[go: up one dir, main page]

CN104596540B - Semi-physical simulation method of inertial navigation/mileometer combined navigation - Google Patents

Semi-physical simulation method of inertial navigation/mileometer combined navigation Download PDF

Info

Publication number
CN104596540B
CN104596540B CN201410539231.XA CN201410539231A CN104596540B CN 104596540 B CN104596540 B CN 104596540B CN 201410539231 A CN201410539231 A CN 201410539231A CN 104596540 B CN104596540 B CN 104596540B
Authority
CN
China
Prior art keywords
odometer
gyro
accelerometer
data
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410539231.XA
Other languages
Chinese (zh)
Other versions
CN104596540A (en
Inventor
张小跃
宋凝芳
时海涛
易晓静
潘建业
刘鹏博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Huihong Jiachuang Technology Co ltd
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201410539231.XA priority Critical patent/CN104596540B/en
Publication of CN104596540A publication Critical patent/CN104596540A/en
Application granted granted Critical
Publication of CN104596540B publication Critical patent/CN104596540B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

一种惯导/里程计组合导航的半实物仿真方法,有七大步骤:一、将惯导/里程计系统安装载体上并上电启动;二、装订初始参数至导航计算机;三、载体静止,采集保存1小时陀螺和加速度计输出数据;求取输出数据的平均值并分别与其平均值作差,得到陀螺和加速度计的实际噪声;四、载体保持静止,惯导进行5分钟静态初始对准;五、惯导计算,采集并保存运动后50秒内惯导输出的速度值和里程计输出的速率值;六、将里程计输出速率值与载体速率参考值作差,得到里程计输出速率的噪声值;七、设定仿真轨迹,生成加速度计和陀螺的标准值,再给定相关数据并将这些数据与步骤3、6中得到的噪声数据融合,得到器件的模拟数据来进行惯导/里程计组合导航仿真。

A semi-physical simulation method for inertial navigation/odometer integrated navigation, which has seven major steps: 1. Install the inertial navigation/odometer system on the carrier and power it on to start; 2. Bind the initial parameters to the navigation computer; 3. The carrier is stationary , collect and save the output data of the gyro and accelerometer for 1 hour; calculate the average value of the output data and make a difference with the average value respectively to obtain the actual noise of the gyro and accelerometer; 4. The carrier remains still, and the inertial navigation system conducts static initial comparison for 5 minutes Accurate; 5. Inertial navigation calculation, collect and save the speed value output by inertial navigation and the speed value output by odometer within 50 seconds after exercise; The noise value of the speed; 7. Set the simulation trajectory, generate the standard value of the accelerometer and gyroscope, and then give the relevant data and fuse these data with the noise data obtained in steps 3 and 6 to obtain the simulated data of the device for inertial Guidance/odometer integrated navigation simulation.

Description

一种惯导/里程计组合导航的半实物仿真方法A hardware-in-the-loop simulation method for inertial navigation/odometer integrated navigation

技术领域technical field

本发明涉及一种惯导/里程计组合导航的半实物仿真方法,属于惯导技术领域。The invention relates to a semi-physical simulation method for inertial navigation/odometer combined navigation, which belongs to the technical field of inertial navigation.

背景技术Background technique

里程计是测量车辆行驶速度和路程的一种传感器,具有完全自主、动态性能好、测量误差不随时间发散的优点。里程计与惯导组合能优势互补,实现全自主、高精度导航定位。The odometer is a sensor for measuring the speed and distance of a vehicle. It has the advantages of complete autonomy, good dynamic performance, and measurement error that does not diverge over time. The combination of odometer and inertial navigation can complement each other's advantages to realize fully autonomous and high-precision navigation and positioning.

在进行惯导/里程计组合导航仿真研究时,一般是设定仿真轨迹(包含载体的运动速度、位置、姿态),利用轨迹发生器生成加速度计的标准值、陀螺的标准值,并由设定仿真轨迹中载体的运动速度计算得到里程计的速率标准值,再给定里程计标定误差、偏航安装角及偏航安装角误差、俯仰安装角及俯仰安装角误差,加速度计和陀螺的标度误差、零偏、失准角误差,加速度计噪声、陀螺噪声、里程计噪声,将以上数据融合得到用于组合导航仿真的器件模拟数据,然后采用这些模拟数据进行组合导航的仿真计算与分析。其中,给定的仿真噪声不能全面反映里程计、加速度计、陀螺的噪声特性,导致仿真结果不能全面地反映实际情况。为了更好地进行惯导/里程计组合导航研究,本专利申请提出了一种惯导/里程计组合导航的半实物仿真方法。In the simulation research of inertial navigation/odometer integrated navigation, the simulation trajectory (including the moving speed, position and attitude of the carrier) is generally set, and the standard value of the accelerometer and gyro are generated by the trajectory generator, and the standard value of the gyro is generated by the designer. Calculate the speed standard value of the odometer by calculating the speed of the carrier in the simulation trajectory, and then give the odometer calibration error, yaw installation angle and yaw installation angle error, pitch installation angle and pitch installation angle error, accelerometer and gyroscope Scale error, zero bias, misalignment angle error, accelerometer noise, gyroscope noise, and odometer noise. The above data are fused to obtain device simulation data for integrated navigation simulation, and then these analog data are used for simulation calculation and calculation of integrated navigation. analyze. Among them, the given simulation noise cannot fully reflect the noise characteristics of the odometer, accelerometer, and gyroscope, so the simulation results cannot fully reflect the actual situation. In order to better carry out research on inertial navigation/odometer integrated navigation, this patent application proposes a hardware-in-the-loop simulation method for inertial navigation/odometer integrated navigation.

发明内容Contents of the invention

本发明的目的是提供了一种惯导/里程计组合导航的半实物仿真方法,它能够更好地模拟惯导/里程计组合导航过程。The object of the present invention is to provide a hardware-in-the-loop simulation method of inertial navigation/odometer integrated navigation, which can better simulate the inertial navigation/odometer integrated navigation process.

本发明实现方案:一种惯导/里程计组合导航的半实物仿真方法,该方法具体步骤如下:Implementation scheme of the present invention: a semi-physical simulation method of inertial navigation/odometer combined navigation, the specific steps of the method are as follows:

步骤1、将惯导/里程计组合系统安装到载体上,并上电启动。Step 1. Install the inertial navigation/odometer combination system on the carrier, and power it on to start.

步骤2、装订初始参数(包括初始的经度、纬度、高度、里程计标度值)至导航计算机。Step 2, binding initial parameters (including initial longitude, latitude, altitude, odometer scale value) to the navigation computer.

步骤3、载体保持静止,采集保存1小时陀螺和加速度计的输出数据。求取陀螺和加速度计的输出数据的平均值,将采集的陀螺和加速度计数据分别与其平均值作差,得到陀螺和加速度计的实际噪声。Step 3. The carrier remains still, and the output data of the gyroscope and accelerometer are collected and saved for 1 hour. The average value of the output data of the gyroscope and the accelerometer is calculated, and the collected data of the gyroscope and the accelerometer are respectively compared with the average value to obtain the actual noise of the gyroscope and the accelerometer.

步骤4、载体保持静止,惯导进行5分钟静态初始对准。Step 4. The carrier remains stationary, and the inertial navigation system performs static initial alignment for 5 minutes.

步骤5、完成对准后载体开始运动,运动过程中惯导进行惯性导航计算,采集并保存开始运 动后50秒内惯导输出的速度值和里程计输出的速率值。Step 5. After the alignment is completed, the carrier starts to move. During the movement, the inertial navigation performs inertial navigation calculations, and collects and saves the speed value output by the inertial navigation and the rate value output by the odometer within 50 seconds after starting the movement.

步骤6、由采集的惯导速度值计算得到载体速率参考值,再将里程计输出的速率值与载体速率参考值作差,得到里程计输出速率的噪声值。Step 6. Calculate the carrier speed reference value from the collected inertial navigation speed value, and then make a difference between the speed value output by the odometer and the carrier speed reference value to obtain the noise value of the odometer output speed.

步骤7、设定仿真轨迹(包含载体的运动速度、位置、姿态),利用轨迹发生器生成加速度计的标准值、陀螺的标准值,并由设定仿真轨迹中载体的运动速度计算得到里程计的速率标准值,再给定里程计标度误差、偏航安装角及偏航安装角误差、俯仰安装角及俯仰安装角误差,加速度计和陀螺的标度误差、零偏、失准角误差,将这些数据与步骤3、步骤6中得到的噪声数据融合,得到用于惯导/里程计组合导航半实物仿真的器件模拟数据,然后采用这些模拟数据进行惯导/里程计组合导航仿真。Step 7. Set the simulation trajectory (including the velocity, position, and attitude of the carrier), use the trajectory generator to generate the standard value of the accelerometer and the standard value of the gyroscope, and calculate the odometer by calculating the velocity of the carrier in the set simulation trajectory The standard value of the rate, and then given the odometer scale error, yaw installation angle and yaw installation angle error, pitch installation angle and pitch installation angle error, accelerometer and gyroscope scale error, zero bias, misalignment angle error , these data are fused with the noise data obtained in step 3 and step 6 to obtain device simulation data for INS/odometer integrated navigation hardware-in-the-loop simulation, and then these simulated data are used for INS/odometer integrated navigation simulation.

其中,步骤3中所述的“得到陀螺和加速度计的实际噪声”,其实现过程说明如下:Wherein, described in step 3 " get the actual noise of gyroscope and accelerometer ", its implementation process is described as follows:

定义wg为陀螺噪声,wa为加速度计噪声,采集陀螺x、y、z三个轴输出的数据分别为ωx(1)、ωx(2)…ωx(n),ωy(1)、ωy(2)…ωy(n),ωz(1)、ωz(2)…ωz(n),平均值分别为采集加速度计x、y、z三个轴输出的数据分别为ax(1)、ax(2)…ax(n),ay(1)、ay(2)…ay(n),az(1)、az(2)…az(n),平均值分别为 Define w g as the noise of the gyro, w a as the noise of the accelerometer, and collect the output data of the three axes of the gyro x, y, and z as ω x (1), ω x (2)...ω x (n), ω y ( 1), ω y (2)…ω y (n), ω z (1), ω z (2)…ω z (n), the average values are Acquire the data output by the three axes of the accelerometer x, y, and z as a x (1), a x (2)...a x (n), a y (1), a y (2)...a y (n ), a z (1), a z (2)…a z (n), the mean values are

陀螺噪声计算公式如下:The calculation formula of gyro noise is as follows:

加速度计噪声计算公式如下:Accelerometer noise calculation formula is as follows:

其中,步骤6中所述的“得到里程计输出速率的噪声值”,其实现过程说明如下:Wherein, described in step 6 " obtain the noise value of odometer output rate ", its implementation process description is as follows:

载体开始运动,采集得到了50秒内里程计输出的速率为及惯导输出的东北天方向的速度定义:载体速率参考值为Vm(1)、Vm(2)…Vm(n),里程计的速率噪声为wD(1)、wD(2)…wD(n)。载体速率参考值计算公式如下:The carrier starts to move, and the speed of the odometer output within 50 seconds is collected as and the speed in the northeast sky direction output by the inertial navigation Definition: The carrier speed reference value is V m (1), V m (2)...V m (n), and the speed noise of the odometer is w D (1), w D (2)... w D (n). The formula for calculating the carrier speed reference value is as follows:

里程计的速率噪声计算公式如下:The formula for calculating the rate noise of the odometer is as follows:

其中,步骤7中所述的“得到用于惯导/里程计组合导航半实物仿真的器件模拟数据,然后采用这些模拟数据进行惯导/里程计组合导航仿真”,其实现过程说明如下:Among them, the "obtain device simulation data for INS/odometer integrated navigation hardware-in-the-loop simulation" described in step 7, and then use these simulated data to carry out INS/odometer integrated navigation simulation", the implementation process is described as follows:

设定仿真轨迹(包含载体的运动速度、位置、姿态),利用轨迹发生器生成加速度计的标准值、陀螺的标准值,由设定仿真轨迹中载体的运动速度计算得到里程计的速率标准值,并给定里程计标度误差、偏航安装角及偏航安装角误差、俯仰安装角及俯仰安装角误差,加速度计和陀螺的标度误差、零偏、失准角误差。将这些数据与步骤3、步骤6中得到的噪声数据融合,得到用于惯导/里程计组合导航半实物仿真的器件模拟数据,然后采用这些模拟数据进行惯导/里程计组合导航仿真。定义:仿真轨迹中载体在导航坐标系下运动速度向量为Vn(1)、Vn(2)、…Vn(n),在导航坐标系三个方向的分量分别为 里程计的速率标准值为里程计的标度误差值为δKD;里程计偏航安装角为αψ;偏航安装角误差为δαψ;俯仰安装角为αθ;俯仰安装角误差为δαθ;加速度计x、y、z三个轴的标准值分别为atx(1)、atx(2)…atx(n),aty(1)、aty(2)…aty(n),atz(1)、atz(2)…atz(n);加速度计x、y、z三个轴的标度误差分别为δKax、δKay、δKaz;加速度计的失准角误差为δMaxy、δMaxz、δMayx、δMayz、δMazx、δMazy;加速度计x、y、z三个轴的零偏分别为δBax、δBay、δBaz;陀螺x、y、z三个轴的标准值分别为ωtx(1)、ωtx(2)…ωtx(n),ωty(1)、ωty(2)…ωty(n),ωtz(1)、ωtz(2)…ωtz(n);陀螺x、y、z三个轴的标度误差分别为δKgx、δKgy、δKgz;陀螺的失准角误差为δMgxy、δMgxz、δMgyx、δMgyz、δMgzx、δMgzy;陀螺x、y、z三个轴的零偏分别为δBgx、δBgy、δBgz;里程计的速率噪声为wD(1)、wD(2)…wD(n);陀螺x、y、z三个轴的噪声分别为wgx(1)、wgx(2)…wgx(n),wgy(1)、wgy(2)…wgy(n),wgz(1)、wgz(2)…wgz(n);加速度计x、y、z三个轴的噪声分别为wax(1)、wax(2)…wax(n),way(1)、way(2)…way(n),waz(1)、waz(2)…waz(n)。Set the simulation trajectory (including the moving speed, position and attitude of the carrier), use the trajectory generator to generate the standard value of the accelerometer and the standard value of the gyroscope, and calculate the speed standard value of the odometer by calculating the moving speed of the carrier in the set simulation trajectory , and given odometer scale error, yaw installation angle and yaw installation angle error, pitch installation angle and pitch installation angle error, scale error, zero bias and misalignment angle error of accelerometer and gyroscope. These data are fused with the noise data obtained in step 3 and step 6 to obtain device simulation data for INS/odometer integrated navigation hardware-in-the-loop simulation, and then these simulated data are used for INS/odometer integrated navigation simulation. Definition: The motion velocity vectors of the carrier in the simulation trajectory in the navigation coordinate system are V n (1), V n (2), ... V n (n), and the components in the three directions of the navigation coordinate system are respectively The speed standard value of the odometer is The scale error value of the odometer is δK D ; the yaw installation angle of the odometer is α ψ ; the yaw installation angle error is δα ψ ; the pitch installation angle is α θ ; the pitch installation angle error is δα θ ; The standard values of the three axes of , z are a tx (1), a tx (2)...a tx (n), a ty (1), a ty (2)...a ty (n), a tz (1 ), a tz (2)...a tz (n); the scale errors of the three axes of the accelerometer x, y, and z are δK ax , δK ay , and δK az respectively; the misalignment angle errors of the accelerometer are δM axy , δM axz , δM ayx , δM ayz , δM azx , δM azy ; the zero bias of the accelerometer x, y, and z axes are δB ax , δB ay , δB az respectively; the standard of the gyroscope x, y, and z axes The values are ω tx (1), ω tx (2) ... ω tx (n), ω ty (1), ω ty (2) ... ω ty (n), ω tz (1), ω tz (2) …ω tz (n); the scale errors of the gyro x, y, and z axes are δK gx , δK gy , δK gz respectively; the misalignment angle errors of the gyro are δM gxy , δM gxz , δM gyx , δM gyz , δM gzx , δM gzy ; the zero offsets of the gyro x, y, and z axes are δB gx , δB gy , δB gz respectively; the rate noise of the odometer is w D (1), w D (2)...w D ( n); the noises of the three axes of the gyro x, y, and z are respectively w gx (1), w gx (2)...w gx (n), w gy (1), w gy (2)...w gy (n ), w gz (1), w gz (2)...w gz (n); the noise of the three axes of the accelerometer x, y, z are respectively w ax (1), w ax (2)...w ax (n ), w ay (1), w ay (2)... w ay (n), w az (1), w az (2)... w az (n).

由设定仿真轨迹中载体的运动速度计算得到里程计的速率标准值计算公式如下:The speed standard value of the odometer is calculated by calculating the moving speed of the carrier in the set simulation trajectory Calculated as follows:

由计算得到的里程计速率标准值给定的里程计标度误差值δKD、提取得到的里程计速率噪声wD(i),综合得到用于组合导航半实物仿真的里程计输出速率计算公式如下:Standard value of odometer speed obtained by calculation Given the odometer scale error value δK D and the extracted odometer rate noise w D (i), the output rate of the odometer for integrated navigation hardware-in-the-loop simulation can be obtained by synthesis Calculated as follows:

用于组合导航半实物仿真的里程计输出速率在载体坐标系下的速度分量计算公式如下:The calculation formula of the velocity component of the odometer output rate in the vehicle coordinate system for the integrated navigation hardware-in-the-loop simulation is as follows:

用于组合导航半实物仿真的陀螺数据计算公式如下:The calculation formula of the gyro data used for the integrated navigation hardware-in-the-loop simulation is as follows:

用于组合导航半实物仿真的加速度计数据计算公式如下:The calculation formula of accelerometer data used for integrated navigation hardware-in-the-loop simulation is as follows:

采用上述得到的里程计数据加速度计数据af、陀螺数据ωf,结合由仿真轨迹中给定的载体初始位置、初始姿态、初始速度,进行组合导航半实物仿真。Using the odometer data obtained above Accelerometer data a f , gyroscope data ω f , combined with the initial position, initial attitude, and initial velocity of the carrier given in the simulation trajectory, conduct integrated navigation hardware-in-the-loop simulation.

优点及功效:该方法的优点是用里程计、陀螺、加速度计的实际噪声替代仿真噪声,然后进行惯导/里程计组合导航的半实物仿真,为研究惯导/里程计组合导航提供了更好的支持。Advantages and efficacy: the advantage of this method is to replace the simulated noise with the actual noise of the odometer, gyroscope, and accelerometer, and then carry out the half-physical simulation of the inertial navigation/odometer integrated navigation, which provides more information for the research on the inertial navigation/odometer integrated navigation. good support.

附图说明Description of drawings

图1为噪声提取框图Figure 1 is a block diagram of noise extraction

图2为惯导/里程计组合导航半实物仿真方法框图;Fig. 2 is the block diagram of inertial navigation/odometer combined navigation hardware-in-the-loop simulation method;

图3为惯导/里程计组合导航半实物仿真方法流程图;Fig. 3 is the flow chart of inertial navigation/odometer combined navigation hardware-in-the-loop simulation method;

图1中符号说明如下:The symbols in Figure 1 are explained as follows:

惯导输出的东、北、天方向的速度 The speed of the east, north and sky directions output by the inertial navigation

a:加速度计输出值a: accelerometer output value

加速度计输出值的平均值 Average of accelerometer output values

ω:陀螺输出值ω: Gyro output value

陀螺输出值的平均值 Average value of gyro output value

Vm:由惯导输出的速度计算得到的载体速率V m : Carrier speed calculated from the speed output by inertial navigation

里程计输出的速率 The rate at which the odometer outputs

wD:里程计输出速率的噪声w D : Noise of the odometer output rate

wa:加速度计噪声w a : accelerometer noise

wg:陀螺噪声w g : Gyro noise

图2中符号说明如下:The symbols in Figure 2 are explained as follows:

计算得到的里程计速率标准值 Calculated standard value of odometer speed

δKD:给定的里程计标度误差δK D : given odometer scale error

ωt:轨迹发生器生成的陀螺数据标准值ω t : standard value of gyro data generated by trajectory generator

at:轨迹发生器生成的加速度计数据标准值a t : standard value of accelerometer data generated by trajectory generator

δBg:给定的陀螺零偏δB g : given gyro bias

δBa:给定的加速度计零偏δB a : given accelerometer zero bias

ωc:包含标度误差、安装角误差的陀螺数据ω c : Gyro data including scale error and installation angle error

ac:包含标度误差、安装角误差的加速度计数据a c : Accelerometer data including scale error and installation angle error

用于组合导航半实物仿真的里程计速率 Odometer Velocity for Integrated Navigation Hardware-in-the-loop Simulation

用于组合导航半实物仿真的里程计输出在载体坐标系下的速度 Velocity output by odometer in vehicle coordinate system for integrated navigation hardware-in-the-loop simulation

ωf:用于组合导航半实物仿真的陀螺数据ω f : Gyro data for integrated navigation hardware-in-the-loop simulation

af:用于组合导航半实物仿真的加速度计数据a f : accelerometer data for integrated navigation hardware-in-the-loop simulation

P:仿真轨迹中设定的载体位置P: The carrier position set in the simulation trajectory

A:仿真轨迹中设定的载体姿态A: The attitude of the carrier set in the simulation trajectory

V:仿真轨迹中设定的载体速度V: Carrier velocity set in the simulation trajectory

P0:仿真轨迹中设定的载体初始位置P 0 : The initial position of the carrier set in the simulation trajectory

A0:仿真轨迹中设定的载体初始姿态A 0 : The initial posture of the carrier set in the simulation trajectory

V0:仿真轨迹中设定的载体初始速度V 0 : The initial velocity of the carrier set in the simulation trajectory

wD:里程计输出速率的噪声w D : Noise of the odometer output rate

wa:加速度计噪声w a : accelerometer noise

wg:陀螺噪声w g : Gyro noise

具体实施方式detailed description

见图1、图2、图3,一种惯导/里程计组合导航的半实物仿真方法,该方法具体步骤如下:See Fig. 1, Fig. 2, Fig. 3, a kind of hardware-in-the-loop simulation method of inertial navigation/odometer integrated navigation, the specific steps of this method are as follows:

步骤1、将惯导/里程计组合系统安装到载体上,并上电启动。Step 1. Install the inertial navigation/odometer combination system on the carrier, and power it on to start.

步骤2、装订初始参数(包括初始的经度、纬度、高度、里程计标度值)至导航计算机。Step 2, binding initial parameters (including initial longitude, latitude, altitude, odometer scale value) to the navigation computer.

步骤3、载体保持静止,采集保存1小时陀螺和加速度计的输出数据。求取陀螺和加速度计的输出数据的平均值,将采集的陀螺和加速度计数据分别与其平均值作差,得到陀螺和加速度计的实际噪声。Step 3. The carrier remains still, and the output data of the gyroscope and accelerometer are collected and saved for 1 hour. The average value of the output data of the gyroscope and the accelerometer is calculated, and the collected data of the gyroscope and the accelerometer are respectively compared with the average value to obtain the actual noise of the gyroscope and the accelerometer.

步骤4、载体保持静止,惯导进行5分钟静态初始对准。Step 4. The carrier remains stationary, and the inertial navigation system performs static initial alignment for 5 minutes.

步骤5、完成对准后载体开始运动,运动过程中惯导进行惯性导航计算,采集并保存开始运动后50秒内惯导输出的速度值和里程计输出的速率值。Step 5. After the alignment is completed, the carrier starts to move. During the movement, the inertial navigation performs inertial navigation calculations, and collects and saves the speed value output by the inertial navigation and the rate value output by the odometer within 50 seconds after the start of movement.

步骤6、由采集的惯导速度值计算得到载体速率参考值,再将里程计输出的速率值与载体速率参考值作差,得到里程计输出速率的噪声值。Step 6. Calculate the carrier speed reference value from the collected inertial navigation speed value, and then make a difference between the speed value output by the odometer and the carrier speed reference value to obtain the noise value of the odometer output speed.

步骤7、设定仿真轨迹(包含载体的运动速度、位置、姿态),利用轨迹发生器生成加速度计的标准值、陀螺的标准值,并由设定仿真轨迹中载体的运动速度计算得到里程计的速率标准值,再给定里程计标度误差、偏航安装角及偏航安装角误差、俯仰安装角及俯仰安装角误差,加速度计和陀螺的标度误差、零偏、失准角误差,将这些数据与步骤3、步骤6中得到的噪声数据融合,得到用于惯导/里程计组合导航半实物仿真的器件模拟数据,然后采用这些模拟数据进行惯导/里程计组合导航仿真。Step 7. Set the simulation trajectory (including the velocity, position, and attitude of the carrier), use the trajectory generator to generate the standard value of the accelerometer and the standard value of the gyroscope, and calculate the odometer by calculating the velocity of the carrier in the set simulation trajectory The standard value of the rate, and then given the odometer scale error, yaw installation angle and yaw installation angle error, pitch installation angle and pitch installation angle error, accelerometer and gyroscope scale error, zero bias, misalignment angle error , these data are fused with the noise data obtained in step 3 and step 6 to obtain device simulation data for INS/odometer integrated navigation hardware-in-the-loop simulation, and then these simulated data are used for INS/odometer integrated navigation simulation.

其中,步骤3中所述的“得到陀螺和加速度计的实际噪声”,其实现过程说明如下:Wherein, described in step 3 " get the actual noise of gyroscope and accelerometer ", its implementation process is described as follows:

定义wg为陀螺噪声,wa为加速度计噪声,采集陀螺x、y、z三个轴输出的数据分别为ωx(1)、ωx(2)…ωx(n),ωy(1)、ωy(2)…ωy(n),ωz(1)、ωz(2)…ωz(n),平均值分别为采集加速度计x、y、z三个轴输出的数据分别为ax(1)、ax(2)…ax(n),ay(1)、ay(2)…ay(n),az(1)、az(2)…az(n),平均值分别为 Define w g as the noise of the gyro, w a as the noise of the accelerometer, and collect the output data of the three axes of the gyro x, y, and z as ω x (1), ω x (2)...ω x (n), ω y ( 1), ω y (2)…ω y (n), ω z (1), ω z (2)…ω z (n), the average values are Acquire the data output by the three axes of the accelerometer x, y, and z as a x (1), a x (2)...a x (n), a y (1), a y (2)...a y (n ), a z (1), a z (2)…a z (n), the mean values are

陀螺噪声计算公式如下:The calculation formula of gyro noise is as follows:

加速度计噪声计算公式如下:Accelerometer noise calculation formula is as follows:

其中,步骤6中所述的“得到里程计速率的噪声”,其实现过程说明如下:Wherein, " obtain the noise of odometer rate " described in step 6, its implementation process is described as follows:

载体开始运动,采集得到了50秒内里程计输出的速率为及惯导输出的东北天方向的速度定义载体速率参考值为Vm(1)、Vm(2)…Vm(n),里程计的速率噪声为wD(1)、wD(2)…wD(n)。 载体速率参考值计算公式如下:The carrier starts to move, and the speed of the odometer output within 50 seconds is collected as and the speed in the northeast sky direction output by the inertial navigation The carrier speed reference values are defined as V m (1), V m (2)...V m (n), and the speed noise of the odometer is w D (1), w D (2)... w D (n). The formula for calculating the carrier speed reference value is as follows:

里程计的速率噪声计算公式如下:The formula for calculating the rate noise of the odometer is as follows:

其中,步骤7中所述的“得到用于惯导/里程计组合导航半实物仿真的器件模拟数据,然后采用这些模拟数据进行惯导/里程计组合导航仿真”,其实现过程说明如下:Among them, the "obtain device simulation data for INS/odometer integrated navigation hardware-in-the-loop simulation" described in step 7, and then use these simulated data to carry out INS/odometer integrated navigation simulation", the implementation process is described as follows:

设定仿真轨迹(包含载体的运动速度、位置、姿态),利用轨迹发生器生成加速度计的标准值、陀螺的标准值,由设定仿真轨迹中载体的运动速度计算得到里程计的速率标准值,并给定里程计标度误差、偏航安装角及偏航安装角误差、俯仰安装角及俯仰安装角误差,加速度计和陀螺的标度误差、零偏、失准角误差。将这些数据与步骤3、步骤6中得到的噪声数据融合,得到用于惯导/里程计组合导航半实物仿真的器件模拟数据,然后采用这些模拟数据进行惯导/里程计组合导航仿真。定义:仿真轨迹中载体在导航坐标系下运动速度向量为Vn(1)、Vn(2)、…、Vn(n),在导航坐标系三个方向的分量分别为 里程计的速率标准值为里程计的标度误差值为δKD;里程计偏航安装角为αψ;偏航安装角误差为δαψ;俯仰安装角为αθ;俯仰安装角误差为δαθ;加速度计x、y、z三个轴的标准值分别为atx(1)、atx(2)…atx(n),aty(1)、aty(2)…aty(n),atz(1)、atz(2)…atz(n);加速度计x、y、z三个轴的标度误差分别为δKax、δKay、δKaz;加速度计的失准角误差为δMaxy、δMaxz、δMayx、δMayz、δMazx、δMazy;加速度计x、y、z三个轴的零偏分别为δBax、δBay、δBaz;陀螺x、y、z三个轴的标准值分别为ωtx(1)、ωtx(2)…ωtx(n),ωty(1)、ωty(2)…ωty(n),ωtz(1)、ωtz(2)…ωtz(n);陀螺x、y、z三个轴的标度误差分别为δKgx、δKgy、δKgz;陀螺的失准角误差为δMgxy、δMgxz、δMgyx、δMgyz、δMgzx、δMgzy;陀螺x、y、z三个轴的零偏分别为δBgx、δBgy、δBgz;里程计的速率噪声为wD(1)、wD(2)…wD(n);陀螺x、y、z三个轴的噪声分别为wgx(1)、wgx(2)…wgx(n),wgy(1)、wgy(2)…wgy(n),wgz(1)、wgz(2)…wgz(n);加速度计x、y、z三个轴的噪声分别为wax(1)、wax(2)…wax(n),way(1)、way(2)…way(n),waz(1)、waz(2)…waz(n)。Set the simulation trajectory (including the moving speed, position and attitude of the carrier), use the trajectory generator to generate the standard value of the accelerometer and the standard value of the gyroscope, and calculate the speed standard value of the odometer by calculating the moving speed of the carrier in the set simulation trajectory , and given odometer scale error, yaw installation angle and yaw installation angle error, pitch installation angle and pitch installation angle error, scale error, zero bias and misalignment angle error of accelerometer and gyroscope. These data are fused with the noise data obtained in step 3 and step 6 to obtain device simulation data for INS/odometer integrated navigation hardware-in-the-loop simulation, and then these simulated data are used for INS/odometer integrated navigation simulation. Definition: The motion velocity vectors of the carrier in the simulation trajectory in the navigation coordinate system are V n (1), V n (2), ..., V n (n), and the components in the three directions of the navigation coordinate system are respectively The speed standard value of the odometer is The scale error value of the odometer is δK D ; the yaw installation angle of the odometer is α ψ ; the yaw installation angle error is δα ψ ; the pitch installation angle is α θ ; the pitch installation angle error is δα θ ; The standard values of the three axes of , z are a tx (1), a tx (2)...a tx (n), a ty (1), a ty (2)...a ty (n), a tz (1 ), a tz (2)...a tz (n); the scale errors of the three axes of the accelerometer x, y, and z are δK ax , δK ay , and δK az respectively; the misalignment angle errors of the accelerometer are δM axy , δM axz , δM ayx , δM ayz , δM azx , δM azy ; the zero bias of the accelerometer x, y, and z axes are δB ax , δB ay , δB az respectively; the standard of the gyroscope x, y, and z axes The values are ω tx (1), ω tx (2) ... ω tx (n), ω ty (1), ω ty (2) ... ω ty (n), ω tz (1), ω tz (2) …ω tz (n); the scale errors of the gyro x, y, and z axes are δK gx , δK gy , δK gz respectively; the misalignment angle errors of the gyro are δM gxy , δM gxz , δM gyx , δM gyz , δM gzx , δM gzy ; the zero offsets of the gyro x, y, and z axes are δB gx , δB gy , δB gz respectively; the rate noise of the odometer is w D (1), w D (2)...w D ( n); the noises of the three axes of the gyro x, y, and z are respectively w gx (1), w gx (2)...w gx (n), w gy (1), w gy (2)...w gy (n ), w gz (1), w gz (2)...w gz (n); the noise of the three axes of the accelerometer x, y, z are respectively w ax (1), w ax (2)...w ax (n ), w ay (1), w ay (2)... w ay (n), w az (1), w az (2)... w az (n).

由设定仿真轨迹中载体的运动速度计算得到里程计的速率标准值计算公式如下:The speed standard value of the odometer is calculated by calculating the moving speed of the carrier in the set simulation trajectory Calculated as follows:

由计算得到的里程计速率标准值给定的里程计标度误差值δKD、提取得到的里程计速率噪声wD(i),综合得到用于组合导航半实物仿真的里程计输出速率计算公式如 下:Standard value of odometer speed obtained by calculation Given the odometer scale error value δK D and the extracted odometer rate noise w D (i), the output rate of the odometer for integrated navigation hardware-in-the-loop simulation can be obtained by synthesis Calculated as follows:

用于组合导航半实物仿真的里程计输出速率在载体坐标系下的速度分量计算公式如下:The calculation formula of the velocity component of the odometer output rate in the vehicle coordinate system for the integrated navigation hardware-in-the-loop simulation is as follows:

用于组合导航半实物仿真的陀螺数据计算公式如下:The calculation formula of the gyro data used for the integrated navigation hardware-in-the-loop simulation is as follows:

用于组合导航半实物仿真的加速度计数据计算公式如下:The calculation formula of accelerometer data used for integrated navigation hardware-in-the-loop simulation is as follows:

采用上述得到的里程计数据加速度计数据af、陀螺数据ωf,结合由仿真轨迹中给定的载体初始位置、初始姿态、初始速度,进行组合导航半实物仿真。Using the odometer data obtained above Accelerometer data a f , gyroscope data ω f , combined with the initial position, initial attitude, and initial velocity of the carrier given in the simulation trajectory, conduct integrated navigation hardware-in-the-loop simulation.

Claims (4)

1. the Hardware In The Loop Simulation Method of a kind of inertial navigation/odometer integrated navigation, it is characterised in that:The method is comprised the following steps that:
Step 1, inertial navigation/odometer combined system is installed on carrier, and electrifying startup;
Step 2, bookbinding initial parameter, including initial longitude, latitude, height, odometer scale value are to navigational computer;
Step 3, carrier remains stationary, collection preserves the output data of 1 hour gyro and accelerometer;Ask for gyro and acceleration The mean value of the output data of meter, the gyro and accelerometer data of collection is poor with its mean value respectively, obtain gyro and The actual noise of accelerometer;
Step 4, carrier remains stationary, inertial navigation carries out 5 minutes static initial alignments;
Step 5, carrier setting in motion after alignment is completed, inertial navigation in motion process carries out inertial navigation calculating, gather and preserve out The velocity amplitude of inertial navigation output and the rate value of odometer output in 50 seconds after beginning to move;
Step 6, bearer rate reference value is calculated by the inertial navigation velocity amplitude gathered in step 5, then the speed that odometer is exported Rate value is poor with bearer rate reference value, obtains the noise figure of odometer output speed;
Step 7, setting simulation track, the movement velocity comprising carrier, position, attitude generate acceleration using path generator The standard value of meter, the standard value of gyro, and the speed of odometer is calculated by the movement velocity of carrier in setting simulation track Standard value, then given odometer Calibration errors, driftage established angle and driftage error of fixed angles, pitching established angle and pitching established angle The Calibration errors of error, accelerometer and gyro, zero inclined, misalignment angle error, by what is obtained in these data and step 3, step 6 Noise data merges, and the device simulation data for inertial navigation/odometer integrated navigation HWIL simulation is obtained, then using these Analogue data carries out inertial navigation/odometer integrated navigation emulation.
2. the Hardware In The Loop Simulation Method of a kind of inertial navigation/odometer integrated navigation according to claim 1, it is characterised in that: " obtaining the actual noise of gyro and accelerometer " described in step 3, it realizes that procedure declaration is as follows:
Define wgFor gyro noise, waFor accelerometer noise, the data for gathering the three axles outputs of gyro x, y, z are respectively ωx (1)、ωx(2)…ωx(n), ωy(1)、ωy(2)…ωy(n), ωz(1)、ωz(2)…ωzN (), mean value is respectivelyThe data of three axle outputs of collection accelerometer x, y, z are respectively ax(1)、ax(2)…ax(n), ay(1)、ay (2)…ay(n), az(1)、az(2)…azN (), mean value is respectively
Gyro noise computing formula is as follows:
Wherein, i=1...n;
Accelerometer noise calculation formula is as follows:
Wherein, i=1...n.
3. the Hardware In The Loop Simulation Method of a kind of inertial navigation/odometer integrated navigation according to claim 1, it is characterised in that: " obtaining the noise figure of odometer output speed " described in step 6, it realizes that procedure declaration is as follows:
Carrier setting in motion, having collected the speed that odometer is exported in 50 seconds isAnd inertial navigation The speed in the northeast day direction of output Definition:Bearer rate reference value is Vm(1)、Vm(2)…VmN (), the rate Noise of odometer is wD(1)、wD(2)…wDN (), carries Body speed reference value computing formula is as follows:
Wherein, i=1...n;
The rate Noise computing formula of odometer is as follows:
Wherein, i=1 ... n.
4. the Hardware In The Loop Simulation Method of a kind of inertial navigation/odometer integrated navigation according to claim 1, it is characterised in that: " the device simulation data for inertial navigation/odometer integrated navigation HWIL simulation are obtained, then using this described in step 7 A little analogue datas carry out inertial navigation/odometer integrated navigation emulation ", it realizes that procedure declaration is as follows:
Setting simulation track, the movement velocity comprising carrier, position, attitude generate the mark of accelerometer using path generator Quasi- value, the standard value of gyro, by the movement velocity of carrier in setting simulation track the speed standard value of odometer is calculated, and Given odometer Calibration errors, driftage established angle and driftage error of fixed angles, pitching established angle and pitching error of fixed angles, accelerate The Calibration errors of degree meter and gyro, zero inclined, misalignment angle error;The noise data that will be obtained in these data and step 3, step 6 Fusion, obtains the device simulation data for inertial navigation/odometer integrated navigation HWIL simulation, then using these analogue datas Carry out inertial navigation/odometer integrated navigation emulation;Definition:Carrier movement velocity vector under navigational coordinate system is V in simulation trackn (1)、Vn(2)、…VnN (), the component in three directions of navigational coordinate system is respectively The speed standard value of odometer isMileage The Calibration errors value of meter is δ KD;Odometer driftage established angle is αψ;Driftage error of fixed angles is δ αψ;Pitching established angle is αθ;Bow Error of fixed angles is faced upward for δ αθ;The standard value of three axles of accelerometer x, y, z is respectively atx(1)、atx(2)…atx(n), aty(1)、 aty(2)…aty(n), atz(1)、atz(2)…atz(n);The Calibration errors of three axles of accelerometer x, y, z are respectively δ Kax、δKay、 δKaz;The misalignment angle error of accelerometer is δ Maxy、δMaxz、δMayx、δMayz、δMazx、δMazy;Three axles of accelerometer x, y, z Zero is respectively δ B partiallyax、δBay、δBaz;The standard value of three axles of gyro x, y, z is respectively ωtx(1)、ωtx(2)…ωtx(n), ωty(1)、ωty(2)…ωty(n), ωtz(1)、ωtz(2)…ωtz(n);The Calibration errors of three axles of gyro x, y, z are respectively δKgx、δKgy、δKgz;The misalignment angle error of gyro is δ Mgxy、δMgxz、δMgyx、δMgyz、δMgzx、δMgzy;Three axles of gyro x, y, z Zero be respectively δ B partiallygx、δBgy、δBgz;The rate Noise of odometer is wD(1)、wD(2)…wD(n);Three axles of gyro x, y, z Noise be respectively wgx(1)、wgx(2)…wgx(n), wgy(1)、wgy(2)…wgy(n), wgz(1)、wgz(2)…wgz(n);Accelerate The noise of degree meter three axles of x, y, z is respectively wax(1)、wax(2)…wax(n), way(1)、way(2)…way(n), waz(1)、waz (2)…waz(n);
The speed standard value of odometer is calculated by the movement velocity of carrier in setting simulation trackComputing formula is such as Under:
Wherein, i=1 ... n;
By calculated odometer speed standard valueGiven odometer Calibration errors value δ KD, extract the mileage that obtains Meter rate Noise wDI (), comprehensively obtains the odometer output speed for integrated navigation HWIL simulationComputing formula It is as follows:
Wherein, i=1 ... n;
For integrated navigation HWIL simulation velocity component computing formula of the odometer output speed under carrier coordinate system such as Under:
Wherein, i=1 ... n;
Gyro data computing formula for integrated navigation HWIL simulation is as follows:
Wherein, i=1 ... n;
Accelerometer data computing formula for integrated navigation HWIL simulation is as follows:
Wherein, i=1 ... n;
Counted using mileage obtained aboveAccelerometer data af, gyro data ωf, with reference to by giving in simulation track Fixed carrier initial position, initial attitude, initial velocity, is combined navigation HWIL simulation.
CN201410539231.XA 2014-10-13 2014-10-13 Semi-physical simulation method of inertial navigation/mileometer combined navigation Active CN104596540B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410539231.XA CN104596540B (en) 2014-10-13 2014-10-13 Semi-physical simulation method of inertial navigation/mileometer combined navigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410539231.XA CN104596540B (en) 2014-10-13 2014-10-13 Semi-physical simulation method of inertial navigation/mileometer combined navigation

Publications (2)

Publication Number Publication Date
CN104596540A CN104596540A (en) 2015-05-06
CN104596540B true CN104596540B (en) 2017-04-19

Family

ID=53122476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410539231.XA Active CN104596540B (en) 2014-10-13 2014-10-13 Semi-physical simulation method of inertial navigation/mileometer combined navigation

Country Status (1)

Country Link
CN (1) CN104596540B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037739B (en) * 2016-12-02 2020-02-14 上海航天控制技术研究所 Carrier rocket semi-physical simulation test inertial unit simulation method
CN112180760A (en) * 2020-09-17 2021-01-05 中国科学院上海微系统与信息技术研究所 A hardware-in-the-loop simulation system for multi-sensor data fusion
CN113375667B (en) * 2021-07-15 2022-02-22 北京百度网讯科技有限公司 Navigation method, device, equipment and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706367A (en) * 2012-06-19 2012-10-03 北京航空航天大学 Accuracy testing and calculating method of single-beam laser speedometer for combined navigation
CN102706365A (en) * 2012-06-19 2012-10-03 北京航空航天大学 Calibration method for three-beam laser velocimeter on basis of navigation system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2826447B1 (en) * 2001-06-26 2003-09-19 Sagem HYBRID INERTIAL NAVIGATION METHOD AND DEVICE
GB201017288D0 (en) * 2010-10-13 2010-11-24 Univ Nottingham Positioning system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706367A (en) * 2012-06-19 2012-10-03 北京航空航天大学 Accuracy testing and calculating method of single-beam laser speedometer for combined navigation
CN102706365A (en) * 2012-06-19 2012-10-03 北京航空航天大学 Calibration method for three-beam laser velocimeter on basis of navigation system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
捷联惯导系统/里程计高精度紧组合导航算法;肖烜等;《兵工学报》;20120430;第33卷(第4期);第395-400页 *
陆用捷联惯导系统/里程计自主式组合导航技术;缪玲娟等;《北京理工大学学报》;20040930;第24卷(第9期);第808-811页 *

Also Published As

Publication number Publication date
CN104596540A (en) 2015-05-06

Similar Documents

Publication Publication Date Title
CN103245359B (en) A kind of inertial sensor fixed error real-time calibration method in inertial navigation system
CN103471616B (en) Initial Alignment Method under a kind of moving base SINS Large azimuth angle condition
CN102607595B (en) Method of Measuring Dynamic Random Drift of Strapdown Flexible Gyroscope Using Laser Doppler Velocimeter
CN104019828A (en) On-line calibration method for lever arm effect error of inertial navigation system in high dynamic environment
CN103471613A (en) Parameter simulation method for inertial navigation system of aircraft
CN103727941A (en) Volume kalman nonlinear integrated navigation method based on carrier system speed matching
CN103414451B (en) A kind of EKF method being applied to attitude of flight vehicle and estimating
CN105136166B (en) A kind of SINS error model emulation mode of specified inertial navigation positional precision
CN105737823A (en) GPS/SINS/CNS integrated navigation method based on five-order CKF
CN113340298B (en) Inertial navigation and dual-antenna GNSS external parameter calibration method
CN104215262A (en) An Online Dynamic Identification Method for Inertial Sensor Errors in Inertial Navigation System
CN106052686A (en) Full-autonomous strapdown inertial navigation system based on DSPTMS 320F28335
CN106441301A (en) Air vehicle launching initial parameter acquiring method and system
CN103727940A (en) Gravity acceleration vector fitting-based nonlinear initial alignment method
CN110196066B (en) Virtual Polar Region Method Based on Invariant Grid Attitude and Velocity Information
CN106885587A (en) The lower outer lever arm effect errors compensation method of inertia/GPS integrated navigations of rotor disturbance
CN102607591B (en) Track data generation method for testing strap-down inertial navigation software
CN105352502A (en) Attitude obtaining method of micro-inertia sailing attitude reference system
CN105737842A (en) Vehicle-mounted autonomous navigation method based on rotary modulation and virtual odometer
CN105973237B (en) Emulation dynamic trajectory based on practical flight data interpolating parses generation method
CN104596540B (en) Semi-physical simulation method of inertial navigation/mileometer combined navigation
CN110487300A (en) Vibration absorber influences test method to the performance of inertial navigation system
CN104748763B (en) Suitable for the vehicle-mounted strapdown inertial measurement unit rapid alignment method rocked
CN103644913B (en) Unscented kalman nonlinear initial alignment method based on direct navigation model
CN109084755B (en) An accelerometer bias estimation method based on gravity apparent velocity and parameter identification

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191021

Address after: 361026 unit 1512, No. 64, Pingshan Nanli, Haicang District, Xiamen City, Fujian Province

Patentee after: XIAMEN HUAYUAN JIAHANG TECHNOLOGY Co.,Ltd.

Address before: 100191 Haidian District, Xueyuan Road, No. 37,

Patentee before: BEIHANG University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230515

Address after: Room 1202-1, No. 1134 Jimei North Avenue, Phase III, Software Park, Xiamen Torch High tech Zone, Xiamen, Fujian Province, 361000

Patentee after: Xiamen Huihong Jiachuang Technology Co.,Ltd.

Address before: Unit 1512, No. 64 Pingshan Nanli, Haicang District, Xiamen City, Fujian Province, 361026

Patentee before: XIAMEN HUAYUAN JIAHANG TECHNOLOGY Co.,Ltd.