CN104630899A - Separation method of diamond layer - Google Patents
Separation method of diamond layer Download PDFInfo
- Publication number
- CN104630899A CN104630899A CN201510023495.4A CN201510023495A CN104630899A CN 104630899 A CN104630899 A CN 104630899A CN 201510023495 A CN201510023495 A CN 201510023495A CN 104630899 A CN104630899 A CN 104630899A
- Authority
- CN
- China
- Prior art keywords
- diamond
- diamond layer
- layer
- laser
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 238
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 232
- 238000000926 separation method Methods 0.000 title claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 37
- 239000010410 layer Substances 0.000 claims description 84
- 239000013078 crystal Substances 0.000 claims description 34
- 238000006056 electrooxidation reaction Methods 0.000 claims description 11
- 230000015556 catabolic process Effects 0.000 claims description 8
- 239000002344 surface layer Substances 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 abstract description 14
- 238000005520 cutting process Methods 0.000 abstract description 9
- 238000012545 processing Methods 0.000 abstract description 7
- 238000005468 ion implantation Methods 0.000 abstract description 5
- 238000003698 laser cutting Methods 0.000 abstract description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- -1 carbon ions Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/04—Diamond
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/04—After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本发明公开了一种金刚石层的分离方法,该方法包括以下步骤:采用激光对待处理的金刚石内部进行二维扫描,在待处理的金刚石表面以下一定深度形成非金刚石层;去除该非金刚石层,以实现对上述金刚石的上下分离。采用该方法不会破坏金刚石衬底表面,与激光切割技术相比,降低了金刚石切割中的损耗;与离子注入分离技术相比,节约了成本、缩短了加工时间。
The invention discloses a method for separating a diamond layer. The method comprises the following steps: using a laser to perform two-dimensional scanning inside the diamond to be processed, forming a non-diamond layer at a certain depth below the surface of the diamond to be processed; removing the non-diamond layer, In order to realize the upper and lower separation of the above-mentioned diamonds. The diamond substrate surface will not be damaged by the method, and compared with the laser cutting technology, the loss in diamond cutting is reduced; compared with the ion implantation separation technology, the cost is saved and the processing time is shortened.
Description
技术领域technical field
本发明属于半导体技术领域,具体涉及金刚石层的分离方法。The invention belongs to the technical field of semiconductors, and in particular relates to a method for separating a diamond layer.
背景技术Background technique
金刚石作为超硬工具,电子器件的衬底,在工业中的应用十分广泛。在所有的应用中,都希望使用大尺寸金刚石作为原材料。对于多晶金刚石而言,大于2英寸的多晶衬底已经能够合成,并用作光学窗口,超硬工具等领域。另一方面,单晶金刚石衬底是通过对天然或者合成金刚石利用激光切割、解理等方法切割成片而形成的。根据需要,对相应的表面进行抛光处理。然而,我们知道,天然金刚石非常稀有,大尺寸天然金刚石价格又非常昂贵。进一步讲,高温高压合成金刚石虽然被广泛应用在各个工业领域,但是这种方法又存在着一定的限制,如合成速率慢,随着尺寸增大,产量会急剧下降。因此,1×1cm2的单晶几乎已经成为极限。商业上使用的高温高压合成金刚石,常见的尺寸一般是5×5mm2。As a superhard tool and the substrate of electronic devices, diamond is widely used in industry. In all applications it is desirable to use large size diamond as the starting material. For polycrystalline diamond, polycrystalline substrates larger than 2 inches have been able to be synthesized and used as optical windows, superhard tools and other fields. On the other hand, single crystal diamond substrates are formed by cutting natural or synthetic diamond into pieces by laser cutting, cleavage, and the like. If necessary, polish the corresponding surface. However, we know that natural diamonds are very rare and large-sized natural diamonds are very expensive. Furthermore, although high-temperature and high-pressure synthetic diamond is widely used in various industrial fields, this method has certain limitations, such as slow synthesis rate, and the output will drop sharply as the size increases. Therefore, a single crystal of 1 × 1 cm has almost become the limit. The common size of high temperature and high pressure synthetic diamond used commercially is generally 5×5mm 2 .
使用化学气相沉积(CVD)的方法高速合成单晶金刚石目前已有报道,在生长中加入少量氮气,调整生长工艺,可以使得金刚石的生长速度超过150μm/h[1]。采用这种办法,可以使得合成的晶体厚度超过1cm[2]。另外利用CVD方法合成单晶金刚石的技术能够在CVD腔体构造扩大的情况下更容易增大合成金刚石的面积。通过控制工艺,调整导入的少量杂质气体,可以大面积高速度地进行外延生长。微波等离子体化学气相沉积(MPCVD)是目前大面积单晶金刚石生长中最常见的技术,结合在高温高压衬底上进行金刚石的三维生长和拼接技术,目前大面积生长技术得到的单晶金刚石尺寸已经到达了2英寸[3]。The high-speed synthesis of single crystal diamond by chemical vapor deposition (CVD) has been reported. Adding a small amount of nitrogen during the growth and adjusting the growth process can make the growth rate of diamond exceed 150 μm/h[1]. Using this approach, the thickness of the synthesized crystals can exceed 1 cm [2]. In addition, the technology of synthesizing single crystal diamond by CVD method can increase the area of synthetic diamond more easily when the structure of CVD cavity is enlarged. By controlling the process and adjusting the introduction of a small amount of impurity gas, epitaxial growth can be performed on a large area and at a high speed. Microwave plasma chemical vapor deposition (MPCVD) is currently the most common technology for large-area single-crystal diamond growth. Combined with the three-dimensional growth and splicing technology of diamond on a high-temperature and high-pressure substrate, the size of single-crystal diamond obtained by the current large-area growth technology is has reached 2 inches [3].
因此,在高温高压金刚石晶体上通过大面积生长技术可以进一步得到大面积单晶金刚石衬底。这样,再将大面积单晶金刚石衬底作为种晶,通过剥离的方法将外延生长的单晶金刚石层从种晶上分离,从而得到工业和研究上使用的商业化衬底。Therefore, large-area single-crystal diamond substrates can be further obtained through large-area growth techniques on high-temperature, high-pressure diamond crystals. In this way, the large-area single-crystal diamond substrate is used as the seed crystal, and the epitaxially grown single-crystal diamond layer is separated from the seed crystal by the method of exfoliation, thereby obtaining a commercial substrate used in industry and research.
如上所述,在由化学气相沉积技术合成的单晶金刚石晶体上,切割我们所需要的金刚石衬底,通常使用的方法是激光切割,金刚石锯切割等。使用这些办法切割时,切割区域的损伤厚度在数十到数百微米左右,这样的厚度已经与半导体衬底厚度相当,大大降低了种晶的利用效率。因此有必要寻找新的切割办法,尽量降低切割过程中造成的损失。As mentioned above, on the single crystal diamond crystal synthesized by chemical vapor deposition technology, the diamond substrate we need is cut, and the commonly used methods are laser cutting, diamond saw cutting and so on. When these methods are used for cutting, the thickness of the damage in the cutting area is about tens to hundreds of microns, which is equivalent to the thickness of the semiconductor substrate, which greatly reduces the utilization efficiency of the seed crystal. Therefore it is necessary to find a new cutting method to minimize the loss caused in the cutting process.
Fairchild和Mokuno等团队已经报道了使用高能碳离子或者氦离子注入到金刚石衬底中,在衬底表层以下一定深度形成非金刚石层,再在高温中退火后,然后使用电化学腐蚀的方法腐蚀掉非金刚石层,使得金刚石表层从原有金刚石衬底上分离[4,5]。但是,所需能量约为3MeV级的高能离子注入机非常昂贵,离子注入时间也很长,这样使用离子注入的方法分离金刚石在工业应用和科学研究上受到了限制。Teams such as Fairchild and Mokuno have reported that high-energy carbon ions or helium ions are implanted into diamond substrates to form a non-diamond layer at a certain depth below the surface of the substrate, and then annealed at high temperature, and then corroded by electrochemical corrosion. The non-diamond layer separates the diamond surface from the original diamond substrate [4,5]. However, a high-energy ion implanter with a required energy of about 3 MeV is very expensive, and the ion implantation time is also very long, so the use of ion implantation to separate diamonds is limited in industrial applications and scientific research.
参考文献references
[1]“High optical quality multicarat single crystal diamond produced bychemical vapor deposition”Yu-fei Meng*,Chih-shiue Yan,Szczesny KrasnickiPhys.Status Solidi A 209,No.1,101–104(2012)[1] "High optical quality multicarat single crystal diamond produced by chemical vapor deposition" Yu-fei Meng*, Chih-shiue Yan, Szczesny KrasnickiPhys.Status Solidi A 209, No.1, 101–104 (2012)
[2]“Synthesizing single-crystal diamond by repetition of high rateHomoepitaxial growth by microwave plasma CVD”Y.Mokuno*,A.Chayahara,Y.Soda,Y.Horino,N.Fujimori.Diamond&Related Materials 14(2005)1743–1746[2] "Synthesizing single-crystal diamond by repetition of high rate Homoepitaxial growth by microwave plasma CVD" Y.Mokuno*, A.Chayahara, Y.Soda, Y.Horino, N.Fujimori.Diamond&Related Materials 14(2005)1743–1746
[3]“A 2-in.mosaic wafer made of a single-crystal diamond”H.Yamada,A.Chayahara,Y.Mokuno,Y.Kato,and S.Shikata.Applied Physics Letters 104,102110(2014)[3] "A 2-in.mosaic wafer made of a single-crystal diamond" H.Yamada, A.Chayahara, Y.Mokuno, Y.Kato, and S.Shikata.Applied Physics Letters 104, 102110(2014)
[4]“Fabrication of Ultrathin Single-Crystal Diamond Membranes**”Barbara A.Fairchild,*Paolo Olivero,Sergey Rubanov.Adv.Mater.2008,20,4793–4798.[4] "Fabrication of Ultrathin Single-Crystal Diamond Membranes**" Barbara A. Fairchild, *Paolo Olivero, Sergey Rubanov. Adv. Mater. 2008, 20, 4793–4798.
[5]"Synthesis of large single crystal diamond plate by high ratehomoepitaxial growth using microwave plasma CVD and lift-off process"Y.Mokuno,A.Chayahara,H.Yamada.Diamond&Related Materials 17(2008)415–418.[5] "Synthesis of large single crystal diamond plate by high ratehomoepitaxial growth using microwave plasma CVD and lift-off process" Y.Mokuno,A.Chayahara,H.Yamada.Diamond&Related Materials 17(2008)415–418.
发明内容Contents of the invention
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种金刚石层的分离方法,采用该方法不会破坏金刚石表面,与激光切割技术相比,降低了金刚石切割中的损耗;与离子注入分离技术相比,节约了成本、缩短了加工时间。The technical problem to be solved by the present invention is to provide a method for separating the diamond layer for the above-mentioned deficiencies in the prior art, the method will not damage the diamond surface, and compared with the laser cutting technology, the loss in the diamond cutting is reduced; Compared with ion implantation separation technology, it saves cost and shortens processing time.
为解决上述技术问题,本发明采用的技术方案是,金刚石层的分离方法,该方法包括以下步骤:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is a method for separating the diamond layer, the method comprising the following steps:
采用激光对待处理的金刚石内部进行二维扫描,破坏扫描处的金刚石结构,在待处理的金刚石表面以下一定深度形成非金刚石层;去除该非金刚石层,以实现对上述金刚石的上下分离。Use laser to scan two-dimensionally inside the diamond to be treated, destroy the diamond structure at the scanning place, and form a non-diamond layer at a certain depth below the surface of the diamond to be treated; remove the non-diamond layer to realize the upper and lower separation of the above diamond.
进一步地,采用电化学腐蚀的方法腐蚀去除该非金刚石层。Further, the non-diamond layer is removed by electrochemical corrosion.
进一步地,在去除该非金刚石层之前,对待处理金刚石在≥800℃真空中退火,使得非金刚石层石墨化。Further, before removing the non-diamond layer, the diamond to be treated is annealed in vacuum at ≥800° C., so that the non-diamond layer is graphitized.
进一步地,所使用激光的能量密度为:待处理金刚石的击穿阈值-1.2J/cm2。Further, the energy density of the laser used is: the breakdown threshold of the diamond to be processed -1.2J/cm 2 .
进一步地,所述形成的非金刚石层的深度为表层下1μm-10μm,厚度为100nm-10μm。Further, the depth of the formed non-diamond layer is 1 μm-10 μm below the surface layer, and the thickness is 100 nm-10 μm.
进一步地,所述非金刚石层的表面积小于或等于金刚石的表面积。Further, the surface area of the non-diamond layer is smaller than or equal to that of diamond.
进一步地,所述金刚石为多晶结构或者单晶结构,同时可以为绝缘的天然金刚石或者绝缘的人造金刚石。Further, the diamond has a polycrystalline structure or a single crystal structure, and can be insulated natural diamond or insulated artificial diamond.
进一步地,所述激光为飞秒激光或者宽脉冲激光。Further, the laser is a femtosecond laser or a wide pulse laser.
本发明还提供了金刚石层的分离方法的应用,用于剥离金刚石衬底表层。The invention also provides the application of the method for separating the diamond layer, which is used for peeling off the surface layer of the diamond substrate.
本发明还提供了金刚石层的分离方法的另一种应用,用于剥离金刚石衬底上的外延生长金刚石层,具体是:采用激光对待处理的金刚石衬底内部进行二维扫描,破坏扫描处的金刚石结构,在待处理的金刚石衬底表面以下一定深度形成非金刚石层;在金刚石衬底表面外延生长一定厚度的金刚石层;去除该非金刚石层,以实现对上述金刚石的上下分离,得到非金刚石层以上的金刚石衬底和外延生长金刚石层、以及非金刚石层以下的金刚石衬底。The present invention also provides another application of the separation method of the diamond layer, which is used to peel off the epitaxially grown diamond layer on the diamond substrate, specifically: using a laser to perform two-dimensional scanning inside the diamond substrate to be processed, destroying the Diamond structure, a non-diamond layer is formed at a certain depth below the surface of the diamond substrate to be processed; a diamond layer of a certain thickness is epitaxially grown on the surface of the diamond substrate; the non-diamond layer is removed to achieve the above-mentioned diamond. The diamond substrate above the layer and the epitaxial growth diamond layer, and the diamond substrate below the non-diamond layer.
本发明一种用于剥离金刚石的方法,具有如下优点:1.短时间内可以在超过3mm×3mm以上的金刚石上剥离金刚石薄层(即金刚石衬底表层)或者金刚石衬底上的外延生长金刚石层,进而形成大面积单晶金刚石批量生产的能力。2.不受金刚石晶体结构的影响。3.与现有激光切割技术相比,大大降低金刚石切割中的损耗。与离子注入分离技术相比,节约了成本,缩短了加工时间。4.由于能够方便的剥离金刚石层,工业上实现了可以多次重复使用金刚石或外延层,不会造成浪费。5.所优选的飞秒激光利用的是雪崩电离或者多光子电离等非线性效应,其加工过程不会出现熔化过程,可以进行微米甚至是纳米尺度精细加工。A method for stripping diamond of the present invention has the following advantages: 1. In a short period of time, the diamond thin layer (i.e. the surface layer of the diamond substrate) or the epitaxial growth diamond on the diamond substrate can be stripped on a diamond exceeding 3mm × 3mm layer, thereby forming the ability to mass-produce large-area single crystal diamond. 2. Not affected by the diamond crystal structure. 3. Compared with the existing laser cutting technology, the loss in diamond cutting is greatly reduced. Compared with the ion implantation separation technology, the cost is saved and the processing time is shortened. 4. Since the diamond layer can be easily peeled off, the diamond or epitaxial layer can be reused many times in industry without causing waste. 5. The preferred femtosecond laser utilizes non-linear effects such as avalanche ionization or multi-photon ionization, and there is no melting process in the processing process, and micron or even nanoscale fine processing can be performed.
附图说明Description of drawings
图1是本发明中在金刚石内形成非金刚石所选用的激光系统的示意图;Fig. 1 is the schematic diagram of the selected laser system of forming non-diamond in diamond in the present invention;
图2是本发明中电化学腐蚀系统;Fig. 2 is electrochemical corrosion system among the present invention;
图3是本发明实施例所得的金刚石内部的非金刚石层的金相图。Fig. 3 is a metallographic diagram of the non-diamond layer inside the diamond obtained in the embodiment of the present invention.
其中:1.衰减器;2.分光镜;3.功率计;4.聚焦透镜;5.位移平台;6.电动驱动器;7.控制装置;8.激光器;9.再生放大器;10.反射镜,11.容器,12.电极;13扫描后金刚石样品;14电源;15.非金刚石层,16金刚石。Among them: 1. Attenuator; 2. Beam splitter; 3. Power meter; 4. Focusing lens; 5. Displacement platform; 6. Electric drive; 7. Control device; 8. Laser; 9. Regenerative amplifier; , 11. container, 12. electrode; 13 diamond sample after scanning; 14 power supply; 15. non-diamond layer, 16 diamond.
具体实施方式Detailed ways
本发明金刚石层的分离方法,该方法包括以下步骤:采用激光对待处理的金刚石内部进行二维扫描,破坏扫描处的金刚石结构,在待处理的金刚石表面以下一定深度形成非金刚石层;去除该非金刚石层,以实现对上述金刚石的上下分离。其中,可以采用电化学腐蚀的方法腐蚀去除该非金刚石层。在去除该非金刚石层之前,对待处理金刚石在≥800℃真空中退火,使得非金刚石层石墨化。The separation method of the diamond layer of the present invention comprises the following steps: using a laser to perform two-dimensional scanning inside the diamond to be processed, destroying the diamond structure at the scanning place, and forming a non-diamond layer at a certain depth below the surface of the diamond to be processed; removing the non-diamond The diamond layer is used to realize the upper and lower separation of the above-mentioned diamonds. Wherein, the non-diamond layer may be etched and removed by means of electrochemical etching. Before removing the non-diamond layer, the diamond to be treated is annealed in vacuum at ≥ 800° C., so that the non-diamond layer is graphitized.
本发明还提供了金刚石层的分离方法的应用,用于剥离金刚石衬底表层。还可用于剥离金刚石衬底上的外延生长金刚石层,具体是:采用激光对待处理的金刚石衬底内部进行二维扫描,破坏扫描处的金刚石结构,在待处理的金刚石衬底表面以下一定深度形成非金刚石层;采用化学气相沉积法等方法在金刚石衬底表面外延生长一定厚度的金刚石层;去除该非金刚石层,以实现对上述金刚石的上下分离,得到非金刚石层以上的金刚石衬底和外延生长金刚石层、以及非金刚石层以下的金刚石衬底。上述两种应用只是增加了外延生产金刚石层的步骤,其余步骤均相同,同时,本发明同样适用其他工业中需要剥离金刚石层时的应用。The invention also provides the application of the method for separating the diamond layer, which is used for peeling off the surface layer of the diamond substrate. It can also be used to peel off the epitaxial growth diamond layer on the diamond substrate, specifically: use laser to scan the inside of the diamond substrate to be processed two-dimensionally, destroy the diamond structure at the scanning place, and form a certain depth below the surface of the diamond substrate to be processed. Non-diamond layer; using methods such as chemical vapor deposition to epitaxially grow a diamond layer with a certain thickness on the surface of the diamond substrate; remove the non-diamond layer to realize the upper and lower separation of the above-mentioned diamond, and obtain a diamond substrate above the non-diamond layer and epitaxy A diamond layer, and a diamond substrate below the non-diamond layer are grown. The above two applications only increase the step of epitaxially producing the diamond layer, and the rest of the steps are the same. At the same time, the present invention is also applicable to applications when the diamond layer needs to be peeled off in other industries.
本方明金刚石层的分离方法中:In the separation method of the Fang Ming diamond layer:
1.金刚石的选择1. Diamond selection
金刚石可以是绝缘的天然金刚石,也可以是绝缘的人造金刚石,可以是单晶金刚石也可以是多晶金刚石。在单晶金刚石中,有不同的晶面(100)(111),在晶面处还可以存在倾斜角,本发明都可以适用。Diamond can be insulated natural diamond, insulated synthetic diamond, single crystal diamond or polycrystalline diamond. In single crystal diamond, there are different crystal planes (100)(111), and there may also be tilt angles at the crystal planes, and the present invention is applicable to all of them.
2.非金刚石层的形成2. Formation of non-diamond layer
利用激光二维扫描金刚石,通过多光子吸收过程形成大量自由电子,在强光场的条件下,发生光击穿,使得金刚石中sp3键向sp2键转变。Using a laser to scan diamond two-dimensionally, a large number of free electrons are formed through the process of multi-photon absorption. Under the condition of strong light field, light breakdown occurs, which makes the sp 3 bond in the diamond transform into sp 2 bond.
如图1所示为一种在金刚石内形成非金刚石所选用的激光系统,包括激光器8、再生放大器9、衰减器1和聚焦透镜4,所述激光器8用于发射激光,所述激光光路上依次设置有再生放大器9、反射镜10和衰减器1,所述衰减器1的出射光侧设置有分光镜2,所述出射光照射在分光镜2上分为两路,其中一路激光透射进入功率计3,另一路激光反射进入聚焦透镜4,聚焦透镜4的出光侧设置有用于放置待处理金刚石的位移平台5,该路激光经聚焦透镜4聚焦于待处理金刚石内部,位移平台5还与电动驱动器6相连接;激光器8还与控制装置7相连接。需要说明的是,本发明中并不局限于某一种激光系统,也可以选用其他满足条件的激光系统。As shown in Figure 1, it is a kind of laser system selected for forming non-diamond in diamond, including laser device 8, regenerative amplifier 9, attenuator 1 and focusing lens 4, and described laser device 8 is used for emitting laser light, and described laser light path A regenerative amplifier 9, a reflector 10 and an attenuator 1 are arranged in sequence, and a beam splitter 2 is arranged on the exit light side of the attenuator 1, and the exit light is irradiated on the beam splitter 2 and divided into two paths, wherein one path of laser light is transmitted into the Power meter 3, another laser beam is reflected into the focusing lens 4, and the light output side of the focusing lens 4 is provided with a displacement platform 5 for placing the diamond to be processed. The electric drive 6 is connected; the laser 8 is also connected with the control device 7 . It should be noted that the present invention is not limited to a certain laser system, and other laser systems that meet the conditions can also be selected.
具体如下:掺钛蓝宝石(Ti:sapphire,以下简称钛宝石)激光器产生的激光在再生放大器放大作用下,单脉冲能量达3.7mJ,脉冲宽度50fs,通过选择衰减片,使激光能量达到金刚石的击穿阈值或者以上(天然金刚石光击穿阈值:0.4J/cm2,CVD金刚石光击穿阈值:0.3J/cm2),再通过聚焦透镜4和高精度三维位移平台5将激光聚焦到金刚石表面以下一定深度内,并进行二维扫描。The details are as follows: the laser generated by the titanium-doped sapphire (Ti:sapphire, hereinafter referred to as Ti:sapphire) laser is amplified by the regenerative amplifier, the single pulse energy reaches 3.7mJ, and the pulse width is 50fs. Transition threshold or above (natural diamond optical breakdown threshold: 0.4J/cm 2 , CVD diamond optical breakdown threshold: 0.3J/cm 2 ), and then focus the laser on the diamond surface through the focusing lens 4 and the high-precision three-dimensional displacement platform 5 Below a certain depth, and perform two-dimensional scanning.
在此过程中,选择合适的激光脉冲能量扫描金刚石是关键,能量低于阈值,激光不足以导致光击穿,能量太高,则会损伤金刚石表面。一般选择激光能量密度从阈值到1.2J/cm2范围内。In this process, choosing the appropriate laser pulse energy to scan the diamond is the key. If the energy is lower than the threshold, the laser is not enough to cause light breakdown. If the energy is too high, the diamond surface will be damaged. Generally, the laser energy density is selected within the range from the threshold value to 1.2J/cm 2 .
激光聚焦深度由聚焦透镜4和位移平台5决定,为了实现工业中金刚石多次的重复使用,聚焦深度选取在金刚石表层以下1μm-10μm范围。非金刚石层的厚度由能量密度和扫描速度共同决定,非金刚石层的厚度在扫描速度一定时与能量密度成正比;在能量密度一定时与扫描速度成反比。扫描速度根据实验需要,可以选择在10μm/s-100μm/s。非金刚石层的厚度越薄,对待处理的金刚石的损耗越小,但是由于工艺条件的限制,非金刚石层的厚度可以控制在100nm-10μm范围。The laser focus depth is determined by the focus lens 4 and the displacement platform 5. In order to realize the repeated use of diamonds in the industry, the focus depth is selected in the range of 1 μm-10 μm below the diamond surface. The thickness of the non-diamond layer is determined by both the energy density and the scanning speed. The thickness of the non-diamond layer is proportional to the energy density when the scanning speed is constant, and inversely proportional to the scanning speed when the energy density is constant. The scanning speed can be selected from 10 μm/s to 100 μm/s according to the experimental needs. The thinner the non-diamond layer, the smaller the loss of the diamond to be treated, but due to the limitation of process conditions, the thickness of the non-diamond layer can be controlled within the range of 100nm-10μm.
在对金刚石聚焦并进行二维扫描后,金刚石中的焦平面处金刚石结构由于光击穿而被破坏,形成非金刚石结构,这样可以利用电化学腐蚀等方法去除金刚石中的非金刚石层。After the diamond is focused and scanned two-dimensionally, the diamond structure at the focal plane in the diamond is destroyed due to light breakdown, forming a non-diamond structure, so that the non-diamond layer in the diamond can be removed by electrochemical corrosion.
在激光加工金刚石形成非金刚石层后,将待处理金刚石整体在≥800℃真空中退火后,使得非金刚石层石墨化,从而加快电化学腐蚀速率。After laser processing diamond to form a non-diamond layer, the whole diamond to be processed is annealed in a vacuum of ≥800°C, so that the non-diamond layer is graphitized, thereby accelerating the electrochemical corrosion rate.
3.外延生长3. Epitaxial growth
当金刚石被激光扫描加工后,在该金刚石上用微波等离子体化学气相沉积技术(MPCVD)外延生长单晶金刚石膜。这里虽然提到微波等离子体外延生长技术,但是这里并不局限于该技术,比如利用热丝CVD、直流CVD等。作为特例,利用微波等离子体CVD来外延生长,在特定的生长条件下,可以外延生长高质量高纯度金刚石单晶薄膜。作为生长气体,可以使用例如氢气和甲烷的混合气体。更进一步来讲,加入适量的氮气,可以大幅度提高生长速率,而且也可以拟制异常成核和异常生长,特别是在单晶金刚石的情况下,可以在短时间内使得单晶生长达到所需的厚度。气体的比例一般为:CH4/H2为1%-20%;N2/CH4为0-3%。After the diamond is processed by laser scanning, a single crystal diamond film is epitaxially grown on the diamond by microwave plasma chemical vapor deposition (MPCVD). Although the microwave plasma epitaxial growth technology is mentioned here, it is not limited to this technology, such as using hot wire CVD, DC CVD, and the like. As a special case, microwave plasma CVD is used for epitaxial growth. Under specific growth conditions, high-quality and high-purity diamond single crystal thin films can be epitaxially grown. As the growth gas, for example, a mixed gas of hydrogen and methane can be used. Furthermore, adding an appropriate amount of nitrogen can greatly increase the growth rate, and can also simulate abnormal nucleation and abnormal growth, especially in the case of single crystal diamond, which can make the single crystal growth reach the desired level in a short time. desired thickness. The gas ratio is generally: CH 4 /H 2 is 1%-20%; N 2 /CH 4 is 0-3%.
这里说明上面提到的特定生长条件,使用的微波等离子体CVD的频率,一般情况下为2.45GHz或者915MHz等,对于功率,这里不作特殊的限定,一般情况下为0.5KW-30KW。在此情况下,根据CVD的结构调整功率,使得温度达到900℃-1250℃。维持金刚石在此温度下,可以促进激光加工的非金刚石层石墨化。The specific growth conditions mentioned above are described here. The frequency of the microwave plasma CVD used is generally 2.45GHz or 915MHz. There is no special limitation on the power, which is generally 0.5KW-30KW. In this case, the power is adjusted according to the structure of CVD so that the temperature reaches 900°C-1250°C. Maintaining diamond at this temperature promotes graphitization of laser-processed non-diamond layers.
4.电化学腐蚀非金刚石层4. Electrochemical corrosion of non-diamond layer
按照上述方法,金刚石衬底在激光作用后,将在表面以下一定深度下形成非金刚石层。将该衬底放入盛有电解液的容器中进行电化学腐蚀。具体过程如下:According to the above method, after the laser is applied to the diamond substrate, a non-diamond layer will be formed at a certain depth below the surface. Put the substrate into a container containing electrolyte for electrochemical corrosion. The specific process is as follows:
如图2所示,电化学腐蚀系统中包括交流或直流电源14,石墨或者铂金电极12、容器11及电解液,扫描后金刚石样品13竖直放置于电极中间,加入的电解液为高电阻(~18Ω·cm)溶液,加入量要淹没金刚石样13。电极12上所加电压由电源14控制,一般要使得两电极间的电场达到一定值。电场越大,腐蚀速率越快。但是电压太高,可能会导致电极间放电,容易对金刚石表面造成损伤。在电化学腐蚀的过程中,随着时间的推移,电解液吸收空气中的CO2,使得电解液电阻下降,通过电解液的电流上升,溶液中气泡增多,气泡会包裹样品,从而无法达到腐蚀的作用。与此同时增大的电流会产生很大热量,使得电解液被加热至沸腾。所以在腐蚀过程中要及时更换电解液,使得电流维持在0~1A范围内。As shown in Figure 2, the electrochemical corrosion system includes an AC or DC power supply 14, a graphite or platinum electrode 12, a container 11 and an electrolyte. After scanning, the diamond sample 13 is vertically placed in the middle of the electrodes, and the electrolyte added is a high resistance ( ~18Ω·cm) solution, the amount added should submerge the diamond sample 13. The voltage applied to the electrodes 12 is controlled by the power supply 14, generally to make the electric field between the two electrodes reach a certain value. The larger the electric field, the faster the corrosion rate. However, if the voltage is too high, it may cause discharge between electrodes and easily damage the diamond surface. In the process of electrochemical corrosion, as time goes by, the electrolyte absorbs CO 2 in the air, so that the resistance of the electrolyte decreases, the current through the electrolyte increases, and the bubbles in the solution increase, and the bubbles will wrap the sample, so that the corrosion cannot be achieved. role. At the same time, the increased current will generate a lot of heat, causing the electrolyte to be heated to boiling. Therefore, during the corrosion process, the electrolyte should be replaced in time to keep the current within the range of 0-1A.
实验举例:Experiment example:
本实施例中,具体选用一尺寸为3×3×0.3mm3商业化单面抛光单晶金刚石衬底,首先将其进行酸煮处理,清理抛光面。然后对金刚石衬底用酒精、丙酮、去离子水超声清洗。然后,使用飞秒激光加工系统将激光聚焦在金刚石表面下一定深度内,并进行二维扫描。焦点处激光光斑直径约8μm,焦点在表面下10μm处,样品表面处激光平均功率约9mW,扫描速度40μm/s,扫描间距为7μm。扫描后金刚石的颜色由浅黄变成黑色,用电子扫描显微镜对其截面进行观察,在焦平面处发现了明显的界面层,如图3,这说明了在金刚石16中发生了光击穿,形成了非金刚石层15。In this embodiment, a commercial single-sided polished single-crystal diamond substrate with a size of 3×3×0.3 mm 3 is specifically selected, and it is first subjected to acid boiling treatment to clean the polished surface. Then the diamond substrate was ultrasonically cleaned with alcohol, acetone and deionized water. Then, a femtosecond laser processing system is used to focus the laser within a certain depth under the diamond surface and perform two-dimensional scanning. The diameter of the laser spot at the focus is about 8 μm, the focus is 10 μm below the surface, the average laser power at the sample surface is about 9 mW, the scanning speed is 40 μm/s, and the scanning distance is 7 μm. After scanning, the color of the diamond changed from light yellow to black. The cross-section was observed with a scanning electron microscope, and an obvious interface layer was found at the focal plane, as shown in Figure 3, which indicated that optical breakdown occurred in diamond 16, forming The non-diamond layer 15 was removed.
经过飞秒激光加工后的金刚石放入微波等离子体CVD腔中进行外延生长。生长前,在氢等离子体氛围中,将衬底表面温度调整到1000℃进行五分钟退火,一方面清洁金刚石衬底表面,另一方面促使非金刚石层的石墨化,然后进行外延生长。微波功率在5kW左右,腔体压强设定为150torr,氢气流量为500sccm,甲烷为50sccm,为了加快生长速度,在生长中人为的加入一定量的氮气,这里加入量为1.0sccm,生长温度控制在1200℃左右。生长12h后,外延生长厚度达到0.58mm。The diamond processed by the femtosecond laser is placed in a microwave plasma CVD chamber for epitaxial growth. Before growth, adjust the substrate surface temperature to 1000°C for five minutes annealing in a hydrogen plasma atmosphere. On the one hand, the surface of the diamond substrate is cleaned, on the other hand, the graphitization of the non-diamond layer is promoted, and then epitaxial growth is performed. The microwave power is about 5kW, the cavity pressure is set to 150torr, the hydrogen flow rate is 500sccm, and the methane is 50sccm. In order to speed up the growth, a certain amount of nitrogen is artificially added during the growth. The amount added here is 1.0sccm, and the growth temperature is controlled at Around 1200°C. After 12 hours of growth, the epitaxial growth thickness reaches 0.58mm.
然后,将外延生长后的金刚石样品放入电化学腐蚀系统中。使用铂金作为电极,样品与铂金电极垂直,电极的间距在1cm左右。用去离子水作为电解液,加入的量要淹没金刚石样品。在电极上接上1000V的交流电源,进行腐蚀。在腐蚀中要定时更换去离子水。在腐蚀5h后,样品中黑色退去,外延金刚石层与金刚石衬底分离。Then, put the epitaxially grown diamond sample into the electrochemical corrosion system. Platinum is used as the electrode, the sample is perpendicular to the platinum electrode, and the distance between the electrodes is about 1cm. Deionized water was used as electrolyte in an amount to submerge the diamond sample. Connect a 1000V AC power supply to the electrodes for corrosion. During corrosion, the deionized water should be replaced regularly. After corroding for 5 hours, the black in the sample faded, and the epitaxial diamond layer was separated from the diamond substrate.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510023495.4A CN104630899B (en) | 2015-01-17 | 2015-01-17 | The separation method of diamond layer |
PCT/CN2015/077120 WO2016112596A1 (en) | 2015-01-17 | 2015-04-21 | Separation method for diamond layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510023495.4A CN104630899B (en) | 2015-01-17 | 2015-01-17 | The separation method of diamond layer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104630899A true CN104630899A (en) | 2015-05-20 |
CN104630899B CN104630899B (en) | 2017-09-22 |
Family
ID=53210130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510023495.4A Active CN104630899B (en) | 2015-01-17 | 2015-01-17 | The separation method of diamond layer |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104630899B (en) |
WO (1) | WO2016112596A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111093885A (en) * | 2017-08-22 | 2020-05-01 | 钻石技术有限公司 | System and method for manufacturing a predetermined structure from a diamond mass |
CN111996581A (en) * | 2020-07-08 | 2020-11-27 | 西安电子科技大学 | A lossless rapid separation method of single crystal diamond and substrate |
CN112430803A (en) * | 2020-11-16 | 2021-03-02 | 北京科技大学 | Preparation method of self-supporting ultrathin diamond film |
CN113964084A (en) * | 2021-09-29 | 2022-01-21 | 西安交通大学 | Diamond through hole array structure and preparation method and application thereof |
CN114083160A (en) * | 2021-12-17 | 2022-02-25 | 西安交通大学 | Device and method for preparing diamond micro-through hole |
CN115255681A (en) * | 2022-06-29 | 2022-11-01 | 上海启镨新材料有限公司 | Method for stripping diamond crystal from inner layer by femtosecond laser |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115491764B (en) * | 2022-09-29 | 2024-01-30 | 中国电子科技集团公司第十三研究所 | Method for stripping epitaxial diamond and GaN material |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4693377A (en) * | 1983-05-24 | 1987-09-15 | The British Petroleum Company P.L.C. | Diamond separation using raman scattering |
CN1291349A (en) * | 1998-02-17 | 2001-04-11 | 纽约市哥伦比亚大学托管会 | Crystal ion-slicing of single crystal films |
CN101663125A (en) * | 2007-04-05 | 2010-03-03 | 彩覇阳光株式会社 | Laser machining method, laser cutting method, and method for dividing structure having multilayer board |
CN102470484A (en) * | 2009-08-11 | 2012-05-23 | 浜松光子学株式会社 | Laser machining device and laser machining method |
CN102753737A (en) * | 2010-03-05 | 2012-10-24 | 并木精密宝石株式会社 | Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor |
CN102947493A (en) * | 2010-06-22 | 2013-02-27 | 欧司朗光电半导体有限公司 | Method for slicing a substrate wafer |
CN103551736A (en) * | 2000-09-13 | 2014-02-05 | 浜松光子学株式会社 | Cutting method for optically transparent material |
CN103710748A (en) * | 2013-12-12 | 2014-04-09 | 王宏兴 | Growth method of high-quality high-speed monocrystal diamond film |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4742800B2 (en) * | 2005-10-18 | 2011-08-10 | 住友電気工業株式会社 | Diamond processing method |
JP5142282B2 (en) * | 2008-09-09 | 2013-02-13 | 独立行政法人産業技術総合研究所 | Diamond surface processing method |
RU2469433C1 (en) * | 2011-07-13 | 2012-12-10 | Юрий Георгиевич Шретер | Method for laser separation of epitaxial film or layer of epitaxial film from growth substrate of epitaxial semiconductor structure (versions) |
-
2015
- 2015-01-17 CN CN201510023495.4A patent/CN104630899B/en active Active
- 2015-04-21 WO PCT/CN2015/077120 patent/WO2016112596A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4693377A (en) * | 1983-05-24 | 1987-09-15 | The British Petroleum Company P.L.C. | Diamond separation using raman scattering |
CN1291349A (en) * | 1998-02-17 | 2001-04-11 | 纽约市哥伦比亚大学托管会 | Crystal ion-slicing of single crystal films |
CN103551736A (en) * | 2000-09-13 | 2014-02-05 | 浜松光子学株式会社 | Cutting method for optically transparent material |
CN101663125A (en) * | 2007-04-05 | 2010-03-03 | 彩覇阳光株式会社 | Laser machining method, laser cutting method, and method for dividing structure having multilayer board |
CN102470484A (en) * | 2009-08-11 | 2012-05-23 | 浜松光子学株式会社 | Laser machining device and laser machining method |
CN102753737A (en) * | 2010-03-05 | 2012-10-24 | 并木精密宝石株式会社 | Internal reforming substrate for epitaxial growth, internal reforming substrate with multilayer film, semiconductor device, bulk semiconductor substrate, and production methods therefor |
CN102947493A (en) * | 2010-06-22 | 2013-02-27 | 欧司朗光电半导体有限公司 | Method for slicing a substrate wafer |
CN103710748A (en) * | 2013-12-12 | 2014-04-09 | 王宏兴 | Growth method of high-quality high-speed monocrystal diamond film |
Non-Patent Citations (1)
Title |
---|
T.V. KONONENKO,ET AL.: "Femtosecond laser microstructuring in the bulk of diamond", 《DIAMOND & RELATED MATERIALS》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111093885A (en) * | 2017-08-22 | 2020-05-01 | 钻石技术有限公司 | System and method for manufacturing a predetermined structure from a diamond mass |
CN111996581A (en) * | 2020-07-08 | 2020-11-27 | 西安电子科技大学 | A lossless rapid separation method of single crystal diamond and substrate |
CN111996581B (en) * | 2020-07-08 | 2021-10-26 | 西安电子科技大学 | Loss-free rapid separation method for single crystal diamond and substrate |
CN112430803A (en) * | 2020-11-16 | 2021-03-02 | 北京科技大学 | Preparation method of self-supporting ultrathin diamond film |
CN112430803B (en) * | 2020-11-16 | 2022-04-01 | 北京科技大学 | Preparation method of self-supporting ultrathin diamond film |
CN113964084A (en) * | 2021-09-29 | 2022-01-21 | 西安交通大学 | Diamond through hole array structure and preparation method and application thereof |
CN114083160A (en) * | 2021-12-17 | 2022-02-25 | 西安交通大学 | Device and method for preparing diamond micro-through hole |
CN115255681A (en) * | 2022-06-29 | 2022-11-01 | 上海启镨新材料有限公司 | Method for stripping diamond crystal from inner layer by femtosecond laser |
Also Published As
Publication number | Publication date |
---|---|
CN104630899B (en) | 2017-09-22 |
WO2016112596A1 (en) | 2016-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104630899B (en) | The separation method of diamond layer | |
US8940266B2 (en) | Large diamond crystal substrates and methods for producing the same | |
EP2048267B1 (en) | Process for producing single-crystal substrate with off angle | |
CN102041551B (en) | Base material for growing single crystal diamond and method for producing single crystal diamond substrate | |
JP5621994B2 (en) | Mosaic diamond manufacturing method | |
WO2015199180A1 (en) | Process for producing diamond substrate, diamond substrate, and diamond composite substrate | |
CN110079860B (en) | Splicing growth method of large-size single crystal diamond epitaxial wafer | |
EP1896270A2 (en) | Etching technique for the fabrication of thin (ai, in, ga)n layers | |
US9410241B2 (en) | Method for separating surface layer or growth layer of diamond | |
CN101892521A (en) | Substrate for growing single crystal diamond layer and method for manufacturing single crystal diamond substrate | |
CN204413401U (en) | For forming the device of non-diamond layer under diamond top layer | |
JP4803464B2 (en) | Method for removing surface damage of single crystal diamond | |
JP5382742B2 (en) | Method for manufacturing single crystal substrate having off-angle | |
CN111996581B (en) | Loss-free rapid separation method for single crystal diamond and substrate | |
JP4340881B2 (en) | Diamond manufacturing method | |
JP6041229B2 (en) | Diamond composite, method for producing diamond composite, and method for producing single crystal diamond | |
JP2012086988A (en) | Process for exfoliating diamond | |
JP4742800B2 (en) | Diamond processing method | |
CN111146146B (en) | Preparation method of high-efficiency heat-dissipation semiconductor substrate with reusable base | |
CN115274407A (en) | Preparation method of MOS wafer film | |
TW202503845A (en) | Method for manufacturing semiconductor substrate, semiconductor substrate, and semiconductor device | |
CN118900941A (en) | Nitride semiconductor substrate and method for manufacturing nitride semiconductor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190916 Address after: 710049 Xianning West Road, Shaanxi, China, No. 28, No. Patentee after: Xi'an Jiaotong University Address before: 710049 Xianning West Road, Shaanxi, China, No. 28, No. Patentee before: Wang Hong Xing |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211105 Address after: 710075 No. 4169, maker space, 1896, 4th floor, returnees building, No. 18, Gaoxin 1st Road, high tech Zone, Xi'an, Shaanxi Province Patentee after: Xi'an te te Semiconductor Technology Co.,Ltd. Address before: 710049 No. 28 West Xianning Road, Shaanxi, Xi'an Patentee before: XI'AN JIAOTONG University |