CN104593804B - A kind of high-temperature electrolysis CO 2/ H 2o prepares synthetic gas system and application thereof - Google Patents
A kind of high-temperature electrolysis CO 2/ H 2o prepares synthetic gas system and application thereof Download PDFInfo
- Publication number
- CN104593804B CN104593804B CN201510019178.5A CN201510019178A CN104593804B CN 104593804 B CN104593804 B CN 104593804B CN 201510019178 A CN201510019178 A CN 201510019178A CN 104593804 B CN104593804 B CN 104593804B
- Authority
- CN
- China
- Prior art keywords
- electrolysis
- molten
- temperature
- electrolyte
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
本发明涉及一种高温电解CO2/H2O制合成气系统及其应用,该系统包括电解单元和电加热单元,电加热单元对电解单元进行加热,电解单元由直流电源、阴极、阳极、电解池和电解质组成,电解质为熔融碳酸盐和熔融氢氧化物的混合物,或者熔融碳酸盐和熔融氧化物的混合物,或者熔融碳酸盐、熔融氢氧化物和熔融氧化物的混合物,电解中,直流电源电流在(0A-3A)区间内,电解池温度为600℃以上,电解质吸收空气中的CO2/H2O得以再生。该系统实现了低电解电压和相对低温条件下,CO2/H2O的共电解转化制取合成气。电解反应相对简单,反应选择性好,能够简单、节能、低成本、高效地实现CO2资源化利用。
The invention relates to a high-temperature electrolysis CO 2 /H 2 O synthesis gas system and its application. The system includes an electrolysis unit and an electric heating unit. The electric heating unit heats the electrolysis unit. The electrolysis unit consists of a DC power supply, a cathode, an anode, Composition of electrolytic cell and electrolyte, electrolyte is a mixture of molten carbonate and molten hydroxide, or a mixture of molten carbonate and molten oxide, or a mixture of molten carbonate, molten hydroxide and molten oxide, electrolysis , the DC power supply current is in the range of (0A-3A), the temperature of the electrolytic cell is above 600°C, and the electrolyte absorbs CO 2 /H 2 O in the air to be regenerated. The system realizes the co-electrolysis conversion of CO 2 /H 2 O to produce synthesis gas under the conditions of low electrolysis voltage and relatively low temperature. The electrolysis reaction is relatively simple, the reaction selectivity is good, and the resource utilization of CO2 can be realized simply, energy-saving, low-cost, and efficiently.
Description
技术领域 technical field
本发明涉及一种高温电解CO2/H2O转化制合成气系统及其应用,属于节能减排和CO2资源化领域。 The invention relates to a high-temperature electrolysis CO 2 /H 2 O conversion synthesis gas system and its application, belonging to the fields of energy saving, emission reduction and CO 2 resource utilization.
背景技术 Background technique
CO2是引起全球气候变化的最主要的温室气体之一。CO2的大量排放已成为一个对未来世界格局变化产生重大影响的国际问题,如何控制CO2的排放已被列入各国政府、联合国会议的首要议题,成为全球诸多重大问题中亟待解决的战略课题,加上二氧化碳是潜在的碳资源,因此开发相应的二氧化碳回收利用技术具有重要的战略意义。目前二氧化碳的回收转化主要集中在催化活化合成有机燃料或化工原料,如CH4、CO+H2、甲醇等。日本东京工业大学一研究小组于2008年研制出一种新型复合光催化剂,可利用太阳光将CO2转化为CO,此方法为常温光催化法,光转化率极低;日本东北电力公司以铑-镁为催化剂,可使二氧化碳与氢在一定的温度与压力下混合,生成甲烷;日本东芝公司直接用燃放气与以氢为基底的乙炔混合,利用电子束或激光束激励,生产甲醇和CO。但这些反应需要在高温高压并有催化剂存在的条件下才能进行,需要配备专门的反应器,反应过程需要消耗大量的能量和动力,加之催化剂的性能较低,高温下容易失活,因此利用这种高压催化氢化法大规模转化利用二氧化碳还有很多困难。相较于需高温高压条件较为苛刻的化学方法,近年来,反应条件较为温和且易于操作的电化学固定CO2技术已成为CO2资源化领域研究的热点之一。目前的CO2电化学还原研究主要是将CO2溶解在水溶剂和非水的有机溶剂中,但这同时也限制了其工业化应用,另外CO2为气体分子,直接电解还原非常困难,一是需要高能耗(高电解电压),二是电解反应非常复杂,效率和选择性差。基于此,开发一种低成本,装置简单、高效的CO2资源化利用的方法以装置,以求得更好的经济、社会和环境效益就显得非常重要。 CO2 is one of the most important greenhouse gases causing global climate change. The large amount of CO2 emissions has become an international issue that has a major impact on the changes in the future world pattern. How to control CO2 emissions has been listed as the primary topic of governments and United Nations meetings, and has become a strategic issue that needs to be solved urgently among many major global issues. , and carbon dioxide is a potential carbon resource, so it is of great strategic significance to develop corresponding carbon dioxide recovery and utilization technologies. At present, the recovery and conversion of carbon dioxide mainly focuses on catalytic activation to synthesize organic fuels or chemical raw materials, such as CH 4 , CO+H 2 , methanol, etc. A research team of Tokyo Institute of Technology in Japan developed a new type of composite photocatalyst in 2008, which can use sunlight to convert CO2 into CO. This method is a photocatalytic method at room temperature, and the light conversion rate is extremely low; - Magnesium is used as a catalyst, which can mix carbon dioxide and hydrogen at a certain temperature and pressure to generate methane; Toshiba Corporation of Japan directly mixes the offgas with hydrogen-based acetylene, and uses electron beam or laser beam excitation to produce methanol and CO . However, these reactions can only be carried out under the conditions of high temperature and high pressure and the presence of a catalyst, and special reactors need to be equipped. The reaction process needs to consume a lot of energy and power. In addition, the performance of the catalyst is low and it is easy to deactivate at high temperature. There are still many difficulties in the large-scale conversion and utilization of carbon dioxide by this high-pressure catalytic hydrogenation method. Compared with chemical methods that require harsh conditions of high temperature and high pressure, in recent years, the electrochemical CO2 fixation technology with milder reaction conditions and easy operation has become one of the research hotspots in the field of CO2 resource utilization. The current research on electrochemical reduction of CO 2 mainly involves dissolving CO 2 in aqueous solvents and non-aqueous organic solvents, but this also limits its industrial application. In addition, CO 2 is a gas molecule, and direct electrolytic reduction is very difficult. First, High energy consumption (high electrolysis voltage) is required, and the second is that the electrolysis reaction is very complicated, and the efficiency and selectivity are poor. Based on this, it is very important to develop a low-cost, simple and efficient method and device for resource utilization of CO 2 in order to obtain better economic, social and environmental benefits.
发明内容 Contents of the invention
本发明提供了一种系统简单、节能、低成本、高效的CO2资源化利用方法,在低电解电压和相对低温条件下,实现CO2/H2O的共电解转化制取合成气,并且电解反应相对简单,反应选择性好。 The present invention provides a CO 2 resource utilization method with simple system, energy saving, low cost and high efficiency. Under the conditions of low electrolysis voltage and relatively low temperature, CO 2 /H 2 O can be co-electrolyzed to produce synthesis gas, and The electrolysis reaction is relatively simple and the reaction selectivity is good.
本发明的目的是通过如下技术方案实现的: The purpose of the present invention is achieved through the following technical solutions:
一种高温电解CO2/H2O制合成气系统,该系统包括电解单元和电加热单元,电加热单元对电解单元进行加热,电解单元由直流电源、阴极、阳极、电解池和电解质组成,其特征在于:所述电解质为熔融碳酸盐和熔融氢氧化物的混合物,或者熔融碳酸盐和熔融氧化物的混合物,或者熔融碳酸盐、熔融氢氧化物和熔融氧化物的混合物,电解中,直流电源电流在[1A,3A)区间内,电解池温度为600℃以上,电解质吸收空气中的CO2/H2O得以再生;优选地,所述电流为1A-2A,电解池温度为600℃~800℃; A high-temperature electrolysis CO 2 /H 2 O synthesis gas system, the system includes an electrolysis unit and an electric heating unit, the electric heating unit heats the electrolysis unit, and the electrolysis unit is composed of a DC power supply, a cathode, an anode, an electrolytic cell and an electrolyte, It is characterized in that: the electrolyte is a mixture of molten carbonate and molten hydroxide, or a mixture of molten carbonate and molten oxide, or a mixture of molten carbonate, molten hydroxide and molten oxide, and electrolysis , the DC power supply current is in the interval [1A, 3A), the temperature of the electrolytic cell is above 600°C, and the electrolyte absorbs CO 2 /H 2 O in the air to be regenerated; preferably, the current is 1A-2A, and the temperature of the electrolytic cell is 600℃~800℃;
进一步地,高温电解CO2/H2O制合成气的电解反应机理为: Furthermore, the electrolysis reaction mechanism of high-temperature electrolysis of CO 2 /H 2 O to synthesis gas is as follows:
阳极:2O2--4e-=O2 Anode: 2O 2- -4e - =O 2
阴极:2OH-+CO3 2-+4e-=CO+H2+4O2- Cathode: 2OH - +CO 3 2- +4e - =CO+H 2 +4O 2-
2H++CO3 2-+4e-=CO+H2+2O2-。 2H + +CO 3 2- +4e - =CO+H 2 +2O 2- .
进一步地,电解质为固态时,由所述电加热单元提供电解质达到完全熔融状态所需要的热能; Further, when the electrolyte is solid, the electric heating unit provides the heat energy required for the electrolyte to reach a completely molten state;
进一步地,所述电加热单元采用陶瓷或其他高温型电加热套,通过调节变压器负载来调控加热温度; Further, the electric heating unit adopts ceramic or other high-temperature electric heating jackets, and adjusts the heating temperature by adjusting the load of the transformer;
进一步地,所述电解单元的阴极材料为镍、铂、钛、钌、铱、钯、铁、钨、铬、铜、金、石墨或不锈钢,或上述材料中的几种形成的合金; Further, the cathode material of the electrolysis unit is nickel, platinum, titanium, ruthenium, iridium, palladium, iron, tungsten, chromium, copper, gold, graphite or stainless steel, or an alloy formed of several of the above materials;
进一步地,所述电解单元的阳极材料为镍、铂、钛、钌、铱、钯、铁、钨、铬、铜、金、石墨或不锈钢,或上述材料中的几种形成的合金; Further, the anode material of the electrolysis unit is nickel, platinum, titanium, ruthenium, iridium, palladium, iron, tungsten, chromium, copper, gold, graphite or stainless steel, or an alloy formed of several of the above materials;
进一步地,所述电解池采用高温耐腐蚀型反应器; Further, the electrolytic cell adopts a high-temperature corrosion-resistant reactor;
进一步,碳酸盐可为Li2CO3、Na2CO3、K2CO3、Rb2CO3、MgCO3、CaCO3、SrCO3、BaCO3、ZnCO3、Li2SiO3、Na2SiO3、K2SiO3、Rb2SiO3中的一种或两种以上的混合物;氢氧化物可为LiOH、NaOH、KOH、RbOH、Mg(OH)2、Ca(OH)2、Sr(OH)2、Ba(OH)2、Zn(OH)2中的一种或两种以上的混合物;氧化物可为Li2O、Na2O、K2O、Rb2O、MgO、CaO、SrO、BaO、ZnO、SiO2、Al2O3、Fe2O3中的一种或两种以上的混合物; Further, carbonates can be Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , MgCO 3 , CaCO 3 , SrCO 3 , BaCO 3 , ZnCO 3 , Li 2 SiO 3 , Na 2 SiO 3. One or more mixtures of K 2 SiO 3 , Rb 2 SiO 3 ; hydroxides can be LiOH, NaOH, KOH, RbOH, Mg(OH) 2 , Ca(OH) 2 , Sr(OH) ) 2 , Ba(OH) 2 , Zn(OH) 2 or a mixture of two or more; oxides can be Li 2 O, Na 2 O, K 2 O, Rb 2 O, MgO, CaO, SrO , BaO, ZnO, SiO 2 , Al 2 O 3 , Fe 2 O 3 or a mixture of two or more;
进一步地,当电解质为熔融碳酸盐和熔融氢氧化物的混合物时,摩尔比为碳酸盐:氢氧化物=1:0.5~1;当电解质为熔融碳酸盐和熔融氧化物的混合物时,摩尔比为碳酸盐:氧化物=1:0.5~1;当电解质为熔融碳酸盐、熔融氢氧化物和熔融氧化物的混合物时,摩尔比为碳酸盐:(氢氧化物+氧化物)=1:0.5~1。 Further, when the electrolyte is a mixture of molten carbonate and molten hydroxide, the molar ratio is carbonate:hydroxide=1:0.5~1; when the electrolyte is a mixture of molten carbonate and molten oxide , the molar ratio is carbonate: oxide = 1:0.5~1; when the electrolyte is a mixture of molten carbonate, molten hydroxide and molten oxide, the molar ratio is carbonate: (hydroxide + oxidation matter)=1:0.5~1.
基于上述的一种高温电解CO2/H2O制合成气系统的高温电解CO2/H2O制合成气的方法,包括如下步骤: The method for producing synthesis gas by high-temperature electrolysis of CO 2 /H 2 O based on the above-mentioned high-temperature electrolysis CO 2 /H 2 O synthesis gas system includes the following steps:
(1)构建由直流电源、阴极、阳极、电解池和电解质组成的电解单元; (1) Construct an electrolytic unit composed of a DC power supply, cathode, anode, electrolytic cell and electrolyte;
(2)通过电加热单元加热电解中固态电解质以形成熔融态电解质; (2) heating the solid electrolyte in the electrolysis by an electric heating unit to form a molten electrolyte;
(3)控制电解池温度恒定在600℃-800℃; (3) Control the temperature of the electrolytic cell to be constant at 600°C-800°C;
(4)通过导气管向电解池中通入CO2和H2O,控制直流电源电流恒定在1A-2A,反应1h-2h,主反应一步生成主要产物合成气CO和H2,主反应为:CO2+H2O=CO+H2+O2,副反应得到中间产物碳单质和氢气,副反应为: (4) Introduce CO 2 and H 2 O into the electrolytic cell through the air duct, control the DC power supply current to be constant at 1A-2A, and react for 1h-2h. The main reaction is to generate the main products of syngas CO and H 2 in one step. The main reaction is : CO 2 +H 2 O=CO+H 2 +O 2 , the side reaction is to obtain the intermediate product carbon simple substance and hydrogen, and the side reaction is:
1)生成碳单质并还原CO2/H2O生成CO/H2: 1) Generate simple carbon and reduce CO 2 /H 2 O to generate CO/H 2 :
CO2=C+O2 CO 2 =C+O 2
C+CO2=2CO C+CO 2 =2CO
C+H2O=H2+CO C+ H2O = H2 +CO
2)水电解生成H2,H2还原CO2生成CO 2) Water electrolysis generates H 2 , and H 2 reduces CO 2 to generate CO
H2O=H2+1/2O2 H 2 O=H 2 +1/2O 2
H2+CO2=CO+H2O; H 2 +CO 2 =CO+H 2 O;
其电解反应机理为: The electrolytic reaction mechanism is:
阳极:2O2--4e-=O2 Anode: 2O 2- -4e - =O 2
阴极:2OH-+CO3 2-+4e-=CO+H2+4O2- Cathode: 2OH - +CO 3 2- +4e - =CO+H 2 +4O 2-
2H++CO3 2-+4e-=CO+H2+2O2-。 2H + +CO 3 2- +4e - =CO+H 2 +2O 2- .
本发明的有益技术效果如下: Beneficial technical effects of the present invention are as follows:
1、电解反应过程,通过电加热单元将电能转化为热能,加热电解质,根据电解质的不同调控加热温度;同时使用直流电源提供电能,根据电解质的种类及加热温度,调控所需的电解电压或电流,通过电解CO2/H2O,在阴极得到H2和CO,阳极得到O2,实现了电能到化学能的转化和储存,电解过程中电解质吸收空气中的CO2/H2O,使电解质得以再生,从而实现了将CO2循环利用与资源化利用。 1. During the electrolysis reaction process, the electric heating unit converts electric energy into heat energy, heats the electrolyte, and adjusts the heating temperature according to the different electrolytes; at the same time, it uses a DC power supply to provide electric energy, and adjusts the required electrolysis voltage or current according to the type of electrolyte and the heating temperature , through the electrolysis of CO 2 /H 2 O, H 2 and CO are obtained at the cathode, and O 2 is obtained at the anode, which realizes the conversion and storage of electrical energy to chemical energy. During the electrolysis process, the electrolyte absorbs CO 2 /H 2 O in the air, making The electrolyte is regenerated, thereby realizing the recycling and resource utilization of CO2 .
2、以往的高温熔盐体系多数是单一的混合熔融碳酸盐,CO2/H2O的共电解温度均在800℃以上,而本发明创新性地在碳酸盐的基础上加入了一定比例的氢氧化物和/或氧化物。氢氧化物既可以作为氢元素的来源,同时也降低了整个混合熔盐体系的熔点,使CO2/H2O能够在较低的温度下即可实现电解。氧化物在达到熔融状态后,可以吸收空气中的CO2和H2O,转化为碳酸盐和氢氧化物,起到和碳酸盐、氢氧化物混合物相类似的作用,也使CO2/H2O能够在较低的温度下实现电解,高效节能地实现了CO2的资源化利用。以钠盐为例,如图1所示 2. Most of the previous high-temperature molten salt systems are single mixed molten carbonates, and the co-electrolysis temperature of CO 2 /H 2 O is above 800°C. However, the present invention innovatively adds a certain Proportions of hydroxides and/or oxides. Hydroxide can be used as a source of hydrogen, and at the same time lower the melting point of the entire mixed molten salt system, so that CO 2 /H 2 O can be electrolyzed at a lower temperature. After the oxide reaches the molten state, it can absorb CO 2 and H 2 O in the air and convert it into carbonate and hydroxide, which plays a similar role to the mixture of carbonate and hydroxide, and also makes CO 2 /H 2 O can be electrolyzed at a lower temperature, and realize the resource utilization of CO 2 with high efficiency and energy saving. Taking sodium salt as an example, as shown in Figure 1
吸收:Na2O+CO2=Na2CO3 Absorption: Na 2 O+CO 2 =Na 2 CO 3
Na2O+H2O=2NaOH Na2O + H2O =2NaOH
释放:Na2CO3=Na2O+CO2 Release: Na 2 CO 3 =Na 2 O+CO 2
2NaOH=Na2O+H2O 2NaOH=Na2O + H2O
3、本发明的优点在于一步生成合成气(H2和CO),主反应为:CO2+H2O=CO+H2+O2,副反应得到的中间产物碳单质和氢气,副反应为: 3. The present invention has the advantage of generating synthesis gas ( H2 and CO) in one step. The main reaction is: CO2 + H2O =CO+ H2 + O2 . for:
1)生成碳单质并还原CO2/H2O生成CO/H2: 1) Generate simple carbon and reduce CO 2 /H 2 O to generate CO/H 2 :
CO2=C+O2 CO 2 =C+O 2
C+CO2=2CO C+CO 2 =2CO
C+H2O=H2+CO C+ H2O = H2 +CO
2)水电解生成H2,H2还原CO2生成CO 2) Water electrolysis generates H 2 , and H 2 reduces CO 2 to generate CO
H2O=H2+1/2O2 H 2 O=H 2 +1/2O 2
H2+CO2=CO+H2O; H 2 +CO 2 =CO+H 2 O;
利用电能以及电化学效应,构建CO2/H2O转化制合成气系统,构成了完美的能量转化和储存系统,具有清洁、高效、安全和可持续的特点,为节能减排和CO2资源化利用提供了新的途径。 Using electric energy and electrochemical effects to construct a CO 2 /H 2 O conversion synthesis gas system constitutes a perfect energy conversion and storage system, which is clean, efficient, safe and sustainable, and contributes to energy conservation, emission reduction and CO 2 resources utilization provides new avenues.
附图说明 Description of drawings
图1本发明系统原理图 Fig. 1 system schematic diagram of the present invention
图2本发明系统示意图 Fig. 2 system schematic diagram of the present invention
图中:1阳极;2电加热套;3电解质;4电解池;5阴极;6导气管;7直流电源;8导线;9阳极产物O2;10反应原料CO2和H2O;11阴极产物H2和CO In the figure: 1 anode; 2 electric heating mantle; 3 electrolyte; 4 electrolytic cell; 5 cathode; Product H2 and CO
具体实施方式 Detailed ways
下面将结合附图对本发明作进一步说明。 The present invention will be further described below in conjunction with accompanying drawing.
本发明基于高温电解CO2/H2O制合成气系统,如图1所示,该系统包括电解单元和电加热单元,电加热单元采用电加热套形式,电解单元由直流电源、阴极、阳极、电解池和电解质组成,阴极和阳极置于同一个电解池中,通过直流电源提供电解电压,电加热单元对电解池中的电解质进行加热,通过导气管向电解池中通入CO2和H2O,并通过各自的导气管导出阴极产物CO和H2以及阳极产物O2。当电流小于1A时产率过低反应较慢,当电流大于2A时,反应剧烈电极腐蚀严重,产量低,优选地,电解电流为1A-2A,电解池温度为600℃-800℃。通过调节电解电流和电解质组成实现产物浓度的调节。 The present invention is based on high-temperature electrolysis of CO 2 /H 2 O synthesis gas system. As shown in Figure 1, the system includes an electrolysis unit and an electric heating unit. , an electrolytic cell and an electrolyte, the cathode and the anode are placed in the same electrolytic cell, the electrolytic voltage is provided by a DC power supply, the electric heating unit heats the electrolyte in the electrolytic cell, and CO 2 and H are introduced into the electrolytic cell through the air duct 2 O, and the cathode products CO and H 2 and the anode product O 2 are exported through their respective air ducts. When the current is less than 1A, the yield is too low and the reaction is slow. When the current is greater than 2A, the reaction is severe, electrode corrosion is serious, and the yield is low. Preferably, the electrolysis current is 1A-2A, and the temperature of the electrolytic cell is 600°C-800°C. The adjustment of product concentration is realized by adjusting the electrolysis current and electrolyte composition.
实施例1 Example 1
分别将30gLi2CO3、30gNa2CO3、30gK2CO3和72.02gZn(OH)2于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为10cm2的镍片和镍丝作为阳极和阴极,反应不受电极面积大小限制,且面积越大对反应有利;使温度恒定为600℃,电流恒定为2A。反应1小时后,产生的气体中合成气含量(体积百分比)为:76.83%H2、4.19%CO。 Grind 30gLi 2 CO 3 , 30gNa 2 CO 3 , 30gK 2 CO 3 and 72.02g Zn(OH) 2 in a mortar, pulverize and mix them evenly, and transfer them into a corundum crucible ; The nickel wire is used as the anode and the cathode, and the reaction is not limited by the size of the electrode area, and the larger the area is, the better the reaction is; keep the temperature at 600°C and the current at 2A. After 1 hour of reaction, the synthesis gas content (volume percentage) in the generated gas was: 76.83% H 2 , 4.19% CO.
实施例2 Example 2
分别将20gLi2CO3、20gNa2CO3、20gK2CO3和33.82gKOH于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为30cm2的镍铬合金丝和铁丝作为阳极和阴极;使温度恒定为650℃,电流恒定为2A。反应1小时后,产生的气体中合成气含量(体积百分比)为:90.38%H2、8.671%CO。 Grind and mix 20gLi 2 CO 3 , 20gNa 2 CO 3 , 20gK 2 CO 3 and 33.82g KOH in a mortar, and transfer them into a corundum crucible ; Anode and cathode; keep the temperature constant at 650°C and the current constant at 2A. After reacting for 1 hour, the syngas content (volume percentage) in the generated gas was: 90.38% H 2 , 8.671% CO.
实施例3 Example 3
分别将30gLi2CO3、30gNa2CO3、30gBaCO3、33.63gNaOH和2gNa2SiO3于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为10cm2的镍片和铁丝作为阳极和阴极;使温度恒定为700℃,电流恒定为1.5A。反应1小时后,产生的气体中合成气含量(体积百分比)为:82.67%H2、6.657%CO。 Grind and mix 30gLi 2 CO 3 , 30gNa 2 CO 3 , 30gBaCO 3 , 33.63gNaOH and 2gNa 2 SiO 3 in a mortar, and transfer them into a corundum crucible ; As anode and cathode; make the temperature constant at 700°C, and the current constant at 1.5A. After 1 hour of reaction, the synthesis gas content (volume percentage) in the generated gas was: 82.67% H 2 , 6.657% CO.
实施例4 Example 4
分别将20gLi2CO3、20gNa2CO3、20gCaCO3、26.34gBa(OH)2和14.28gZnO于研钵中研磨粉碎混合均匀,将其转移入高纯镍反应器内;分别将表面积为15cm2的镍铬合金丝和镍丝作为阳极和阴极;使温度恒定为750℃,电流恒定为1A。反应2小时后,产生的气体中合成气含量(体积百分比)为:86.51%H2、5.934%CO。 Grind and mix 20gLi 2 CO 3 , 20gNa 2 CO 3 , 20gCaCO 3 , 26.34gBa(OH) 2 and 14.28gZnO in a mortar, transfer them into a high-purity nickel reactor ; Chromium alloy wire and nickel wire are used as anode and cathode; make the temperature constant at 750°C and the current constant at 1A. After 2 hours of reaction, the synthesis gas content (volume percentage) in the generated gas was: 86.51% H 2 , 5.934% CO.
实施例5 Example 5
分别将30gLi2CO3、17.55gNa2O、30gBaCO3和33.63gNaOH于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为20cm2的镍片和铁丝作为阳极和阴极;使温度恒定为650℃,电流恒定为2A。反应1小时后,产生的气体中合成气含量(体积百分比)为:87.52%H2、8.37%CO。 Grind and mix 30gLi 2 CO 3 , 17.55gNa 2 O, 30gBaCO 3 and 33.63gNaOH in a mortar, respectively, and transfer them into a corundum crucible; respectively use a nickel sheet and an iron wire with a surface area of 20cm 2 as the anode and cathode; The temperature was kept constant at 650°C, and the current was kept constant at 2A. After reacting for 1 hour, the synthesis gas content (volume percentage) in the generated gas was: 87.52% H 2 , 8.37% CO.
实施例6 Example 6
分别将30gLi2CO3、30gNa2CO3、30gCaCO3、46.45gK2O和3gNa2SiO3于研钵中研磨粉碎混合均匀,将其转移入高纯镍反应器内;分别将表面积为20cm2的镍片和镍丝作为阳极和阴极;调节菲涅尔透镜的光斑大小使温度恒定为650℃;调节太阳能电池板电路的变阻器使电流恒定为2A。反应1小时后,产生的气体中合成气含量(体积百分比)为:82.28%H2、6.11%CO。 30gLi 2 CO 3 , 30gNa 2 CO 3 , 30gCaCO 3 , 46.45gK 2 O and 3gNa 2 SiO 3 were ground and mixed in a mortar, and then transferred into a high-purity nickel reactor ; sheet and nickel wire as the anode and cathode; adjust the spot size of the Fresnel lens to keep the temperature constant at 650°C; adjust the rheostat of the solar panel circuit to keep the current constant at 2A. After 1 hour of reaction, the synthesis gas content (volume percentage) in the generated gas was: 82.28% H 2 , 6.11% CO.
实施例7 Example 7
分别将30gLi2CO3、30gNa2CO3、16.8gCaO和101.31gRbOH于研钵中研磨粉碎混合均匀,将其转移入高纯镍反应器内;分别将表面积为10cm2的镍片和镍丝作为阳极和阴极;调节菲涅尔透镜的光斑大小使温度恒定为600℃;调节太阳能电池板电路的变阻器使电流恒定为2A。反应1小时后,产生的气体中合成气含量(体积百分比)为:79.43%H2、5.36%CO。 Grind and mix 30gLi2CO3 , 30gNa2CO3 , 16.8gCaO and 101.31gRbOH in a mortar, respectively, and transfer them into a high-purity nickel reactor; respectively use a nickel sheet and a nickel wire with a surface area of 10cm2 as the anode and Cathode; adjust the spot size of the Fresnel lens to keep the temperature constant at 600°C; adjust the rheostat of the solar panel circuit to keep the current constant at 2A. After 1 hour of reaction, the synthesis gas content (volume percentage) in the generated gas was: 79.43% H 2 , 5.36% CO.
显而易见的是,以上的描述和记载仅仅是举例而不是为了限制本发明公开的内容、应用或使用。在本发明实施例的教导下,本发明的范围将包括落入前面的说明书和所附的权利要求的任何实施例。 Obviously, the above descriptions and records are only examples and not intended to limit the disclosed content, application or use of the present invention. Given the teachings of the embodiments of the invention, the scope of the invention is to include any embodiment falling within the foregoing description and appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510019178.5A CN104593804B (en) | 2015-01-15 | 2015-01-15 | A kind of high-temperature electrolysis CO 2/ H 2o prepares synthetic gas system and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510019178.5A CN104593804B (en) | 2015-01-15 | 2015-01-15 | A kind of high-temperature electrolysis CO 2/ H 2o prepares synthetic gas system and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104593804A CN104593804A (en) | 2015-05-06 |
CN104593804B true CN104593804B (en) | 2015-11-18 |
Family
ID=53119848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510019178.5A Active CN104593804B (en) | 2015-01-15 | 2015-01-15 | A kind of high-temperature electrolysis CO 2/ H 2o prepares synthetic gas system and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104593804B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104630812B (en) * | 2015-02-04 | 2017-02-01 | 中国华能集团清洁能源技术研究院有限公司 | A method for producing synthesis gas by electrolyzing CO2 and H2O based on a molten carbonate electrolytic cell |
FR3038908A1 (en) * | 2015-07-16 | 2017-01-20 | Gdf Suez | DEVICE AND METHOD FOR PRODUCING SYNTHESIS GAS |
CN105386076A (en) * | 2015-12-07 | 2016-03-09 | 东北石油大学 | An improved method for producing carbon nanotube system by high-temperature electrolysis of CO2 |
CN105506665B (en) * | 2015-12-07 | 2018-03-06 | 东北石油大学 | A kind of method of high-temperature electrolysis CO2 CNTs |
CN110863213B (en) * | 2019-12-02 | 2022-01-11 | 东北石油大学 | Method for improving corrosion resistance of nickel electrode in molten salt system |
CN114057164B (en) * | 2020-07-31 | 2023-05-30 | 上海科技大学 | A kind of reaction system for methane dry reforming reaction |
CN114262907B (en) * | 2020-09-15 | 2023-11-21 | 武汉大学 | Molten salt electrolysis technology for efficiently preparing synthesis gas |
CN114262904B (en) * | 2020-09-15 | 2023-07-18 | 武汉大学 | A kind of molten salt electrolyte for capturing CO2 to prepare various products and its application |
CN112391643A (en) * | 2020-10-30 | 2021-02-23 | 东北石油大学 | Method and system for preparing hydrocarbon-rich carbon-based fuel gas by driving carbon dioxide/water cooperative conversion through molten salt electrochemical method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2690980C (en) * | 2007-07-13 | 2015-06-16 | University Of Southern California | Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol |
AU2009312351B2 (en) * | 2008-11-06 | 2014-06-12 | Yeda Research And Development Co. Ltd. | Methods and apparatus of electrochemical production of carbon monoxide, and uses thereof |
CN102895847A (en) * | 2011-07-26 | 2013-01-30 | 武汉大学 | A CO2 capture and resource recovery method |
CN104213148B (en) * | 2014-06-16 | 2017-01-04 | 广西大学 | Electric field-induced conversion of water and CO2 into organic polymers |
-
2015
- 2015-01-15 CN CN201510019178.5A patent/CN104593804B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104593804A (en) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104593804B (en) | A kind of high-temperature electrolysis CO 2/ H 2o prepares synthetic gas system and application thereof | |
CN104593803B (en) | A kind of Driven by Solar Energy high-temperature electrolysis CO 2/ H 2o preparing synthetic gas system and application thereof | |
Xu et al. | Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production | |
CN105609795B (en) | Biomass carbon/difunctional VPO catalysts of ferro-cobalt bimetallic oxide and its preparation method and application | |
CN103160851B (en) | Membrane reactor | |
CN105506665B (en) | A kind of method of high-temperature electrolysis CO2 CNTs | |
Lang et al. | A review on hydrogen production: methods, materials and nanotechnology | |
CN104562073B (en) | A kind of high-temperature electrolysis CO 2/ H 2o prepares hydrocarbon system and application thereof | |
CN103160850B (en) | Membrane reactor | |
Ji et al. | The optimization of electrolyte composition for CH4 and H2 generation via CO2/H2O co-electrolysis in eutectic molten salts | |
CN104562075B (en) | A kind of Driven by Solar Energy high-temperature electrolysis CO 2/ H 2o hydrocarbon system and application thereof | |
CN107868962B (en) | A kind of synthesis gas preparation system and its method | |
CN105386076A (en) | An improved method for producing carbon nanotube system by high-temperature electrolysis of CO2 | |
Ji et al. | A comparative study of electrodes in the direct synthesis of CH4 from CO2 and H2O in molten salts | |
CN108033522A (en) | A kind of electro-catalysis couples advanced oxidation system | |
CN117587432A (en) | Methane reforming and high-temperature electrolyzed water compound hydrogen production device and hydrogen production method and application thereof | |
Gao et al. | Recent Progress in Energy-Saving Electrocatalytic Hydrogen Production via Regulating Anodic Oxidation Reaction | |
CN108585044A (en) | The simple preparation and electro-catalysis application of a kind of Co-MoO2 nanospheres with mylikes structures | |
CN101275233A (en) | A method for producing hydrogen using alcohols as raw material | |
CN112978815B (en) | Preparation method of nickel-tungsten phosphide-nickel-tungsten oxide with heterostructure | |
CN101157443A (en) | A method for synchronously producing synthesis gas and metallic zinc | |
CN106048641A (en) | A kind of process method for electrochemical preparation of Fe3+ and H2 in pairs | |
CN109516437A (en) | A kind of method of electrochemical reduction-Thermochemical water decomposition cyle for hydrogen production | |
CN112760671B (en) | Methanol synthesis method based on mixed ion conductor membrane reactor and application thereof | |
Epelle et al. | Advances in Thermochemical Hydrogen Production Using Nanomaterials: An Analysis of Production Methods, Challenges, and Opportunities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |