CN104568751A - Optical ring-down cavity surface plasmon resonance sensor demodulation device - Google Patents
Optical ring-down cavity surface plasmon resonance sensor demodulation device Download PDFInfo
- Publication number
- CN104568751A CN104568751A CN201410800730.XA CN201410800730A CN104568751A CN 104568751 A CN104568751 A CN 104568751A CN 201410800730 A CN201410800730 A CN 201410800730A CN 104568751 A CN104568751 A CN 104568751A
- Authority
- CN
- China
- Prior art keywords
- plasmon resonance
- surface plasmon
- resonance sensor
- optical
- optical isolator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种光衰荡腔表面等离子共振传感器解调装置,其特征是,包括由光纤顺序连接的可调谐激光脉冲发生器、第一光隔离器、掺铒光纤放大器、可调衰减器、表面等离子共振传感器、耦合器和第二光隔离器,第二光隔离器与第一光隔离器连接,耦合器与光探测器连接。这种装置提高了表面等离子共振传感器的灵敏度、测量速度、增大了测量范围,结构简单、成本低、易于实现。
The invention discloses a surface plasmon resonance sensor demodulation device of an optical ringdown cavity, which is characterized in that it comprises a tunable laser pulse generator, a first optical isolator, an erbium-doped fiber amplifier, and an adjustable attenuator sequentially connected by an optical fiber. , a surface plasmon resonance sensor, a coupler and a second optical isolator, the second optical isolator is connected to the first optical isolator, and the coupler is connected to a photodetector. The device improves the sensitivity and measurement speed of the surface plasmon resonance sensor, increases the measurement range, has simple structure, low cost and is easy to realize.
Description
技术领域 technical field
本发明属于传感器技术领域,具体是一种光衰荡腔表面等离子共振传感器解调装置。 The invention belongs to the technical field of sensors, in particular to a surface plasmon resonance sensor demodulation device of an optical ringdown cavity.
背景技术 Background technique
目前,表面等离子共振(Surface plasmon resonance, 简称SPR)传感技术已经发展成为了气体浓度测量的一种新型技术,国内外学者采用这一技术实现了多种气体成分含量的传感测量,尤其以德国联邦材料研究所的Nooke研究员将椭圆光度法和SPR检测相结合,设计了包层为金的棱镜BK7结构,采用光谱仪直接扫描光谱进行解调的,其实现的系统可以用来测量浓度为1.5-0.3%烷烃系列气体。在大量的SPR传感研究中采用的是波长指示型SPR传感器,这类传感器基本采用光谱仪进行的解调设计,这一方案光路简单,稳定性好;灵敏度不依赖于样品特征;适用于长时间大动态范围实验。与之相比较,强度指示型SPR传感器的解调设计速度更快,并可能获得更高的灵敏度,但对于固定波长的光强测量而言,样品光谱的大范围移动会导致灵敏度降低,因此只适用于存在性检测等动态范围小的领域。SPR技术具有样品无需标记,易于实现,实时动态分析,高选择性、高灵敏度,分析速度快等优点,适于气体成分以及浓度测量研究,这使其受到了国内外诸多学者的广泛重视。 At present, the surface plasmon resonance (Surface plasmon resonance, referred to as SPR) sensing technology has developed into a new technology for gas concentration measurement. Researcher Nooke of the German Federal Institute of Materials combined ellipsometry and SPR detection, designed a gold-clad prism BK7 structure, and used a spectrometer to directly scan the spectrum for demodulation. The realized system can be used to measure concentrations of 1.5 -0.3% alkane series gas. In a large number of SPR sensing studies, wavelength-indicating SPR sensors are used. This type of sensor basically adopts the demodulation design of the spectrometer. This solution has a simple optical path and good stability; the sensitivity does not depend on the characteristics of the sample; it is suitable for long-term Large dynamic range experiments. In comparison, the demodulation design of the intensity-indicating SPR sensor is faster and may obtain higher sensitivity, but for the light intensity measurement of a fixed wavelength, the large-scale shift of the sample spectrum will lead to a decrease in sensitivity, so only It is suitable for fields with small dynamic range such as presence detection. SPR technology has the advantages of no labeling of samples, easy implementation, real-time dynamic analysis, high selectivity, high sensitivity, fast analysis speed, etc. It is suitable for gas composition and concentration measurement research, which has attracted extensive attention from many scholars at home and abroad.
《Surface and Interface Analysis》在2008年40卷13期第1623页上登载了“Surface plasmon sensor for NO2 gas” 一文,埃及赫勒万大学A. B. El-Basaty等人把钴-酞菁(Co-Pc)嵌入到PVC基底上,然后堆积在Ag薄膜上,实验结果表明该薄膜在正常的温度和大气压下对NO2有良好的灵敏度,然而其对于响应速度、动态范围未能提供有效的处理系统。从当前发展来看,气体浓度传感的解调设计中实现同时具备测量灵敏度高、响应速度快、动态范围大的性能问题,成为了SPR传感器向实用型转变的首要目标。 "Surface and Interface Analysis" published the article "Surface plasmon sensor for NO2 gas" on page 1623, vol. -Pc) embedded on the PVC substrate, and then stacked on the Ag film, the experimental results show that the film has good sensitivity to NO2 under normal temperature and atmospheric pressure, but it fails to provide an effective processing system for response speed and dynamic range . From the current development point of view, the realization of high measurement sensitivity, fast response speed, and large dynamic range in the demodulation design of gas concentration sensing has become the primary goal of the transformation of SPR sensors to practical ones.
目前对于SPR传感器解调系统研究基本集中在采用光谱仪直接扫描光谱进行解调的设计上。 At present, the research on the SPR sensor demodulation system basically focuses on the design of demodulation by directly scanning the spectrum with a spectrometer.
发明内容 Contents of the invention
本发明的目的是针对现有技术的不足,而提供一种光衰荡腔表面等离子共振传感器解调装置,这种装置能提高表面等离子共振传感器的灵敏度、测量速度、增大测量范围,结构简单、成本低、易于实现。 The purpose of the present invention is to address the deficiencies in the prior art, and provide a surface plasmon resonance sensor demodulation device for an optical ring-down cavity, which can improve the sensitivity, measurement speed, and increase the measurement range of the surface plasmon resonance sensor, and has a simple structure , low cost and easy to implement.
实现本发明目的的技术方案是: The technical scheme that realizes the object of the present invention is:
一种光衰荡腔表面等离子共振传感器解调装置,包括由光纤顺序连接的可调谐激光脉冲发生器、第一光隔离器、掺铒光纤放大器、可调衰减器、表面等离子共振传感器、耦合器和第二光隔离器,第二光隔离器与第一光隔离器连接,耦合器与光探测器连接。 A demodulation device for a surface plasmon resonance sensor in an optical ringdown cavity, comprising a tunable laser pulse generator, a first optical isolator, an erbium-doped fiber amplifier, an adjustable attenuator, a surface plasmon resonance sensor, and a coupler sequentially connected by an optical fiber and the second optical isolator, the second optical isolator is connected with the first optical isolator, and the coupler is connected with the photodetector.
所述的可调谐激光脉冲发生器的激光脉冲是由10kW的固定波长的大功率钇铝石榴石晶体激光器和可调谐二极管激光器TDL在PPLN晶体中差分,调制成1400-1650nm宽范围的可调谐激光脉冲。 The laser pulse of the tunable laser pulse generator is made of a 10kW fixed-wavelength high-power yttrium-aluminum garnet crystal laser and a tunable diode laser TDL in a PPLN crystal, and is modulated into a tunable laser with a wide range of 1400-1650nm pulse.
所述的掺铒光纤放大器为前后泵浦式,在掺铒光纤放大器的输入、输出端各接一个光纤光栅,其中一个光纤光栅为可调Bragg 波长的光纤光栅。 The erbium-doped fiber amplifier is pumped back and forth. The input and output ends of the erbium-doped fiber amplifier are respectively connected with a fiber grating, and one of the fiber gratings is a fiber grating with adjustable Bragg wavelength.
所述的表面等离子共振传感器通过光纤光栅连接。 The surface plasmon resonance sensor is connected through an optical fiber grating.
所述的表面等离子共振传感器通过纳米球刻蚀法制作。 The surface plasmon resonance sensor is made by nanosphere etching method.
这种装置在充分发挥SPR技术优势的同时,不再拘泥于SPR传感器仅仅作为单一优势功能器件实现气体浓度测量,利用光纤连接形成光腔循环衰荡系统,通过光纤环形腔衰荡时间中SPR传感器吸收或反应变化前后的衰减差值得到被测气体的浓度。这种装置提高了表面等离子共振传感器的灵敏度、测量速度、增大了测量范围,结构简单、成本低、易于实现。 While giving full play to the advantages of SPR technology, this device no longer sticks to the fact that the SPR sensor is only used as a single advantageous functional device to achieve gas concentration measurement. It uses optical fiber connection to form an optical cavity ring-down system, and the SPR sensor in the ring-down time of the optical fiber ring cavity The difference in attenuation before and after the change in absorption or response obtains the concentration of the measured gas. The device improves the sensitivity and measurement speed of the surface plasmon resonance sensor, increases the measurement range, has simple structure, low cost and is easy to realize.
附图说明 Description of drawings
图1为实施例的结构示意图。 Fig. 1 is the structural representation of embodiment.
图中,1.可调谐激光脉冲发生器 2.第一光隔离器 3.掺铒光纤放大器 4.可调衰减器 5.表面等离子共振传感器 6.耦合器 7.PC机 8.第二光隔离器 9.光探测器。 In the figure, 1. Tunable laser pulse generator 2. First optical isolator 3. Erbium-doped fiber amplifier 4. Adjustable attenuator 5. Surface plasmon resonance sensor 6. Coupler 7. PC 8. Second optical isolation 9. Light detector.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明作进一步阐述说明,但不对本发明限定。 The present invention will be further described below in conjunction with the accompanying drawings and embodiments, but the present invention is not limited thereto.
实施例: Example:
参照图1,一种光衰荡腔表面等离子共振传感器解调装置,包括由光纤顺序连接的可调谐激光脉冲发生器1、第一光隔离器2、掺铒光纤放大器3、可调衰减器4、表面等离子共振传感器5、耦合器6和第二光隔离器8,第二光隔离器8与第一光隔离器2连接,耦合器6与光探测器9连接。 Referring to Fig. 1 , a demodulation device for a surface plasmon resonance sensor of an optical ringdown cavity comprises a tunable laser pulse generator 1, a first optical isolator 2, an erbium-doped fiber amplifier 3, and an adjustable attenuator 4 sequentially connected by optical fibers , a surface plasmon resonance sensor 5 , a coupler 6 and a second optical isolator 8 , the second optical isolator 8 is connected to the first optical isolator 2 , and the coupler 6 is connected to the photodetector 9 .
所述的可调谐激光脉冲发生器1的激光脉冲是由10kW的固定波长的大功率钇铝石榴石晶体激光器和可调谐二极管激光器TDL在PPLN晶体中差分,调制成1400-1650nm宽范围的可调谐激光脉冲。 The laser pulse of the tunable laser pulse generator 1 is made of a 10kW high-power yttrium aluminum garnet crystal laser with a fixed wavelength and a tunable diode laser TDL in a PPLN crystal, and modulated into a wide range of 1400-1650nm tunable laser pulse.
所述的掺铒光纤放大器3为前后泵浦式,在掺铒光纤放大器3的输入、输出端各接一个光纤光栅,其中一个光纤光栅为可调Bragg 波长的光纤光栅。 Described erbium-doped fiber amplifier 3 is pumping type back and forth, respectively connects a fiber grating at the input of erbium-doped fiber amplifier 3, output end, and wherein a fiber grating is the fiber grating of adjustable Bragg wavelength.
所述的表面等离子共振传感器5通过光纤光栅连接。 The surface plasmon resonance sensor 5 is connected through an optical fiber grating.
所述的表面等离子共振传感器5通过纳米球刻蚀法制作。 The surface plasmon resonance sensor 5 is fabricated by nanosphere etching.
具体地,如图1 所示,PC机7分别与可调谐激光脉冲发生器1、掺铒光纤放大器3、可调衰减器4、光探测器9连接,由可调谐激光脉冲发生器1发出脉宽为5ns,1400-1650nm的激光脉冲,进入第一光隔离器2,光脉冲经掺铒光纤放大器3放大和可调衰减器4调节,经过表面等离子共振传感器5,在耦合器6中光被分成两路,一路光经第二光隔离器8继续在光纤回路循环,另一路由光探测器9接收送入PC机7处理。光探测器9记录逐渐衰减的各次循环光脉冲值,当幅值为初始值1/e的时间定义为衰荡时间,根据衰荡时间可以得出指定波长激光经过表面等离子共振传感器5时的衰减,利用与未发生反应系统导致的衰荡时间变化,可以进一步计算得到对应的传感量。 Specifically, as shown in Figure 1, the PC 7 is respectively connected with the tunable laser pulse generator 1, the erbium-doped fiber amplifier 3, the adjustable attenuator 4, and the photodetector 9, and the tunable laser pulse generator 1 sends a pulse The laser pulse with a width of 5ns and 1400-1650nm enters the first optical isolator 2, the optical pulse is amplified by the erbium-doped fiber amplifier 3 and adjusted by the adjustable attenuator 4, and passes through the surface plasmon resonance sensor 5, and the light is absorbed in the coupler 6 Divided into two paths, one path of light continues to circulate in the optical fiber loop through the second optical isolator 8, and the other path is received by the optical detector 9 and sent to the PC 7 for processing. The photodetector 9 records the values of each cycle of light pulses that gradually attenuate. When the amplitude is the initial value 1/e, the time is defined as the ring-down time. According to the ring-down time, it can be obtained that the specified wavelength laser passes through the surface plasmon resonance sensor 5. Attenuation, using the ring-down time change caused by the unresponsive system, can be further calculated to obtain the corresponding sensing quantity.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410800730.XA CN104568751A (en) | 2014-12-22 | 2014-12-22 | Optical ring-down cavity surface plasmon resonance sensor demodulation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410800730.XA CN104568751A (en) | 2014-12-22 | 2014-12-22 | Optical ring-down cavity surface plasmon resonance sensor demodulation device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104568751A true CN104568751A (en) | 2015-04-29 |
Family
ID=53085329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410800730.XA Pending CN104568751A (en) | 2014-12-22 | 2014-12-22 | Optical ring-down cavity surface plasmon resonance sensor demodulation device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104568751A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112014357A (en) * | 2020-08-03 | 2020-12-01 | 东南数字经济发展研究院 | Trace Pesticide Residue Detection System Based on Surface Plasmon Resonance Technology |
US11177630B2 (en) | 2018-02-02 | 2021-11-16 | Brolis Sensor Technology, Uab | Wavelength determination for widely tunable lasers and laser systems thereof |
US11298057B2 (en) | 2017-05-22 | 2022-04-12 | Brolis Sensor Technology, Uab | Tunable hybrid III-V/IV laser sensor system-on-a-chip for real-time monitoring of a blood constituent concentration level |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5815278A (en) * | 1995-10-25 | 1998-09-29 | University Of Washington | Surface plasmon resonance light pipe sensing probe and related interface optics |
CN101128730A (en) * | 2004-12-23 | 2008-02-20 | 普林斯顿大学理事会 | Cavity Ring-Down Detection of Surface Plasmon Resonance in Fiber Resonators |
CN104215610A (en) * | 2014-06-16 | 2014-12-17 | 中国计量学院 | Plasma resonance chamber-based fiber surface plasma sensor |
-
2014
- 2014-12-22 CN CN201410800730.XA patent/CN104568751A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5815278A (en) * | 1995-10-25 | 1998-09-29 | University Of Washington | Surface plasmon resonance light pipe sensing probe and related interface optics |
CN101128730A (en) * | 2004-12-23 | 2008-02-20 | 普林斯顿大学理事会 | Cavity Ring-Down Detection of Surface Plasmon Resonance in Fiber Resonators |
CN104215610A (en) * | 2014-06-16 | 2014-12-17 | 中国计量学院 | Plasma resonance chamber-based fiber surface plasma sensor |
Non-Patent Citations (1)
Title |
---|
王会波: "光纤环路循环衰荡法气体浓度测量的研究", 《中国博士学位论文全文数据库 信息科技辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11298057B2 (en) | 2017-05-22 | 2022-04-12 | Brolis Sensor Technology, Uab | Tunable hybrid III-V/IV laser sensor system-on-a-chip for real-time monitoring of a blood constituent concentration level |
US11696707B2 (en) | 2017-05-22 | 2023-07-11 | Brolis Sensor Technology, UAB et al. | Tunable hybrid III-V/IV laser sensor system-on-a chip for real-time monitoring of a blood constituent concentration level |
US11896373B2 (en) | 2017-05-22 | 2024-02-13 | Brolis Sensor Technology, Uab | Tunable hybrid III-V/ IV laser sensor system-on-a chip for real-time monitoring of a blood constituent concentration level |
US11177630B2 (en) | 2018-02-02 | 2021-11-16 | Brolis Sensor Technology, Uab | Wavelength determination for widely tunable lasers and laser systems thereof |
US11201453B2 (en) | 2018-02-02 | 2021-12-14 | Brolis Sensor Technology, Uab | Wavelength determination for widely tunable lasers and laser systems thereof |
CN112014357A (en) * | 2020-08-03 | 2020-12-01 | 东南数字经济发展研究院 | Trace Pesticide Residue Detection System Based on Surface Plasmon Resonance Technology |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106248247B (en) | A kind of sensing device based on the brillouin distributed temperature of Raman-, the double Parametric Detections of stress | |
CN105424605B (en) | Photoacoustic spectrum measuring device and method based on low-coherence fiber differential interference non-contact vibration measurement | |
CN103472002A (en) | Detection system of photoacoustic spectrometry gas in fiber laser device cavity | |
CN104792703B (en) | Detection device for optical absorption coefficient of aerosol based on laser multiple reflections optoacoustic spectroscopy | |
CN103792201B (en) | Optical pressure sensor for detecting multi-component gas and detection method thereof | |
CN109186736A (en) | It is a kind of can fixing frequency displacement structure slope auxiliary Brillouin fiber optic sensing vibration measurement device and measurement method | |
CN104568764A (en) | Optical fiber evanescent wave form quartz enhanced photoacoustic spectrum sensor and gas measurement method | |
CN104568751A (en) | Optical ring-down cavity surface plasmon resonance sensor demodulation device | |
CN106225816A (en) | A kind of grating sensing apparatus and method based on Brillouin's wave filter | |
CN201749080U (en) | Photoacoustic Spectroscopy Gas Detection System Based on Distributed Feedback Fiber Laser | |
CN104359868B (en) | Based on the inclined optical fiber grating surface plasma resonance biosensor that M Z interfere | |
CN204330589U (en) | A kind of intensity demodulation type optical fibre refractivity meter | |
CN111537445A (en) | Ring resonant cavity enhanced liquid component and concentration sensor based on evanescent wave | |
CN104034685B (en) | Enhanced absorption type gas detection system | |
CN103884683B (en) | Based on the optical sensor of F-P semiconductor laser and the cascade of film F-P optical filter | |
CN105158208B (en) | A kind of Gu Sihanxin displacements SPR high sensitivity medium refraction index detection methods | |
CN203519485U (en) | Detection system for photoacoustic spectrometry gas in optical fiber laser cavity | |
CN101936878A (en) | Photoacoustic Spectroscopy Gas Detection System Based on Distributed Feedback Fiber Laser | |
CN107064908A (en) | A kind of multi-wavelength polarizes Raman lidar beam splitting system | |
CN110426369B (en) | A distributed optical fiber gas detection device and method based on frequency sweeping technology | |
CN205049184U (en) | Humiture monitoring system based on TDLAS | |
CN203037574U (en) | Hydrogen detection device | |
CN103344607A (en) | Laser wavelength detection control device in TDLAS (Tunable Diode Laser Absorption Spectroscopy) and control method thereof | |
CN203949864U (en) | A kind of enhancing absorption-type gas detecting system | |
CN212340993U (en) | A distributed optical fiber gas detection device based on frequency sweep technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150429 |
|
RJ01 | Rejection of invention patent application after publication |