used in data processing, and the data of the whole circle is taken so that the component of the earth's rotation angular velocity on the horizontal axis can be averaged out when the platform rotates once, so as to improve the calibration accuracy.
步骤三、将步骤二得到的数字量均值做差,分别得到各轴0.01°/s、0.1°/s、1°/s的角速度输入对应的陀螺输出。Step 3. The average value of the digital quantity obtained in step 2 is subtracted to obtain the gyroscope output corresponding to the angular velocity input of each axis of 0.01°/s, 0.1°/s, and 1°/s respectively.
步骤四、根据数字闭环光纤陀螺的阶梯波调制原理,数字阶梯波信号的台阶高度与陀螺的角速率成正比。即可根据这一原理找到数字阶梯波信号的台阶高度与陀螺输入之间的对应关系。Step 4. According to the step wave modulation principle of the digital closed-loop fiber optic gyroscope, the step height of the digital step wave signal is proportional to the angular rate of the gyroscope. According to this principle, the corresponding relationship between the step height of the digital staircase wave signal and the gyro input can be found.
步骤五、得到以上数据,即找到ΔN内与拟定输入角速率对应关系后,将计算所得数字量利用VHDL语言加到FPGA上。使其产生梯度相等,时间间隔也相等的阶梯波(持续时间为1分钟),通过数字信号处理人为的使光纤环在没有敏感到角速度的情况下产生非互易相移。记录下此时陀螺输出的数字量。Step 5. Obtain the above data, that is, after finding the corresponding relationship between the ΔN and the planned input angular rate, add the calculated digital quantity to the FPGA using VHDL language. Make it generate a ladder wave with equal gradient and equal time interval (duration is 1 minute), and artificially make the optical fiber ring produce non-reciprocal phase shift without being sensitive to angular velocity through digital signal processing. Record the digital output of the gyro at this time.
步骤六、由步骤五可以得到一系列输出数据点,依次取角速率ωj对应的输出数字量的一段数据求均值,便得到该速率点对应的输出Nj0。截取测试开始时的部分光纤陀螺仪的输出量求均值N0,则Nj=Nj0-N0,消除地球自转角速度对测试结果的影响。并用最小二乘法拟合直线Nj=K·ωj+N0求出斜率K即陀螺的标度因数。Step 6: A series of output data points can be obtained from step 5, and a segment of output digital data corresponding to the angular rate ω j is taken in turn to calculate the average value, and the output N j0 corresponding to the rate point is obtained. Intercept the output of part of the fiber optic gyroscope at the beginning of the test to calculate the average value N 0 , then N j =N j0 -N 0 , to eliminate the influence of the earth's rotation angular velocity on the test results. And use the least squares method to fit the straight line N j =K·ω j +N 0 to find the slope K, which is the scale factor of the gyroscope.
本发明提出了一种基于数字闭环光纤陀螺阶梯波调制原理的光纤陀螺自标定方法,能够在不使用转台的情况下用数字阶梯波信号拟合转台的角速率输入,以达到标定的目的。这种方法使光纤陀螺的标定可以不在实验室条件下进行,标定效率大大提升,并去除了惯性测量元件给标定带来的误差。The invention proposes a fiber optic gyroscope self-calibration method based on the digital closed-loop fiber optic gyroscope step wave modulation principle, which can use digital step wave signals to fit the angular rate input of the turntable without using the turntable, so as to achieve the purpose of calibration. This method enables the calibration of the fiber optic gyroscope not to be performed under laboratory conditions, greatly improves the calibration efficiency, and removes the error caused by the inertial measurement element to the calibration.
本发明是一种基于数字闭环光纤陀螺阶梯波调制原理的光纤陀螺自标定方法,流程图如附图1所示,包括以下几个步骤:The present invention is a fiber optic gyroscope self-calibration method based on the digital closed-loop fiber optic gyroscope ladder wave modulation principle. The flow chart is shown in Figure 1, including the following steps:
步骤一、为找到以0.01°/s、0.1°/s、1°/s为步长对应的阶梯波信号的数字量。Step 1 is to find the digital quantity of the staircase wave signal corresponding to the steps of 0.01°/s, 0.1°/s, and 1°/s.
在转台以20°/s转动时,测出陀螺输出数字量N外20°/s When the turntable rotates at 20°/s, the gyro output digital value N is measured to be 20°/s
此时认为N外20°/s=N内20°/s At this time, it is considered that 20°/s outside N = 20°/s inside N
转台以20.01°/s转动时,测出陀螺输出数字量N外20.01°/s When the turntable rotates at 20.01°/s, the gyro output digital value N is measured to be 20.01°/s
此时认为N外20.01°/s=N内20.01°/s At this time, it is considered that 20.01°/s outside N = 20.01°/s inside N
则有ΔN内0.01°/s=N内20.01°/s-N内20°/s=N外20.01°/s-N外20°/s Then there is 0.01°/s in ΔN = 20.01°/s in N - 20°/s in N = 20.01° /s outside N - 20°/s outside N
同理以20.1°/s、21°/s的角速率转动时可得Similarly, when rotating at an angular rate of 20.1°/s and 21°/s, it can be obtained
ΔN内0.1°/s=N内20.1°/s-N内20°/s=N外20.1°/s-N外20°/s ΔN inner 0.1°/s = N inner 20.1°/s -N inner 20°/s = N outer 20.1°/s -N outer 20°/s
ΔN内1°/s=N内21°/s-N内20°/s=N外21°/s-N外20°/s ΔN inner 1°/s = N inner 21°/s -N inner 20°/s = N outer 21°/s -N outer 20°/s
通过转台速率实验,分别记录20°/s、20.01°/s、20.1°/s、21°/s这几种角速率输入情况下,陀螺输出的数字量。其步骤如下:Through the turntable rate experiment, record the digital output of the gyro under the input conditions of angular rates of 20°/s, 20.01°/s, 20.1°/s, and 21°/s. The steps are as follows:
1.光纤陀螺坐标系的X、Y、Z轴,当我们把光纤陀螺固定在转台上时,我们便可以严格认为转台的内、中、外框的自转轴与我们固定的捷联惯性组件是严格平行的。1. The X, Y, and Z axes of the fiber optic gyroscope coordinate system, when we fix the fiber optic gyroscope on the turntable, we can strictly consider that the rotation axes of the inner, middle and outer frames of the turntable and our fixed strapdown inertial components are strictly parallel.
2.对转台进行定位。把转台的自转轴让其与外框自转轴垂直外框自转轴保持与当地垂线平行,这样通过对转台的定位,便可以始终保证转台内框的自转轴水平指北,达到我们的设计要求。进行角速率实验。将光纤陀螺Z轴调整到与当地垂线平行的位置。2. Position the turntable. Make the rotation axis of the turntable perpendicular to the rotation axis of the outer frame and keep the rotation axis of the outer frame parallel to the local vertical line, so that through the positioning of the turntable, it can always ensure that the rotation axis of the inner frame of the turntable points north horizontally, meeting our design requirements . Perform an angular rate experiment. Adjust the Z-axis of the fiber optic gyro to a position parallel to the local vertical.
3.进行角速率实验。将光纤陀螺Z轴调整到与当地垂线平行的位置。3. Carry out the angular rate experiment. Adjust the Z-axis of the fiber optic gyro to a position parallel to the local vertical.
4.使转台外框以20°/s的角速度进行转动10分钟,然后以相同角速度相反方向转动10分钟,记录下转动过程中陀螺的输出。4. Make the outer frame of the turntable rotate at an angular velocity of 20°/s for 10 minutes, then rotate at the same angular velocity in the opposite direction for 10 minutes, and record the output of the gyro during the rotation.
5.将光纤陀螺X、Y依次轴调整到与当地垂线平行的位置。并重复步骤4。5. Adjust the X and Y axes of the fiber optic gyro to a position parallel to the local vertical line. And repeat step 4.
6.重复以上步骤,使转台外框分别以20°/s、20.01°/s、20.1°/s、21°/s的角速度进行转动。6. Repeat the above steps to make the outer frame of the turntable rotate at the angular speeds of 20°/s, 20.01°/s, 20.1°/s, and 21°/s respectively.
步骤二、分别计算不同速率条件下转台绕X、Y、Z轴转动时的陀螺输出均值数据处理时用整圈标定法,取整圈的数据使水平轴上地球自转角速度的分量能在在台体旋转一周时被平均掉,以此提高标定精度。Step 2. Calculate the average value of the gyro output when the turntable rotates around the X, Y, and Z axes under different speed conditions The whole circle calibration method is used in data processing, and the data of the whole circle is taken so that the component of the earth's rotation angular velocity on the horizontal axis can be averaged out when the platform rotates once, so as to improve the calibration accuracy.
输入角速率为20°/s时When the input angular rate is 20°/s
以20°/s的角速度转动一周T=360/20=18sTurn around at an angular velocity of 20°/s T=360/20=18s
分别截取Z轴正、反转的第20s—560s的数据(转动圈数N=30)Intercept the data of the 20s-560s of the positive and negative rotation of the Z-axis respectively (the number of rotations N=30)
在绕Z轴正反转时,计算得到了正、反转时陀螺输出数字量总和∑Ngz+、∑Ngz-,则可算得When the positive and negative rotation around the Z axis is calculated, the sum of the gyroscope output digital quantities ∑N gz+ and ∑N gz- during the positive and negative rotation is calculated, then it can be calculated
同理绕X轴正反转时,可得 Similarly, when rotating forward and backward around the X axis, we can get
绕Y轴正反转时,可得 When turning forward and backward around the Y axis, we can get
同理可求得The same reason can be obtained
步骤三、将步骤二得到的数字量均值做差,分别得到各轴0.01°/s、0.1°/s、1°/s的角速度输入对应的陀螺输出。Step 3. The average value of the digital quantity obtained in step 2 is subtracted to obtain the gyroscope output corresponding to the angular velocity input of each axis of 0.01°/s, 0.1°/s, and 1°/s respectively.
步骤四、根据数字闭环光纤陀螺的阶梯波调制原理,当光纤环敏感到角速度时,光纤环路中传输方向不同的两束光将产生正比于旋转速率Ω的萨格奈克相位差Φs为Step 4. According to the staircase wave modulation principle of the digital closed-loop fiber optic gyroscope, when the fiber optic loop is sensitive to angular velocity, the two beams of light with different transmission directions in the fiber optic loop will produce a Sagnac phase difference Φ s proportional to the rotation rate Ω as
阶梯波加在Y波导的相位调制器上,引起的两束光之间的相位差为The step wave is added to the phase modulator of the Y waveguide, and the phase difference between the two beams of light caused by it is
Φj=Φm(t)-Φm(t-τ)Φ j =Φ m (t)-Φ m (t-τ)
其中,Φm(t)为阶梯波调制造成顺时针传输的光产生的附加相移,Φm(t-τ)为阶梯波调制造成逆时针传输的光所产生的附加相移。Among them, Φ m (t) is the additional phase shift of the clockwise transmitted light caused by step wave modulation, and Φ m (t-τ) is the additional phase shift of counterclockwise transmitted light caused by step wave modulation.
偏置信号是用方波,该方波信号的周期为2τ,方波调制信号作为偏置信号,在正负半周产生的相移为 The bias signal is a square wave, the period of the square wave signal is 2τ, the square wave modulation signal is used as the bias signal, and the phase shift generated in the positive and negative half cycles is
则阶梯波和方波,在萨格奈克干涉仪中产生的非互易相移为:Then the non-reciprocal phase shift generated in the Sagnac interferometer for the step wave and the square wave is:
ΔΦ=Φs+Φj+Φf ΔΦ=Φ s +Φ j +Φ f
其中Φs为萨格奈克相移,Φj为阶梯波的附加相移,Φf为方波的附加相移。Among them, Φ s is the Sagnac phase shift, Φ j is the additional phase shift of the step wave, and Φ f is the additional phase shift of the square wave.
这时sagnac干涉仪的输出信号为At this time, the output signal of the sagnac interferometer is
I=A·[1+cos(Φs+Φj+Φf)]I=A·[1+cos(Φ s +Φ j +Φ f )]
在方波的正半周,sagnac干涉仪的输出信号为In the positive half cycle of the square wave, the output signal of the sagnac interferometer is
I=A·[1-sin(Φs+Φj)]I=A·[1-sin(Φ s +Φ j )]
在方波的负半周,sagnac干涉仪的输出信号为In the negative half cycle of the square wave, the output signal of the sagnac interferometer is
I=A·[1+sin(Φs+Φj)]I=A·[1+sin(Φ s +Φ j )]
将方波正半周和负半周输出的信号相减,可得Subtract the output signals of the positive half cycle and the negative half cycle of the square wave to get
ΔI=-2Asin(Φs+Φj)ΔI=-2Asin(Φ s +Φ j )
由上式可以看出,若要保证sagnac干涉仪工作在零相位附近,即保持ΔI≈0,则要保证Φs+Φj≈0,当ΔI≠0时,便可用ΔI作为反馈量控制阶梯波高度,使得Φs+Φj≈0。因此,在数字闭环光纤陀螺系统中,阶梯高度就是陀螺输出的角速率信号。It can be seen from the above formula that if you want to ensure that the sagnac interferometer works near zero phase, that is, keep ΔI≈0, you must ensure that Φ s +Φ j ≈0. When ΔI≠0, you can use ΔI as the feedback quantity control ladder wave height such that Φ s +Φ j ≈0. Therefore, in the digital closed-loop fiber optic gyroscope system, the step height is the angular rate signal output by the gyroscope.
步骤五、得到以上数据,即找到ΔN内与拟定输入角速率对应关系后,将计算所得数字量利用VHDL语言加到FPGA上。使其产生梯度相等,时间间隔也相等的阶梯波(持续时间为1分钟),通过数字信号处理人为的使光纤环在没有敏感到角速度的情况下产生非互易相移。记录下此时陀螺输出的数字量。Step 5. Obtain the above data, that is, after finding the corresponding relationship between the ΔN and the planned input angular rate, add the calculated digital quantity to the FPGA using VHDL language. Make it generate a ladder wave with equal gradient and equal time interval (duration is 1 minute), and artificially make the optical fiber ring produce non-reciprocal phase shift without being sensitive to angular velocity through digital signal processing. Record the digital output of the gyro at this time.
步骤六、由步骤五可以得到一系列输出数据点,依次取角速率ωj对应的输出数字量的一段数据求均值,便得到该速率点对应的输出Nj0。截取测试开始时的部分光纤陀螺仪的输出量求均值N0,则Nj=Nj0-N0,消除地球自转角速度对测试结果的影响。并用最小二乘法拟合直线Nj=K·ωj+N0,最小二乘法(又称最小平方法)通过最小化误差的平方和寻找数据的最佳函数匹配是一种数学优化技术。用最小二乘法可求出斜率K。Step 6: A series of output data points can be obtained from step 5, and a segment of output digital data corresponding to the angular rate ω j is taken in turn to calculate the average value, and the output N j0 corresponding to the rate point is obtained. Intercept the output of part of the fiber optic gyroscope at the beginning of the test to calculate the average value N 0 , then N j =N j0 -N 0 , to eliminate the influence of the earth's rotation angular velocity on the test results. And use the least square method to fit the straight line N j =K·ω j +N 0 , the least square method (also known as the least square method) is a mathematical optimization technique to find the best function matching of the data by minimizing the square sum of errors. The slope K can be obtained by the method of least squares.
其中M为输入角速率的个数,K即陀螺的标度因数。Among them, M is the number of input angular rates, and K is the scaling factor of the gyroscope.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510046553.5A CN104634364B (en) | 2015-01-29 | 2015-01-29 | A kind of self-calibrating method of the optic fiber gyroscope graduation factor based on Staircase wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510046553.5A CN104634364B (en) | 2015-01-29 | 2015-01-29 | A kind of self-calibrating method of the optic fiber gyroscope graduation factor based on Staircase wave |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104634364A true CN104634364A (en) | 2015-05-20 |
CN104634364B CN104634364B (en) | 2017-10-03 |
Family
ID=53213371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510046553.5A Expired - Fee Related CN104634364B (en) | 2015-01-29 | 2015-01-29 | A kind of self-calibrating method of the optic fiber gyroscope graduation factor based on Staircase wave |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104634364B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106908079A (en) * | 2015-12-23 | 2017-06-30 | 北京自动化控制设备研究所 | Three axis optical fibre gyro combines constant multiplier automatic test device and method of testing |
CN113310482A (en) * | 2021-06-10 | 2021-08-27 | 西安中科华芯测控有限公司 | Sine wave modulation method of digital closed-loop fiber-optic gyroscope |
CN113720355A (en) * | 2021-09-10 | 2021-11-30 | 北京控制工程研究所 | Gyro output saturation autonomous diagnosis method and system |
CN113720357A (en) * | 2021-09-16 | 2021-11-30 | 北京控制工程研究所 | Gyro scale factor calibration and compensation method under vacuum full-temperature condition of 3S optical fiber IMU |
CN114166246A (en) * | 2021-11-19 | 2022-03-11 | 西安航天精密机电研究所 | Calibration method for scale factor of rate optical fiber gyroscope |
CN114440933A (en) * | 2022-02-28 | 2022-05-06 | 中国船舶重工集团公司第七0七研究所 | Self-correcting system for rotation modulation scale of resonant gyroscope |
CN114485724A (en) * | 2021-03-02 | 2022-05-13 | 北京天兵科技有限公司 | Method for rapidly evaluating scale nonlinear error of MEMS gyroscope |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11108669A (en) * | 1997-09-30 | 1999-04-23 | Hitachi Cable Ltd | Fiber optic gyro |
CN101246023A (en) * | 2008-03-21 | 2008-08-20 | 哈尔滨工程大学 | Closed-loop Calibration Method of Micromachined Gyro Inertial Measurement Components |
CN101639364A (en) * | 2009-07-22 | 2010-02-03 | 哈尔滨工程大学 | Calibration method of high-precision optical fiber gyro component used for ship |
CN101706287A (en) * | 2009-11-20 | 2010-05-12 | 哈尔滨工程大学 | Rotating strapdown system on-site proving method based on digital high-passing filtering |
CN102003968A (en) * | 2010-09-03 | 2011-04-06 | 哈尔滨工程大学 | Single-axle table calibration method for fiber optic gyro strapdown inertial navigation system |
CN103984830A (en) * | 2014-05-23 | 2014-08-13 | 湖北三江航天红峰控制有限公司 | Simulation method for digital closed-loop control logic of fiber-optic gyroscope |
-
2015
- 2015-01-29 CN CN201510046553.5A patent/CN104634364B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11108669A (en) * | 1997-09-30 | 1999-04-23 | Hitachi Cable Ltd | Fiber optic gyro |
CN101246023A (en) * | 2008-03-21 | 2008-08-20 | 哈尔滨工程大学 | Closed-loop Calibration Method of Micromachined Gyro Inertial Measurement Components |
CN101639364A (en) * | 2009-07-22 | 2010-02-03 | 哈尔滨工程大学 | Calibration method of high-precision optical fiber gyro component used for ship |
CN101706287A (en) * | 2009-11-20 | 2010-05-12 | 哈尔滨工程大学 | Rotating strapdown system on-site proving method based on digital high-passing filtering |
CN102003968A (en) * | 2010-09-03 | 2011-04-06 | 哈尔滨工程大学 | Single-axle table calibration method for fiber optic gyro strapdown inertial navigation system |
CN103984830A (en) * | 2014-05-23 | 2014-08-13 | 湖北三江航天红峰控制有限公司 | Simulation method for digital closed-loop control logic of fiber-optic gyroscope |
Non-Patent Citations (2)
Title |
---|
刘瑞鑫: "数字闭环光纤陀螺仪的系统设计与实现", 《中国优秀硕士学位论文全文数据库·工程科技Ⅱ辑》 * |
王立辉: "光纤陀螺光电信号的分析与采集", 《中国优秀博硕士学位论文全文数据库(硕士)·工程科技Ⅱ辑》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106908079A (en) * | 2015-12-23 | 2017-06-30 | 北京自动化控制设备研究所 | Three axis optical fibre gyro combines constant multiplier automatic test device and method of testing |
CN114485724A (en) * | 2021-03-02 | 2022-05-13 | 北京天兵科技有限公司 | Method for rapidly evaluating scale nonlinear error of MEMS gyroscope |
CN113310482A (en) * | 2021-06-10 | 2021-08-27 | 西安中科华芯测控有限公司 | Sine wave modulation method of digital closed-loop fiber-optic gyroscope |
CN113310482B (en) * | 2021-06-10 | 2022-02-18 | 西安中科华芯测控有限公司 | A sine wave modulation method of digital closed-loop fiber optic gyroscope |
CN113720355A (en) * | 2021-09-10 | 2021-11-30 | 北京控制工程研究所 | Gyro output saturation autonomous diagnosis method and system |
CN113720355B (en) * | 2021-09-10 | 2023-11-10 | 北京控制工程研究所 | A method and system for autonomous diagnosis of gyro output saturation |
CN113720357A (en) * | 2021-09-16 | 2021-11-30 | 北京控制工程研究所 | Gyro scale factor calibration and compensation method under vacuum full-temperature condition of 3S optical fiber IMU |
CN113720357B (en) * | 2021-09-16 | 2024-05-31 | 北京控制工程研究所 | Gyro scale factor calibration and compensation method under 3S optical fiber IMU vacuum full-temperature condition |
CN114166246A (en) * | 2021-11-19 | 2022-03-11 | 西安航天精密机电研究所 | Calibration method for scale factor of rate optical fiber gyroscope |
CN114166246B (en) * | 2021-11-19 | 2024-04-16 | 西安航天精密机电研究所 | Scale factor calibration method for rate fiber optic gyroscope |
CN114440933A (en) * | 2022-02-28 | 2022-05-06 | 中国船舶重工集团公司第七0七研究所 | Self-correcting system for rotation modulation scale of resonant gyroscope |
Also Published As
Publication number | Publication date |
---|---|
CN104634364B (en) | 2017-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104634364B (en) | A kind of self-calibrating method of the optic fiber gyroscope graduation factor based on Staircase wave | |
CN103808331B (en) | A kind of MEMS three-axis gyroscope error calibrating method | |
CN107655493B (en) | SINS six-position system-level calibration method for fiber-optic gyroscope | |
CN106017507B (en) | A kind of used group quick calibrating method of the optical fiber of precision low used in | |
CN100547352C (en) | Ground Speed Detection Method Suitable for Fiber Optic Gyro Strapdown Inertial Navigation System | |
CN102692239B (en) | Fiber optic gyroscope eight-position calibration method based on rotating mechanism | |
CN101915588A (en) | A temperature error compensation method for inertial devices | |
CN102538822A (en) | Method for fast testing and calibrating dynamic characteristic of fiber optic gyroscope | |
CN102519460A (en) | Non-linear alignment method of strapdown inertial navigation system | |
CN103900607B (en) | Rotation type strapdown inertial navigation system transposition method based on inertial system | |
CN103941042B (en) | A Calibration Method of Multiple Position Error Coefficients of Gyro Accelerometer | |
CN109737946A (en) | Automatic adjustment method of modulation depth in four-state modulation of high-precision fiber optic gyroscope | |
CN105806363A (en) | Alignment method of an underwater large misalignment angle based on SINS (Strapdown Inertial Navigation System)/DVL (Doppler Velocity Log) of SRQKF (Square-root Quadrature Kalman Filter) | |
CN105509768A (en) | Error calibration method of uniaxial north seeker | |
CN102788596B (en) | Spot calibration method of rotary strap-down inertial navigation system with unknown carrier attitude | |
CN110361031A (en) | A kind of IMU population parameter error quick calibrating method theoretical based on backtracking | |
CN105157723A (en) | Fiber gyro-based strapdown inertial navigation system calibration method | |
CN107202575A (en) | A kind of SINS constant multiplier real-time compensation method with indexing mechanism | |
CN101629830A (en) | Calibration method and device of three-axis integrative high precision fiber optic gyro | |
CN111089576A (en) | Method for determining actual output value of fiber-optic gyroscope and method for testing threshold value of fiber-optic gyroscope | |
Wang et al. | Research on innovative self-calibration strategy for error parameters of dual-axis RINS | |
CN108318051B (en) | Method for testing threshold value of closed-loop fiber optic gyroscope | |
CN115574797A (en) | Method for testing angular velocity measurement error based on rotary table position mode | |
CN106595669A (en) | Attitude calculation method of rotating body | |
CN103940593B (en) | A kind of optical fibre gyro transition time method for fast measuring based on digital sawtooth waveforms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171003 |
|
CF01 | Termination of patent right due to non-payment of annual fee |