CN104600207B - Transparent electrode and preparation method and application thereof - Google Patents
Transparent electrode and preparation method and application thereof Download PDFInfo
- Publication number
- CN104600207B CN104600207B CN201510039600.3A CN201510039600A CN104600207B CN 104600207 B CN104600207 B CN 104600207B CN 201510039600 A CN201510039600 A CN 201510039600A CN 104600207 B CN104600207 B CN 104600207B
- Authority
- CN
- China
- Prior art keywords
- metal
- transparent electrode
- conductive layer
- transparency electrode
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 37
- 229910052751 metal Inorganic materials 0.000 claims abstract description 156
- 239000002184 metal Substances 0.000 claims abstract description 156
- 239000000758 substrate Substances 0.000 claims abstract description 51
- 238000005530 etching Methods 0.000 claims abstract description 31
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 17
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 17
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 48
- 229910052782 aluminium Inorganic materials 0.000 claims description 26
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 26
- 238000010329 laser etching Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000004642 Polyimide Substances 0.000 claims description 19
- 229920001721 polyimide Polymers 0.000 claims description 19
- 229920006254 polymer film Polymers 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 18
- 239000008367 deionised water Substances 0.000 claims description 17
- 229910021641 deionized water Inorganic materials 0.000 claims description 17
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 14
- 229920000642 polymer Polymers 0.000 claims description 14
- 229910052709 silver Inorganic materials 0.000 claims description 14
- 239000004332 silver Substances 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 229920001940 conductive polymer Polymers 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- -1 Formic acid glycol ester Chemical class 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910003437 indium oxide Inorganic materials 0.000 claims description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims 3
- 230000008021 deposition Effects 0.000 claims 3
- 239000010409 thin film Substances 0.000 claims 3
- 238000000608 laser ablation Methods 0.000 claims 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims 2
- 230000001413 cellular effect Effects 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 230000001186 cumulative effect Effects 0.000 claims 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 1
- 235000019253 formic acid Nutrition 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 238000005452 bending Methods 0.000 abstract description 17
- 238000002834 transmittance Methods 0.000 abstract description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 26
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 24
- 229920000139 polyethylene terephthalate Polymers 0.000 description 21
- 239000005020 polyethylene terephthalate Substances 0.000 description 21
- 238000005507 spraying Methods 0.000 description 18
- 239000007921 spray Substances 0.000 description 16
- 238000010330 laser marking Methods 0.000 description 12
- 238000007738 vacuum evaporation Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 9
- 230000005525 hole transport Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000001035 drying Methods 0.000 description 8
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 1
- 229910000952 Be alloy Inorganic materials 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013086 organic photovoltaic Methods 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
- H10F77/247—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers comprising indium tin oxide [ITO]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种透明电极及其制备方法与应用,属于透明电极技术领域。解决了现有技术中金属氧化物柔性电极不耐弯折并且导电性能较差的技术问题。该透明电极包括从下至上依次排列的柔性基底和导电层,导电层上刻蚀有金属网栅结构的凹槽,刻蚀深度至柔性基底的上表面,且金属网栅结构的凹槽中沉积有金属,沉积的金属形成金属栅极。该电极基本保持了透明电极在可见光区的透过率,降低了透明电极的表面电阻,在可见光区域的透过率为70%‑85%,表面方阻为3Ω/□‑12Ω/□;增加了透明电极的弯折性能,且透明电极在弯折之后也可以保持较好的导电性,本发明的透明电极经400次弯折表面方阻升高在10%以下,导电性基本没有下降。
The invention discloses a transparent electrode, its preparation method and application, and belongs to the technical field of transparent electrodes. The technical problem that the metal oxide flexible electrode is not resistant to bending and has poor electrical conductivity in the prior art is solved. The transparent electrode includes a flexible substrate and a conductive layer arranged in sequence from bottom to top, the conductive layer is etched with grooves of a metal grid structure, the etching depth reaches the upper surface of the flexible substrate, and deposited in the grooves of the metal grid structure There is metal, and the deposited metal forms the metal gate. The electrode basically maintains the transmittance of the transparent electrode in the visible light region, reduces the surface resistance of the transparent electrode, the transmittance in the visible light region is 70%-85%, and the surface resistance is 3Ω/□-12Ω/□; The bending performance of the transparent electrode is improved, and the transparent electrode can also maintain good conductivity after bending. The surface resistance of the transparent electrode of the present invention increases below 10% after 400 times of bending, and the conductivity basically does not decrease.
Description
技术领域technical field
本发明属于透明电极技术领域,具体涉及一种透明电极及其制备方法与应用。The invention belongs to the technical field of transparent electrodes, and in particular relates to a transparent electrode and its preparation method and application.
背景技术Background technique
基于金属氧化物(如:ITO,FTO,AZO等)的柔性透明电极主要由柔性基底和导电层组成,具有高可见光透过率,被广泛用于有机太阳能电池和发光二极管等柔性电子器件中。但是这种柔性透明电极仍然存在一些问题:一方面,由于柔性基底的材料一般采用高分子聚合物,如聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)等,不耐高温,限制了导电层的高温后处理工艺,所以柔性透明电极和玻璃基底的透明电极相比,导电率较低;另一方面,导电层采用金属氧化物等无机材料,如,掺锡氧化铟(ITO),具有脆硬的特点,与柔性基底的机械性能不匹配,在弯折时容易断裂,弯曲后导电性能急剧下降。Flexible transparent electrodes based on metal oxides (such as: ITO, FTO, AZO, etc.) are mainly composed of flexible substrates and conductive layers, have high visible light transmittance, and are widely used in flexible electronic devices such as organic solar cells and light-emitting diodes. However, there are still some problems in this flexible transparent electrode: on the one hand, because the material of the flexible substrate generally adopts high molecular polymer, such as polyethylene terephthalate (PET), polyimide (PI), etc. High temperature resistance limits the high temperature post-treatment process of the conductive layer, so the flexible transparent electrode has a lower conductivity than the transparent electrode on the glass substrate; on the other hand, the conductive layer is made of inorganic materials such as metal oxides, such as tin-doped oxide Indium (ITO), which is brittle and hard, does not match the mechanical properties of the flexible substrate. It is easy to break when bent, and the conductivity drops sharply after bending.
为解决上述问题,现有技术中,在柔性基底上沉积导电高分子PEDOT(3,4-乙撑二氧噻吩单体的聚合物),之后在导电高分子PEDOT上磁控溅射ITO层。通过PEDOT层的柔性可以一定程度的改善电极的弯折性,但是PEDOT层导电性仍较差,同时会降低透光性,电极整体性能并不佳(Flexible PEDOT:PSS/ITO hybrid transparent conducting electrodefor organic photovoltaics,Solar Energy Materials&Solar Cells 115(2013)71–78)。因此,解决金属氧化物柔性电极不耐弯折的问题,同时保持或者提高金属氧化物电极优良的透光性和导电性,对扩展其应用,具有重要意义。In order to solve the above problems, in the prior art, a conductive polymer PEDOT (a polymer of 3,4-ethylenedioxythiophene monomer) is deposited on a flexible substrate, and then an ITO layer is magnetron sputtered on the conductive polymer PEDOT. The flexibility of the PEDOT layer can improve the bendability of the electrode to a certain extent, but the conductivity of the PEDOT layer is still poor, and at the same time it will reduce the light transmittance, and the overall performance of the electrode is not good (Flexible PEDOT:PSS/ITO hybrid transparent conducting electrode for organic photovoltaics, Solar Energy Materials & Solar Cells 115 (2013) 71–78). Therefore, it is of great significance to solve the problem that metal oxide flexible electrodes are not resistant to bending, while maintaining or improving the excellent light transmittance and electrical conductivity of metal oxide electrodes, to expand their applications.
发明内容Contents of the invention
本发明的目的是解决现有技术中金属氧化物柔性电极不耐弯折并且导电性能较差等技术问题,提供了一种透明电极及其制备方法与应用。The purpose of the present invention is to solve the technical problems of metal oxide flexible electrodes in the prior art, such as not being resistant to bending and having poor electrical conductivity, and to provide a transparent electrode and its preparation method and application.
本发明的透明电极,包括从下至上依次排列的柔性基底和导电层,所述导电层上刻蚀有金属网栅结构的凹槽,刻蚀深度至柔性基底的上表面,且金属网栅结构的凹槽中沉积有金属,沉积的金属形成金属栅极。The transparent electrode of the present invention includes a flexible substrate and a conductive layer arranged in sequence from bottom to top, the conductive layer is etched with grooves of a metal mesh structure, the etching depth reaches the upper surface of the flexible substrate, and the metal mesh structure Metal is deposited in the groove, and the deposited metal forms a metal gate.
优选的是,所述柔性基底的材料为聚对苯二甲酸乙二醇酯(PET)或者聚酰亚胺(PI),导电层的材料为掺锡氧化铟(ITO)、掺氟二氧化锡(FTO)或者掺铝氧化锌(AZO),导电层的厚度为50nm-200nm。Preferably, the material of the flexible substrate is polyethylene terephthalate (PET) or polyimide (PI), and the material of the conductive layer is tin-doped indium oxide (ITO), fluorine-doped tin dioxide (FTO) or aluminum-doped zinc oxide (AZO), the thickness of the conductive layer is 50nm-200nm.
优选的是,所述金属栅极的结构为栅栏结构或者栅格结构,所述栅格结构的栅格图案为正方形、长方形或者正六角蜂窝形。Preferably, the structure of the metal grid is a fence structure or a grid structure, and the grid pattern of the grid structure is a square, a rectangle or a regular hexagonal honeycomb shape.
优选的是,所述金属栅极的栅线线宽为50μm-200μm,距离最近的两条平行栅线的距离为0.4mm-5mm,导电层被刻蚀的体积占导电层总体积的3%-15%。Preferably, the grid line width of the metal gate is 50 μm-200 μm, the distance from the nearest two parallel grid lines is 0.4 mm-5 mm, and the etched volume of the conductive layer accounts for 3% of the total volume of the conductive layer -15%.
优选的是,所述金属为铝、银、铜、金、镍、铂、锌、锡、铁、钴、锰、钼、钛或者合金。Preferably, the metal is aluminum, silver, copper, gold, nickel, platinum, zinc, tin, iron, cobalt, manganese, molybdenum, titanium or alloys.
本发明的透明电极的制备方法,包括以下步骤:The preparation method of the transparent electrode of the present invention comprises the following steps:
步骤一、在金属氧化物透明电极的导电层上沉积水溶性导电聚合物,得到聚合物薄膜;Step 1, depositing a water-soluble conductive polymer on the conductive layer of the metal oxide transparent electrode to obtain a polymer film;
所述金属氧化物透明电极包括从下至上依次排列的柔性基底和导电层;The metal oxide transparent electrode includes a flexible substrate and a conductive layer arranged in sequence from bottom to top;
步骤二、采用激光刻蚀工艺在聚合物薄膜上刻蚀金属网栅结构的凹槽,刻蚀深度达到柔性基底的上表面;Step 2, using a laser etching process to etch the grooves of the metal grid structure on the polymer film, and the etching depth reaches the upper surface of the flexible substrate;
所述激光刻蚀的线速度为400mm/s-1500mm/s,工作功率为0.8W-4.7W;The linear speed of the laser etching is 400mm/s-1500mm/s, and the working power is 0.8W-4.7W;
步骤三、在未刻蚀的聚合物薄膜的上表面和刻蚀后裸露的柔性基底的上表面上沉积厚度为100nm-200nm的金属层,形成金属栅极;Step 3, depositing a metal layer with a thickness of 100nm-200nm on the upper surface of the unetched polymer film and the upper surface of the exposed flexible substrate to form a metal gate;
步骤四、将带有金属栅极的金属氧化物透明电极放入去离子水中超声,除去未刻蚀的聚合物薄膜及未刻蚀的聚合物薄膜上的金属层,得到透明电极。Step 4, put the metal oxide transparent electrode with the metal grid into deionized water and ultrasonically remove the unetched polymer film and the metal layer on the unetched polymer film to obtain a transparent electrode.
优选的是,所述步骤一中,水溶性导电聚合物为PEDOT:PSS。Preferably, in the first step, the water-soluble conductive polymer is PEDOT:PSS.
优选的是,所述步骤一中,沉积的聚合物薄膜的厚度为50nm-500nm。Preferably, in the first step, the thickness of the deposited polymer film is 50nm-500nm.
优选的是,所述步骤四中,超声时间为10s-15s。Preferably, in step 4, the ultrasonic time is 10s-15s.
本发明还提供上述透明电极在制备太阳能电池中的应用。The present invention also provides the application of the above-mentioned transparent electrode in preparing solar cells.
与现有技术相比,本发明的有益效果:Compared with prior art, the beneficial effect of the present invention:
1、本发明的透明电极将金属栅极嵌入导电层中,保持了透明电极在可见光区的透过率,降低了透明电极的表面电阻,在可见光区域的透过率为70%-85%,表面方阻为3Ω/□-12Ω/□;增加了透明电极的弯折性能,且透明电极在弯折之后也可以保持较好的导电性,本发明的透明电极经400次弯折表面方阻升高在10%以下,导电性基本没有下降;另外,嵌入式的结构不存在金属栅极突出的问题,能够满足有机太阳能电池和发光二极管等柔性电子器件的制备需求;1. The transparent electrode of the present invention embeds the metal grid into the conductive layer, which maintains the transmittance of the transparent electrode in the visible light region, reduces the surface resistance of the transparent electrode, and has a transmittance of 70%-85% in the visible light region. The surface square resistance is 3Ω/□-12Ω/□; the bending performance of the transparent electrode is increased, and the transparent electrode can also maintain good conductivity after bending. The surface square resistance of the transparent electrode of the present invention is bent 400 times The increase is below 10%, and the conductivity basically does not decrease; in addition, the embedded structure does not have the problem of protruding metal gates, which can meet the preparation requirements of flexible electronic devices such as organic solar cells and light-emitting diodes;
2、本发明的透明电极采用的制备方法,简单快捷,制备效率高,所需设备成本低,且制备的透明电极的面积没有限制,可实现大规模批量加工,易于大规模产业化。2. The preparation method adopted by the transparent electrode of the present invention is simple and quick, with high preparation efficiency and low equipment cost, and there is no limit to the area of the prepared transparent electrode, which can realize large-scale batch processing and is easy for large-scale industrialization.
3、应用本发明的透明电极制备的太阳能电池具备良好的性能。3. The solar cell prepared by using the transparent electrode of the present invention has good performance.
附图说明Description of drawings
图1为本发明透明电极的结构示意图;Fig. 1 is the structural representation of transparent electrode of the present invention;
图2为本发明实施例1和实施例4的透明电极的俯视图;2 is a top view of the transparent electrodes of Embodiment 1 and Embodiment 4 of the present invention;
图3为本发明实施例2的透明电极的俯视图;3 is a top view of a transparent electrode according to Embodiment 2 of the present invention;
图4为本发明实施例3和实施例5的透明电极的俯视图;Fig. 4 is a top view of the transparent electrodes of Embodiment 3 and Embodiment 5 of the present invention;
图5为本发明实施例6的透明电极的俯视图;FIG. 5 is a top view of a transparent electrode according to Embodiment 6 of the present invention;
图6为本发明制备透明电极的工艺流程图;Fig. 6 is a flow chart of the process for preparing a transparent electrode in the present invention;
图7为本发明的透明电极制备的太阳能电池的结构示意图;7 is a schematic structural view of a solar cell prepared with a transparent electrode of the present invention;
图8为本发明实施例7的太阳能电池的电流-电压特性曲线;Fig. 8 is the current-voltage characteristic curve of the solar cell of the embodiment 7 of the present invention;
图9为本发明实施例8的太阳能电池的电流-电压特性曲线;Fig. 9 is the current-voltage characteristic curve of the solar cell of the embodiment 8 of the present invention;
图中,1、基底,2、导电层,3,金属栅极,4、聚合物薄膜,5、金属层,6、空穴传输层,7、光敏层,8、电子传输层,9、金属电极,10、连接片。In the figure, 1. Substrate, 2. Conductive layer, 3. Metal gate, 4. Polymer film, 5. Metal layer, 6. Hole transport layer, 7. Photosensitive layer, 8. Electron transport layer, 9. Metal Electrode, 10, connecting piece.
具体实施方式detailed description
为了进一步了解本发明,下面结合具体实施方式对本发明的优选实施方案进行描述,但是应当理解,这些描述只是为了进一步说明本发明的特征和优点而不是对本发明权利要求的限制。In order to further understand the present invention, the preferred embodiments of the present invention are described below in conjunction with specific embodiments, but it should be understood that these descriptions are only for further illustrating the features and advantages of the present invention rather than limiting the claims of the present invention.
如图1所示,本发明的透明电极包括从下至上依次排列的柔性基底1和导电层2,其中,导电层2上刻蚀有金属网栅结构的凹槽,刻蚀深度到达柔性基底1的上表面上,刻蚀体积占导电层2总体积的3%-15%;金属网栅结构的凹槽中沉积有金属,沉积的金属形成金属栅极3。该透明电极在可见光区域的透过率为70%-85%,表面方阻为3Ω/□-12Ω/□,且上表面为平面,没有明显突出。经400次弯折表面方阻升高在10%以下。As shown in Figure 1, the transparent electrode of the present invention includes a flexible substrate 1 and a conductive layer 2 arranged in sequence from bottom to top, wherein the conductive layer 2 is etched with grooves of a metal grid structure, and the etching depth reaches the flexible substrate 1 On the upper surface of the conductive layer 2, the etched volume accounts for 3%-15% of the total volume of the conductive layer 2; metal is deposited in the groove of the metal grid structure, and the deposited metal forms a metal grid 3. The transmittance of the transparent electrode in the visible light region is 70%-85%, the surface square resistance is 3Ω/□-12Ω/□, and the upper surface is flat without obvious protrusion. After 400 times of bending, the surface resistance increases below 10%.
本发明中,柔性基底1的材料可以为PET、PI等。导电层2的材料可以为ITO、FTO或者AZO,厚度为50nm-200nm。金属可以为铝、银、铜、金、镍、铂、锌、锡、铁、钴、锰、钼和钛中的一种,也可以为合金,金属栅极3的厚度也为50nm-200nm,且与导电层2的厚度相同。In the present invention, the material of the flexible substrate 1 can be PET, PI and the like. The material of the conductive layer 2 can be ITO, FTO or AZO, and the thickness is 50nm-200nm. The metal can be one of aluminum, silver, copper, gold, nickel, platinum, zinc, tin, iron, cobalt, manganese, molybdenum and titanium, or an alloy, and the thickness of the metal grid 3 is also 50nm-200nm. And it is the same as the thickness of the conductive layer 2 .
金属网栅结构(即金属栅极3的结构)没有特殊限制,现有技术中的金属网栅结构皆可实现,可以为栅栏结构或者栅格结构。如为栅栏结构,如图2所示,金属网栅结构由多条平行的栅线和两个连接片10组成,多条平行的栅线的顶端连接在一个连接片10上,多条平行的直线的底端连接在另一连接片10上,栅线间距为相邻的两条平行栅线间的距离。如为栅格结构,如图3-5所示,栅格可以为正方形、长方形、正六角蜂窝状等;如为正方形,如图5所示,金属网栅结构由相互垂直的两组平行栅线组成,相邻的两条平行直线的间距皆相等,边缘轮廓为正方形,栅线间距为相邻且平行的两条栅线之间的距离;如为正六角蜂窝形,如图3和图4所示,金属网栅结构即为蜂窝结构,栅线间距为正六角蜂窝形的平行对边之间的距离;金属网栅结构的栅线宽度为50μm-200μm,距离最近的两条平行栅线的距离为0.4mm-5mm,最小精度决定于激光刻蚀工艺。The metal grid structure (that is, the structure of the metal grid 3 ) is not particularly limited, and any metal grid structure in the prior art can be realized, which can be a fence structure or a grid structure. If it is a fence structure, as shown in Figure 2, the metal grid structure is composed of multiple parallel grid lines and two connecting pieces 10, the tops of the multiple parallel grid lines are connected to one connecting piece 10, and the multiple parallel grid lines The bottom end of the straight line is connected to another connecting piece 10, and the distance between the grid lines is the distance between two adjacent parallel grid lines. If it is a grid structure, as shown in Figure 3-5, the grid can be square, rectangular, regular hexagonal honeycomb, etc.; if it is a square, as shown in Figure 5, the metal grid structure consists of two sets of parallel grids perpendicular to each other. Lines, the distance between two adjacent parallel straight lines is equal, the edge profile is a square, and the grid line spacing is the distance between two adjacent and parallel grid lines; if it is a regular hexagonal honeycomb shape, as shown in Figure 3 and Figure As shown in 4, the metal grid structure is a honeycomb structure, and the distance between the grid lines is the distance between the parallel sides of the regular hexagonal honeycomb; the grid line width of the metal grid structure is 50 μm-200 μm, and the two closest parallel grids The line distance is 0.4mm-5mm, and the minimum precision depends on the laser etching process.
如图6所示,本发明的透明电极的制备方法,包括以下步骤:As shown in Figure 6, the preparation method of the transparent electrode of the present invention comprises the following steps:
步骤一、清洗后,在金属氧化物透明电极的导电层2的上表面上沉积水溶性导电聚合物,得到聚合物薄膜,厚度为50nm-500nm,优选为200nm;Step 1, after cleaning, deposit a water-soluble conductive polymer on the upper surface of the conductive layer 2 of the metal oxide transparent electrode to obtain a polymer film with a thickness of 50nm-500nm, preferably 200nm;
其中,透明电极主要由柔性基底1和导电层2组成,柔性基底1的材料可以为PET、PI等;导电层2的材料可以为ITO、FTO或者AZO,厚度为50nm-200nm,优选金属氧化物透明电极为ITO/PET透明电极;水溶性导电聚合物可以为PEDOT:PSS;Among them, the transparent electrode is mainly composed of a flexible substrate 1 and a conductive layer 2. The material of the flexible substrate 1 can be PET, PI, etc.; the material of the conductive layer 2 can be ITO, FTO or AZO, with a thickness of 50nm-200nm, preferably metal oxide The transparent electrode is ITO/PET transparent electrode; the water-soluble conductive polymer can be PEDOT:PSS;
沉积方法可选用旋涂、喷涂、刮涂、丝网印刷等,优选旋涂和喷涂;The deposition method can be spin coating, spray coating, scrape coating, screen printing, etc., preferably spin coating and spray coating;
步骤二、采用激光刻蚀工艺在聚合物薄膜4上刻蚀金属网栅结构的凹槽,刻透导电层2,刻蚀深度达到柔性基底1的上表面;Step 2, using a laser etching process to etch the groove of the metal grid structure on the polymer film 4, and etch through the conductive layer 2, and the etching depth reaches the upper surface of the flexible substrate 1;
其中,激光刻蚀工艺的线速度为400mm/s-1500mm/s,工作功率为0.8W-4.7W;如果线速度小于400mm/s,激光刻蚀点过于密集,损坏柔性基底1,如果线速度大于1500mm/s,激光刻蚀点过于稀疏,无法连续成线;工作功率小于0.8W,激光能量低于导电层2的刻蚀阈值,无法刻蚀,工作功率大于4.7W,激光能量较大,损坏柔性基底1,造成柔性基底1变形;Among them, the linear speed of the laser etching process is 400mm/s-1500mm/s, and the working power is 0.8W-4.7W; if the linear speed is less than 400mm/s, the laser etching points are too dense, which will damage the flexible substrate 1. If the linear speed If it is greater than 1500mm/s, the laser etching points are too sparse to form a continuous line; if the working power is less than 0.8W, the laser energy is lower than the etching threshold of the conductive layer 2 and cannot be etched; if the working power is greater than 4.7W, the laser energy is relatively large. Damage the flexible base 1, causing deformation of the flexible base 1;
导电层2被刻蚀的体积占导电层2总体积的3%-15%,金属网栅结构没有特殊限制,现有技术中的金属网栅结构皆可实现,可以为栅栏结构或者栅格结构;如为栅栏结构,如图2所示,金属网栅结构由多条平行的栅线和两个连接片10组成,多条平行的栅线的顶端连接在一个连接片10上,多条平行的直线的底端连接在另一连接片10上,栅线间距为相邻的两条平行栅线间的距离;如为栅格结构,如图3-5所示,栅格可以为正方形、长方形、正六角蜂窝状等;如为正方形,如图5所示,金属网栅结构由相互垂直的两组平行栅线组成,相邻的两条平行直线的间距皆相等,边缘轮廓为正方形,栅线间距为相邻且平行的两条栅线之间的距离;如为正六角蜂窝形,如图3和图4所示,金属网栅结构即为蜂窝结构,栅线间距为正六角蜂窝形的平行对边之间的距离;金属网栅结构的栅线宽度为50μm-200μm,距离最近的两条平行栅线的距离为0.4mm-5mm,最小精度决定于激光刻蚀工艺;The volume of the conductive layer 2 to be etched accounts for 3%-15% of the total volume of the conductive layer 2. There is no special limitation on the metal grid structure, and any metal grid structure in the prior art can be realized, which can be a fence structure or a grid structure ; If it is a fence structure, as shown in Figure 2, the metal mesh grid structure is made up of multiple parallel grid lines and two connecting pieces 10, the tops of many parallel grid lines are connected on a connecting piece 10, and many parallel grid lines The bottom end of the straight line is connected to another connecting piece 10, and the distance between the grid lines is the distance between two adjacent parallel grid lines; if it is a grid structure, as shown in Figure 3-5, the grid can be square, Rectangular, regular hexagonal honeycomb, etc.; if it is square, as shown in Figure 5, the metal grid structure is composed of two sets of parallel grid lines perpendicular to each other. The distance between two adjacent parallel straight lines is equal, and the edge contour is square. The grid line spacing is the distance between two adjacent and parallel grid lines; if it is a regular hexagonal honeycomb shape, as shown in Figure 3 and Figure 4, the metal grid structure is a honeycomb structure, and the grid line spacing is a regular hexagonal honeycomb The distance between the parallel opposite sides of the shape; the grid line width of the metal grid structure is 50μm-200μm, and the distance between the nearest two parallel grid lines is 0.4mm-5mm, and the minimum accuracy depends on the laser etching process;
步骤三、在未刻蚀的聚合物薄膜4的上表面和刻蚀后裸露的柔性基底1的上表面沉积金属层5,金属层5的厚度与导电层2的厚度相同,沉积在裸露的柔性基底1表面的金属层5形成金属栅极3;Step 3, depositing a metal layer 5 on the upper surface of the unetched polymer film 4 and the upper surface of the exposed flexible substrate 1 after etching, the thickness of the metal layer 5 is the same as that of the conductive layer 2, and deposited on the exposed flexible substrate 1. The metal layer 5 on the surface of the substrate 1 forms a metal gate 3;
其中,金属层5的材料可以为铝、银、铜、金、镍、铂、锌、锡、铁、钴、锰、钼、钛或者合金,优选为铝或银,也可以为合金;Wherein, the material of metal layer 5 can be aluminum, silver, copper, gold, nickel, platinum, zinc, tin, iron, cobalt, manganese, molybdenum, titanium or alloy, preferably aluminum or silver, also can be alloy;
沉积方法可以为真空蒸镀、刮涂、丝网印刷、喷涂等,优选真空蒸镀;The deposition method can be vacuum evaporation, scraping, screen printing, spraying, etc., preferably vacuum evaporation;
步骤四、将带有金属栅极3的透明电极放入去离子水中超声,除去未刻蚀的聚合物薄膜4及其上的金属层5,超声时间一般为10s-15s,清洗,得到透明电极,该透明电极在可见光区域的透过率为70%-85%,表面方阻为3Ω/□-12Ω/□,且上表面为平面,没有明显突出。经400次弯折表面方阻升高在10%以下。Step 4: Put the transparent electrode with the metal grid 3 into deionized water and ultrasonically remove the unetched polymer film 4 and the metal layer 5 on it. The ultrasonic time is generally 10s-15s, and then clean to obtain a transparent electrode The transmittance of the transparent electrode in the visible light region is 70%-85%, the surface resistance is 3Ω/□-12Ω/□, and the upper surface is flat without obvious protrusion. After 400 times of bending, the surface resistance increases below 10%.
本发明制备的透明电极可用于制备太阳能电池,其具体方法与现有技术中透明电极制备太阳能电池的方法相同。即在透明电极的上表面从下至上依次制备空穴传输层6、光敏层7、电子传输层8和金属电极9,如图7所示;制备方法可以为真空蒸镀、刮涂、喷涂等,空穴传输层6的材料可以为PEDOT:PSS,厚度可以为20nm-60nm;光敏层7的材料可以为聚噻吩或窄带隙聚合物,如PBDT-TFQ(合成方法见文献:Prominent Short-Circuit Currents ofFluorinated Quinoxaline-Based Copolymer Solar Cells with a Power ConversionEfficiency of8.0%.CHEMISTRYOF MATERIALS卷:24期:24页),厚度可以为100nm-150nm;电子传输层8的材料可以为Ca,厚度可以为15nm-20nm;金属电极9的材料可以为Al,厚度可以为100nm-200nm。The transparent electrode prepared by the invention can be used to prepare solar cells, and its specific method is the same as the method for preparing solar cells with transparent electrodes in the prior art. That is, a hole transport layer 6, a photosensitive layer 7, an electron transport layer 8, and a metal electrode 9 are sequentially prepared on the upper surface of the transparent electrode from bottom to top, as shown in Figure 7; the preparation method can be vacuum evaporation, scraping, spraying, etc. , the material of the hole transport layer 6 can be PEDOT:PSS, and the thickness can be 20nm-60nm; the material of the photosensitive layer 7 can be polythiophene or a narrow bandgap polymer, such as PBDT-TFQ (see the literature for the synthesis method: Prominent Short-Circuit Currents ofFluorinated Quinoxaline-Based Copolymer Solar Cells with a Power ConversionEfficiency of8.0%. CHEMISTRYOF MATERIALS volume: 24 period: 24 pages), thickness can be 100nm-150nm; The material of electron transport layer 8 can be Ca, and thickness can be 15nm- 20nm; the material of the metal electrode 9 can be Al, and the thickness can be 100nm-200nm.
本发明中,PEDOT:PSS为一种高分子聚合物的水溶液,主要由PEDOT和PSS两种物质构成,PEDOT是EDOT(3,4-乙撑二氧噻吩单体)的聚合物,PSS是聚苯乙烯磺酸盐。可以通过商购获得。本实施方式中所使用的PEDOT:PSS的型号为Al4083,旋涂可以直接使用Al4083,喷涂墨水配方为:PEDOT:PSS体积分数18%,去离子水体积分数9%,异丙醇体积分数为73%。Among the present invention, PEDOT:PSS is the aqueous solution of a kind of polymer, mainly is made of two kinds of substances of PEDOT and PSS, and PEDOT is the polymer of EDOT (3,4-ethylenedioxythiophene monomer), and PSS is poly Styrene Sulfonate. It is commercially available. The model of PEDOT:PSS used in this embodiment is Al4083, spin coating can directly use Al4083, the spray ink formula is: PEDOT:PSS volume fraction 18%, deionized water volume fraction 9%, isopropanol volume fraction is 73% %.
以下结合实施例进一步说明本发明。Below in conjunction with embodiment further illustrate the present invention.
实施例1Example 1
金属栅极ITO透明电极的制备方法:Preparation method of metal gate ITO transparent electrode:
步骤一、PEDOT:PSS薄膜制备:Step 1. Preparation of PEDOT:PSS film:
将ITO/PET透明电极的导电层2依次用去离子水、异丙醇和丙酮清洗后,高纯氮气吹干,在紫外臭氧处理机中处理20min,然后置于旋涂仪托台上,在2000rpm转速下旋涂50nm厚的PEDOT:PSS薄膜;其中,ITO/PET透明电极的柔性基底1为PET,导电层2为180nm厚的ITO,ITO/PET透明电极的上表面面积为30mm×30mm;After cleaning the conductive layer 2 of the ITO/PET transparent electrode with deionized water, isopropanol and acetone in sequence, dry it with high-purity nitrogen gas, treat it in a UV ozone processor for 20 minutes, and then place it on a spin coater stand, at 2000rpm Spin-coat a 50nm thick PEDOT:PSS film at a rotating speed; wherein, the flexible substrate 1 of the ITO/PET transparent electrode is PET, the conductive layer 2 is ITO with a thickness of 180nm, and the upper surface area of the ITO/PET transparent electrode is 30mm×30mm;
步骤二、激光刻蚀金属网栅结构的凹槽:Step 2. Laser etching the grooves of the metal grid structure:
将旋涂有PEDOT:PSS薄膜的透明电极置于激光打标机工作台上,使用激光打标机在PEDOT:PSS薄膜上刻蚀金属网栅结构的凹槽,刻蚀深度至柔性基底1的上表面;金属网栅结构为栅栏结构,线宽为0.1mm,相邻两条栅线的间距为1mm;刻蚀的导电层2的体积占导电层2总体积的10%,激光刻蚀所用的线速度为600mm/s,刻蚀所用工作电流为1.84W,其他参数为默认;Place the transparent electrode spin-coated with the PEDOT:PSS film on the workbench of the laser marking machine, use the laser marking machine to etch the groove of the metal grid structure on the PEDOT:PSS film, and the etching depth reaches the bottom of the flexible substrate 1 The upper surface; the metal grid structure is a fence structure, the line width is 0.1mm, and the distance between two adjacent grid lines is 1mm; the volume of the etched conductive layer 2 accounts for 10% of the total volume of the conductive layer 2, and the laser etching is used The linear speed is 600mm/s, the working current used for etching is 1.84W, and other parameters are default;
步骤三、金属栅极3的制备:Step 3, preparation of the metal grid 3:
将刻有凹槽的透明电极置于真空蒸镀仪中,抽真空至3×10-4Pa后,在未刻蚀的PEDOT:PSS薄膜的上表面和刻蚀后裸露的柔性基底1的上表面热蒸镀厚度为180nm的金属铝层,形成金属栅极3;Place the grooved transparent electrode in a vacuum evaporation apparatus, and after vacuuming to 3×10 -4 Pa, place it on the upper surface of the unetched PEDOT:PSS film and the exposed flexible substrate 1 after etching. A metal aluminum layer with a thickness of 180 nm is thermally evaporated on the surface to form a metal gate 3;
步骤四、剥离金属铝层:Step 4. Peel off the metal aluminum layer:
将蒸镀有金属铝层的透明电极置于去离子水中超声10s,除去未刻蚀的PEDOT:PSS薄膜及其上的金属铝层,取出,使用异丙醇和丙酮进行表面清洗,干燥后,得到金属栅极ITO透明电极,如图2所示。Place the transparent electrode evaporated with a metal aluminum layer in deionized water for 10s, remove the unetched PEDOT:PSS film and the metal aluminum layer on it, take it out, use isopropanol and acetone to clean the surface, and after drying, get Metal gate ITO transparent electrode, as shown in Figure 2.
在实施例1的金属栅极ITO透明电极的导电层2上印刷长度为1cm,间距为1cm的两条银浆,烘干后,使用欧姆表对实施例1的金属栅极ITO透明电极进行电阻测量。经测试,实施例1的金属栅极ITO透明电极的透光率为74%,面电阻为3.6Ω/□。On the conductive layer 2 of the metal grid ITO transparent electrode of embodiment 1, print a length of 1 cm and two silver pastes with a spacing of 1 cm. After drying, use an ohmmeter to conduct a resistance test on the metal grid ITO transparent electrode of embodiment 1. Measurement. After testing, the light transmittance of the metal grid ITO transparent electrode of Example 1 is 74%, and the surface resistance is 3.6Ω/□.
实施例2Example 2
金属栅极ITO透明电极的制备方法:Preparation method of metal gate ITO transparent electrode:
步骤一、PEDOT:PSS薄膜制备:Step 1. Preparation of PEDOT:PSS film:
将用于制备电池模组的图案化ITO/PET透明电极的导电层2依次用去离子水、异丙醇和丙酮清洗后,高纯氮气吹干,在紫外臭氧处理机中处理20min,然后采用超声喷涂仪在导电层2的上表面喷涂沉积厚度为200nm的PEDOT:PSS薄膜;其中,喷涂工艺参数为0.3mL/min流量,20mm/s喷头移动速度,60mm喷头高度,3.5W超声功率,0.1MPA气流量,喷涂三遍;用于制备电池模组的图案化ITO/PET透明电极的柔性基底1为PET,导电层2为180nm厚的ITO,导电层2的图案为五个长边彼此平行的长方形,ITO/PET透明电极的上表面面积为90mm×90mm;After cleaning the conductive layer 2 of the patterned ITO/PET transparent electrode used to prepare the battery module with deionized water, isopropanol and acetone in sequence, dry it with high-purity nitrogen, treat it in a UV ozone processor for 20 minutes, and then use ultrasonic The spraying instrument sprays and deposits a PEDOT:PSS film with a thickness of 200nm on the upper surface of the conductive layer 2; wherein, the spraying process parameters are 0.3mL/min flow rate, 20mm/s nozzle moving speed, 60mm nozzle height, 3.5W ultrasonic power, 0.1MPA Air flow, spraying three times; the flexible substrate 1 used to prepare the patterned ITO/PET transparent electrode of the battery module is PET, the conductive layer 2 is ITO with a thickness of 180nm, and the pattern of the conductive layer 2 is that five long sides are parallel to each other Rectangular, the upper surface area of the ITO/PET transparent electrode is 90mm×90mm;
步骤二、激光刻蚀金属网栅结构的凹槽:Step 2. Laser etching the grooves of the metal grid structure:
将旋涂有PEDOT:PSS薄膜的透明电极置于激光打标机工作台上,使用激光打标机在PEDOT:PSS薄膜上刻蚀金属网栅结构的凹槽,刻蚀深度至柔性基底1的上表面;金属网栅结构的栅格为正六角蜂窝形,线宽为0.1mm,正六角蜂窝形对边之间的距离为1.5mm,刻蚀的导电层2的体积占导电层2总体积的13%,激光刻蚀所用的线速度为600mm/s,刻蚀所用工作电流为1.84W,其他参数为默认;Place the transparent electrode spin-coated with the PEDOT:PSS film on the workbench of the laser marking machine, use the laser marking machine to etch the groove of the metal grid structure on the PEDOT:PSS film, and the etching depth reaches the bottom of the flexible substrate 1 The upper surface; the grid of the metal grid structure is a regular hexagonal honeycomb shape, the line width is 0.1mm, the distance between the opposite sides of the regular hexagonal honeycomb shape is 1.5mm, and the volume of the etched conductive layer 2 accounts for the total volume of the conductive layer 2 13%, the linear speed used for laser etching is 600mm/s, the working current used for etching is 1.84W, and other parameters are default;
步骤三、金属栅极3的制备:Step 3, preparation of the metal grid 3:
将刻有凹槽的透明电极置于真空蒸镀仪中,抽真空至3×10-4Pa后,在未刻蚀的PEDOT:PSS薄膜的上表面和刻蚀后裸露的柔性基底1的上表面热蒸镀厚度为180nm的金属铝层,形成金属栅极3;Place the grooved transparent electrode in a vacuum evaporation apparatus, and after vacuuming to 3×10 -4 Pa, place it on the upper surface of the unetched PEDOT:PSS film and the exposed flexible substrate 1 after etching. A metal aluminum layer with a thickness of 180 nm is thermally evaporated on the surface to form a metal gate 3;
步骤四、剥离金属铝层:Step 4. Peel off the metal aluminum layer:
将蒸镀有金属铝层的透明电极置于去离子水中超声15s,除去未刻蚀的PEDOT:PSS薄膜及其上的金属铝层,取出,使用异丙醇和丙酮进行表面清洗,干燥后,得到金属栅极ITO透明电极,如图3所示。Place the transparent electrode evaporated with a metal aluminum layer in deionized water for 15s, remove the unetched PEDOT:PSS film and the metal aluminum layer on it, take it out, use isopropanol and acetone to clean the surface, and after drying, get Metal gate ITO transparent electrode, as shown in Figure 3.
在实施例2的金属栅极ITO透明电极的导电层2上印刷长度为1cm,间距为1cm的两条银浆,烘干后,使用欧姆表对实施例2的金属栅极ITO透明电极进行电阻测量。经测试,实施例2的金属栅极ITO透明电极的透光率为72%,面电阻为5.2Ω/□。On the conductive layer 2 of the metal grid ITO transparent electrode of embodiment 2, print a length of 1 cm and two silver pastes with a spacing of 1 cm. After drying, use an ohmmeter to conduct a resistance test on the metal grid ITO transparent electrode of embodiment 2. Measurement. After testing, the light transmittance of the metal grid ITO transparent electrode of Example 2 is 72%, and the surface resistance is 5.2Ω/□.
实施例3Example 3
金属栅极ITO透明电极的制备方法:Preparation method of metal gate ITO transparent electrode:
步骤一、PEDOT:PSS薄膜制备:Step 1. Preparation of PEDOT:PSS film:
将ITO/PI透明电极的导电层2依次用去离子水、异丙醇和丙酮清洗后,高纯氮气吹干,在紫外臭氧处理机中处理20min,然后超声喷涂仪在导电层2的上表面喷涂沉积厚度为100nm的PEDOT:PSS薄膜;其中,喷涂工艺参数为0.15mL/min流量,20mm/s喷头移动速度,60mm喷头高度,3.5W超声功率,0.1MPA气流量,喷涂三遍;ITO/PI透明电极的柔性基底1为PI,导电层2为100nm厚的ITO,ITO/PI透明电极的上表面面积为70mm×70mm;After cleaning the conductive layer 2 of the ITO/PI transparent electrode with deionized water, isopropanol and acetone in sequence, blow it dry with high-purity nitrogen, treat it in a UV ozone processor for 20 minutes, and then spray on the upper surface of the conductive layer 2 with an ultrasonic sprayer Deposit a PEDOT:PSS film with a thickness of 100nm; among them, the spraying process parameters are 0.15mL/min flow rate, 20mm/s nozzle moving speed, 60mm nozzle height, 3.5W ultrasonic power, 0.1MPA air flow, spray three times; ITO/PI The flexible substrate 1 of the transparent electrode is PI, the conductive layer 2 is ITO with a thickness of 100nm, and the upper surface area of the ITO/PI transparent electrode is 70mm×70mm;
步骤二、激光刻蚀金属网栅结构的凹槽:Step 2. Laser etching the grooves of the metal grid structure:
将旋涂有PEDOT:PSS薄膜的透明电极置于激光打标机工作台上,使用激光打标机在PEDOT:PSS薄膜上刻蚀金属网栅结构的凹槽,刻蚀深度至柔性基底1的上表面;金属网栅结构的栅格为正六角蜂窝形,线宽为0.05mm,正六角蜂窝形对边之间的距离为2mm,刻蚀的导电层2的体积占导电层2总体积的5%,激光刻蚀所用的线速度为400mm/s,刻蚀所用工作电流为0.8W,其他参数为默认;Place the transparent electrode spin-coated with the PEDOT:PSS film on the workbench of the laser marking machine, use the laser marking machine to etch the groove of the metal grid structure on the PEDOT:PSS film, and the etching depth reaches the bottom of the flexible substrate 1 The upper surface; the grid of the metal grid structure is a regular hexagonal honeycomb shape, the line width is 0.05mm, the distance between the opposite sides of the regular hexagonal honeycomb shape is 2mm, and the volume of the etched conductive layer 2 accounts for 2% of the total volume of the conductive layer 2 5%, the linear speed used for laser etching is 400mm/s, the working current used for etching is 0.8W, and other parameters are default;
步骤三、金属栅极3的制备:Step 3, preparation of the metal grid 3:
将刻有凹槽的透明电极置于真空蒸镀仪中,抽真空至3×10-4后,在未刻蚀的PEDOT:PSS薄膜的上表面和刻蚀后裸露的柔性基底1的上表面热蒸镀厚度为100nm的金属铝层,形成金属栅极3;Place the grooved transparent electrode in a vacuum evaporation apparatus, and after vacuuming to 3×10 -4 , on the upper surface of the unetched PEDOT:PSS film and the upper surface of the exposed flexible substrate 1 after etching Thermally evaporating a metal aluminum layer with a thickness of 100 nm to form a metal gate 3;
步骤四、剥离金属铝层:Step 4. Peel off the metal aluminum layer:
将蒸镀有金属铝层的透明电极置于去离子水中超声12s,除去未刻蚀的PEDOT:PSS薄膜及其上的金属铝层,取出,使用异丙醇和丙酮进行表面清洗,干燥后,得到金属栅极ITO透明电极,结构如图4所示。Place the transparent electrode evaporated with a metal aluminum layer in deionized water for 12s, remove the unetched PEDOT:PSS film and the metal aluminum layer on it, take it out, clean the surface with isopropanol and acetone, and dry it to get Metal gate ITO transparent electrode, the structure is shown in Figure 4.
在实施例3的金属栅极ITO透明电极的导电层2上印刷长度为1cm,间距为1cm的两条银浆,烘干后,使用欧姆表对实施例3的金属栅极ITO透明电极进行电阻测量。经测试,实施例3的金属栅极ITO透明电极的透光率为83%,面电阻为11Ω/□。On the conductive layer 2 of the metal grid ITO transparent electrode of embodiment 3, printing length is 1cm, two silver pastes with a spacing of 1cm, after drying, use an ohmmeter to carry out the resistance of the metal grid ITO transparent electrode of embodiment 3 Measurement. After testing, the light transmittance of the metal grid ITO transparent electrode of Example 3 is 83%, and the surface resistance is 11Ω/□.
实施例4Example 4
金属栅极ITO透明电极的制备方法:Preparation method of metal gate ITO transparent electrode:
步骤一、PEDOT:PSS薄膜制备:Step 1. Preparation of PEDOT:PSS film:
将ITO/PET透明电极的导电层2依次用去离子水、异丙醇和丙酮清洗后,高纯氮气吹干,在紫外臭氧处理机中处理20min,然后置于旋涂仪托台上,在2000rpm转速下旋涂50nm厚的PEDOT:PSS薄膜;其中,ITO/PET透明电极的基底1为PET,导电层2为200nm厚的ITO,ITO/PET透明电极的上表面面积为50mm×50mm;After cleaning the conductive layer 2 of the ITO/PET transparent electrode with deionized water, isopropanol and acetone in sequence, dry it with high-purity nitrogen gas, treat it in a UV ozone processor for 20 minutes, and then place it on a spin coater stand, at 2000rpm Spin-coat a 50nm thick PEDOT:PSS film at a rotating speed; wherein, the substrate 1 of the ITO/PET transparent electrode is PET, the conductive layer 2 is ITO with a thickness of 200nm, and the upper surface area of the ITO/PET transparent electrode is 50mm×50mm;
步骤二、激光刻蚀金属网栅结构的凹槽:Step 2. Laser etching the grooves of the metal grid structure:
将旋涂有PEDOT:PSS薄膜的透明电极置于激光打标机工作台上,使用激光打标机在PEDOT:PSS薄膜上刻蚀金属网栅结构的凹槽,刻蚀深度至柔性基底1的上表面;金属网栅结构为栅栏结构,线宽为0.2mm,相邻的栅线间的距离为5mm,刻蚀的导电层2的体积占导电层2总体积的4%,激光刻蚀所用的线速度为1500mm/s,刻蚀所用工作电流为4.7W,其他参数为默认;Place the transparent electrode spin-coated with the PEDOT:PSS film on the workbench of the laser marking machine, use the laser marking machine to etch the groove of the metal grid structure on the PEDOT:PSS film, and the etching depth reaches the bottom of the flexible substrate 1 The upper surface; the metal grid structure is a fence structure, the line width is 0.2mm, the distance between adjacent grid lines is 5mm, the volume of the etched conductive layer 2 accounts for 4% of the total volume of the conductive layer 2, and the laser etching is used The line speed is 1500mm/s, the working current used for etching is 4.7W, and other parameters are default;
步骤三、金属栅极3制备:Step 3, preparation of the metal grid 3:
将刻有金属网栅结构的透明电极置于真空蒸镀仪中,抽真空至3×10-4Pa后,在未刻蚀的PEDOT:PSS薄膜的上表面和刻蚀后裸露的柔性基底1的上表面热蒸镀厚度为200nm的金属银层,形成金属栅极3;Put the transparent electrode engraved with a metal grid structure in a vacuum evaporation apparatus, and after vacuuming to 3×10 -4 Pa, the upper surface of the unetched PEDOT:PSS film and the exposed flexible substrate 1 A metal silver layer with a thickness of 200 nm is thermally evaporated on the upper surface to form a metal grid 3;
步骤四、剥离金属银层:Step 4. Peel off the metallic silver layer:
将蒸镀有金属银层的透明电极置于去离子水中超声15s,除去未刻蚀的PEDOT:PSS薄膜及其上的金属银层,取出,使用异丙醇和丙酮进行表面清洗,干燥后,在金属栅极3的上下两端印刷长度为1cm,宽度为1cm的两条银浆,烘干后,得到金属栅极ITO透明电极,如图2所示,得到金属栅极ITO透明电极。Place the transparent electrode evaporated with a metal silver layer into deionized water for 15s, remove the unetched PEDOT:PSS film and the metal silver layer on it, take it out, use isopropanol and acetone to clean the surface, after drying, place in The upper and lower ends of the metal grid 3 are printed with two silver pastes with a length of 1 cm and a width of 1 cm. After drying, a metal grid ITO transparent electrode is obtained, as shown in FIG. 2 , a metal grid ITO transparent electrode is obtained.
在实施例4的金属栅极ITO透明电极的导电层2上印刷长度为1cm,间距为1cm的两条银浆,烘干后,使用欧姆表对实施例4的金属栅极ITO透明电极进行电阻测量。经测试,实施例4的金属栅极ITO透明电极的透光率为81%,面电阻为8Ω/□。On the conductive layer 2 of the metal grid ITO transparent electrode of embodiment 4, print a length of 1 cm and two silver pastes with a spacing of 1 cm. After drying, use an ohmmeter to conduct a resistance test on the metal grid ITO transparent electrode of embodiment 4. Measurement. After testing, the light transmittance of the metal grid ITO transparent electrode of Example 4 is 81%, and the surface resistance is 8Ω/□.
实施例5Example 5
金属栅极ITO透明电极的制备方法:Preparation method of metal gate ITO transparent electrode:
步骤一、PEDOT:PSS薄膜制备:Step 1. Preparation of PEDOT:PSS film:
将ITO/PI透明电极的导电层2依次用去离子水、异丙醇和丙酮清洗后,高纯氮气吹干,在紫外臭氧处理机中处理20min,然后超声喷涂仪在导电层2的上表面喷涂沉积厚度为100nm的PEDOT:PSS薄膜;其中,喷涂工艺参数为0.15mL/min流量,20mm/s喷头移动速度,60mm喷头高度,3.5W超声功率,0.1MPA气流量,喷涂三遍;ITO/PI透明电极的柔性基底1为PI,导电层2为100nm厚的ITO,ITO/PI透明电极的上表面面积为70mm×70mm;After cleaning the conductive layer 2 of the ITO/PI transparent electrode with deionized water, isopropanol and acetone in sequence, blow it dry with high-purity nitrogen, treat it in a UV ozone processor for 20 minutes, and then spray on the upper surface of the conductive layer 2 with an ultrasonic sprayer Deposit a PEDOT:PSS film with a thickness of 100nm; among them, the spraying process parameters are 0.15mL/min flow rate, 20mm/s nozzle moving speed, 60mm nozzle height, 3.5W ultrasonic power, 0.1MPA air flow, spray three times; ITO/PI The flexible substrate 1 of the transparent electrode is PI, the conductive layer 2 is ITO with a thickness of 100nm, and the upper surface area of the ITO/PI transparent electrode is 70mm×70mm;
步骤二、激光刻蚀金属网栅结构的凹槽:Step 2. Laser etching the grooves of the metal grid structure:
将旋涂有PEDOT:PSS薄膜的透明电极置于激光打标机工作台上,使用激光打标机在PEDOT:PSS薄膜上刻蚀金属网栅结构的凹槽,刻蚀深度至柔性基底1的上表面;金属网栅结构的栅格为正六角蜂窝形,线宽为0.75mm,正六角蜂窝形对边之间的距离为1mm,刻蚀的导电层2的体积占导电层2总体积的15%,激光刻蚀所用的线速度为400mm/s,刻蚀所用工作电流为1.1W,其他参数为默认;Place the transparent electrode spin-coated with the PEDOT:PSS film on the workbench of the laser marking machine, use the laser marking machine to etch the groove of the metal grid structure on the PEDOT:PSS film, and the etching depth reaches the bottom of the flexible substrate 1 The upper surface; the grid of the metal grid structure is a regular hexagonal honeycomb shape, the line width is 0.75mm, the distance between the opposite sides of the regular hexagonal honeycomb shape is 1mm, and the volume of the etched conductive layer 2 accounts for 2% of the total volume of the conductive layer 2. 15%, the linear speed used for laser etching is 400mm/s, the working current used for etching is 1.1W, and other parameters are default;
步骤三、金属栅极3的制备:Step 3, preparation of the metal grid 3:
将刻有凹槽的透明电极置于真空蒸镀仪中,抽真空至3×10-4后,在未刻蚀的PEDOT:PSS薄膜的上表面和刻蚀后裸露的柔性基底1的上表面热蒸镀厚度为100nm的金属铝层,形成金属栅极3;Place the grooved transparent electrode in a vacuum evaporation apparatus, and after vacuuming to 3×10 -4 , on the upper surface of the unetched PEDOT:PSS film and the upper surface of the exposed flexible substrate 1 after etching Thermally evaporating a metal aluminum layer with a thickness of 100 nm to form a metal gate 3;
步骤四、剥离金属铝层:Step 4. Peel off the metal aluminum layer:
将蒸镀有金属铝层的透明电极置于去离子水中超声12s,除去未刻蚀的PEDOT:PSS薄膜及其上的金属铝层,取出,使用异丙醇和丙酮进行表面清洗,干燥后,得到金属栅极ITO透明电极,结构如图4所示。Place the transparent electrode evaporated with a metal aluminum layer in deionized water for 12s, remove the unetched PEDOT:PSS film and the metal aluminum layer on it, take it out, clean the surface with isopropanol and acetone, and dry it to get Metal gate ITO transparent electrode, the structure is shown in Figure 4.
对实施例5的金属栅极ITO透明电极弯折之后的导电性能进行测试,弯折曲率为7mm,结果如表1所示。可以看出,本发明制备的透明电极,经多次弯折面电阻也没有大幅提高。The conductive performance of the metal grid ITO transparent electrode of Example 5 after bending was tested, and the bending curvature was 7 mm. The results are shown in Table 1. It can be seen that the surface resistance of the transparent electrode prepared by the present invention does not increase significantly after repeated bending.
实施例6Example 6
金属栅极ITO透明电极的制备方法:Preparation method of metal gate ITO transparent electrode:
步骤一、PEDOT:PSS薄膜制备:Step 1. Preparation of PEDOT:PSS film:
将ITO/PI透明电极的导电层2依次用去离子水、异丙醇和丙酮清洗后,高纯氮气吹干,在紫外臭氧处理机中处理20min,然后超声喷涂仪在导电层2的上表面喷涂沉积厚度为100nm的PEDOT:PSS薄膜;其中,喷涂工艺参数为0.15mL/min流量,20mm/s喷头移动速度,60mm喷头高度,3.5W超声功率,0.1MPA气流量,喷涂三遍;ITO/PI透明电极的柔性基底1为PI,导电层2为100nm厚的ITO,ITO/PI透明电极的上表面面积为70mm×70mm;After cleaning the conductive layer 2 of the ITO/PI transparent electrode with deionized water, isopropanol and acetone in sequence, blow it dry with high-purity nitrogen, treat it in a UV ozone processor for 20 minutes, and then spray on the upper surface of the conductive layer 2 with an ultrasonic sprayer Deposit a PEDOT:PSS film with a thickness of 100nm; among them, the spraying process parameters are 0.15mL/min flow rate, 20mm/s nozzle moving speed, 60mm nozzle height, 3.5W ultrasonic power, 0.1MPA air flow, spray three times; ITO/PI The flexible substrate 1 of the transparent electrode is PI, the conductive layer 2 is ITO with a thickness of 100nm, and the upper surface area of the ITO/PI transparent electrode is 70mm×70mm;
步骤二、激光刻蚀金属网栅结构的凹槽:Step 2. Laser etching the grooves of the metal grid structure:
将旋涂有PEDOT:PSS薄膜的透明电极置于激光打标机工作台上,使用激光打标机在PEDOT:PSS薄膜上刻蚀金属网栅结构的凹槽,刻蚀深度至柔性基底1的上表面;金属网栅结构的栅格为正方形,线宽为0.75mm,对边之间的距离为1mm,刻蚀的导电层2的体积占导电层2总体积的15%,激光刻蚀所用的线速度为400mm/s,刻蚀所用工作电流为1.1W,其他参数为默认;Place the transparent electrode spin-coated with the PEDOT:PSS film on the workbench of the laser marking machine, use the laser marking machine to etch the groove of the metal grid structure on the PEDOT:PSS film, and the etching depth reaches the bottom of the flexible substrate 1 Upper surface; the grid of the metal grid structure is square, the line width is 0.75 mm, and the distance between opposite sides is 1 mm. The volume of the etched conductive layer 2 accounts for 15% of the total volume of the conductive layer 2, which is used for laser etching. The line speed is 400mm/s, the working current used for etching is 1.1W, and other parameters are default;
步骤三、金属栅极3的制备:Step 3, preparation of the metal grid 3:
将刻有凹槽的透明电极置于真空蒸镀仪中,抽真空至3×10-4后,在未刻蚀的PEDOT:PSS薄膜的上表面和刻蚀后裸露的柔性基底1的上表面热蒸镀厚度为100nm的金属铝层,形成金属栅极3;Place the grooved transparent electrode in a vacuum evaporation apparatus, and after vacuuming to 3×10 -4 , on the upper surface of the unetched PEDOT:PSS film and the upper surface of the exposed flexible substrate 1 after etching Thermally evaporating a metal aluminum layer with a thickness of 100 nm to form a metal gate 3;
步骤四、剥离金属铝层:Step 4. Peel off the metal aluminum layer:
将蒸镀有金属铝层的透明电极置于去离子水中超声12s,除去未刻蚀的PEDOT:PSS薄膜及其上的金属铝层,取出,使用异丙醇和丙酮进行表面清洗,干燥后,得到金属栅极ITO透明电极,结构如图5所示。Place the transparent electrode evaporated with a metal aluminum layer in deionized water for 12s, remove the unetched PEDOT:PSS film and the metal aluminum layer on it, take it out, clean the surface with isopropanol and acetone, and dry it to get Metal gate ITO transparent electrode, the structure is shown in Figure 5.
对实施例6的金属栅极ITO透明电极弯折之后的导电性能进行测试,弯折曲率为7mm,结果如表1所示。可以看出,本发明制备的透明电极,经多次弯折面电阻也没有大幅提高。The conductive performance of the metal grid ITO transparent electrode of Example 6 after being bent was tested, and the bending curvature was 7 mm. The results are shown in Table 1. It can be seen that the surface resistance of the transparent electrode prepared by the present invention does not increase significantly after repeated bending.
实施例7Example 7
基于金属栅极ITO透明电极的聚合物太阳能电池的制备方法:Preparation method of polymer solar cell based on metal gate ITO transparent electrode:
步骤一、将实施例1制备的金属栅极ITO透明电极在紫外臭氧清洗机中臭氧处理20min后,置于喷涂使用的模板架上,在透明电极上放置相应的掩模板(尺寸为15mm×15mm),使用超声喷涂仪在透明电极的上表面喷涂厚度为50nm的PEDOT:PSS,在150℃的热台上退火20min,得到空穴传输层6;其中,喷涂使用的工艺参数为0.2mL/min流量,20mm/s喷头移动速度,60mm喷头高度,3.5W超声功率,0.4MPA气流量,喷涂两遍;Step 1. After treating the metal grid ITO transparent electrode prepared in Example 1 with ozone in an ultraviolet ozone cleaning machine for 20 minutes, place it on the template frame used for spraying, and place a corresponding mask (15 mm × 15 mm in size) on the transparent electrode. ), using an ultrasonic sprayer to spray PEDOT:PSS with a thickness of 50nm on the upper surface of the transparent electrode, and annealing on a hot stage at 150°C for 20min to obtain a hole transport layer 6; wherein, the process parameter used for spraying is 0.2mL/min Flow rate, 20mm/s nozzle moving speed, 60mm nozzle height, 3.5W ultrasonic power, 0.4MPA air flow, spraying twice;
步骤二、使用超声喷涂仪在空穴传输层6的上表面喷涂PBDT-TFQ墨水,喷涂厚度为150nm,之后转移至手套箱内,在氮气气氛下,140℃退火10min,得到光敏层7;其中,喷涂使用的工艺参数为0.3mL/min流量,20mm/s喷头移动速度,60mm喷头高度,3.5W超声功率,0.4MPa气流量,喷涂两遍;Step 2: Use an ultrasonic sprayer to spray PBDT-TFQ ink on the upper surface of the hole transport layer 6 with a spray thickness of 150 nm, then transfer it to a glove box, and anneal at 140° C. for 10 minutes under a nitrogen atmosphere to obtain a photosensitive layer 7; , the process parameters used for spraying are 0.3mL/min flow rate, 20mm/s nozzle moving speed, 60mm nozzle height, 3.5W ultrasonic power, 0.4MPa air flow, and spray twice;
步骤三、将喷涂有空穴传输层6和光敏层7的透明电极转移至真空蒸镀仪中,抽真空至2×10-4Pa,使用面积为10mm×10mm的掩膜板,在光敏层7上依次热蒸镀30nm的Ca和150nm的Al,得到电子传输层8和金属电极9,完成聚合物太阳能电池的制备。电池的材料和结构从下至上依次为PET/Al金属栅极+ITO(180nm)/PEDOT:PSS(50nm)/PBDT-TFQ:PCBM[70](150nm)/Ca(30nm)/Al(150nm)。电池的有效面积由蒸镀金属Al电极的掩膜板面积控制,为1cm2。Step 3. Transfer the transparent electrode sprayed with the hole transport layer 6 and the photosensitive layer 7 to a vacuum evaporation apparatus, vacuumize to 2×10 -4 Pa, use a mask plate with an area of 10mm×10mm, and place on the photosensitive layer 30nm of Ca and 150nm of Al are sequentially thermally evaporated on 7 to obtain an electron transport layer 8 and a metal electrode 9 to complete the preparation of a polymer solar cell. The material and structure of the battery are PET/Al metal gate+ITO(180nm)/PEDOT:PSS(50nm)/PBDT-TFQ:PCBM[70](150nm)/Ca(30nm)/Al(150nm) from bottom to top . The effective area of the battery is controlled by the mask plate area of the vapor-deposited metal Al electrode, which is 1 cm 2 .
将实施例7制备的聚合物太阳能电池在AM 1.5G模拟太阳光(辐照强度为100毫瓦/平方厘米)下测试,电池的性能参数如表1所示,测试所得电流-电压特性曲线(I-V曲线)如图8所示。The polymer solar cell prepared in Example 7 is tested under AM 1.5G simulated sunlight (irradiation intensity is 100 mW/cm2), the performance parameters of the cell are shown in Table 1, and the current-voltage characteristic curve obtained by the test ( I-V curve) as shown in Figure 8.
实施例8Example 8
基于金属栅极ITO透明电极的聚合物太阳能电池模组的制备方法:Preparation method of polymer solar cell module based on metal gate ITO transparent electrode:
步骤一、将实施例2制备的金属栅极ITO透明电极在紫外臭氧清洗机中臭氧处理20min后,置于喷涂使用的模板架上,在透明电极上放置相应的掩模板(尺寸为15mm×15mm),使用超声喷涂仪在透明电极的上表面喷涂厚度为50nm的PEDOT:PSS,在150℃的热台上退火20min,得到空穴传输层6;其中,喷涂使用的工艺参数为0.2mL/min流量,20mm/s喷头移动速度,60mm喷头高度,3.5W超声功率,0.4MPA气流量,喷涂两遍;Step 1. After treating the metal grid ITO transparent electrode prepared in Example 2 with ozone in an ultraviolet ozone cleaning machine for 20 minutes, place it on the template frame used for spraying, and place a corresponding mask (15 mm × 15 mm in size) on the transparent electrode. ), using an ultrasonic sprayer to spray PEDOT:PSS with a thickness of 50nm on the upper surface of the transparent electrode, and annealing on a hot stage at 150°C for 20min to obtain a hole transport layer 6; wherein, the process parameter used for spraying is 0.2mL/min Flow rate, 20mm/s nozzle moving speed, 60mm nozzle height, 3.5W ultrasonic power, 0.4MPA air flow, spraying twice;
步骤二、使用超声喷涂仪在空穴传输层6的上表面喷涂PBDT-TFQ为墨水,喷涂厚度为150nm,在氮气气氛下,140℃退火10min,得到光敏层7;其中,喷涂使用的工艺参数为0.3mL/min流量,20mm/s喷头移动速度,60mm喷头高度,3.5W超声功率,0.4MPa气流量,喷涂两遍;Step 2: Use an ultrasonic sprayer to spray PBDT-TFQ as ink on the upper surface of the hole transport layer 6, with a spray thickness of 150 nm, and anneal at 140°C for 10 minutes in a nitrogen atmosphere to obtain a photosensitive layer 7; wherein, the process parameters used for spraying 0.3mL/min flow rate, 20mm/s nozzle moving speed, 60mm nozzle height, 3.5W ultrasonic power, 0.4MPa air flow, spray twice;
步骤三、将喷涂有空穴传输层6和光敏层7的透明电极转移至真空蒸镀仪中,抽真空至2×10-4Pa,使用面积为10mm×10mm的掩膜板,在光敏层7上依次热蒸镀30nm的Ca和150nm的Al,得到电子传输层8和金属电极9,完成聚合物太阳能电池的制备。电池的材料和结构从下至上依次为PET/Al金属栅极+ITO(180nm)/PEDOT:PSS(50nm)/PBDT-TFQ:PCBM[70](150nm)/Ca(30nm)/Al(150nm)。模组由5个模块串联而成,每个模块的尺寸为70mm×11mm,整个电池面积为90mm×90mm,模组的死区比例为20%。Step 3. Transfer the transparent electrode sprayed with the hole transport layer 6 and the photosensitive layer 7 to a vacuum evaporation apparatus, vacuumize to 2×10 -4 Pa, use a mask plate with an area of 10mm×10mm, and place on the photosensitive layer 30nm of Ca and 150nm of Al are sequentially thermally evaporated on 7 to obtain an electron transport layer 8 and a metal electrode 9 to complete the preparation of a polymer solar cell. The material and structure of the battery are PET/Al metal gate+ITO(180nm)/PEDOT:PSS(50nm)/PBDT-TFQ:PCBM[70](150nm)/Ca(30nm)/Al(150nm) from bottom to top . The module is composed of 5 modules connected in series, the size of each module is 70mm×11mm, the entire battery area is 90mm×90mm, and the dead zone ratio of the module is 20%.
将实施例8制备的聚合物太阳能电池模组在AM 1.5G模拟太阳光(辐照强度为100毫瓦/平方厘米)下测试,电池的性能参数如表2所示,测试所得电流-电压特性曲线(I-V曲线)如图9所示。The polymer solar cell module prepared in Example 8 is tested under AM 1.5G simulated sunlight (irradiation intensity is 100 mW/cm2), the performance parameters of the battery are shown in Table 2, and the current-voltage characteristics of the test result The curve (I-V curve) is shown in FIG. 9 .
表1实施例5和实施例6的透明电极弯折后性能变化Table 1 Performance changes of the transparent electrodes of Example 5 and Example 6 after bending
表2实施例7和实施例8的电池性能参数The battery performance parameter of table 2 embodiment 7 and embodiment 8
显然,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于所述技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。Apparently, the descriptions of the above embodiments are only used to help understand the method and core idea of the present invention. It should be pointed out that for those of ordinary skill in the technical field, without departing from the principle of the present invention, some improvements and modifications can also be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention .
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510039600.3A CN104600207B (en) | 2015-01-27 | 2015-01-27 | Transparent electrode and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510039600.3A CN104600207B (en) | 2015-01-27 | 2015-01-27 | Transparent electrode and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104600207A CN104600207A (en) | 2015-05-06 |
CN104600207B true CN104600207B (en) | 2017-02-01 |
Family
ID=53125844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510039600.3A Expired - Fee Related CN104600207B (en) | 2015-01-27 | 2015-01-27 | Transparent electrode and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104600207B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102456121B1 (en) * | 2015-12-15 | 2022-10-17 | 엘지디스플레이 주식회사 | Light controlling device, transparent display device including the same and method for manufacturing the same |
CN106061218A (en) * | 2016-06-14 | 2016-10-26 | 苏州大学 | Electromagnetic shielding film and manufacturing method of electromagnetic shielding window |
US20190191560A1 (en) * | 2016-08-17 | 2019-06-20 | The University Of North Carolina At Chapel Hill | Flexible conductive transparent films, articles and methods of making same |
CN106299044B (en) * | 2016-09-23 | 2019-01-29 | Tcl集团股份有限公司 | A kind of printing flexible substrate, light emitting diode with quantum dots and preparation method thereof |
CN106686778B (en) * | 2017-01-13 | 2023-01-06 | 无锡格菲电子薄膜科技有限公司 | Method for improving and controlling resistance of patterned conductive film and electric heating film thereof |
CN106952692B (en) * | 2017-03-24 | 2019-03-15 | 苏州麦田光电技术有限公司 | A kind of production method of pattern metal grid film |
CN107104164A (en) * | 2017-06-07 | 2017-08-29 | 深圳众厉电力科技有限公司 | A kind of efficient compound solar cell |
CN109103023B (en) * | 2018-08-14 | 2020-02-04 | 河南大学 | Sb-tin dioxide-AgNWs/CBS-GNs flexible thin-film solar cell and preparation method thereof |
TWI739190B (en) * | 2019-10-30 | 2021-09-11 | 行政院原子能委員會核能研究所 | Transparent organic solar cell module with patterned electrodes and manufacturing method thereof |
CN111883658B (en) * | 2020-07-31 | 2023-10-20 | 中国科学院合肥物质科学研究院 | Perovskite solar cell module and preparation method thereof |
CN114464469B (en) * | 2020-11-10 | 2025-04-22 | 苏州苏大维格科技集团股份有限公司 | A supercapacitor and a method for manufacturing the same |
CN114464740A (en) * | 2022-02-09 | 2022-05-10 | 华能新能源股份有限公司 | Solar cell device and manufacturing method thereof |
CN114569135B (en) * | 2022-05-05 | 2022-08-26 | 暨南大学 | Preparation method of honeycomb electrode patch, honeycomb electrode patch and application |
CN114597270B (en) * | 2022-05-09 | 2022-07-29 | 苏州晶洲装备科技有限公司 | A kind of heterojunction solar cell and its preparation method and application |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005108467A (en) * | 2003-09-26 | 2005-04-21 | Mitsui Chemicals Inc | Transparent conductive sheet, and photosensitive solar cell |
US8513878B2 (en) * | 2006-09-28 | 2013-08-20 | Fujifilm Corporation | Spontaneous emission display, spontaneous emission display manufacturing method, transparent conductive film, electroluminescence device, solar cell transparent electrode, and electronic paper transparent electrode |
JP2009076668A (en) * | 2007-09-20 | 2009-04-09 | Dainippon Printing Co Ltd | Organic thin film solar cell |
JP4985717B2 (en) * | 2008-12-04 | 2012-07-25 | 大日本印刷株式会社 | Organic thin film solar cell and method for producing the same |
-
2015
- 2015-01-27 CN CN201510039600.3A patent/CN104600207B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104600207A (en) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104600207B (en) | Transparent electrode and preparation method and application thereof | |
Jin et al. | Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells | |
Kang et al. | Brush-painted flexible organic solar cells using highly transparent and flexible Ag nanowire network electrodes | |
Noh et al. | Cost-effective ITO-free organic solar cells with silver nanowire–PEDOT: PSS composite electrodes via a one-step spray deposition method | |
CN102881459B (en) | A kind of large area low resistance solar cell conductive substrate and preparation method thereof | |
CN108346744B (en) | A kind of laser processing improving perovskite solar battery effective area | |
CN104240798A (en) | Transparent conductive film and preparation method thereof | |
KR20150016119A (en) | Transparent cunductive film, transparent electrode comprinsing transparent cunductive film, and manufacturing for transparent cunductive film | |
CN104616837A (en) | Plane ordered metal nanowire superposed transparent conducting thin film and preparation method thereof | |
JP2012508972A (en) | Solution processing method for forming electrical contacts of organic devices | |
Colsmann et al. | Plasma patterning of Poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) anodes for efficient polymer solar cells | |
Duraisamy et al. | Deposition and characterization of silver nanowires embedded PEDOT: PSS thin films via electrohydrodynamic atomization | |
KR102026428B1 (en) | Forming method of high conductive polymer film including a plurality of conductive treatment | |
CN109273603B (en) | Preparation method of organic photovoltaic module | |
JP2015522947A (en) | Method for constructing a type of stack comprising a first electrode, an active layer, and a second electrode | |
Wang et al. | Fabrication of metal mesh flexible transparent electrodes and heaters by a cost-effective method based on ultrafast laser direct writing | |
CN104465993A (en) | Carbon-based composite transparent electrode and manufacturing method thereof | |
CN109285640A (en) | A kind of transparent conductive film and its preparation method and application | |
CN105140398A (en) | Back-contact perovskite solar cell | |
CN111180110B (en) | Preparation method of composite metal network transparent conductive electrode | |
CN103325945B (en) | A kind of polymer solar battery and preparation method thereof | |
CN214012530U (en) | Conductive structure and electronic equipment | |
CN106782879A (en) | A kind of method that low cost plasma body bombardment prepares metalolic network transparency conductive electrode | |
CN108766627A (en) | A kind of silver nanoparticle mesh flexible transparent electrode and preparation method thereof | |
CN113012856A (en) | Metal grid flexible transparent conductive electrode based on cellulose nanofiber and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170201 |
|
CF01 | Termination of patent right due to non-payment of annual fee |