CN104550941A - A preparation method of silica@noble metal nanocomposite microspheres - Google Patents
A preparation method of silica@noble metal nanocomposite microspheres Download PDFInfo
- Publication number
- CN104550941A CN104550941A CN201410704455.1A CN201410704455A CN104550941A CN 104550941 A CN104550941 A CN 104550941A CN 201410704455 A CN201410704455 A CN 201410704455A CN 104550941 A CN104550941 A CN 104550941A
- Authority
- CN
- China
- Prior art keywords
- noble metal
- silica
- distilled water
- polyelectrolyte
- silicon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 101
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 43
- 229910000510 noble metal Inorganic materials 0.000 title claims abstract description 35
- 239000004005 microsphere Substances 0.000 title claims abstract description 31
- 238000002360 preparation method Methods 0.000 title claims description 12
- 239000002114 nanocomposite Substances 0.000 title abstract description 22
- 239000012153 distilled water Substances 0.000 claims abstract description 29
- 239000007864 aqueous solution Substances 0.000 claims abstract description 17
- 229920000867 polyelectrolyte Polymers 0.000 claims abstract description 17
- 239000002077 nanosphere Substances 0.000 claims abstract description 11
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 10
- 239000006185 dispersion Substances 0.000 claims abstract description 10
- 239000010970 precious metal Substances 0.000 claims abstract description 8
- 230000004048 modification Effects 0.000 claims abstract description 6
- 238000012986 modification Methods 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 239000011780 sodium chloride Substances 0.000 claims abstract description 5
- 239000012279 sodium borohydride Substances 0.000 claims abstract description 4
- 229910000033 sodium borohydride Inorganic materials 0.000 claims abstract description 4
- 150000002500 ions Chemical class 0.000 claims abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 16
- 238000003756 stirring Methods 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 6
- 239000000839 emulsion Substances 0.000 claims description 6
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical group [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 125000002091 cationic group Chemical group 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 239000003638 chemical reducing agent Substances 0.000 claims description 2
- 229920000333 poly(propyleneimine) Polymers 0.000 claims description 2
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims 4
- 238000013019 agitation Methods 0.000 claims 3
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims 1
- 229910000085 borane Inorganic materials 0.000 claims 1
- 150000001768 cations Chemical class 0.000 claims 1
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 claims 1
- 229920002552 poly(isobornyl acrylate) polymer Polymers 0.000 claims 1
- 229910000104 sodium hydride Inorganic materials 0.000 claims 1
- 239000012312 sodium hydride Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 23
- 238000000034 method Methods 0.000 abstract description 19
- 238000006243 chemical reaction Methods 0.000 abstract description 18
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000003960 organic solvent Substances 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 239000012266 salt solution Substances 0.000 abstract description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 19
- 239000002245 particle Substances 0.000 description 12
- 239000002082 metal nanoparticle Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000002105 nanoparticle Substances 0.000 description 6
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical group [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 239000011258 core-shell material Substances 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000002525 ultrasonication Methods 0.000 description 4
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 239000012792 core layer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 101710134784 Agnoprotein Proteins 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000011246 composite particle Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001506 fluorescence spectroscopy Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000707 layer-by-layer assembly Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004038 photonic crystal Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- -1 silver ions Chemical class 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- NJSVDVPGINTNGX-UHFFFAOYSA-N [dimethoxy(propyl)silyl]oxymethanamine Chemical compound CCC[Si](OC)(OC)OCN NJSVDVPGINTNGX-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- CAEFTTNJCFXOSS-UHFFFAOYSA-N dioxosilane;silver Chemical compound [Ag].O=[Si]=O CAEFTTNJCFXOSS-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002078 nanoshell Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000001119 stannous chloride Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Silicon Compounds (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种二氧化硅贵金属纳米复合微球的制备方法,包括:1)制备得到二氧化硅纳米微球;2)将其分散在三蒸水中,加入聚电解质的氯化钠水溶液,得到聚电解质改性的二氧化硅纳米微球;3)将其分散在三蒸水中,滴加贵金属盐水溶液,得到沾有贵金属离子的聚电解质改性的二氧化硅纳米微球;4)将其分散在三蒸水中,滴加硼氢化钠水溶液,得到二氧化硅贵金属纳米复合微球。本发明在25℃室温的反应条件下,以水为介质,无需使用有机溶剂,也无需经过复杂繁琐的改性过程,快速制备分散度高、稳定性好的二氧化硅贵金属纳米复合微球,该方法简便易行,且重现性好,并且反应装置简单,可以根据生产的需要,实现规模化生产。The invention discloses a method for preparing silica noble metal nanocomposite microspheres, comprising: 1) preparing silica nanospheres; 2) dispersing them in triple distilled water, adding polyelectrolyte sodium chloride aqueous solution, Obtain polyelectrolyte-modified silicon dioxide nano-microspheres; 3) disperse it in triple-distilled water, add a noble metal salt solution dropwise to obtain polyelectrolyte-modified silicon dioxide nano-microspheres covered with noble metal ions; 4) mix It is dispersed in triple distilled water, and sodium borohydride aqueous solution is added dropwise to obtain silicon dioxide precious metal nanocomposite microspheres. Under the reaction conditions of 25°C and room temperature, the present invention uses water as the medium, does not need to use organic solvents, and does not need to go through complicated and cumbersome modification processes, and quickly prepares silica noble metal nanocomposite microspheres with high dispersion and good stability. The method is simple and easy to implement, has good reproducibility, and the reaction device is simple, so that large-scale production can be realized according to production needs.
Description
技术领域 technical field
本发明属于复合材料制备技术领域,涉及一种二氧化硅贵金属纳米复合微球的制备方法,具体是以二氧化硅为核,聚电解质进行改性二氧化硅,在其表面负载贵金属纳米粒子及其制备方法。 The invention belongs to the technical field of composite material preparation, and relates to a method for preparing silica noble metal nanocomposite microspheres. Specifically, silica is used as the core, polyelectrolyte is used to modify silica, and noble metal nanoparticles and nanoparticles are loaded on the surface of the silica. its preparation method.
背景技术 Background technique
贵金属纳米粒子除具有纳米粒子的小尺寸效应、量子隧道效应、量子尺寸效应、表面效应以外,由于其独特的物理性能、化学性能和生物性能,在化学、物理学、电子学、光学、材料学、生物学、药物学等学科领域具有重要的研究价值,在工业催化、检测化学、光子晶体、表面增强荧光光谱、表面增强拉曼光谱、抗菌材料、红外隐身材料、生物医学、生物制剂学等应用方面也具有广阔的应用前景,受到研究者广泛关注。然而贵金属纳米粒子在实际应用中面临着一个问题即纳米金属粒子具有高的比表面积和高的表面能,容易发生由于范德华引力引起的聚集,由于贵金属纳米粒子团聚,严重影响其应用性能。这一问题可以通过将贵金属纳米粒子沉积在单分散的固体基质表面,形成胶体复合粒子,使贵金属纳米粒子保持较高的稳定性和活性,而且这样的胶体复合粒子应用简便,容易从反应体系中进行分离,达到重复利用的目的。 In addition to the small size effect, quantum tunneling effect, quantum size effect, and surface effect of nanoparticles, noble metal nanoparticles are widely used in chemistry, physics, electronics, optics, and materials science due to their unique physical, chemical, and biological properties. , biology, pharmacology and other disciplines have important research value, in industrial catalysis, detection chemistry, photonic crystals, surface enhanced fluorescence spectroscopy, surface enhanced Raman spectroscopy, antibacterial materials, infrared stealth materials, biomedicine, biological preparations, etc. In terms of application, it also has broad application prospects and has attracted extensive attention from researchers. However, noble metal nanoparticles face a problem in practical applications, that is, nano metal particles have high specific surface area and high surface energy, and are prone to aggregation caused by van der Waals gravity. Due to the agglomeration of noble metal nanoparticles, their application performance is seriously affected. This problem can be solved by depositing noble metal nanoparticles on the surface of a monodisperse solid matrix to form colloidal composite particles, so that the noble metal nanoparticles maintain high stability and activity, and such colloidal composite particles are easy to use and easy to remove from the reaction system. Separation to achieve the purpose of reuse.
SiO2纳米微球合成简单、粒径分布窄、粒径大小易于控制、易于大批量制备,已作为传统的核层材料广泛应用于多种核壳结构。这些纳米壳层结构在提高胶体的化学稳定性、增强系统的发光性能、生物传感、药物输送等方面均具有重要的潜在应用价值。将贵金属与常用的SiO2核层相结合的典型代表为SiO2M核壳结构,通常是由SiO2核和金属M壳层组成的纳米复合粒子。因可以通过使用少量价格昂贵的金属材料沉积于价廉易得的SiO2核层,减少了贵金属的使用量。所以,从经济性角度SiO2M核壳结构具有很大潜力。 SiO 2 nanospheres are easy to synthesize, have narrow particle size distribution, easy to control particle size, and easy to prepare in large quantities. They have been widely used in various core-shell structures as traditional core layer materials. These nanoshell structures have important potential applications in improving the chemical stability of colloids, enhancing the luminescent properties of the system, biosensing, and drug delivery. The typical representative of the combination of noble metals and the commonly used SiO 2 core layer is the SiO 2 M core-shell structure, which is usually a nanocomposite particle composed of a SiO 2 core and a metal M shell. Because a small amount of expensive metal material can be deposited on the cheap and easy-to-obtain SiO 2 core layer, the amount of precious metal used is reduced. Therefore, the SiO 2 M core-shell structure has great potential from an economic point of view.
有关SiO2M核壳结构的制备方法,包括“种子”生长法(Zhang J,Fu Y,Lakowicz J R.Luminescent silica core/silver shell encapsulated with Eu(III)complex[J].The Journal of Physical Chemistry C,2009.113(45):19404)、超声化学法(Ye X Y,Zhou Y M,Chen J,et al.Deposition of silver nanoparticles on silica spheres via ultrasound irradiation[J].Applied Surface Science,2007.253(14):6264)、化学镀法(Xiu Z L,Wu Y Z,Hao X P,et al.Fabrication of SiO2AgSiO2 core-shell microspheres and thermal stability investigation[J].Colloids and Surfaces A:Physicochemical and EngineeringAspects,2011.386(1):135)、逐层组装法(Chen G S,Chen C N,Tseng T T,et al.Synthesis,characterization,and antibacterial activity of silver-doped silica nanocomposite particles[J].Journal of nanoscience and nanotechnology,2011.11(1):90)等方法。上述反应均存在一定的缺点,即“种子”生长法需要对SiO2进行表面改性,改性过程多数采用APTMS等硅烷偶联剂,反应需要在有机溶剂体系中进行,所需时间较长,改性条件苛刻,难以控制;超声化学法需要反应在无氧条件下进行,这增大反应装置的难度;化学镀法需要引入氯化亚锡作为敏化剂,最终的Sn4+游离在反应体系中,不利于环保;逐层组装法需要多次利用相反电荷的聚电解质进行包覆,耗时长,并且耗费大量聚电解质。 Methods for preparing SiO 2 M core-shell structures, including "seed" growth method (Zhang J, Fu Y, Lakowicz J R. Luminescent silica core/silver shell encapsulated with Eu(III) complex[J]. The Journal of Physical Chemistry C, 2009.113(45):19404), sonochemical method (Ye X Y, Zhou Y M, Chen J, et al.Deposition of silver nanoparticles on silica spheres via ultrasound irradiation[J].Applied Surface Science, 2007.253(14):6264 ), electroless plating (Xiu Z L, Wu Y Z, Hao X P, et al.Fabrication of SiO 2 AgSiO 2 core-shell microspheres and thermal stability investigation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011.386(1): 135), layer-by-layer assembly (Chen G S, Chen C N, Tseng T T, et al. Synthesis, characterization, and antibacterial activity of silver-doped silica nanocomposite particles[J]. Journal of nanoscience and nanotechnology, 2011.11(1): 90 ) and other methods. There are certain shortcomings in the above reactions, that is, the "seed" growth method needs to modify the surface of SiO 2 , most of the modification process uses silane coupling agents such as APTMS, and the reaction needs to be carried out in an organic solvent system, which takes a long time. The modification conditions are harsh and difficult to control; the sonochemical method requires the reaction to be carried out under anaerobic conditions, which increases the difficulty of the reaction device; the electroless plating method requires the introduction of stannous chloride as a sensitizer, and the final Sn 4+ is free in the reaction In the system, it is not conducive to environmental protection; the layer-by-layer assembly method needs to be coated with polyelectrolytes of opposite charges multiple times, which takes a long time and consumes a lot of polyelectrolytes.
发明内容 Contents of the invention
本发明所要解决的技术问题是针对现有方法改性条件苛刻、反应装置要求高、耗时长、有机溶剂耗费多、不符合环保要求等问题 The technical problem to be solved by the present invention is to solve the existing problems such as harsh modification conditions, high requirements for reaction devices, long time consumption, high consumption of organic solvents, and non-compliance with environmental protection requirements.
为了解决上述问题,本发明提供了一种二氧化硅贵金属纳米复合微球的制备方法,其特征在于,具体步骤如下: In order to solve the above problems, the invention provides a method for preparing silica noble metal nanocomposite microspheres, which is characterized in that the specific steps are as follows:
步骤1):将正硅酸乙酯与乙醇在室温下机械搅拌混合均匀作为A液,将乙醇、三蒸水、氨水在室温下机械搅拌混合均匀作为B液,将A液迅速倒入B液,室温下机械搅拌6~24小时,制备得到二氧化硅纳米微球; Step 1): Mechanically mix tetraethyl orthosilicate and ethanol at room temperature as A solution, mechanically mix ethanol, three-distilled water and ammonia water at room temperature as B solution, quickly pour A solution into B solution , stirring mechanically at room temperature for 6 to 24 hours to prepare silica nanospheres;
步骤2):将步骤1)得到的二氧化硅纳体微球分散于三蒸水中,形成2~50mg/mL的二氧化硅乳液,加入2mg/mL阳离子聚电解质的水溶液,聚电解质与二氧化硅的质量比为1∶5~1∶20,室温下超声30~120分钟进行改性,离心分散,经三蒸水洗涤,得到聚电解质改性的二氧化硅纳米微球; Step 2): Disperse the silica nanospheres obtained in step 1) in triple distilled water to form a 2-50 mg/mL silica emulsion, add 2 mg/mL cationic polyelectrolyte aqueous solution, polyelectrolyte and dioxide The mass ratio of silicon is 1:5 to 1:20, modified by ultrasonication at room temperature for 30 to 120 minutes, centrifugally dispersed, and washed with triple distilled water to obtain polyelectrolyte-modified silica nanospheres;
步骤3):将步骤2)得到的聚电解质改性二氧化硅纳米微球分散于三蒸水中,形成2~50mg/mL的乳液,逐滴加入10mmol/L的贵金属盐水溶液,贵金属盐与聚电解质改性的二氧化硅的质量比为1∶10~100,室温下超声30~120分钟,离心分散,经三蒸水洗涤,得到沉积贵金属离子的聚电解质改性的二氧化硅纳米微球; Step 3): Disperse the polyelectrolyte-modified silica nanospheres obtained in step 2) in three-distilled water to form an emulsion of 2-50 mg/mL, and add 10 mmol/L noble metal salt solution dropwise, and the noble metal salt and poly The mass ratio of electrolyte-modified silicon dioxide is 1:10-100, ultrasonication at room temperature for 30-120 minutes, centrifugal dispersion, and three-distilled water washing to obtain polyelectrolyte-modified silicon dioxide nano-microspheres that deposit noble metal ions ;
步骤4):将步骤3)得到的二氧化硅纳米微球分散于三蒸水中,形成 2~50mg/mL的乳液,滴加50mmol/L还原剂硼氢化钠水溶液,硼氢化钠水溶液与贵金属盐水溶液摩尔比为5∶1~1∶1,在室温下搅拌30~120分钟,离心分散,经三蒸水洗涤,得到二氧化硅贵金属纳米复合微球。 Step 4): Disperse the silica nanospheres obtained in step 3) in triple distilled water to form an emulsion of 2-50 mg/mL, add dropwise 50 mmol/L reducing agent sodium borohydride aqueous solution, sodium borohydride aqueous solution and noble metal salt The molar ratio of the aqueous solution is 5:1-1:1, stirred at room temperature for 30-120 minutes, centrifugally dispersed, and washed with triple distilled water to obtain silicon dioxide noble metal nanocomposite microspheres.
优选地,所述步骤1)中正硅酸乙酯的摩尔浓度为0.2mol/L,三蒸水的摩尔浓度为18mol/L,氨水的摩尔浓度为0.2~1.2mol/L。 Preferably, the molar concentration of ethyl orthosilicate in the step 1) is 0.2 mol/L, the molar concentration of triple-distilled water is 18 mol/L, and the molar concentration of ammonia water is 0.2-1.2 mol/L.
优选地,所述步骤2)中的聚电解质为聚丙烯胺、聚乙烯胺或聚异丁烯胺。 Preferably, the polyelectrolyte in step 2) is polypropylene amine, polyethylene amine or polyisobutylene amine.
优选地,所述步骤2)中含阳离子聚电解质的水溶液中氯化钠的浓度为0.5mol/L。 Preferably, the concentration of sodium chloride in the aqueous solution containing cationic polyelectrolyte in step 2) is 0.5 mol/L.
优选地,所述的贵金属盐为硝酸银、氯金酸或氯铂酸。 Preferably, the noble metal salt is silver nitrate, chloroauric acid or chloroplatinic acid.
本发明提供了一种利用聚电解质改性二氧化硅,制备二氧化硅贵金属纳米复合微球的简便易行的方法,即以二氧化硅为核,经聚电解质改性,在其表面负载贵金属纳米粒子的方法。本发明在25℃室温的反应条件下,以水为介质,无需使用有机溶剂,也无需经过复杂繁琐的改性过程,快速制备分散度高、稳定性好的二氧化硅贵金属纳米复合微球,该方法简便易行,且重现性好,并且反应装置简单,可以根据生产的需要,实现规模化生产,而且,本专利方法制备的贵金属纳米颗粒粒径分散均一,粒径大小可调。本专利可以用于制备不同粒径的二氧化硅银、二氧化硅金及二氧化硅铂等纳米复合微球。 The invention provides a simple and feasible method for preparing silicon dioxide noble metal nanocomposite microspheres by using polyelectrolyte modified silicon dioxide, that is, silicon dioxide is used as the core, modified by polyelectrolyte, and precious metals are loaded on the surface nanoparticle approach. Under the reaction conditions of 25°C and room temperature, the present invention uses water as the medium, does not need to use organic solvents, and does not need to go through complicated and cumbersome modification processes, and quickly prepares silica noble metal nanocomposite microspheres with high dispersion and good stability. The method is simple and easy to implement, has good reproducibility, and the reaction device is simple, so that large-scale production can be realized according to production needs. Moreover, the particle size of the noble metal nanoparticles prepared by the patented method is uniformly dispersed and the particle size can be adjusted. This patent can be used to prepare nanocomposite microspheres such as silica silver, silica gold and silica platinum with different particle sizes.
本发明利用二氧化硅表面羟基与聚电解质分子中氨基通过氢键等相互作用,在二氧化硅表面引入聚电解质,利用银离子与聚电解质分子中氨基的络合作用,将银离子吸附并稳定于二氧化硅表面,通过原位还原,制备分散度高、稳定性好、小粒径的贵金属纳米粒子的二氧化硅贵金属纳米复合微球。 The present invention utilizes the interaction between the hydroxyl groups on the surface of silica and the amino groups in polyelectrolyte molecules through hydrogen bonds, etc., introduces polyelectrolytes on the surface of silica, and utilizes the complexation between silver ions and amino groups in polyelectrolyte molecules to absorb and stabilize silver ions. On the surface of silicon dioxide, silicon dioxide precious metal nanocomposite microspheres of precious metal nanoparticles with high dispersion, good stability and small particle size are prepared through in-situ reduction.
本发明的优点:在温和的反应条件下,以水为溶剂,快速制备分散度高、稳定性好、小粒径贵金属纳米粒子的二氧化硅贵金属纳米复合微球,可以根据生产的需要,灵活调节贵金属纳米粒子的粒径和其在二氧化硅微球上的包覆程度。本发明既可以应用于不同粒径二氧化硅银纳米复合微球的制备,也可以应用于制备在二氧化硅表面负载金、铂等贵金属的纳米复合微球。制备的复合微球可以在催化化学、检测化学、光子晶体、表面增强荧光光谱、表面增强拉曼光谱、抗菌材料、红外隐身材料、生物医学、生物制剂学等领域得到应用。 Advantages of the present invention: under mild reaction conditions, using water as a solvent, silica noble metal nanocomposite microspheres with high dispersion, good stability and small diameter noble metal nanoparticles can be rapidly prepared, which can be flexibly prepared according to the needs of production. Adjust the particle size of the noble metal nanoparticles and their coating degree on the silica microspheres. The invention can be applied not only to the preparation of silicon dioxide silver nano-composite microspheres with different particle sizes, but also to the preparation of nano-composite microspheres loaded with gold, platinum and other precious metals on the surface of silicon dioxide. The prepared composite microspheres can be applied in the fields of catalytic chemistry, detection chemistry, photonic crystal, surface-enhanced fluorescence spectroscopy, surface-enhanced Raman spectroscopy, antibacterial materials, infrared stealth materials, biomedicine, and biological preparations.
附图说明 Description of drawings
图1为实施例1中SiO2的透射电镜图; Fig. 1 is SiO in embodiment 1 The transmission electron microscope figure;
图2为实施例1中SiO2Ag纳米复合微球的透射电镜图; Fig. 2 is the transmission electron micrograph of SiO 2 Ag nanocomposite microspheres in embodiment 1;
图3为实施例2中SiO2的透射电镜图; Fig. 3 is SiO in embodiment 2 Transmission electron microscope figure;
图4为实施例2中SiO2Ag纳米复合微球的透射电镜图。 FIG. 4 is a transmission electron microscope image of SiO 2 Ag nanocomposite microspheres in Example 2. FIG.
具体实施方式 Detailed ways
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。 In order to make the present invention more comprehensible, preferred embodiments are described in detail below with accompanying drawings.
实施例1 Example 1
将59.20mL三蒸水、38.00mL无水乙醇、2.80mL浓氨水依次置入250mL三口烧瓶中,1100rpm磁力搅拌30min。混合均匀后,将9.00mLTEOS与91.00mL无水乙醇的均匀混合溶液,迅速倒入上述三口烧瓶,2min后将搅拌速度降低至400rpm,25℃条件下保持反应6h,10 000rpm离心5min,分别用无水乙醇和三蒸水洗涤数次,得到单分散的SiO2纳米微球,然后将其分散在水中,SiO2质量分数为2mg/ml。透射电镜观察显示,反应得到的SiO2纳米颗粒为球形,直径约为100nm,且为单分散,如图1所示。 Put 59.20mL triple-distilled water, 38.00mL absolute ethanol, and 2.80mL concentrated ammonia water into a 250mL three-necked flask in sequence, and stir magnetically at 1100rpm for 30min. After mixing evenly, quickly pour the homogeneous mixed solution of 9.00mLTEOS and 91.00mL absolute ethanol into the three-neck flask mentioned above. After 2min, reduce the stirring speed to 400rpm, keep the reaction at 25°C for 6h, and centrifuge at 10000rpm for 5min. Washed several times with water ethanol and triple distilled water to obtain monodisperse SiO2 nanospheres, which were then dispersed in water with a SiO2 mass fraction of 2 mg/ml. Transmission electron microscope observation shows that the SiO 2 nanoparticles obtained by the reaction are spherical, with a diameter of about 100 nm, and are monodisperse, as shown in Figure 1 .
将5mL 2mg/mL PAH水溶液(NaCl 0.5M pH 5~6)加入到50mL SiO2分散液中,室温超声60min后,8000rpm离心5min,用三蒸水洗涤2次,然后分散在40mL水中。5.25mL 10mM AgNO3水溶液逐滴加入上述溶液,超声60min后,8000rpm离心5min,三蒸水洗涤3次,分散在40ml水中。5.25mL 50mM NaBH4在11000rpm剧烈搅拌条件下,加入上述溶液,搅拌30min后,降低转速至600rpm,再反应30min。8000rpm离心5min,分别用无水乙醇和三蒸水洗涤3次,除去其中的杂质,得到SiO2Ag纳米复合微球。经透射电镜观察显示,产物为银纳米颗粒均匀沉积在SiO2微球表面的纳米复合材料,银纳米颗粒的粒径为2~4nm,如图2所示。 Add 5mL of 2mg/mL PAH aqueous solution (NaCl 0.5M pH 5~6) into 50mL of SiO 2 dispersion, ultrasonicate at room temperature for 60min, centrifuge at 8000rpm for 5min, wash twice with triple distilled water, and then disperse in 40mL of water. 5.25mL of 10mM AgNO 3 aqueous solution was added dropwise to the above solution, after ultrasonication for 60min, centrifuged at 8000rpm for 5min, washed with triple distilled water for 3 times, and dispersed in 40ml of water. 5.25mL of 50mM NaBH 4 was added to the above solution under vigorous stirring at 11000rpm, and after stirring for 30min, the speed was reduced to 600rpm, and the reaction was continued for 30min. Centrifuge at 8000rpm for 5min, wash with absolute ethanol and triple distilled water for 3 times, remove impurities therein, and obtain SiO 2 Ag nanocomposite microspheres. Observation by transmission electron microscopy showed that the product was a nanocomposite material in which silver nanoparticles were uniformly deposited on the surface of SiO 2 microspheres, and the particle size of silver nanoparticles was 2-4 nm, as shown in FIG. 2 .
实施例2 Example 2
将55.10mL三蒸水、36.50mL无水乙醇、8.40mL浓氨水依次置入250mL三口烧瓶中,1100rpm磁力搅拌30min。混合均匀后,将9.00mLTEOS与91.00mL无水乙醇的均匀混合溶液,迅速倒入上述三口烧瓶,2min后将搅拌速度降低至400rpm,25℃条件下保持反应6h,10000rpm离心5min,分别用无水乙醇和 三蒸水洗涤数次,得到单分散的SiO2纳米微球,然后将其分散在水中,SiO2质量分数为2mg/ml。透射电镜观察显示,反应得到的SiO2纳米颗粒为球形,直径约为300nm,且为单分散,如图3所示。 Put 55.10 mL triple-distilled water, 36.50 mL absolute ethanol, and 8.40 mL concentrated ammonia water into a 250 mL three-necked flask in sequence, and stir magnetically at 1100 rpm for 30 min. After mixing evenly, quickly pour the uniform mixed solution of 9.00mLTEOS and 91.00mL absolute ethanol into the above-mentioned three-neck flask. After 2min, reduce the stirring speed to 400rpm, keep the reaction at 25°C for 6h, centrifuge at 10000rpm for 5min, and use anhydrous Wash with ethanol and triple distilled water several times to obtain monodisperse SiO2 nanospheres, which are then dispersed in water with a SiO2 mass fraction of 2 mg/ml. The transmission electron microscope observation shows that the SiO 2 nanoparticles obtained by the reaction are spherical, with a diameter of about 300 nm, and are monodisperse, as shown in FIG. 3 .
将5mL 2mg/mL PAH水溶液(NaCl 0.5M pH 5-6)加入到50mL SiO2分散液中,室温超声60min后,8000rpm离心5min,用三蒸水洗涤2次,然后分散在40mL水中。 Add 5mL of 2mg/mL PAH aqueous solution (NaCl 0.5M pH 5-6) into 50mL of SiO 2 dispersion, ultrasonicate at room temperature for 60min, centrifuge at 8000rpm for 5min, wash twice with triple distilled water, and then disperse in 40mL of water.
5.25mL 10mM AgNO3水溶液逐滴加入上述溶液,超声60min后,8000rpm离心5min,三蒸水洗涤3次,分散在40ml水中。5.25mL 50mM NaBH4在11000rpm剧烈搅拌条件下,加入上述溶液,搅拌30min后,降低转速至600rpm,再反应30min。8000rpm离心5min,分别用无水乙醇和三蒸水洗涤3次,除去其中的杂质,得到SiO2Ag纳米复合微球。经透射电镜观察显示,产物为银纳米颗粒均匀沉积在SiO2微球表面的纳米复合材料,银纳米颗粒的粒径为2~4nm,如图4所示。 5.25mL of 10mM AgNO 3 aqueous solution was added dropwise to the above solution, after ultrasonication for 60min, centrifuged at 8000rpm for 5min, washed with triple distilled water for 3 times, and dispersed in 40ml of water. 5.25mL of 50mM NaBH 4 was added to the above solution under vigorous stirring at 11000rpm, and after stirring for 30min, the speed was reduced to 600rpm, and the reaction was continued for 30min. Centrifuge at 8000rpm for 5min, wash with absolute ethanol and triple distilled water for 3 times, remove impurities therein, and obtain SiO 2 Ag nanocomposite microspheres. Observation by transmission electron microscopy showed that the product was a nanocomposite material in which silver nanoparticles were uniformly deposited on the surface of SiO 2 microspheres, and the particle size of silver nanoparticles was 2-4 nm, as shown in FIG. 4 .
对比制备SiO2M的现有技术与本发明,结果如表1所示: Comparing the prior art and the present invention for preparing SiO 2 M, the results are shown in Table 1:
表1 Table 1
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410704455.1A CN104550941B (en) | 2014-11-26 | 2014-11-26 | Preparation method of silica @ noble metal nano-composite microspheres |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410704455.1A CN104550941B (en) | 2014-11-26 | 2014-11-26 | Preparation method of silica @ noble metal nano-composite microspheres |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104550941A true CN104550941A (en) | 2015-04-29 |
CN104550941B CN104550941B (en) | 2017-05-03 |
Family
ID=53068599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410704455.1A Active CN104550941B (en) | 2014-11-26 | 2014-11-26 | Preparation method of silica @ noble metal nano-composite microspheres |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104550941B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106735181A (en) * | 2016-12-14 | 2017-05-31 | 中国科学院深圳先进技术研究院 | SiO2@Ag core shell structure composite conducting particles and preparation method thereof |
CN107598184A (en) * | 2017-08-18 | 2018-01-19 | 江西师范大学 | Preparation method of silver nanoparticle coated silicon dioxide microsphere powder |
CN109390160A (en) * | 2018-11-09 | 2019-02-26 | 江苏大学 | Ag is prepared in situ in one kind2O/Ag/TiO2The method of hollow sphere Z-scheme type optoelectronic pole |
CN110461505A (en) * | 2017-03-31 | 2019-11-15 | 东邦钛株式会社 | The manufacturing method of metal powder |
CN110935454A (en) * | 2019-12-20 | 2020-03-31 | 杭州硅诺科技有限公司 | Preparation method of silicon dioxide/nickel core-shell nano-structure material |
CN111375759A (en) * | 2018-12-28 | 2020-07-07 | 同方威视技术股份有限公司 | Raman nano-reinforcing material and preparation method and application thereof |
CN113488651A (en) * | 2020-08-31 | 2021-10-08 | 中南大学 | Titanium oxide @ C hollow composite framework embedded with noble metal silver, and preparation method and application thereof |
CN116328763A (en) * | 2023-02-28 | 2023-06-27 | 西南交通大学 | Gold-loaded silicon microsphere composite material with three-layer hierarchical structure and preparation method thereof |
CN117110597A (en) * | 2023-06-08 | 2023-11-24 | 淮安博梵生物科技有限公司 | Metal nanocluster synthesis method and application thereof in transgenic Bt protein detection |
CN118360036A (en) * | 2024-06-19 | 2024-07-19 | 纯牌科技股份有限公司 | Heat dissipation liquid for engine and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12145890B2 (en) | 2022-12-16 | 2024-11-19 | Raytheon Company | Coated (core-shell) nanoparticles for nanocomposite optical ceramics |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1683066A (en) * | 2005-02-13 | 2005-10-19 | 复旦大学 | A kind of preparation method of noble metal hollow microcapsule |
CN101216429A (en) * | 2008-01-07 | 2008-07-09 | 首都师范大学 | A kind of SERS biological probe and preparation method thereof |
CN101230208A (en) * | 2008-01-07 | 2008-07-30 | 首都师范大学 | A method for preparing gold nanorod particles coated with a silicon dioxide layer on the surface |
CN101254473A (en) * | 2008-03-07 | 2008-09-03 | 厦门大学 | A kind of synthesis method of solid-phase catalyst with organic microsphere-loaded gold nanoparticles |
CN102107851A (en) * | 2009-12-25 | 2011-06-29 | 中国科学院化学研究所 | Silica-gold compound nano-fiber |
CN102430375A (en) * | 2011-09-20 | 2012-05-02 | 武汉工程大学 | Method for preparing silicon dioxide-silver nanometer composite microspheres |
CN102764617A (en) * | 2012-07-09 | 2012-11-07 | 陕西科技大学 | Method for preparing silver-carried silica microsphere functional materials |
CN103350226A (en) * | 2013-07-16 | 2013-10-16 | 合肥工业大学 | A kind of SiO2/Ag composite microsphere and its preparation method |
-
2014
- 2014-11-26 CN CN201410704455.1A patent/CN104550941B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1683066A (en) * | 2005-02-13 | 2005-10-19 | 复旦大学 | A kind of preparation method of noble metal hollow microcapsule |
CN101216429A (en) * | 2008-01-07 | 2008-07-09 | 首都师范大学 | A kind of SERS biological probe and preparation method thereof |
CN101230208A (en) * | 2008-01-07 | 2008-07-30 | 首都师范大学 | A method for preparing gold nanorod particles coated with a silicon dioxide layer on the surface |
CN101254473A (en) * | 2008-03-07 | 2008-09-03 | 厦门大学 | A kind of synthesis method of solid-phase catalyst with organic microsphere-loaded gold nanoparticles |
CN102107851A (en) * | 2009-12-25 | 2011-06-29 | 中国科学院化学研究所 | Silica-gold compound nano-fiber |
CN102430375A (en) * | 2011-09-20 | 2012-05-02 | 武汉工程大学 | Method for preparing silicon dioxide-silver nanometer composite microspheres |
CN102764617A (en) * | 2012-07-09 | 2012-11-07 | 陕西科技大学 | Method for preparing silver-carried silica microsphere functional materials |
CN103350226A (en) * | 2013-07-16 | 2013-10-16 | 合肥工业大学 | A kind of SiO2/Ag composite microsphere and its preparation method |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106735181A (en) * | 2016-12-14 | 2017-05-31 | 中国科学院深圳先进技术研究院 | SiO2@Ag core shell structure composite conducting particles and preparation method thereof |
CN110461505A (en) * | 2017-03-31 | 2019-11-15 | 东邦钛株式会社 | The manufacturing method of metal powder |
CN110461505B (en) * | 2017-03-31 | 2022-07-08 | 东邦钛株式会社 | Method for producing metal powder |
CN107598184A (en) * | 2017-08-18 | 2018-01-19 | 江西师范大学 | Preparation method of silver nanoparticle coated silicon dioxide microsphere powder |
CN109390160A (en) * | 2018-11-09 | 2019-02-26 | 江苏大学 | Ag is prepared in situ in one kind2O/Ag/TiO2The method of hollow sphere Z-scheme type optoelectronic pole |
CN111375759B (en) * | 2018-12-28 | 2021-10-01 | 同方威视技术股份有限公司 | Raman nano-reinforcing material and preparation method and application thereof |
CN111375759A (en) * | 2018-12-28 | 2020-07-07 | 同方威视技术股份有限公司 | Raman nano-reinforcing material and preparation method and application thereof |
CN110935454A (en) * | 2019-12-20 | 2020-03-31 | 杭州硅诺科技有限公司 | Preparation method of silicon dioxide/nickel core-shell nano-structure material |
CN113488651A (en) * | 2020-08-31 | 2021-10-08 | 中南大学 | Titanium oxide @ C hollow composite framework embedded with noble metal silver, and preparation method and application thereof |
CN116328763A (en) * | 2023-02-28 | 2023-06-27 | 西南交通大学 | Gold-loaded silicon microsphere composite material with three-layer hierarchical structure and preparation method thereof |
CN117110597A (en) * | 2023-06-08 | 2023-11-24 | 淮安博梵生物科技有限公司 | Metal nanocluster synthesis method and application thereof in transgenic Bt protein detection |
CN118360036A (en) * | 2024-06-19 | 2024-07-19 | 纯牌科技股份有限公司 | Heat dissipation liquid for engine and preparation method thereof |
CN118360036B (en) * | 2024-06-19 | 2024-09-24 | 纯牌科技股份有限公司 | Heat dissipation liquid for engine and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104550941B (en) | 2017-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104550941B (en) | Preparation method of silica @ noble metal nano-composite microspheres | |
Xia et al. | Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver (I)-assisted citrate reduction | |
Niu et al. | Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes | |
Jankiewicz et al. | Silica–metal core–shell nanostructures | |
Seo et al. | Double hydrophilic block copolymer templated Au nanoparticles with enhanced catalytic activity toward nitroarene reduction | |
Qiao et al. | Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide | |
Bai et al. | Synthesis of amphiphilic ionic liquids terminated gold nanorods and their superior catalytic activity for the reduction of nitro compounds | |
Chen et al. | Effects of alkylated polyethylenimines on the formation of gold nanoplates | |
You et al. | Synthesis of stable SiO2@ Au-nanoring colloids as recyclable catalysts: galvanic replacement taking place on the surface | |
Huang et al. | Surfactant-promoted reductive synthesis of shape-controlled gold nanostructures | |
Tan et al. | Aspartic acid synthesis of crystalline gold nanoplates, nanoribbons, and nanowires in aqueous solutions | |
Zeng et al. | Catalytically active silver nanoparticles loaded in the lumen of halloysite nanotubes via electrostatic interactions | |
Wang et al. | Facile synthesis of hollow urchin-like gold nanoparticles and their catalytic activity | |
CN104525174A (en) | Graphene-based composite material preparing method based on oxidized graphene self-assembling | |
Schulzendorf et al. | Biphasic Synthesis of Au@ SiO2 Core− Shell Particles with Stepwise Ligand Exchange | |
Chou et al. | Studies on the continuous precipitation of silver nanoparticles | |
CN102837004B (en) | Preparation method of polyhedral copper nanoparticle | |
Fang et al. | Self-assembly ability of building units in mesocrystal, structural, and morphological transitions in Ag nanostructures growth | |
CN103240041B (en) | Core-shell structured silica/mesoporous silica supported gold nanoparticle microbead and preparation method of same | |
Choma et al. | Preparation and properties of silica–gold core–shell particles | |
Choi et al. | Facile fabrication of core-in-shell particles by the slow removal of the core and its use in the encapsulation of metal nanoparticles | |
Watanabe et al. | Flow microreactor synthesis of gold nanoshells and patchy particles | |
Zhao et al. | A simple approach to the synthesis of eccentric Au@ SiO2 Janus nanostructures and their catalytic applications | |
CN108236932A (en) | A kind of superparamagnetic-plasma complex microsphere and preparation method thereof | |
Chen et al. | Fabrication of nanorattles with passive shell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201216 Address after: No. b429, zone B, 3 / F, innovation building, 315 Changjiang Avenue, hi tech Zone, Shijiazhuang City, Hebei Province Patentee after: Hebei Peiqing Technology Co., Ltd Address before: 201620 No. 2999 North Renmin Road, Shanghai, Songjiang District Patentee before: DONGHUA University |