CN104607393B - Turbo air classifier inclined flow guiding device - Google Patents
Turbo air classifier inclined flow guiding device Download PDFInfo
- Publication number
- CN104607393B CN104607393B CN201410767678.2A CN201410767678A CN104607393B CN 104607393 B CN104607393 B CN 104607393B CN 201410767678 A CN201410767678 A CN 201410767678A CN 104607393 B CN104607393 B CN 104607393B
- Authority
- CN
- China
- Prior art keywords
- flow
- blade
- air
- air classifier
- wind blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Combined Means For Separation Of Solids (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种用于涡流空气分级机进行干式物料分选时的导流装置,属于粉体制备领域。The invention relates to a flow guiding device used for dry material sorting by a vortex air classifier, which belongs to the field of powder preparation.
背景技术Background technique
在干式气力分级的设计和开发过程中,如何高精度、高效率的得到细微颗粒在全球能源日趋紧张的今天显得尤为重要。对原料粉碎之后得到的颗粒进行分级,用以获得窄粒级的细微粉体,是功能材料制备的必要环节之一。In the design and development process of dry pneumatic classification, how to obtain fine particles with high precision and high efficiency is particularly important in today's increasingly tense global energy. Classifying the particles obtained after crushing raw materials to obtain fine powders with narrow particle size is one of the necessary steps in the preparation of functional materials.
利用涡流空气分级机进行物料分级,获得满足粒级要求的细微颗粒是目前干法粉体制备的主要手段。涡流空气分级机环形导流装置导风叶片内缘与转笼外缘之间的环形区是分级过程中主要的粗细颗粒分离区域。气流从二个平行对称的进风口切向进入分级机的蜗壳中,并沿螺旋形蜗壳经导流装置进入环形区,流经转笼,由转笼中心上部出风口流出。理论上来说,气流在环形区呈平面涡流分布,但由于离心风机的抽吸作用,使得气流产生向上的轴向速度,它的存在一方面会造成速度方向的改变,影响流场的稳定性;另一方面,由于向上的轴向速度,颗粒将难以沉降,使得环形区内料幕极窄,颗粒浓度增大,颗粒碰撞和团聚的几率增大,不利于物料的分散和分级,分级精度降低。因此,向上的轴向速度对分级是不利的。The use of vortex air classifiers for material classification to obtain fine particles that meet the size requirements is the main means of dry powder preparation at present. The annular area between the inner edge of the air guide vane and the outer edge of the rotating cage is the main separation area for coarse and fine particles in the classification process. The air flow enters the volute of the classifier tangentially from two parallel and symmetrical air inlets, and enters the annular area through the guide device along the spiral volute, flows through the tumbler cage, and flows out from the upper air outlet in the center of the tumbler cage. Theoretically, the airflow is distributed in a planar vortex in the annular area, but due to the suction effect of the centrifugal fan, the airflow generates an upward axial velocity. On the one hand, its existence will cause the change of the velocity direction and affect the stability of the flow field; On the other hand, due to the upward axial velocity, the particles will be difficult to settle, so that the material curtain in the annular area is extremely narrow, the particle concentration increases, and the probability of particle collision and agglomeration increases, which is not conducive to the dispersion and classification of materials, and the classification accuracy is reduced. . Therefore, upward axial velocity is detrimental to classification.
要想减小分级区气流向上的轴向速度,以获得稳定流场的同时适当增加颗粒的沉降速度,提高涡流空气分级机的分级性能,最有效的方法是对涡流空气分级机结构进行优化。导流装置上的导风叶片对气流进入分级环形区具有极其重要的导向作用,其结构特性直接影响环形区流场的分布,因此,导风叶片的形状及安装角度是决定涡流空气分级机分级性能的重要因素之一。In order to reduce the upward axial velocity of the airflow in the classification area, to obtain a stable flow field while appropriately increasing the sedimentation velocity of the particles, and to improve the classification performance of the vortex air classifier, the most effective method is to optimize the structure of the vortex air classifier. The air guide vane on the air guide device has an extremely important guiding effect on the airflow entering the classification annular area, and its structural characteristics directly affect the distribution of the flow field in the annular area. Therefore, the shape and installation angle of the air guide vane determine the classification of the vortex air classifier. One of the important factors of performance.
发明内容Contents of the invention
本发明提出一种涡流空气分级机轴向倾斜式导流装置,它通过改变导流装置上导风叶片的安装角度,降低环形分级区内气流向上的轴向速度,以改善流场稳定性,提高分级精度。The present invention proposes an axially inclined flow guide device for a vortex air classifier, which reduces the upward axial velocity of the airflow in the annular classification area by changing the installation angle of the wind guide vanes on the flow guide device, so as to improve the stability of the flow field. Improve grading accuracy.
一种涡流空气分级机的导流装置,其特征在于:导风叶片(4)的形状采用直片型,安装时叶片周向均匀分布,固定于上固定架(7)与下固定架(8)之间;导风叶片底面中心线(11)与导风叶片底面中心线(11)所在位置圆周(9)的切线(10)呈10°~20°夹角,然后以叶片底面中心线(11)为旋转轴,将叶片从竖直的起始位置逆时针旋转2°~5°角,使得气流在流经导风叶片(4)时受到一个向下的力。A flow guiding device for a vortex air classifier, characterized in that: the shape of the air guiding vanes (4) is straight, and the blades are evenly distributed in the circumferential direction during installation, and are fixed on the upper fixing frame (7) and the lower fixing frame (8) ); the centerline (11) of the bottom surface of the wind guide vane and the tangent line (10) of the circumference (9) where the centerline (11) of the bottom surface of the wind guide vane ( 11) is the axis of rotation, and the blade is rotated counterclockwise from the vertical initial position by 2° to 5°, so that the air flow is subjected to a downward force when flowing through the wind guide blade (4).
如图2所示的导流装置,导风叶片(4)在安装时,采用图3所示的安装方法。首先将叶片周向均匀分布,固定于导流装置上固定架(7)与下固定架(8)间,并使叶片底面中心线(11)与其所在位置圆周(9)的切线(10)呈10°~20°(α)夹角,见图3(a);然后以叶片底面中心线(11)为旋转轴,将叶片沿逆时针方向旋转2°~5°(θ),见图3(b),即得到轴向倾斜式导流装置模型。As shown in Fig. 2, the guide vane (4) adopts the installation method shown in Fig. 3 when installing. First, evenly distribute the blades in the circumferential direction, and fix them between the upper fixing frame (7) and the lower fixing frame (8) of the flow guide device, and make the centerline (11) of the bottom surface of the blade and the tangent line (10) of the circumference (9) of the blade form a 10°~20°(α) included angle, see Figure 3(a); then take the centerline (11) of the bottom surface of the blade as the rotation axis, and rotate the blade counterclockwise by 2°~5°(θ), see Figure 3 (b), that is, the model of the axially inclined deflector is obtained.
离心风机的抽吸作用对气流产生一个向上的升力FL,导风叶片轴向倾斜后对气流施加一个垂直于叶片方向的力FP(如图4所示),此时,气流轴向受力总和F可用公式(1)表示The suction effect of the centrifugal fan produces an upward lift force F L on the airflow. After the wind guide vane is axially inclined, it exerts a force F P perpendicular to the direction of the blade on the airflow (as shown in Figure 4). At this time, the axial direction of the airflow is affected by The total force F can be expressed by formula (1)
F=FL–FP·sinθ (1)F=F L –F P sinθ (1)
其中,θ为导风叶片的轴向倾斜角度。Among them, θ is the axial inclination angle of the wind guide vane.
当F为正值时,说明分级区存在向上的轴向加速度;相反,当F为负值时,则存在向下的轴向加速度。只有F等于或接近0时,气流才能平稳的做二维运动。因此,解决此问题的关键是确定θ值的大小。经模拟仿真结果得出,最佳倾斜角度范围为2°~5°,并且已经通过物料实验得以验证。When F is a positive value, it means that there is an upward axial acceleration in the classification area; on the contrary, when F is a negative value, there is a downward axial acceleration. Only when F is equal to or close to 0, the airflow can move smoothly in two dimensions. Therefore, the key to solving this problem is to determine the value of θ. According to the simulation results, the optimal inclination angle range is 2°~5°, which has been verified by material experiments.
本发明适用于各种粉体的干法分级。The invention is suitable for dry classification of various powders.
附图说明Description of drawings
图1为涡流空气分级机结构模型示意图Figure 1 is a schematic diagram of the structure model of the vortex air classifier
图中:1-进风口;2-蜗壳;3-出风口;4-导风叶片;5-环形区;6-转笼In the figure: 1-air inlet; 2-volute; 3-air outlet; 4-wind guide vane; 5-annular zone; 6-cage
图2为本发明中导流装置示意图Fig. 2 is the schematic diagram of the guide device in the present invention
图中:4-导风叶片;7-上固定架;8-下固定架In the figure: 4-wind guide vane; 7-upper fixed frame; 8-lower fixed frame
图3为本发明中导风叶片安装角度示意图Fig. 3 is a schematic diagram of the installation angle of the wind guide vane in the present invention
图中:9-导风叶片所在位置圆周;10-9在导风叶片底面中心点处(O点)切线;11-导风叶片底面中心线;α-10与11的夹角;θ-导风叶片的轴向倾斜角度Among the figure: 9-the position circumference of the wind guide vane; 10-9 at the center point (O point) of the bottom surface of the wind guide vane; 11-the center line of the bottom surface of the wind guide vane; the angle between α-10 and 11; Axial inclination angle of wind blade
图4为本发明中气体流经导流装置时受力分析示意图Fig. 4 is a schematic diagram of force analysis when gas flows through the diversion device in the present invention
图中:4-导风叶片;7-上固定架;8-下固定架In the figure: 4-wind guide vane; 7-upper fixed frame; 8-lower fixed frame
具体实施方式Detailed ways
本发明通过将导流装置上下固定架间的导风叶片轴向倾斜合理角度后安装,改变气流在环形区的流动轨迹,可有效减小涡流空气分级机内部气流向上的轴向速度,改善流场稳定性,提高分级区的空间利用率,减小颗粒碰撞的几率,提高分级精度,降低分级粒径。导风叶片安装时,叶片轴向倾斜角度不宜过大,否则会产生较大的向下轴向速度,加速颗粒沉降,不利于颗粒在分级区内完全粗细分离。叶片轴向倾斜角度θ为2°~5°。The invention changes the flow track of the air flow in the annular area by installing the air guide blades between the upper and lower fixing frames of the flow guide device with an axial inclination at a reasonable angle, which can effectively reduce the upward axial velocity of the air flow inside the vortex air classifier and improve the flow rate. Field stability, improve the space utilization rate of the grading area, reduce the probability of particle collision, improve the grading accuracy, and reduce the grading particle size. When installing the air guide vanes, the axial inclination angle of the vanes should not be too large, otherwise a large downward axial velocity will be generated, which will accelerate the sedimentation of the particles, which is not conducive to the complete separation of the particles in the classification area. The blade axial inclination angle θ is 2°~5°.
本发明中,其他分级条件不变,固定α角为15°,改变涡流空气分级机中导风叶片的轴向安装倾角进行对比试验。叶片轴向倾斜角度θ为2°~5°,分级粒径最大可降低19.77%,分级精度最大可上升17.39%。提高转笼转速是减小分级粒径获得细微颗粒常用的方法。由于涡流空气分级机的转笼转速可调范围是一定的,因此通过提高转笼转速减小分级粒径的能力也是有限的。本发明可使分级机在转笼转速量程范围内获得更细粉体,具有更强的分级能力,同时可降低能耗。此外,由于导流装置的优化,改善了流场稳定性,分级精度提高,达到较为理想的分级效果。In the present invention, other classification conditions remain unchanged, the α angle is fixed at 15°, and the axial installation inclination angle of the wind guide vane in the vortex air classifier is changed to conduct a comparative test. The blade axial inclination angle θ is 2°~5°, the maximum classification particle size can be reduced by 19.77%, and the maximum classification accuracy can be increased by 17.39%. Increasing the rotating speed of the rotating cage is a common method to reduce the particle size of the classification to obtain fine particles. Since the adjustable range of the rotating speed of the rotating cage of the vortex air classifier is certain, the ability to reduce the classification particle size by increasing the rotating speed of the rotating cage is also limited. The invention can make the classifier obtain finer powder within the range of rotating speed of the rotating cage, has stronger classifying ability, and can reduce energy consumption at the same time. In addition, due to the optimization of the flow guide device, the stability of the flow field is improved, the classification accuracy is improved, and a relatively ideal classification effect is achieved.
本发明的一个实施例:待分级物料为碳酸钙,其粒度组成为:An embodiment of the present invention: the material to be classified is calcium carbonate, and its particle size consists of:
表1碳酸钙原料的粒度分布The particle size distribution of table 1 calcium carbonate raw material
用具有倾斜式导流装置的涡流空气分级机进行物料分级实验,其中α角为15°,θ为2.5°,与θ为0°的具有竖直叶片的导流装置相比,20μm粒级以下的细微颗粒的百分含量提高8.2%,说明减小的向上轴向速度,有利于降低颗粒团聚以获得细微颗粒。The material classification experiment is carried out with a vortex air classifier with an inclined deflector, where the α angle is 15° and theta is 2.5°. Compared with the deflector with vertical blades with a θ of 0°, the particle size below 20 μm The percentage of fine particles increased by 8.2%, indicating that the reduced upward axial velocity is beneficial to reduce particle agglomeration to obtain fine particles.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410767678.2A CN104607393B (en) | 2014-12-14 | 2014-12-14 | Turbo air classifier inclined flow guiding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410767678.2A CN104607393B (en) | 2014-12-14 | 2014-12-14 | Turbo air classifier inclined flow guiding device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104607393A CN104607393A (en) | 2015-05-13 |
CN104607393B true CN104607393B (en) | 2018-10-09 |
Family
ID=53142189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410767678.2A Active CN104607393B (en) | 2014-12-14 | 2014-12-14 | Turbo air classifier inclined flow guiding device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104607393B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106944157B (en) * | 2016-01-07 | 2019-05-17 | 中国石油化工股份有限公司 | A kind of the preparation moulding process and system of catalytic cracking catalyst |
CN108273637A (en) * | 2018-02-09 | 2018-07-13 | 庞凯 | A kind of gradient fractionation purification system of turbine classifier and silicon dioxide ultrafine powder |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2189011Y (en) * | 1993-09-28 | 1995-02-08 | 山西临汾丰繁技术发展公司 | Vortex separator |
CN101370600A (en) * | 2006-02-24 | 2009-02-18 | 太平洋水泥株式会社 | Centrifugal Air Classifier |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201076857Y (en) * | 2007-09-01 | 2008-06-25 | 江苏科行环境工程技术有限公司 | Clathrate rotor of ultra-fine powder selector |
CN201586632U (en) * | 2009-12-10 | 2010-09-22 | 成都利君实业股份有限公司 | Rotor for powder separator |
CN103170456B (en) * | 2013-03-28 | 2015-06-24 | 河南嘉和节能科技有限公司 | Rectification method of cement powder separator guiding device |
-
2014
- 2014-12-14 CN CN201410767678.2A patent/CN104607393B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2189011Y (en) * | 1993-09-28 | 1995-02-08 | 山西临汾丰繁技术发展公司 | Vortex separator |
CN101370600A (en) * | 2006-02-24 | 2009-02-18 | 太平洋水泥株式会社 | Centrifugal Air Classifier |
Also Published As
Publication number | Publication date |
---|---|
CN104607393A (en) | 2015-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ren et al. | Design of a rotor cage with non-radial arc blades for turbo air classifiers | |
CN107661818B (en) | A method and a particle classifier for improving the classification accuracy of powder particles | |
CN201168700Y (en) | A centrifugal air classifier | |
CN107971224B (en) | Flow field construction method and classification device for particle classification | |
CN102225396B (en) | Narrow-sized level multi-stage vortex air classifier classification system | |
CN107913849B (en) | Centripetal efficient powder concentrator and design method thereof | |
CN110788005B (en) | A centrifugal air classifier for ultrafine powder | |
WO2015033312A3 (en) | Static classifier | |
CN104607393B (en) | Turbo air classifier inclined flow guiding device | |
CN205236213U (en) | Water conservancy diversion grader on wide -mouth is broken up to cyclone | |
CN205236217U (en) | Water conservancy diversion grader under wide -mouth is broken up to cyclone | |
CN105195418B (en) | A vortex air classifier non-radial arc blade cage | |
CN205110120U (en) | Energy -efficient air current sorter | |
CN204933736U (en) | A kind of turbine airflow grader tile wind-guiding type rotating cage | |
CN206240790U (en) | Grading plant | |
CN101947514A (en) | Coarse fraction powder concentrator | |
CN211134337U (en) | Double-cone cyclone classifier | |
CN211707116U (en) | Cyclone structure particle material rotor-free movable piece airflow classification equipment | |
CN205008241U (en) | Narrow rank two -stage turbine air current grader grading system | |
CN207025846U (en) | Grading wheel with integral type accessory lobes flow deflector | |
TWM625640U (en) | Gas-phase powder grading equipment | |
CN2602843Y (en) | High-efficiency rotor type coal powder classifier | |
CN100438995C (en) | A method for removing flocs in crushed chestnut shells | |
CN207952006U (en) | Multiple spot cloth wind cloth powder concentrator | |
CN202527369U (en) | Rotary winnowing grader |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |