[go: up one dir, main page]

CN104615010B - FlightGear and VC hybrid system development approaches based on network service - Google Patents

FlightGear and VC hybrid system development approaches based on network service Download PDF

Info

Publication number
CN104615010B
CN104615010B CN201410829405.6A CN201410829405A CN104615010B CN 104615010 B CN104615010 B CN 104615010B CN 201410829405 A CN201410829405 A CN 201410829405A CN 104615010 B CN104615010 B CN 104615010B
Authority
CN
China
Prior art keywords
flightgear
aircraft
formation
management
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410829405.6A
Other languages
Chinese (zh)
Other versions
CN104615010A (en
Inventor
陈伟
李波
李一波
王毅
吴星刚
牟鹏
张晏
刘超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Aircraft Industrial Group Co Ltd
Shenyang Aerospace University
Original Assignee
Chengdu Aircraft Industrial Group Co Ltd
Shenyang Aerospace University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Aircraft Industrial Group Co Ltd, Shenyang Aerospace University filed Critical Chengdu Aircraft Industrial Group Co Ltd
Priority to CN201410829405.6A priority Critical patent/CN104615010B/en
Publication of CN104615010A publication Critical patent/CN104615010A/en
Application granted granted Critical
Publication of CN104615010B publication Critical patent/CN104615010B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种多机编队飞行可视化联合仿真系统的开发方法,目的在于提供一种基于网络通信的FlightGear、VC和Matlab(Simulink)的混合的、可视化联合仿真系统开发方法,实现多机编队飞行控制、任务协同分配、空战等一系列算法研究、仿真与虚拟现实演示,为多机编队协同控制所要解决的关键技术研究与实战预演提供有效的验证平台。系统采用开源软件FlightGear实现虚拟现实、场景演示,采用VC开发系统编队管理、数据管理、任务管理与通信软件,采用Simulink运行飞机模型与控制算法,这三大部分都通过基于以太网的UDP通信交换信息,构成完整整体。

The present invention relates to a development method of a visual co-simulation system for multi-machine formation flight, and the purpose is to provide a development method of a mixed and visual co-simulation system based on network communication FlightGear, VC and Matlab (Simulink), so as to realize multi-machine formation flight A series of algorithm research, simulation and virtual reality demonstrations such as control, task coordination allocation, and air combat provide an effective verification platform for key technology research and actual combat rehearsals to be solved by multi-aircraft formation collaborative control. The system uses the open source software FlightGear to realize virtual reality and scene demonstration, uses VC to develop system formation management, data management, task management and communication software, and uses Simulink to run the aircraft model and control algorithm. These three parts are exchanged through UDP communication based on Ethernet information to form a complete whole.

Description

基于网络通信的FlightGear和VC混合系统开发方法Development Method of FlightGear and VC Mixed System Based on Network Communication

技术领域:本发明涉及了一种多机编队飞行模拟仿真系统的开发方法,特别是指基于网络通信的FlightGear和VC混合多机编队可视化联合飞行仿真的开发方法,属于将算法研究、工程验证和可视化仿真技术相结合的技术领域。Technical field: The present invention relates to a development method of a multi-aircraft formation flight simulation system, especially a development method based on network communication-based FlightGear and VC mixed multi-aircraft formation visual joint flight simulation, which belongs to algorithm research, engineering verification and A technical field that combines visual simulation technology.

背景技术:目前国内外已经有很多科研机构将FlightGear(模拟飞行软件)用于飞行仿真研究项目当中。例如英国威尔士大学在飞控系统仿真中,利用FlightGear引擎实现了可视化环境仿真;飞行管理和地面设备公司ARINC将FlightGear软件发送NMEA格式的位置信息部分改为GPS信息,通过ARINC429数据格式发送给飞行管理计算机来测试其飞行管理计算机;国防科技大学的研究人员利用FlightGear作为仿真可视化引擎,使用AeroSim模块集建立仿真模块,将飞行数据传输给局域网中的任意一台运行FlightGear的计算机,进行飞行模拟动态显示;北京气象研究所使用Matlab/Simulink仿真工具建立飞行弹道/姿态仿真模块,在此基础上使用FlightGear作为可视化引擎实现飞行仿真中的天气条件、飞行姿态和地理环境的三维可视化显示。Background technology: At present, many scientific research institutions at home and abroad have used FlightGear (flight simulation software) for flight simulation research projects. For example, in the flight control system simulation of the University of Wales, the FlightGear engine was used to realize the visual environment simulation; the flight management and ground equipment company ARINC changed the part of the position information sent by the FlightGear software in NMEA format to GPS information, and sent it to the flight management through the ARINC429 data format Computer to test its flight management computer; researchers at National University of Defense Technology use FlightGear as a simulation visualization engine, use the AeroSim module set to build a simulation module, and transmit flight data to any computer running FlightGear in the LAN for dynamic display of flight simulation The Beijing Institute of Meteorology uses Matlab/Simulink simulation tools to establish a flight trajectory/attitude simulation module. On this basis, FlightGear is used as a visualization engine to realize the three-dimensional visualization display of weather conditions, flight attitude and geographical environment in flight simulation.

FlightGear飞行模拟器的视景显示逼真,能够真实地反映天气、地理等飞行环境,其内部的动力学模型能够通过XML格式配置文件获得飞行器的参数,并且可以配置软件的运行环境,进行实时仿真。本发明充分利用了FlightGear的强大视景显示和XML格式配置文件实现多机编队的可视化飞行显示。The visual display of FlightGear flight simulator is realistic and can truly reflect the flight environment such as weather and geography. Its internal dynamic model can obtain aircraft parameters through XML format configuration files, and can configure the operating environment of the software for real-time simulation. The invention makes full use of the powerful visual display of FlightGear and configuration files in XML format to realize the visual flight display of multi-aircraft formation.

发明内容:本发明所要解决的技术问题是提供一种基于网络通信的FlightGear、VC和Simulink可视化联合仿真的开发方法,实现多机编队飞行控制、任务协同分配、空战演示等一系列仿真,为多机编队协同控制所要解决的关键技术提供有效的验证平台。Summary of the invention: the technical problem to be solved by the present invention is to provide a development method based on network communication-based FlightGear, VC and Simulink visual co-simulation, to realize a series of simulations such as multi-aircraft formation flight control, task coordination assignment, air combat demonstration, etc. Provide an effective verification platform for the key technologies to be solved in the collaborative control of aircraft formations.

为实现上述目的,本发明采用的技术方案是:基于网络通信的FlightGear和VC混合系统开发方法,该方法的实现系统采用开源软件FlightGear实现虚拟现实、场景演示,采用VC开发系统编队管理、数据管理、任务管理与通信软件,采用Simulink运行飞机模型与控制算法,这三大部分都通过基于以太网的UDP通信交换信息,构成完整整体。系统整体主要由编队飞机终端、场景态势显示、综合管理终端和FlightGear服务器以及以太网交换机组成。编队飞机终端同时运行飞机FlightGear、单机控制模块以及飞机Simulink的飞机模型。系统采用集中管理和分散协调控制相结合的方式,以综合管理终端实施集中管理,而以每架飞机计算机上单机控制模块为节点实现协调控制,通过UDP数据和信息交换实现三种异种环境的互联互通。系统支持任意数量、任意种类飞机的多机混合编队系统开发,既支持有人机、无人机,甚至陆地、海上载运器的混合编队与联合仿真,具体步骤如下:In order to achieve the above object, the technical solution adopted by the present invention is: a flightgear and VC hybrid system development method based on network communication, the realization system of this method adopts open source software FlightGear to realize virtual reality and scene demonstration, and adopts VC development system formation management and data management , mission management and communication software, using Simulink to run the aircraft model and control algorithm, these three parts exchange information through UDP communication based on Ethernet to form a complete whole. The whole system is mainly composed of formation aircraft terminal, scene situation display, integrated management terminal, FlightGear server and Ethernet switch. The formation aircraft terminal runs the aircraft FlightGear, the stand-alone control module and the aircraft model of the aircraft Simulink at the same time. The system adopts the combination of centralized management and decentralized coordination control, implements centralized management with the integrated management terminal, and realizes coordinated control with the stand-alone control module on each aircraft computer as a node, and realizes the interconnection of three heterogeneous environments through UDP data and information exchange intercommunication. The system supports the development of multi-aircraft mixed formation system of any number and any type of aircraft. It not only supports mixed formation and joint simulation of manned aircraft, unmanned aerial vehicles, and even land and sea carriers. The specific steps are as follows:

步骤(1):在Linux操作系统下建立FlightGear服务器,在FlightGear软件基础上增加配置模块,建立一系列的XML格式的文档以此替换某既有飞机外形,屏蔽其自驾仪;Step (1): set up the FlightGear server under the Linux operating system, add configuration modules on the basis of the FlightGear software, set up a series of documents in XML format to replace the shape of an existing aircraft, and shield its autopilot;

步骤(2):在VC6.0平台上设计综合管理终端、单机控制模块,以综合管理终端和单机模块实施集中协调管理;Step (2): Design the integrated management terminal and stand-alone control module on the VC6.0 platform, and implement centralized coordination management with the integrated management terminal and stand-alone module;

步骤(3):在Simulink软件上运行飞机模型与控制算法;Step (3): run the aircraft model and control algorithm on the Simulink software;

步骤(4):每架飞机通过一台高性能计算机运行FlightGear模块、单机控制模块和Simulink的飞机模型三个独立的软件模块;Step (4): each aircraft operates three independent software modules of the aircraft model of FlightGear module, stand-alone control module and Simulink by a high-performance computer;

步骤(5):在VC6.0平台上设计及通信模块,使用UDP协议通信,通过调用SocketAPI函数实现综合管理模块与单机控制模块、FlightGear模块与单机控制模块的网络通信,通过S函数内嵌的UDP通信程序实现Simulink飞机模型运行数据与单机控制模块的交互,并通过综合管理终端将数据分发给每架飞机;Step (5): Design and communicate the module on the VC6.0 platform, use the UDP protocol to communicate, realize the network communication between the comprehensive management module and the stand-alone control module, the FlightGear module and the stand-alone control module by calling the SocketAPI function, and use the embedded S function The UDP communication program realizes the interaction between the Simulink aircraft model operating data and the stand-alone control module, and distributes the data to each aircraft through the integrated management terminal;

步骤(6):利用FlightGear以三维虚拟现实、可视化方式呈现飞机的运行姿态、以及环境、与编队其它飞机的关系,以场景三维态势显示,实现多机编队飞行控制、任务协同分配、空战一系列算法研究、仿真与虚拟现实演示。Step (6): Use FlightGear to present the aircraft's operating attitude, the environment, and the relationship with other aircraft in the formation in a three-dimensional virtual reality and visualization manner, and display the three-dimensional situation of the scene to realize a series of multi-aircraft formation flight control, task coordination assignment, and air combat. Algorithm research, simulation and virtual reality demonstrations.

所述FlightGear服务器采用Linux操作系统,模块能够处理大量数据、满足高处理速度和高可靠性要求,各个控制端通过堆叠式高速以太网交换机与服务器相连,服务器执行数据存储、转发、发布关键任务。所述的FlightGear模块是在原有系统基础上,通过增加配置模块替换某既有飞机外形,屏蔽其自驾仪的方式,实现快捷、无缝变换,极大地利用开源FlightGear的环境、渲染等优势。配置模块通过建立一系列的XML格式的文档,为需要的数据项添加相应的标签,并且与综合管理终端中的协同作战控制指令集相对应,当程序运行时配置模块根据XML文档将管理信息和控制信息数据写入FlightGear软件模块内部对应数据变量接口中,同时也会将飞行数据从FlightGear内部数据传输出来。The FlightGear server uses the Linux operating system, and the modules can process a large amount of data to meet the requirements of high processing speed and high reliability. Each control terminal is connected to the server through a stacked high-speed Ethernet switch, and the server performs key tasks of data storage, forwarding, and publishing. The FlightGear module is based on the original system, by adding a configuration module to replace the shape of an existing aircraft and shielding its autopilot, so as to realize fast and seamless transformation, and greatly utilize the advantages of the open source FlightGear environment and rendering. The configuration module creates a series of documents in XML format, adds corresponding labels to the required data items, and corresponds to the cooperative combat control instruction set in the integrated management terminal, when the program is running, the configuration module will manage the information and information according to the XML documents. The control information data is written into the corresponding data variable interface inside the FlightGear software module, and the flight data is also transmitted from the internal data of FlightGear.

系统避开了一般的采用FlightGear进行二次开发的难题,同时兼顾了飞行器模型一般都采用Simulink研发的现状,又采用最流行的VC 6.0开发管理与算法软件,实现了工程与算法研究的完美融合或兼容。The system avoids the common problem of using FlightGear for secondary development. At the same time, it takes into account the current situation that aircraft models are generally developed using Simulink, and uses the most popular VC 6.0 development management and algorithm software to achieve the perfect integration of engineering and algorithm research. or compatible.

所述的综合管理终端、单机控制模块、UDP协议通信都是在VC6.0平台上完成设计的。综合管理终端实现编队飞机数量管理、队形管理、算法管理、数据管理以及通信集中管控;单机控制模块实现本机算法管理、本机姿态、武器、威胁、航迹、编队、数据显示以及UDP通信;UDP通信采用SOCKET、数据报方式,实现面向非连接的高频率数据通信。The comprehensive management terminal, stand-alone control module, and UDP protocol communication are all designed on the VC6.0 platform. The integrated management terminal realizes the number management, formation management, algorithm management, data management and centralized communication control of formation aircraft; the stand-alone control module realizes local algorithm management, local aircraft attitude, weapon, threat, track, formation, data display and UDP communication ; UDP communication adopts SOCKET and datagram mode to realize non-connection-oriented high-frequency data communication.

将综合管理控制端在VC6.0平台上设计为系统初始化模块、编队管理模块、编队流程控制模块和显示模块,系统初始化模块主要完成整个系统的初始化,将上次遗留数据进行清除,保证本次编队飞行仿真不受上次数据影响;编队管理模块又分为多个设置区块,包含机场战区设置、飞行环境设置、战斗目标设置、编队飞机设置、飞机性能设置、飞机武器设置、编队队形设置、编队航迹设置、编队修改设置和单机故障设置等;编队流程控制模块,主要实现编队起飞到降落这个过程管理控制,即何时起飞、返航、降落等;显示模块分为地图显示和数据显示,地图显示是根据飞机的经纬度在二维地图描绘出整个编队的航迹,数据显示直观的显示各架飞机的位置、高度、速度、航向等。The comprehensive management control terminal is designed on the VC6.0 platform as a system initialization module, a formation management module, a formation process control module and a display module. The formation flight simulation is not affected by the last data; the formation management module is divided into multiple setting blocks, including airport theater settings, flight environment settings, combat target settings, formation aircraft settings, aircraft performance settings, aircraft weapon settings, and formation formations Setting, formation track setting, formation modification setting and stand-alone failure setting, etc.; the formation process control module mainly realizes the process management control from formation takeoff to landing, that is, when to take off, return, and land; the display module is divided into map display and data Display, the map display is based on the longitude and latitude of the aircraft to draw the entire formation's track on the two-dimensional map, and the data display intuitively shows the position, altitude, speed, heading, etc. of each aircraft.

所述通信模块完成FlightGear模块与单机控制模块、Simulink飞机模型以及场景三维态势显示和综合管理终端的通信,实现数据交互。综合管理控制端将管理信息经过通信模块传输的服务器,服务器将管理信息传给飞机控制端,飞机控制端将各自的管理信息和控制信息通过通信模块传给相对应的FlightGear软件模块,同时FlightGear软件模块将飞行数据传给飞机控制端和综合管理控制端,进行解算和显示。The communication module completes the communication between the FlightGear module and the stand-alone control module, the Simulink aircraft model, the three-dimensional situation display of the scene and the comprehensive management terminal to realize data interaction. The integrated management control terminal transmits the management information to the server through the communication module, the server transmits the management information to the aircraft control terminal, and the aircraft control terminal transmits the respective management information and control information to the corresponding FlightGear software module through the communication module, and the FlightGear software The module transmits the flight data to the aircraft control terminal and the integrated management control terminal for calculation and display.

通信采用UDP协议,通过调用Socket API函数实现网络通信,数据类型包含气象管理、时间管理、编队管理、控制信息、故障和威胁管理和飞行数据,气象和时间管理实现场景中环境信息的设置和飞行时间的管理;编队管理包含编队中飞机数量、类型、性能、武器的管理设置;威胁管理用于设置飞行区间的雷达、防空阵地等威胁设置;故障管理用于人为故障注入;飞行数据是指FlightGear飞行模拟器通过输出接口,发送实时数据到各自的控制模块,控制模块将飞行数据显示在界面上,同时解算为相应的控制信息。管理信息通过综合管理终端的通信模块传输到各个飞机计算机,然后经过飞机计算机的单机控制模块对数据解析,获取各自的管理信息,再传输到FlightGear模块。UDP protocol is used for communication, and network communication is realized by calling Socket API functions. The data types include weather management, time management, formation management, control information, fault and threat management, and flight data. Meteorology and time management realize the setting and flight of environmental information in the scene Time management; formation management includes the management settings of the number, type, performance, and weapons of aircraft in the formation; threat management is used to set threat settings such as radar and air defense positions in the flight interval; fault management is used for artificial fault injection; flight data refers to FlightGear The flight simulator sends real-time data to the respective control modules through the output interface, and the control modules display the flight data on the interface and calculate the corresponding control information at the same time. The management information is transmitted to each aircraft computer through the communication module of the integrated management terminal, and then the data is analyzed by the stand-alone control module of the aircraft computer to obtain respective management information, and then transmitted to the FlightGear module.

编队飞机的模型即可以采用FlightGear已有动力学模型和自驾仪,也可以采用基于Simulink的动力学与自驾仪模型。The model of the formation aircraft can use the existing dynamics model and autopilot of FlightGear, or the dynamics and autopilot model based on Simulink.

编队某架飞机若是FlightGear已有的飞机,则系统直接采用该飞机外形、自驾仪。编队某架飞机若是FlightGear没有的飞机,则系统采用其Simulink模型实现联合仿真,当然也支持Matlab模型,或其它VC可直接调用的任何类型模型。If an aircraft in the formation is an existing aircraft in FlightGear, the system will directly adopt the shape and autopilot of the aircraft. If there is an aircraft in the formation that FlightGear does not have, the system uses its Simulink model to realize co-simulation. Of course, it also supports Matlab model, or any other type of model that VC can directly call.

所述场景三维态势显示,通过作为某架编队飞机FlightGear服务器的分屏功能将三维视景显示在大屏幕上,形成场景视觉效果。The three-dimensional situation display of the scene displays the three-dimensional visual scene on the large screen through the split-screen function of the FlightGear server of a certain formation aircraft, forming a visual effect of the scene.

与现有技术相比较,本发明充分利用了FlightGear的强大视景显示和XML格式配置文件,并在VC6.0平台上设计了综合管理控制终端、单机控制模块、UDP通信等,实现多机编队的管理、设置、修改等一系列的流程控制和飞行编队控制,各部分通过以太网服务器相连接构成一个大的多机编队飞行仿真系统,并呈现在大视景窗口中,使观察者直观的感受到整个编队实现任务规划、起飞、巡航、完成攻击到返航降落模拟与仿真。此外,本发明在控制模块为研究多机编队控制科研人员提供了算法验证平台,能够使科研人员将更多的精力花费在飞行控制算法研究上。Compared with the prior art, the present invention makes full use of FlightGear's powerful visual display and XML format configuration files, and designs a comprehensive management control terminal, stand-alone control module, UDP communication, etc. on the VC6.0 platform to realize multi-machine formation A series of process control and flight formation control such as management, setting, modification, etc., each part is connected through an Ethernet server to form a large multi-aircraft formation flight simulation system, which is presented in a large viewing window, so that the observer can intuitively Feel the simulation and simulation of the entire formation to realize mission planning, takeoff, cruise, completion of attack, return and landing. In addition, the present invention provides an algorithm verification platform for researchers studying multi-aircraft formation control in the control module, enabling researchers to spend more energy on flight control algorithm research.

本发明创新主要在两点:一是,三种开发环境各自负责自身优势内容,开发周期短,效果好;二是,Simulink运行全部仿真飞行器模型及有关控制、编队、作战等算法,模型调试、算法调试便捷,无二次开发问题。The innovation of the present invention mainly lies in two points: the one, three kinds of development environments are respectively responsible for self-advantageous contents, and the development period is short, and effect is good; The other is, Simulink runs all simulation aircraft models and algorithms such as relevant control, formation, combat, model debugging, The algorithm debugging is convenient, and there is no secondary development problem.

附图说明Description of drawings

图1是本发明的系统结构框图。Fig. 1 is a system structure block diagram of the present invention.

图2是本发明的综合管理控制端到编队飞机终端传输结构框图。Fig. 2 is a block diagram of the transmission structure from the integrated management control terminal to the formation aircraft terminal of the present invention.

图3是编队控制系统原理框图。Figure 3 is a block diagram of the formation control system.

具体实施方式:Detailed ways:

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清晰、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

参看图1,为实施本发明基于网络通信的FlightGear和VC混合系统开发方法,该基于网络通信的FlightGear和VC混合系统大体分为综合管理控制终端、编队飞机终端、FlightGear服务器、大视景窗口和通信模块。编队飞机终端同时运行飞机FlighGear、单机控制模块以及飞机Simulink的飞机模型。Referring to Fig. 1, for implementing the FlightGear of the present invention based on network communication and the VC hybrid system development method, this FlightGear and VC hybrid system based on network communication are roughly divided into integrated management control terminal, formation aircraft terminal, FlightGear server, large viewing window and communication module. The formation aircraft terminal runs the aircraft FlightGear, the single aircraft control module and the aircraft model of the aircraft Simulink at the same time.

FlightGear服务器模块采用Linux操作系统,模块能够处理大量数据、满足高处理速度和高可靠性要求,各个控制端通过堆叠式高速以太网交换机与服务器相连,服务器执行数据存储、转发、发布等关键任务。The FlightGear server module uses the Linux operating system. The module can handle a large amount of data and meet the requirements of high processing speed and high reliability. Each control terminal is connected to the server through a stacked high-speed Ethernet switch. The server performs key tasks such as data storage, forwarding, and publishing.

大视景窗口主要负责三维战场态势(包括环境、地形、编队飞机、作战过程等)显示。通过作为长机的FlightGear服务器的分屏功能将三维视景显示在大屏幕上,形成场景视觉效果。The large viewing window is mainly responsible for the display of the three-dimensional battlefield situation (including the environment, terrain, formation aircraft, combat process, etc.). The 3D scene is displayed on the large screen through the split-screen function of the FlightGear server as the leader, forming a visual effect of the scene.

参看图2,可以看出整个系统控制端的作用,同时也能看出整个系统数据的走向,综合管理控制端将管理信息经过通信模块传输到服务器,服务器将管理信息传给编队飞机控制端,编队飞机控制端将各自的管理信息和控制信息通过通信模块传给相对应的FlightGear软件模块,同时FlightGear软件模块将飞行数据传给编队飞机控制端和综合管理控制端,进行解算和显示。Referring to Figure 2, we can see the function of the control terminal of the entire system, and at the same time, we can also see the direction of the data of the entire system. The integrated management control terminal transmits the management information to the server through the communication module, and the server transmits the management information to the formation aircraft control terminal. The aircraft control terminal transmits the respective management information and control information to the corresponding FlightGear software module through the communication module, and the FlightGear software module transmits the flight data to the formation aircraft control terminal and the integrated management control terminal for calculation and display.

最后,对通信模块进行说明,通信模块主要完成FlightGear软件模块与管理控制模块、每个控制端之间以及各控制模块内部子模块的通信,实现数据交互。通信采用UDP协议,通过调用Socket API函数实现网络通信,数据类型包含管理信息、控制信息和飞行数据,参看图3,管理信息包含飞行环境系统的设置和多机编队中飞机数量、性能、武器、故障等的管理设置,管理信息通过综合管理终端的通信模块传输到各个飞机控制端,然后经过飞机控制端对数据解析,获取各自的管理信息,再传输到FlightGear软件模块;控制信息是为了控制编队中各架FlightGear飞机自带的自驾仪,在编队控制时,进行强制解耦,使速度、航向、高度之间不存在耦合关系,在各自的飞机控制端将速度、航向、高度经过通信子模块传输的FlightGear飞行模拟器自驾仪的速度、航向、高度接收口;飞行数据是指FlightGear飞行模拟器通过输出接口,发送实时数据到各自的控制模块,控制模块将飞行数据显示在界面上,并且存储,同时控制模块的编队控制系统解算为相应的控制信息,再次传给自驾仪。Finally, the communication module is explained. The communication module mainly completes the communication between the FlightGear software module and the management control module, between each control terminal and the internal sub-modules of each control module, and realizes data interaction. The communication adopts UDP protocol, and the network communication is realized by calling the Socket API function. The data types include management information, control information and flight data. See Figure 3. The management information includes the settings of the flight environment system and the number of aircraft in the multi-aircraft formation, performance, weapons, The management settings of faults, etc., the management information is transmitted to each aircraft control terminal through the communication module of the integrated management terminal, and then the data is analyzed by the aircraft control terminal to obtain the respective management information, and then transmitted to the FlightGear software module; the control information is to control the formation The self-pilot of each FlightGear aircraft in the aircraft is forced to decouple during formation control, so that there is no coupling relationship between speed, heading, and altitude, and the speed, heading, and altitude are passed through the communication sub-module The transmitted FlightGear flight simulator autopilot’s speed, heading, and height receiving ports; flight data means that the FlightGear flight simulator sends real-time data to the respective control modules through the output interface, and the control modules display the flight data on the interface and store them. , and at the same time, the formation control system of the control module calculates the corresponding control information and sends it to the autopilot again.

Claims (9)

1.基于网络通信的FlightGear和VC混合系统开发方法,其特征在于:该方法的实现系统采用开源软件FlightGear软件实现虚拟现实、场景演示,采用VC开发系统编队管理、数据管理、任务管理与通信软件,采用Simulink运行飞机模型与控制算法,这三大部分都通过基于以太网的UDP通信交换信息,构成完整整体,系统整体由编队飞机终端、场景态势显示、综合管理终端和FlightGear服务器以及以太网交换机组成,编队飞机终端同时运行飞机FlightGear、单机控制模块以及飞机Simulink的模型,系统采用集中管理和分散协调控制相结合的方式,以综合管理终端实施集中管理,而以每架飞机计算机上单机控制模块为节点实现协调控制,通过UDP数据和信息交换实现三种异种环境的互联互通,系统支持任意数量、任意种类飞机的多机混合编队系统开发,既支持有人机、无人机,还支持陆地、海上载运器的混合编队与联合仿真,具体步骤如下:1. The flightgear and VC hybrid system development method based on network communication, is characterized in that: the realization system of this method adopts open source software FlightGear software to realize virtual reality, scene demonstration, adopts VC development system formation management, data management, task management and communication software , using Simulink to run the aircraft model and control algorithm. These three parts exchange information through Ethernet-based UDP communication to form a complete whole. The whole system consists of formation aircraft terminal, scene situation display, integrated management terminal, FlightGear server and Ethernet switch Composition, the formation aircraft terminal runs aircraft FlightGear, single aircraft control module and aircraft Simulink model at the same time. It realizes coordinated control for nodes, and realizes the interconnection and intercommunication of three heterogeneous environments through UDP data and information exchange. The mixed formation and co-simulation of maritime vehicles, the specific steps are as follows: 步骤(1):在Linux操作系统下建立FlightGear服务器,在FlightGear软件基础上增加配置模块,建立一系列的XML格式的文档以此替换飞机外形并屏蔽自驾仪;Step (1): set up the FlightGear server under the Linux operating system, add configuration modules on the basis of the FlightGear software, and set up a series of documents in XML format to replace the aircraft shape and shield the autopilot; 步骤(2):在VC6.0平台上设计综合管理终端、单机控制模块,以综合管理终端和单机模块实施集中协调管理;Step (2): Design the integrated management terminal and stand-alone control module on the VC6.0 platform, and implement centralized coordination management with the integrated management terminal and stand-alone module; 步骤(3):在Simulink软件上运行飞机模型与控制算法;Step (3): run the aircraft model and control algorithm on the Simulink software; 步骤(4):每架飞机通过一台计算机运行FlightGear模块、单机控制模块和Simulink飞机模型三个独立的软件模块;Step (4): each aircraft runs three independent software modules of FlightGear module, stand-alone control module and Simulink aircraft model by a computer; 步骤(5):在VC6.0平台上设计通信模块,使用UDP协议通信,通过调用Socket API函数实现综合管理终端与单机控制模块、FlightGear模块与单机控制模块的网络通信,通过S函数内嵌的UDP通信程序实现Simulink飞机模型运行数据与单机控制模块的交互,并通过综合管理终端将数据分发给每架飞机;Step (5): Design the communication module on the VC6.0 platform, use the UDP protocol to communicate, realize the network communication between the integrated management terminal and the stand-alone control module, and the FlightGear module and the stand-alone control module by calling the Socket API function. The UDP communication program realizes the interaction between the Simulink aircraft model operating data and the stand-alone control module, and distributes the data to each aircraft through the integrated management terminal; 步骤(6):利用FlightGear软件以三维虚拟现实、可视化方式呈现飞机的运行姿态、以及环境、与编队其它飞机的关系,以场景三维态势显示,实现多机编队飞行控制、任务协同分配、空战一系列算法研究、仿真与虚拟现实演示。Step (6): Use FlightGear software to present the aircraft's operating attitude, environment, and relationship with other aircraft in the formation in a three-dimensional virtual reality and visualization manner, and display the three-dimensional situation of the scene to realize multi-aircraft formation flight control, task coordination assignment, and air combat. A series of algorithm research, simulation and virtual reality demonstration. 2.如权利要求1所述的基于网络通信的FlightGear和VC混合系统开发方法,其特征在于:所述FlightGear服务器采用Linux操作系统,各个控制端通过堆叠式高速以太网交换机与FlightGear服务器相连,FlightGear服务器执行数据存储、转发、发布关键任务。2. the flightgear based on network communication as claimed in claim 1 and VC mixed system development method, it is characterized in that: described flightgear server adopts Linux operating system, each control end links to each other with flightgear server by stacking type high-speed ethernet switch, and flightgear The server performs key tasks of data storage, forwarding and publishing. 3.如权利要求1所述的基于网络通信的FlightGear和VC混合系统开发方法,其特征在于:所述的FlightGear服务器是在FlightGear软件基础上,增加配置模块替换飞机外形并屏蔽自驾仪,配置模块通过建立一系列的XML格式的文档,为需要的数据项添加相应的标签,并且与综合管理终端中的协同作战控制指令集相对应,当程序运行时配置模块根据XML文档将管理信息和控制信息数据写入FlightGear模块内部对应数据变量接口中,同时也会将飞行数据从FlightGear软件内部数据传输出来。3. FlightGear based on network communication as claimed in claim 1 and VC hybrid system development method, it is characterized in that: described FlightGear server is on the basis of FlightGear software, increases configuration module to replace aircraft profile and shields autopilot, configuration module By establishing a series of documents in XML format, adding corresponding tags to the required data items, and corresponding to the cooperative combat control instruction set in the integrated management terminal, when the program is running, the configuration module will manage information and control information according to the XML documents The data is written into the corresponding data variable interface inside the FlightGear module, and the flight data is also transmitted from the internal data of the FlightGear software. 4.如权利要求1所述的基于网络通信的FlightGear和VC混合系统开发方法,其特征在于:所述的综合管理终端、单机控制模块、UDP协议通信都是在VC6.0平台上完成设计的,综合管理终端实现编队飞机数量管理、队形管理、算法管理、数据管理以及通信集中管控;单机控制模块实现本机算法管理、本机姿态、武器、威胁、航迹、编队、数据显示以及UDP通信;UDP通信采用SOCKET、数据报方式,实现面向非连接的数据通信。4. the flightgear based on network communication as claimed in claim 1 and VC hybrid system development method, it is characterized in that: described comprehensive management terminal, stand-alone control module, UDP agreement communication all finish design on VC6.0 platform The integrated management terminal realizes the number management, formation management, algorithm management, data management and centralized communication control of formation aircraft; the stand-alone control module realizes local algorithm management, local aircraft attitude, weapons, threats, track, formation, data display and UDP Communication; UDP communication adopts SOCKET and datagram mode to realize non-connection-oriented data communication. 5.如权利要求4所述的基于网络通信的FlightGear和VC混合系统开发方法,其特征在于:将综合管理终端在VC6.0平台上设计为FlightGear软件和VC混合系统初始化模块、编队管理模块、编队流程控制模块和显示模块,系统初始化模块完成整个系统的初始化,将上次遗留数据进行清除,保证本次编队飞行仿真不受上次数据影响;编队管理模块又分为多个设置区块,包含机场战区设置、飞行环境设置、战斗目标设置、编队飞机设置、飞机性能设置、飞机武器设置、编队队形设置、编队航迹设置、编队修改设置和单机故障设置;编队流程控制模块,实现编队起飞到降落这个过程管理控制,即何时起飞、返航、降落;显示模块分为地图显示和数据显示,地图显示是根据飞机的经纬度在二维地图上描绘出整个编队的航迹,数据显示直观的显示各架飞机的位置、高度、速度、航向。5. the FlightGear based on network communication as claimed in claim 4 and VC mixed system development method, it is characterized in that: integrated management terminal is designed on VC6.0 platform as FlightGear software and VC mixed system initialization module, formation management module, The formation process control module and display module, the system initialization module complete the initialization of the entire system, and clear the data left over from the last time to ensure that the formation flight simulation is not affected by the last data; the formation management module is divided into multiple setting blocks, Including airport theater settings, flight environment settings, combat target settings, formation aircraft settings, aircraft performance settings, aircraft weapon settings, formation formation settings, formation track settings, formation modification settings and single aircraft failure settings; formation process control module to realize formation Management and control of the process from takeoff to landing, that is, when to take off, return, and land; the display module is divided into map display and data display. The map display is based on the longitude and latitude of the aircraft to depict the trajectory of the entire formation on a two-dimensional map, and the data display is intuitive. Display the position, altitude, speed, and heading of each aircraft. 6.如权利要求1所述的基于网络通信的FlightGear和VC混合系统开发方法,其特征在于:所述通信模块完成FlightGear服务器与单机控制模块、Simulink飞机模型以及场景三维态势显示和综合管理终端的通信,实现数据交互;综合管理终端将管理信息经过通信模块传输到FlightGear服务器,FlightGear服务器将管理信息传给飞机控制端,飞机控制端将各自的管理信息和控制信息通过通信模块传给相对应的FlightGear服务器,同时FlightGear服务器将飞行数据传给飞机控制端和综合管理终端,进行解算和显示。6. the FlightGear based on network communication as claimed in claim 1 and VC hybrid system development method, it is characterized in that: described communication module finishes FlightGear server and stand-alone control module, Simulink aircraft model and scene three-dimensional situation display and comprehensive management terminal communication to achieve data interaction; the integrated management terminal transmits the management information to the FlightGear server through the communication module, and the FlightGear server transmits the management information to the aircraft control terminal, and the aircraft control terminal transmits its respective management information and control information to the corresponding FlightGear server, at the same time, the FlightGear server transmits the flight data to the aircraft control terminal and the integrated management terminal for calculation and display. 7.如权利要求6所述的基于网络通信的FlightGear和VC混合系统开发方法,其特征在于:通信采用UDP协议,通过调用Socket API函数实现网络通信,数据类型包含气象管理、时间管理、编队管理、控制信息、故障和威胁管理和飞行数据,气象和时间管理实现场景中环境信息的设置和飞行时间的管理;编队管理包含编队中飞机数量、类型、性能、武器的管理设置;威胁管理用于设置飞行区间的雷达、防空阵地威胁设置;故障管理用于人为故障注入;飞行数据是指FlightGear飞行模拟器通过输出接口,发送实时数据到各自的控制模块,控制模块将飞行数据显示在界面上,同时解算为相应的控制信息,管理信息通过综合管理终端的通信模块传输到各个飞机计算机,然后经过飞机计算机的单机控制模块对数据解析,获取各自的管理信息,再传输到FlightGear模块。7. FlightGear and VC mixed system development method based on network communication as claimed in claim 6, is characterized in that: communication adopts UDP agreement, realizes network communication by calling Socket API function, and data type comprises meteorological management, time management, formation management , control information, fault and threat management and flight data, weather and time management realize the setting of environmental information in the scene and the management of flight time; formation management includes the management settings of the number, type, performance and weapons of aircraft in the formation; threat management is used for Set the radar and air defense position threat settings in the flight interval; fault management is used for artificial fault injection; flight data means that the FlightGear flight simulator sends real-time data to the respective control modules through the output interface, and the control module displays the flight data on the interface. At the same time, it is resolved into corresponding control information, and the management information is transmitted to each aircraft computer through the communication module of the integrated management terminal, and then the data is analyzed by the stand-alone control module of the aircraft computer to obtain respective management information, and then transmitted to the FlightGear module. 8.如权利要求1所述的基于网络通信的FlightGear和VC混合系统开发方法,其特征在于:编队飞机的模型采用FlightGear软件已有动力学模型和自驾仪或采用基于Simulink的动力学模型和自驾仪;编队某架飞机若是FlightGear软件已有的飞机,则FlightGear软件和VC混合系统直接采用已有飞机外形、自驾仪,编队某架飞机若是FlightGear软件没有的飞机,则FlightGear软件和VC混合系统采用其Simulink模型实现联合仿真,当然也支持Matlab模型,或其它VC可直接调用的任何类型模型。8. FlightGear and VC mixed system development method based on network communication as claimed in claim 1, it is characterized in that: the model of formation aircraft adopts existing dynamics model and autopilot of FlightGear software or adopts dynamics model and autopilot based on Simulink If an aircraft in formation is an existing aircraft in FlightGear software, FlightGear software and VC hybrid system will directly adopt the shape and autopilot of the existing aircraft; if an aircraft in formation does not have aircraft in FlightGear software, then FlightGear software and VC hybrid system will use Its Simulink model realizes co-simulation, and of course also supports Matlab model, or any other type of model that VC can call directly. 9.如权利要求1所述的基于网络通信的FlightGear和VC混合系统开发方法,其特征在于:步骤(6)中所述的场景三维态势显示,通过作为某架编队飞机的FlightGear服务器的分屏功能将三维视景显示在屏幕上,形成场景视觉效果。9. the FlightGear based on network communication as claimed in claim 1 and VC hybrid system development method, it is characterized in that: the scene three-dimensional state display described in the step (6), by the split-screen of the FlightGear server as certain formation aircraft The function displays the three-dimensional scene on the screen to form the visual effect of the scene.
CN201410829405.6A 2014-12-26 2014-12-26 FlightGear and VC hybrid system development approaches based on network service Expired - Fee Related CN104615010B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410829405.6A CN104615010B (en) 2014-12-26 2014-12-26 FlightGear and VC hybrid system development approaches based on network service

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410829405.6A CN104615010B (en) 2014-12-26 2014-12-26 FlightGear and VC hybrid system development approaches based on network service

Publications (2)

Publication Number Publication Date
CN104615010A CN104615010A (en) 2015-05-13
CN104615010B true CN104615010B (en) 2018-04-13

Family

ID=53149512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410829405.6A Expired - Fee Related CN104615010B (en) 2014-12-26 2014-12-26 FlightGear and VC hybrid system development approaches based on network service

Country Status (1)

Country Link
CN (1) CN104615010B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105159136B (en) * 2015-07-23 2018-09-04 中国商用飞机有限责任公司北京民用飞机技术研究中心 A kind of flight simulation visual display method and system
CN106707790A (en) * 2015-11-13 2017-05-24 成都飞机工业(集团)有限责任公司 Unmanned aerial vehicle nonlinear mathematical model building method
CN106446466B (en) * 2016-11-09 2019-07-16 沈阳航空航天大学 Rapid modeling and design method of quadrotor based on editable configuration parameter interface
CN106909762A (en) * 2017-04-17 2017-06-30 吉林化工学院 A kind of method for designing of the visualization system for simulating aircraft
CN107526303A (en) * 2017-07-26 2017-12-29 中国航空工业集团公司西安飞机设计研究所 A kind of Vehicle Management System simulation and verification platform
CN107643695B (en) * 2017-09-07 2020-11-20 天津大学 Human/unmanned aerial vehicle cluster formation VR simulation method and system based on electroencephalogram
CN108646589B (en) * 2018-07-11 2021-03-19 北京晶品镜像科技有限公司 Combat simulation training system and method for attacking unmanned aerial vehicle formation
CN108919831A (en) * 2018-07-23 2018-11-30 南京奇蛙智能科技有限公司 A method of can be realized in a browser simulation unmanned plane during flying scene in real time
CN109283854A (en) * 2018-10-29 2019-01-29 成都飞机工业(集团)有限责任公司 A kind of portable analogue system of unmanned plane
CN109669477A (en) * 2019-01-29 2019-04-23 华南理工大学 A kind of cooperative control system and control method towards unmanned plane cluster
CN110233824A (en) * 2019-05-09 2019-09-13 中国航空工业集团公司西安航空计算技术研究所 A kind of system simulation method
TWI709308B (en) * 2019-07-22 2020-11-01 思銳科技股份有限公司 Time control method and system on network simulator platform
CN111013148A (en) * 2019-11-20 2020-04-17 清华大学 A method and system for verifying the performance of game decision-making algorithms in aerial fighting games
CN111522258B (en) * 2020-05-21 2022-10-21 中国人民解放军空军航空大学 Multi-unmanned aerial vehicle cooperative control simulation system and construction method and simulation method thereof
CN111984751B (en) * 2020-07-13 2023-11-10 北京华如科技股份有限公司 System and method based on multi-domain combat visual display
CN112764355B (en) * 2020-12-05 2022-12-13 西安翔腾微电子科技有限公司 Vision-based autonomous landing positioning development system and method for airplane
CN112965396A (en) * 2021-02-08 2021-06-15 大连大学 Hardware-in-the-loop visualization simulation method for quad-rotor unmanned aerial vehicle
CN113485420B (en) * 2021-07-04 2022-09-27 西北工业大学 Aircraft formation composite power visualization method based on UDP control
CN113625595A (en) * 2021-08-02 2021-11-09 中国人民解放军军事科学院国防科技创新研究院 Unmanned aerial vehicle deduction and fault diagnosis method and system
CN113867394B (en) * 2021-10-20 2024-01-26 中国人民解放军国防科技大学 Unmanned aerial vehicle cluster recovery simulation system, unmanned aerial vehicle cluster recovery simulation method, electronic equipment and medium
CN115220476B (en) * 2022-07-22 2024-07-19 成都飞机工业(集团)有限责任公司 Height control method for multi-unmanned aerial vehicle cooperative formation climbing or descending process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1901143A1 (en) * 2006-09-15 2008-03-19 Saab Ab Onboard simulation device and simulation method
EP2037339A2 (en) * 2007-09-14 2009-03-18 The Boeing Company Method and system to control operation of a device using an integrated simulation with a time shift option
CN102566441A (en) * 2011-12-29 2012-07-11 成都飞机工业(集团)有限责任公司 Visual simulation test system for unmanned aerial vehicle (UAV)
CN102789171A (en) * 2012-09-05 2012-11-21 北京理工大学 Method and system for semi-physical simulation test of visual unmanned aerial vehicle flight control
CN103235852A (en) * 2013-04-21 2013-08-07 南昌航空大学 Flight Gear general three-dimensional scene data displaying method based on field programmable gate array (FPGA)
CN103617324A (en) * 2013-12-03 2014-03-05 中国航空无线电电子研究所 Flight simulation recording analysis system based on FlightGear simulation software

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1901143A1 (en) * 2006-09-15 2008-03-19 Saab Ab Onboard simulation device and simulation method
EP2037339A2 (en) * 2007-09-14 2009-03-18 The Boeing Company Method and system to control operation of a device using an integrated simulation with a time shift option
CN102566441A (en) * 2011-12-29 2012-07-11 成都飞机工业(集团)有限责任公司 Visual simulation test system for unmanned aerial vehicle (UAV)
CN102789171A (en) * 2012-09-05 2012-11-21 北京理工大学 Method and system for semi-physical simulation test of visual unmanned aerial vehicle flight control
CN103235852A (en) * 2013-04-21 2013-08-07 南昌航空大学 Flight Gear general three-dimensional scene data displaying method based on field programmable gate array (FPGA)
CN103617324A (en) * 2013-12-03 2014-03-05 中国航空无线电电子研究所 Flight simulation recording analysis system based on FlightGear simulation software

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于FlightGear飞行仿真软件数据的采集与处理;王立波等;《电子设计工程》;20111231;第19卷(第24期);第53-57页 *

Also Published As

Publication number Publication date
CN104615010A (en) 2015-05-13

Similar Documents

Publication Publication Date Title
CN104615010B (en) FlightGear and VC hybrid system development approaches based on network service
CN106530897B (en) A kind of fly simulation training device
CN102508439B (en) HLA (High Level Architecture)-based multi-unmmaned aerial vehicle distributed simulation method
Stytz Distributed virtual environments
CN103246204B (en) Multiple no-manned plane system emulation and verification method and device
CN109669477A (en) A kind of cooperative control system and control method towards unmanned plane cluster
CN106406345A (en) Indoor multi-unmanned aerial vehicle formation control system based on Qt
CN107092270A (en) Realize method, the apparatus and system of formation flight
CN109360287A (en) Three-dimensional digital inspection management system for transmission lines
CN103699106A (en) Multi-unmanned aerial vehicle cooperative task planning simulation system based on VR-Forces simulation platform
CN104299068A (en) Cabin display control information management system and method based on ARINC 661
CN111651649A (en) A method and system for constructing a virtual fence of a transmission line and a tower
CN109005525A (en) A relay network deployment method and device
CN117539273A (en) Aerial drone swarm collaborative algorithm simulation and verification system
CN116257975A (en) One-seat control multi-machine visual simulation system and design method thereof
CN116861779A (en) Intelligent anti-unmanned aerial vehicle simulation system and method based on digital twinning
CN114818356A (en) A real-time simulation system and method of data link situation combining virtual and real
CN115859699B (en) Large-scale fine-grained cluster ammunition simulation system for providing three-dimensional scene rendering
Basmadji et al. Development of ground station for a terrain observer-hardware in the loop simulations
CN117234107A (en) Multi-unmanned aerial vehicle ad hoc network simulation system and method based on illusion engine
CN111899333B (en) Visual simulation method and system for complex equipment system based on model and storage medium thereof
Yili et al. 3D scene simulation of UAVs formation flight based on FlightGear simulator
Gan et al. Research on tactical communication network simulation training based on CGN
Zeng et al. Design of UAV 3D visual simulation system based on X-plane
Ma et al. Mission Capability Evaluation Testing System for Unmanned Aerial Vehicle Swarm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180413

CF01 Termination of patent right due to non-payment of annual fee