CN104535057A - A Silicon Micromachined Linear Vibration Gyroscope and Its Orthogonal Error Stiffness Correction Method - Google Patents
A Silicon Micromachined Linear Vibration Gyroscope and Its Orthogonal Error Stiffness Correction Method Download PDFInfo
- Publication number
- CN104535057A CN104535057A CN201410830124.2A CN201410830124A CN104535057A CN 104535057 A CN104535057 A CN 104535057A CN 201410830124 A CN201410830124 A CN 201410830124A CN 104535057 A CN104535057 A CN 104535057A
- Authority
- CN
- China
- Prior art keywords
- signal
- quadrature
- driving
- stiffness
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5719—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
- G01C19/5733—Structural details or topology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Manufacturing & Machinery (AREA)
- Gyroscopes (AREA)
Abstract
本发明公开了一种硅微机械线振动式陀螺及其正交误差的刚度校正方法,该方法包括:驱动闭环回路激励驱动模态使驱动模态以固定幅值振动在其谐振频率点上;在检测通道内提取信号后经驱动位移信号解调得到正交信号幅值,将正其与基准信号比较后将比较结果送入正交校正控制器;控制器输出信号经电压调整模块输出至陀螺结构中的正交刚度校正梳齿,并产生静电负刚度以校正产生正交误差的耦合刚度。本发明中控制器可根据目标陀螺结构的正交耦合刚度的不同自动调节控制量以达到完全消除正交耦合刚度的目的,从而大幅度减小加工误差对陀螺性能的影响。本发明所述方法具有体积小、易实现、可靠性高、温度性能好、可与陀螺结构集成等优点。
The invention discloses a silicon micromechanical linear vibrating gyroscope and a method for correcting the stiffness of the orthogonal error thereof. The method comprises: driving a closed-loop loop to excite the driving mode so that the driving mode vibrates at its resonance frequency point with a fixed amplitude; After extracting the signal in the detection channel, the amplitude of the quadrature signal is obtained by demodulating the driving displacement signal, and comparing it with the reference signal, the comparison result is sent to the quadrature correction controller; the output signal of the controller is output to the gyroscope through the voltage adjustment module Orthogonal stiffness in the structure corrects the comb teeth, and an electrostatic negative stiffness is created to correct the coupled stiffness that produces the quadrature error. In the present invention, the controller can automatically adjust the control amount according to the difference of the orthogonal coupling stiffness of the target gyroscope structure so as to completely eliminate the orthogonal coupling stiffness, thereby greatly reducing the influence of processing errors on the performance of the gyroscope. The method of the invention has the advantages of small size, easy realization, high reliability, good temperature performance, and can be integrated with the gyroscope structure.
Description
技术领域technical field
本发明涉及硅微机械陀螺领域,具体涉及一种硅微机械线振动式陀螺及其正交误差刚度校正方法。The invention relates to the field of silicon micro-mechanical gyroscopes, in particular to a silicon micro-mechanical linear vibration gyroscope and a method for correcting stiffness of an orthogonality error.
背景技术Background technique
硅微机械陀螺是一种用MEMS(Micro-Electro-Mechanical System,微机电系统)技术加工而成的惯性测量传感器,其采用哥氏效应原理测量载体角速率信息,具有体积小、功耗低、重量轻、成本低、抗过载特性强、易于集成化和批量生产等优点。目前在很多领域都有应用,比如:惯性导航、汽车安全、工业控制、消费电子等。其最初诞生在上世纪80年代末,随着加工工艺和测控技术的不断发展,硅微机械陀螺的精度也逐渐提高,目前国际上硅微机械陀螺较高精度已经可达1°/h(零偏稳定性)以内,已经可满足战术级陀螺仪的精度需求。硅微机械线振动式陀螺作为硅微机械陀螺的一种,近年来得到各科研机构和公司的推崇,相比与其他工作方式的硅微机械陀螺(角振动式,转子式等),线振动式陀螺结构具有加工结构简单,检测信号线性度好等优点。目前,国际主流的精度较高的硅微机械陀螺大部分都采用了线振动结构。Silicon micromachined gyroscope is an inertial measurement sensor processed by MEMS (Micro-Electro-Mechanical System, micro-electro-mechanical system) technology. It uses the Coriolis effect principle to measure carrier angular rate information. It has the advantages of light weight, low cost, strong anti-overload characteristics, easy integration and mass production. It is currently used in many fields, such as: inertial navigation, automotive safety, industrial control, consumer electronics, etc. It was first born in the late 1980s. With the continuous development of processing technology and measurement and control technology, the accuracy of silicon micro-machined gyroscopes has gradually improved. At present, the highest accuracy of silicon micro-machined gyroscopes in the world has reached 1°/h (zero Partial stability), it can already meet the accuracy requirements of tactical gyroscopes. As a kind of silicon micromechanical gyroscope, silicon micromechanical linear vibration gyroscope has been highly praised by various scientific research institutions and companies in recent years. Compared with other working methods of silicon micromechanical gyroscopes (angular vibration type, rotor type, etc.), linear The type gyro structure has the advantages of simple processing structure and good linearity of detection signal. At present, most of the international mainstream high-precision silicon micromachined gyroscopes adopt linear vibration structures.
图1为典型的硅微机械陀螺仪组成结构示意图,在理想的陀螺结构中,存在陀螺系统的动力方程为:Figure 1 is a schematic diagram of the composition and structure of a typical silicon micromachined gyroscope. In an ideal gyroscope structure, the dynamic equation of the gyroscope system is:
式(A1)中,x为驱动模态位移;cxx,cyy,kxx,kyy分别为驱动和检测模态的等效阻尼和等效刚度;Fdx=Fdsin(ωdt)为驱动轴向结构所受驱动力;mx和my分别为驱动和检测轴向结构等效质量;Ωz为输入角速率;y为检测轴向结构位移;my为哥式质量;为了保证驱动模态得到最大振动幅值,有ωd=ωx。而在实际应用过程中,由于加工过程中产生的误差,导致陀螺结构中包含了耦合刚度,耦合阻尼等不理想因素,则在式(A1)中加入不理想因素有:In formula (A1), x is the displacement of the driving mode; c xx , c yy , k xx , k yy are the equivalent damping and equivalent stiffness of the driving and detection modes respectively; F dx = F d sin(ω d t ) is the driving force on the driving axial structure; m x and m y are the equivalent mass of the driving and detection axial structure respectively; Ω z is the input angular rate; y is the displacement of the detection axial structure; m y is the Gothic mass; In order to ensure that the driving mode obtains the maximum vibration amplitude, there is ω d =ω x . However, in the actual application process, due to the error generated in the processing process, the gyro structure contains unideal factors such as coupling stiffness and coupling damping, so the unideal factors added to the formula (A1) are:
式(A2)中,cxy,kxy,cyx,kyx分别为驱动模态耦合到检测模态的耦合阻尼和耦合刚度,检测模态耦合到驱动模态的耦合阻尼和耦合刚度。通常情况下,陀螺结构封装均采用真空形式,所以式(A2)中耦合阻尼cxy和cyx项均很小。而相比之下耦合刚度的影响很大,无角速率输入时,耦合刚度产生的等效输入角速度为哥式同相信号的数十甚至数百倍,在实际工程化过程中绝大多数的结构都存在正交误差。由于正交耦合刚度的产生原因为加工得到的弹性主轴方向与设计主轴方向存在夹角βQx,则有:In formula (A2), c xy , k xy , cyx , kyx are the coupling damping and coupling stiffness from the driving mode to the detection mode, respectively, and the coupling damping and coupling stiffness from the detection mode to the driving mode. Usually, the package of the gyro structure adopts vacuum form, so the terms of coupling damping c xy and c yx in formula (A2) are very small. In contrast, the coupling stiffness has a great influence. When there is no angular velocity input, the equivalent input angular velocity generated by the coupling stiffness is tens or even hundreds of times that of the Gothic in-phase signal. In the actual engineering process, most of the Orthogonality errors exist in all structures. Since the reason for the orthogonal coupling stiffness is that there is an angle β Qx between the direction of the elastic principal axis obtained by processing and the direction of the design principal axis, then:
式(A3)中,kx和ky分别为驱动模态和检测模态的设计刚度。进一步比较上式可知:In formula (A3), k x and ky are the design stiffnesses of driving mode and detection mode, respectively. Further comparison with the above formula shows that:
从式(A4)中可知kyx和kxy相等。It can be seen from the formula (A4) that k yx and k xy are equal.
目前检测通道中提取哥式信号大都采用相敏解调方法,该方法在实施过程中会由于电路元器件参数匹配误差等原因引入一定的解调相角误差,以至于部分正交信号被误提取为哥式信号继而影响陀螺性能。因此,从根本上消除产生正交误差的耦合刚度是减小正交误差对陀螺性能影响、提高陀螺静态性能的有效方法。At present, the phase-sensitive demodulation method is mostly used to extract the Gothic signal in the detection channel. During the implementation of this method, a certain demodulation phase angle error will be introduced due to the matching error of the circuit component parameters, so that some quadrature signals are extracted by mistake. This is the Gothic signal which in turn affects the performance of the gyro. Therefore, fundamentally eliminating the coupling stiffness that produces quadrature error is an effective method to reduce the influence of quadrature error on gyroscope performance and improve the static performance of gyroscope.
发明内容Contents of the invention
发明目的:为解决现有技术中存在的问题,本发明提供一种静态性能好的硅微机械线振动式陀螺及其正交误差刚度校正方法,减小陀螺结构受加工误差的影响,以提高陀螺性能,实现在较大校正范围内可自动对不同的陀螺个体进行正交校正。Purpose of the invention: In order to solve the problems existing in the prior art, the present invention provides a silicon micromechanical linear vibration gyroscope with good static performance and its orthogonality error stiffness correction method, which can reduce the influence of the gyroscope structure by processing errors and improve The performance of the gyroscope realizes that the orthogonal correction can be automatically performed on different gyro individuals within a large correction range.
技术方案:为了更好的实现上述目的,本发明提供了一种硅微机械线振动式陀螺,包括陀螺结构、陀螺测控电路和陀螺封装,具体地:Technical solution: In order to better achieve the above objectives, the present invention provides a silicon micromechanical linear vibration gyroscope, including a gyroscope structure, a gyroscope measurement and control circuit, and a gyroscope package, specifically:
所述的陀螺结构包括驱动轴向结构、检测轴向结构、耦合刚度模块和正交校正负刚度产生结构;The gyroscope structure includes a drive axial structure, a detection axial structure, a coupling stiffness module and an orthogonal correction negative stiffness generation structure;
所述的驱动轴向结构包括驱动激励结构、驱动质量和驱动位移提取结构,所述的驱动轴向结构用于保证哥式质量在驱动方向的稳定振动,为哥式力的产生提供必要条件;其中,所述的驱动激励结构用于将外接电压转化为静电力,所述驱动激励结构包括驱动固定梳齿和驱动活动梳齿;所述的驱动质量包括驱动框架和第一哥式质量;所述驱动框架用于连接驱动活动梳齿、驱动模态支撑梁和哥式质量,所述驱动活动梳齿分散排布在驱动框架上用于增大电容面积提高单位面积的静电力转换效率,所述驱动模态支撑梁用于连接锚点和驱动框架并起支撑作用,驱动框架产生的位移为XM,所述哥式质量用于产生哥式效应;所述的驱动位移提取结构用于将驱动框架位移XM转换为驱动电容信号XV输出,所述的驱动位移提取结构包括驱动检测固定梳齿和驱动检测活动梳齿;The driving axial structure includes a driving excitation structure, a driving mass and a driving displacement extraction structure, and the driving axial structure is used to ensure the stable vibration of the Gothic mass in the driving direction and provide necessary conditions for the generation of Gothic force; Wherein, the driving excitation structure is used to convert an external voltage into an electrostatic force, and the driving excitation structure includes driving fixed combs and driving movable combs; the driving mass includes a driving frame and a first Gothic mass; The driving frame is used to connect the driving movable comb teeth, the driving mode support beam and the Gothic mass. The driving movable comb teeth are scattered and arranged on the driving frame to increase the capacitance area and improve the electrostatic force conversion efficiency per unit area. The driving modal support beam is used to connect the anchor point and the driving frame and play a supporting role, the displacement generated by the driving frame is XM, and the Gothic mass is used to generate the Gothic effect; the driving displacement extraction structure is used to drive The frame displacement XM is converted into a drive capacitance signal XV output, and the drive displacement extraction structure includes drive detection fixed comb teeth and drive detection movable comb teeth;
所述的检测轴向结构由检测质量和检测位移提取结构组成,用于提取由哥式力产生的检测模态位移;The detection axial structure is composed of a detection mass and a detection displacement extraction structure, which is used to extract the detection modal displacement generated by the Gothic force;
所述的耦合刚度模块由驱动模态耦合到检测模态的耦合刚度和检测模态耦合到驱动模态的耦合刚度组成,属于陀螺设计过程中的非理想因素,由加工误差产生;The coupling stiffness module is composed of the coupling stiffness of the driving mode coupled to the detection mode and the coupling stiffness of the detection mode coupled to the driving mode, which belongs to the non-ideal factors in the gyroscope design process and is produced by processing errors;
所述的正交校正负刚度产生机构包括四组正交校正负刚度产生梳齿,所述正交校正负刚度产生梳齿沿哥式质量的中心框架两边交叉对称排列,用于产生静电负刚度以抵消耦合刚度。The orthogonal correction negative stiffness generating mechanism includes four sets of orthogonal correction negative stiffness generating combs, and the orthogonal correction negative stiffness generating combs are arranged symmetrically across the two sides of the central frame of the Gothic mass for generating electrostatic negative stiffness to offset coupling stiffness.
所述的陀螺测控电路包括驱动闭环回路、检测回路和正交校正闭环回路;所述的驱动闭环回路用于保证所述驱动轴向结构沿驱动方向恒幅度振动且振动频率为驱动模态固有谐振频率;所述的检测回路用于将检测电容变化量YV一部分调节为YSE输出,另一部分以驱动激励信号XS为基准解调并滤波后作为陀螺输出。The gyro measurement and control circuit includes a driving closed loop, a detection loop and an orthogonal correction closed loop; the driving closed loop is used to ensure that the driving axial structure vibrates with a constant amplitude along the driving direction and the vibration frequency is the natural resonance of the driving mode Frequency; the detection circuit is used to adjust a part of the detection capacitance change value YV to YSE output, and the other part is demodulated and filtered based on the driving excitation signal XS as a gyro output.
具体的,所述的检测回路包括前级放大接口、次级放大器、哥式解调器和低通滤波器,其中,所述前级放大接口用于将检测电容变化量YV转化为电压信号并进行初步放大;所述次级放大器将前级放大接口输出信号进一步放大,并输出信号YSE;所述哥式解调器以驱动激励信号XS为基准解调YSE得到哥氏信号和二倍频信号;所述低通滤波器包含第一低通滤波器和第二滤波器,其中,第一滤波器用于滤除解调器输出的二倍频信号以得到纯净的哥氏信号幅值,第二低通滤波器用于输出低通滤波作为陀螺仪最终输出。Specifically, the detection circuit includes a pre-amplification interface, a secondary amplifier, a Gothic demodulator and a low-pass filter, wherein the pre-amplification interface is used to convert the detection capacitance variation YV into a voltage signal and Carry out preliminary amplification; the secondary amplifier further amplifies the output signal of the front-stage amplifier interface, and outputs the signal YSE; the Gothic demodulator demodulates YSE with the driving excitation signal XS as a reference to obtain the Goriods signal and the double frequency signal ; The low-pass filter includes a first low-pass filter and a second filter, wherein the first filter is used to filter out the double-frequency signal of the demodulator output to obtain a pure Coriolis signal amplitude, and the second The low-pass filter is used to output low-pass filtered as the final output of the gyroscope.
所述的耦合刚度模块包括驱动模态耦合到检测模态的耦合刚度kyx和检测模态耦合到驱动模态的耦合刚度kxy,其中,所述的kyx可将驱动框架位移XM转换为耦合力FXQ施加到检测质量上;所述的kxy可将检测框架位移YM转换为耦合力FYQ施加到驱动质量上。The coupling stiffness module includes the coupling stiffness k yx of the driving mode coupled to the detection mode and the coupling stiffness k xy of the detection mode coupled to the driving mode, wherein the k yx can convert the driving frame displacement XM into The coupling force FXQ is applied to the detection mass; the k xy can convert the detection frame displacement YM into a coupling force FYQ to be applied to the driving mass.
所述的正交校正负刚度产生梳齿包含第一固定梳齿、第二固定梳齿、第三固定梳齿、第四固定梳齿和哥式质量,其中,第一固定梳齿和第二固定梳齿之间导通,第三固定梳齿和第四固定梳齿之间导通;所述的正交校正负刚度产生梳齿采用不等间距设计以产生静电负刚度;所述的正交校正负刚度产生机构在校正驱动模态耦合到检测模态的耦合刚度kyx的同时可校正检测模态耦合到驱动模态的耦合刚度kxy。The orthogonal correction negative stiffness generating combs include first fixed combs, second fixed combs, third fixed combs, fourth fixed combs and Gordles mass, wherein the first fixed combs and the second fixed combs Conduction between the fixed comb teeth, conduction between the third fixed comb teeth and the fourth fixed comb teeth; the orthogonal correction negative stiffness generating comb teeth are designed with unequal spacing to generate electrostatic negative stiffness; the positive The cross correction negative stiffness generating mechanism can correct the coupling stiffness k xy of the detection mode coupled to the driving mode while correcting the coupling stiffness k yx of the driving mode coupled to the detection mode.
所述的正交校正闭环回路包括驱动位移放大器、正交解调器、正交低通滤波器、比较器、正交校正基准、正交校正控制器和信号转换装置,其中,所述的驱动位移放大器在不改变驱动位移XV的前提下将XV放大,以满足解调基准信号的幅值需求;所述正交解调器将检测通道中次级放大器的输出信号中的正交信号提取,产生二倍频信号和正交误差幅值信号;所述正交低通滤波器将二倍频信号滤掉,只保留正交幅值信号;所述比较器将正交幅值信号和所述正交校正基准比较,产生比较结果;所述正交校正控制器根据所述比较结果产生控制信号;所述信号转换装置包括直流装置、反相器、第一缓冲器和第二缓冲器,用于将控制信号转换后产生QS信号送至正交校正负刚度产生机构将控制信号转换后产生QS信号送至正交校正负刚度产生机构。The quadrature correction closed-loop loop includes a drive displacement amplifier, a quadrature demodulator, a quadrature low-pass filter, a comparator, a quadrature correction reference, a quadrature correction controller and a signal conversion device, wherein the drive The displacement amplifier amplifies XV without changing the drive displacement XV to meet the amplitude requirements of the demodulation reference signal; the quadrature demodulator extracts the quadrature signal from the output signal of the secondary amplifier in the detection channel, Generate a double frequency signal and a quadrature error magnitude signal; the quadrature low-pass filter filters out the double frequency signal, and only keeps the quadrature magnitude signal; the comparator combines the quadrature magnitude signal and the quadrature magnitude signal The quadrature correction reference is compared to generate a comparison result; the quadrature correction controller generates a control signal according to the comparison result; the signal conversion device includes a DC device, an inverter, a first buffer, and a second buffer for After the control signal is converted, the QS signal is generated and sent to the quadrature correction negative stiffness generating mechanism. After the control signal is converted, the QS signal is generated and sent to the quadrature correction negative stiffness generating mechanism.
本发明进一步提出了一种硅微机械线振动式陀螺正交误差刚度校正方法,包括如下步骤:The present invention further proposes a method for correcting the stiffness of the silicon micromechanical line vibration gyro orthogonality error, which includes the following steps:
(1)实时获取检测通道中正交信号幅值;(1) Real-time acquisition of the quadrature signal amplitude in the detection channel;
(2)将步骤(1)所述正交信号幅值作为控制量,通过比较其与基准信号关系得到相应的正交校正控制信号;(2) using the quadrature signal amplitude described in step (1) as the control quantity, obtain the corresponding quadrature correction control signal by comparing its relationship with the reference signal;
(3)将步骤(2)所述正交校正控制信号进行转换,送入陀螺结构,和其中的正交校正负刚度产生机构配合产生静电负刚度,所述静电负刚度可以平衡正交耦合刚度;由此,所述正交校正负刚度产生机构可同时消除驱动模态耦合到检测模态的耦合刚度kyx和检测模态耦合到驱动模态的耦合刚度kxy。(3) Convert the quadrature correction control signal described in step (2), send it into the gyro structure, cooperate with the quadrature correction negative stiffness generating mechanism therein to generate electrostatic negative stiffness, and the electrostatic negative stiffness can balance the quadrature coupling stiffness ; Thus, the orthogonal correction negative stiffness generation mechanism can simultaneously eliminate the coupling stiffness k yx of the driving mode to the detection mode and the coupling stiffness k xy of the detection mode to the driving mode.
基本原理为通过驱动闭环回路激励驱动模态,使驱动模态以固定幅值振动在其谐振频率点上;在检测通道内提取信号后经驱动位移信号(与哥氏信号相位正交)解调得到正交信号幅值;将正交信号幅值与基准信号比较后将比较结果送入正交校正控制器;控制器输出信号经电压调整模块输出至陀螺结构中的正交刚度校正梳齿,并产生静电负刚度以校正产生正交误差的耦合刚度。The basic principle is to excite the driving mode by driving the closed-loop loop, so that the driving mode vibrates at its resonance frequency point with a fixed amplitude; after the signal is extracted in the detection channel, it is demodulated by the driving displacement signal (phase quadrature with the Coriolis signal) Obtain the quadrature signal amplitude; compare the quadrature signal amplitude with the reference signal and send the comparison result to the quadrature correction controller; the output signal of the controller is output to the quadrature stiffness correction comb teeth in the gyro structure through the voltage adjustment module, And generate electrostatic negative stiffness to correct the coupling stiffness that produces quadrature error.
具体地,步骤(1)的具体步骤为:Specifically, the specific steps of step (1) are:
实时获取驱动位移提取结构的输出信号XV和检测位移提取结构的输出信号YV,所述驱动位移信号应于驱动框架位移同频同相;Obtaining the output signal XV of the driving displacement extraction structure and the output signal YV of the detection displacement extraction structure in real time, the driving displacement signal should be at the same frequency and phase as the displacement of the driving frame;
将驱动位移提取结构的输出信号XV幅值进行调节使其幅值适合作为解调基准,得到XSE,在所述处理过程中其频率和相位不变;Adjust the amplitude of the output signal XV that drives the displacement extraction structure so that its amplitude is suitable as a demodulation reference to obtain XSE, and its frequency and phase remain unchanged during the processing;
将检测位移提取结构的输出信号YV幅值进行调节使其幅值适合被解调,得到YSE,在所述处理过程中其频率和相位不变;Adjust the amplitude of the output signal YV of the detection displacement extraction structure so that its amplitude is suitable for demodulation to obtain YSE, whose frequency and phase are unchanged during the processing;
将XSE作为基准解调YSE;Use XSE as a reference to demodulate YSE;
将上述解调结果经低通滤波器滤除解调后的高频信号,继而得到正交信号幅值。The above-mentioned demodulation result is filtered by a low-pass filter to remove the demodulated high-frequency signal, and then the amplitude of the quadrature signal is obtained.
步骤(2)的具体步骤为:The concrete steps of step (2) are:
将所述步骤(1)得到的正交信号幅值与正交校正基准比较进行判断;Comparing the quadrature signal amplitude that described step (1) obtains with the quadrature calibration benchmark;
将上述判断结果送入正交校正控制器,进一步得到正交控制信号;Send the above judgment result to the quadrature correction controller to further obtain the quadrature control signal;
将所述正交控制信号输入至信号转换装置,以获得正交校正负刚度产生机构的有正交校正控制信号。The quadrature control signal is input to the signal conversion device to obtain the quadrature correction control signal of the quadrature correction negative stiffness generating mechanism.
步骤(3)的具体步骤为:The concrete steps of step (3) are:
产生的静电负刚度与结构原有的正交耦合刚度叠加后得到新的耦合刚度,继而产生新的正交误差信号;The generated electrostatic negative stiffness and the original orthogonal coupling stiffness of the structure are superimposed to obtain a new coupling stiffness, and then a new orthogonal error signal is generated;
根据所述步骤(1)和步骤(2)的结果,重新调整正交校正控制信号,最终使正交信号幅度与正交校正基准相等;According to the result of said step (1) and step (2), readjust the quadrature correction control signal, finally make the quadrature signal amplitude equal to the quadrature correction reference;
将上述中正交校正基准设为0,则系统稳定后正交校正负刚度即可完全消除正交耦合刚度。If the above-mentioned quadrature correction benchmark is set to 0, the quadrature coupling stiffness can be completely eliminated by quadrature correction of the negative stiffness after the system is stable.
有益效果:本发明用于硅微机械线振动式陀螺正交误差刚度校正,能有效减小陀螺结构中由于加工误差而引起的正交误差,与现有技术相比,其具有下述优点:Beneficial effects: the invention is used for the correction of the stiffness of the quadrature error of the silicon micromechanical linear vibration gyroscope, which can effectively reduce the quadrature error caused by the machining error in the gyroscope structure. Compared with the prior art, it has the following advantages:
(1)本发明利用驱动位移信号和正交信号频率相等相位相同的特征,以相敏解调方法为基础提取正交信号幅度,采用正交校正闭环控制方法,以静电负刚度抵消结构耦合刚度,可同时大幅度减小驱动模态耦合到检测模态的耦合刚度和检测模态耦合到驱动模态的耦合刚度;(1) The present invention utilizes the feature that the drive displacement signal and the quadrature signal have the same frequency and phase, extract the quadrature signal amplitude based on the phase-sensitive demodulation method, adopt the quadrature correction closed-loop control method, and offset the structural coupling stiffness with the electrostatic negative stiffness , can greatly reduce the coupling stiffness of the driving mode coupled to the detection mode and the coupling stiffness of the detection mode coupled to the driving mode at the same time;
(2)采用本发明的方法后,硅微机械陀螺性能可明显提高;(2) After adopting the method of the present invention, the silicon micromachined gyroscope performance can be obviously improved;
(3)本发明具有实时性好、效率高、成本低、体积小、功耗小、使用简便等优点,同时在较大校正范围内可自动对不同的陀螺个体进行正交校正,很适用于陀螺的工程化批量生产;(3) The present invention has the advantages of good real-time performance, high efficiency, low cost, small size, low power consumption, easy to use, etc., and can automatically perform orthogonal correction on different gyro individuals within a large correction range, and is very suitable for Engineering mass production of gyroscopes;
(4)本发明针对不同陀螺个体正交耦合刚度不同的实际情况,提出了正交校正自动控制系统,该系统可在校正范围内根据不同的正交耦合刚度进行自动校正,在陀螺工程化生产中具有很高的实际应用价值。(4) The present invention proposes an automatic control system for orthogonal correction for the actual situation that different gyroscopes have different orthogonal coupling stiffnesses. This system can automatically correct within the correction range according to different orthogonal coupling stiffnesses. It has high practical application value.
附图说明Description of drawings
图1为本发明陀螺结构整体示意图;Fig. 1 is the overall schematic diagram of the gyroscope structure of the present invention;
图2为陀螺结构和测控电路连接示意图;Fig. 2 is the connection diagram of gyroscope structure and measurement and control circuit;
图3为结构耦合刚度作用示意图;Figure 3 is a schematic diagram of the effect of structural coupling stiffness;
图4为正交校正负刚度产生机构示意图;Fig. 4 is a schematic diagram of an orthogonal correction negative stiffness generating mechanism;
图5为检测开环回路框架结构示意图;Fig. 5 is a schematic diagram of detecting an open-loop frame structure;
图6为正交校正闭环回路框架结构示意图;Fig. 6 is a schematic diagram of a frame structure of a closed-loop loop for quadrature correction;
图7为信号转换装置结构示意图。Fig. 7 is a schematic structural diagram of a signal conversion device.
具体实施方式Detailed ways
下面结合附图和具体实施例,进一步阐明本发明所述方法,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读本发明后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。Below in conjunction with accompanying drawing and specific embodiment, further illustrate the described method of the present invention, should be understood that these embodiments are only used to illustrate the present invention and are not intended to limit the scope of the present invention, after reading the present invention, those skilled in the art will understand the present invention Modifications in various equivalent forms fall within the scope defined by the appended claims of the present application.
如图1所示,一种硅微机械线振动式陀螺,包括陀螺结构1、陀螺测控电路2和陀螺封装3,用于校正硅微机械线振动式陀螺的正交误差。陀螺结构1由驱动轴向结构11、检测轴向结构12、耦合刚度模块13和正交校正负刚度产生机构14组成,如如图2所示。As shown in FIG. 1 , a silicon micromechanical linear vibration gyroscope includes a gyroscope structure 1 , a gyro measurement and control circuit 2 and a gyroscope package 3 , which are used to correct the quadrature error of the silicon micromechanical linear vibration gyroscope. The gyro structure 1 is composed of a driving axial structure 11 , a detecting axial structure 12 , a coupling stiffness module 13 and an orthogonal correction negative stiffness generating mechanism 14 , as shown in FIG. 2 .
驱动轴向结构11包括驱动激励结构111、驱动质量112和驱动位移提取结构113,驱动轴向结构11用于保证哥式质量在驱动方向的稳定振动。其中,驱动激励结构111用于将外接电压转化为静电力,其包括驱动固定梳齿和驱动活动梳齿;驱动质量112包括驱动框架和哥式质量;所述驱动框架用于连接驱动活动梳齿、驱动模态支撑梁和哥式质量,驱动活动梳齿分散排布在驱动框架上用于增大电容面积提高单位面积的静电力转换效率,驱动模态支撑梁用于连接锚点和驱动框架并起支撑作用,驱动框架产生的位移为XM,所述哥式质量用于产生哥式效应;驱动位移提取结构113用于将驱动框架位移XM转换为驱动电容信号XV输出,驱动位移提取结构113包括驱动检测固定梳齿和驱动检测活动梳齿。The driving axial structure 11 includes a driving excitation structure 111 , a driving mass 112 and a driving displacement extraction structure 113 , and the driving axial structure 11 is used to ensure stable vibration of the Gordeaux mass in the driving direction. Wherein, the driving excitation structure 111 is used to convert the external voltage into an electrostatic force, which includes driving the fixed comb and driving the movable comb; the driving mass 112 includes a driving frame and a Gothic mass; the driving frame is used to connect and drive the movable comb , driving modal support beam and Gothic mass, the driving movable combs are distributed on the driving frame to increase the capacitance area and improve the electrostatic force conversion efficiency per unit area, and the driving modal support beam is used to connect the anchor point and the driving frame And play a supporting role, the displacement produced by the driving frame is XM, and the Gothic quality is used to generate the Gothic effect; the driving displacement extraction structure 113 is used to convert the driving frame displacement XM into the output of the driving capacitance signal XV, and the driving displacement extraction structure 113 Including drive detection fixed comb and drive detection movable comb.
检测轴向结构12由检测质量121和检测位移提取结构122组成,用于提取由哥式力产生的检测模态位移。The detection axial structure 12 is composed of a detection mass 121 and a detection displacement extraction structure 122, which is used to extract the detection modal displacement generated by the Gorder force.
耦合刚度模块13由驱动模态耦合到检测模态的耦合刚度131和检测模态耦合到驱动模态的耦合刚度132组成,如图3所示。其中,所述的kyx131可将驱动框架位移XM转换为耦合力FXQ施加到检测质量121上;所述的kxy132可将检测框架位移YM转换为耦合力FYQ施加到驱动质量121上。The coupling stiffness module 13 is composed of a coupling stiffness 131 for coupling the driving mode to the detection mode and a coupling stiffness 132 for coupling the detection mode to the driving mode, as shown in FIG. 3 . Wherein, the k yx 131 can convert the driving frame displacement XM into a coupling force FXQ and apply it to the detection mass 121 ; the k xy 132 can convert the detection frame displacement YM into a coupling force FYQ and apply it to the driving mass 121 .
正交校正负刚度产生机构14包括四组正交校正负刚度产生梳齿,正交校正负刚度产生梳齿沿哥式质量的中心框架两边交叉对称排列,用于产生静电负刚度以抵消耦合刚度。The orthogonal correction negative stiffness generating mechanism 14 includes four sets of orthogonal correction negative stiffness generating combs, and the orthogonal correction negative stiffness generating combs are arranged cross-symmetrically along both sides of the central frame of the Gothic mass for generating electrostatic negative stiffness to offset the coupling stiffness .
陀螺测控电路2包括驱动闭环回路21、检测回路22和正交校正闭环回路23;驱动闭环回路21用于保证所述驱动轴向结构11沿驱动方向恒幅度振动且振动频率为驱动模态固有谐振频率;检测回路22用于将检测电容变化量YV一部分调节为YSE输出,另一部分以驱动激励信号XS为基准解调并滤波后作为陀螺输出。The gyro measurement and control circuit 2 includes a driving closed-loop loop 21, a detection loop 22 and an orthogonal correction closed-loop loop 23; the driving closed-loop loop 21 is used to ensure that the driving axial structure 11 vibrates with a constant amplitude along the driving direction and the vibration frequency is the natural resonance of the driving mode Frequency; the detection circuit 22 is used to adjust a part of the detection capacitance change value YV to YSE output, and the other part is demodulated and filtered based on the driving excitation signal XS as a gyroscope output.
其中,检测回路22包括前级放大接口221、次级放大器222、哥式解调器223和低通滤波器,其中,前级放大接口221用于将检测电容变化量YV转化为电压信号并进行初步放大;次级放大器222将前级放大接口221输出信号进一步放大,并输出信号YSE;所述哥式解调器223以驱动激励信号XS为基准解调YSE得到哥氏信号和二倍频信号;低通滤波器包含第一低通滤波器224和第二滤波器225,其中,第一滤波器224用于滤除解调器输出的二倍频信号以得到纯净的哥氏信号幅值,第二低通滤波器225用于输出低通滤波作为陀螺仪最终输出,如图5所示。Wherein, the detection circuit 22 includes a pre-amplification interface 221, a secondary amplifier 222, a Gothic demodulator 223 and a low-pass filter, wherein the pre-amplification interface 221 is used to convert the detection capacitance variation YV into a voltage signal and perform Preliminary amplification; the secondary amplifier 222 further amplifies the output signal of the pre-amplification interface 221, and outputs the signal YSE; the Gothic demodulator 223 demodulates the YSE with the driving excitation signal XS as a reference to obtain the Goriods signal and the double frequency signal The low-pass filter comprises a first low-pass filter 224 and a second filter 225, wherein the first filter 224 is used to filter out the double-frequency signal output by the demodulator to obtain a pure Coriolis signal amplitude, The second low-pass filter 225 is used to output the low-pass filter as the final output of the gyroscope, as shown in FIG. 5 .
如图4所示,正交校正负刚度产生梳齿包括第一固定梳齿141、第二固定梳齿142、第三固定梳齿143、第四固定梳齿144和哥式质量,其中,第一固定梳齿(141)和第二固定梳齿(142)之间导通,第三固定梳齿(143)和第四固定梳齿(144)之间导通;所述的正交校正负刚度产生梳齿采用不等间距设计以产生静电负刚度;所述的正交校正负刚度产生机构14在校正驱动模态耦合到检测模态的耦合刚度kyx131的同时可校正检测模态耦合到驱动模态的耦合刚度kxy132。As shown in Fig. 4, the comb teeth for generating negative stiffness by orthogonal correction include first fixed comb teeth 141, second fixed comb teeth 142, third fixed comb teeth 143, fourth fixed comb teeth 144 and Gothic mass, wherein, the first fixed comb teeth 142, the third fixed comb teeth 143, the fourth fixed comb teeth 144 and the Gothic mass. Conduction between a fixed comb (141) and the second fixed comb (142), conduction between the third fixed comb (143) and the fourth fixed comb (144); the quadrature correction negative Stiffness generation combs are designed with unequal spacing to generate electrostatic negative stiffness; the orthogonal correction negative stiffness generation mechanism 14 can correct the detection mode coupling while correcting the coupling stiffness k yx 131 of the driving mode coupling to the detection mode Coupling stiffness k xy 132 to the driven modes.
如图6所示,正交校正闭环回路23包括驱动位移放大器231、正交解调器232、正交低通滤波器233、比较器234、正交校正基准235、正交校正控制器236和信号转换装置237,其中,驱动位移放大器231在不改变驱动位移XV的前提下将XV放大,以满足解调基准信号的幅值需求;正交解调器232将检测通道中次级放大器222的输出信号中的正交信号提取,产生二倍频信号和正交误差幅值信号;正交低通滤波器233将二倍频信号滤掉,只保留正交幅值信号;比较器234将正交幅值信号和正交校正基准235比较,产生比较结果;正交校正控制器236根据所述比较结果产生控制信号;信号转换装置237包括直流装置2371、反相器2372、第一缓冲器2373和第二缓冲器2374,用于将控制信号转换后产生QS信号送至正交校正负刚度产生机构14,其输出信号为QS包含了Vqkl1和Vqkl2。As shown in Figure 6, the quadrature correction closed-loop loop 23 includes a driving displacement amplifier 231, a quadrature demodulator 232, a quadrature low-pass filter 233, a comparator 234, a quadrature correction reference 235, a quadrature correction controller 236 and Signal conversion device 237, wherein, driving displacement amplifier 231 amplifies XV under the premise of not changing driving displacement XV, so as to meet the amplitude requirement of demodulation reference signal; Quadrature demodulator 232 will detect the secondary amplifier 222 The quadrature signal extraction in the output signal produces double frequency signal and quadrature error magnitude signal; Orthogonal low-pass filter 233 filters out double frequency signal, only keeps quadrature magnitude signal; Comparator 234 will positive The cross-amplitude signal is compared with the quadrature correction reference 235 to generate a comparison result; the quadrature correction controller 236 generates a control signal according to the comparison result; the signal conversion device 237 includes a DC device 2371, an inverter 2372, and a first buffer 2373 And the second buffer 2374 is used to convert the control signal to generate a QS signal and send it to the quadrature correction negative stiffness generating mechanism 14, the output signal of which is QS including V qkl1 and V qkl2 .
对于正交校正负刚度产生机构14,如图4所示,其固定梳齿板141、142、143、144与哥式质量之间形成的8个平行板电容,当质量块向驱动轴和检测轴方向有位移x和y时,则上述电容可用矩阵形式表达:For the orthogonal correction negative stiffness generating mechanism 14, as shown in Figure 4, the 8 parallel plate capacitors formed between its fixed comb plates 141, 142, 143, 144 and Gothic masses, when the masses move towards the drive shaft and the detection When there are displacements x and y in the axial direction, the above capacitance can be expressed in matrix form:
式(A5)中,Cql1s,Cql2s,Cql3s,Cql4s分别为第一固定梳齿141、第二固定梳齿142、第三固定梳齿143和第四固定梳齿144与哥式质量产生的上板电容;Cql1x,Cql2x,Cql3x,Cql4x分别为第一固定梳齿141、第二固定梳齿142、第三固定梳齿143、第四固定梳齿144与哥式质量产生的下板电容;梳齿重叠部分沿x方向的长度为xq0;梳齿长间距为λyq0;短间距为yq0;h为梳齿厚度;ε0为真空介电常数。通过对上述电容进行平行板电容静电力分析,可得下面方程:In formula (A5), C ql1s , C ql2s , C ql3s , and C ql4s are respectively the first fixed comb 141, the second fixed comb 142, the third fixed comb 143, the fourth fixed comb 144 and the Gothic mass The resulting upper plate capacitance; C ql1x , C ql2x , C ql3x , and C ql4x are respectively the first fixed comb 141, the second fixed comb 142, the third fixed comb 143, the fourth fixed comb 144 and the Gothic mass The resulting lower plate capacitance; the length of the overlapping part of the comb teeth along the x direction is x q0 ; the long spacing of the comb teeth is λy q0 ; the short spacing is y q0 ; h is the thickness of the comb teeth; ε 0 is the vacuum dielectric constant. By analyzing the electrostatic force of the parallel plate capacitance on the above capacitance, the following equation can be obtained:
式(A6)中Vqkl1和Vqkl2分别为固定梳齿141、142和143、144上施加的电压。式(A6)描述的是各电容在x轴方向上的受力,式(A7)描述的是各电容在y轴方向上的受力。分别取上述两个矩阵所有元素的和,则该值为一个方向上的合力,考虑到校正梳齿个数nq,则在x和y轴方向上受力之和有:In formula (A6), V qkl1 and V qkl2 are the voltages applied to the fixed comb teeth 141, 142 and 143, 144, respectively. Equation (A6) describes the force on each capacitor in the x-axis direction, and Equation (A7) describes the force on each capacitor in the y-axis direction. Taking the sum of all the elements of the above two matrices respectively, the value is the resultant force in one direction. Considering the number n q of the corrected comb teeth, the sum of the forces on the x and y axes is:
在上述两式的左右两边分别对x和y求偏导后取反,则可得到这两个力Take the partial derivatives of x and y on the left and right sides of the above two formulas and then negate them, then the two forces can be obtained
在驱动和检测轴的刚度矩阵:Stiffness matrices at the driving and detecting axes:
在上式中,副对角线元素为耦合校正刚度,且两个耦合刚度相等,结合式(A4),当kqxy+kxy=0时,有kqyx+kyx=0,则检测和驱动模态的耦合刚度可被同时校正,代入相关等式后有:In the above formula, the sub-diagonal element is the coupling correction stiffness, and the two coupling stiffnesses are equal, combined with formula (A4), when k qxy +k xy =0, there is k qyx +k yx =0, then the detection and The coupling stiffness of the driving mode can be corrected at the same time, after substituting into the relevant equation:
本实施例为进一步简化控制系统,令:In order to further simplify the control system in this embodiment, make:
Vqkl1=VqD+Vqc (A12)V qkl1 = V qD +V qc (A12)
Vqkl2=vqD-Vqc (A13)V qkl2 = v qD - V qc (A13)
式中,VqD为固定电压;Vqc为控制电压。则根据式(A11),有:In the formula, V qD is the fixed voltage; V qc is the control voltage. Then according to formula (A11), we have:
式(A14)中,只有Vqc为变量,可通过控制该变量以达到对正交耦合刚度进行控制的目的。In formula (A14), only V qc is a variable, which can be controlled to achieve the purpose of controlling the orthogonal coupling stiffness.
在所述正交校正负刚度产生机构的基础上,本实施例的步骤如下:On the basis of the orthogonal correction negative stiffness generating mechanism, the steps of this embodiment are as follows:
1)实时获取检测通道中正交信号幅值:所述正交信号包含在检测位移提取结构122的输出信号YV中,其与驱动框架位移XM同频同相。以驱动位移信号为基准可通过相敏解调方式得到正交信号幅值;1) Obtaining the amplitude of the quadrature signal in the detection channel in real time: the quadrature signal is included in the output signal YV of the detection displacement extraction structure 122, which has the same frequency and phase as the displacement XM of the driving frame. Based on the driving displacement signal, the quadrature signal amplitude can be obtained through phase-sensitive demodulation;
2)正交校正信号控制:在得到步骤1)所述正交信号幅值后,将其与正交校正基准235在比较器234中进行比较,比较结果送入由PI控制电路组成的正交校正控制器236中并产生控制信号Vqc,再经过信号转换装置237处理后得到信号QS,并输出至正交校正负刚度产生机构14;2) quadrature correction signal control: after obtaining the quadrature signal amplitude described in step 1), it is compared with the quadrature correction reference 235 in the comparator 234, and the comparison result is sent to the quadrature signal composed of PI control circuit. The control signal V qc is generated in the correction controller 236 , and the signal QS is obtained after being processed by the signal conversion device 237 , and output to the quadrature correction negative stiffness generating mechanism 14 ;
3)负刚度的产生及耦合刚度的消除:步骤2)所述QS信号包括Vqkl1和Vqkl2,经过正交校正闭环系统处理,可在极短时间内以静电负刚度抵消耦合刚度,并使系统达到稳定状态;3) Generation of negative stiffness and elimination of coupling stiffness: in step 2), the QS signal includes V qkl1 and V qkl2 , and after being processed by the quadrature correction closed-loop system, the coupling stiffness can be offset with electrostatic negative stiffness in a very short time, and the The system reaches a steady state;
4)正交误差消除后陀螺哥式信号的获取:在上述三个步骤的基础上,检测通道内的正交信号已几乎被抑制,可通过相敏解调方式获取哥式信号。4) Acquisition of gyro Gothic signal after quadrature error elimination: On the basis of the above three steps, the quadrature signal in the detection channel has been almost suppressed, and the Gothic signal can be obtained through phase-sensitive demodulation.
本实施例中包含多种电路形式,凡是满足上述步骤,且可在电路中实现(包括模拟电路、数字电路等)的装置均在本实施例范围之内。本实施例中,This embodiment includes a variety of circuit forms, and any device that satisfies the above steps and can be implemented in a circuit (including analog circuits, digital circuits, etc.) is within the scope of this embodiment. In this example,
步骤1)的详细步骤包括:The detailed steps of step 1) include:
1.1)正交解调基准信号的获取:驱动框架位移信号XM经驱动位移提取结构结构113后得到XV信号,该过程不改变频率和相位信息,所以XV与正交信号依然同频同相。XV经驱动位移放大器231进一步放大后得到XSE信号(该过程同样不改变信号频率和相位),该信号连接至正交解调器232解调基准端,用于正交信号的解调基准;1.1) Acquisition of the reference signal for quadrature demodulation: the drive frame displacement signal XM passes through the drive displacement extraction structure 113 to obtain the XV signal. This process does not change the frequency and phase information, so XV and the quadrature signal are still in the same frequency and phase. After XV is further amplified by driving displacement amplifier 231, XSE signal is obtained (this process does not change signal frequency and phase), and this signal is connected to quadrature demodulator 232 demodulation reference end, used for the demodulation reference of quadrature signal;
1.2)正交信号的幅值获取:YV信号经过检测回路的前级放大接口221和次级放大器222的放大后得到YSE,所述信号包含了正交信号幅值信息,连接至正交解调器232的输入端。经正交解调器232处理后得到含有驱动频率二倍频信号和正交信号幅值,再经正交低通滤波器233的处理滤掉二倍频信号既得正交信号幅值;1.2) Acquisition of the amplitude of the quadrature signal: the YV signal is amplified by the preamplifier interface 221 and the secondary amplifier 222 of the detection circuit to obtain YSE, the signal contains the quadrature signal amplitude information, and is connected to the quadrature demodulator The input terminal of device 232. After being processed by the quadrature demodulator 232, the double frequency signal containing the driving frequency and the quadrature signal amplitude are obtained, and then the quadrature signal amplitude is obtained by filtering out the double frequency signal through the processing of the quadrature low-pass filter 233;
1.3)所述的驱动位移放大器231采用高相位精度、低噪声的放大器;1.3) The drive displacement amplifier 231 adopts an amplifier with high phase accuracy and low noise;
1.4)所述的正交解调器232采用开关解调原理;1.4) The quadrature demodulator 232 adopts the switch demodulation principle;
1.5)所述的正交低通滤波器233采用二阶低通滤波器。1.5) The quadrature low-pass filter 233 uses a second-order low-pass filter.
所述步骤2)的详细步骤包括:The detailed steps of described step 2) include:
2.1)正交信号幅值与基准的比较:设定正交校正基准235为“0”,将所述步骤1)得到的正交信号幅值与正交校正基准235进行比较,当前者大于后者比较器234输出正值,反之输出幅值;2.1) Comparison of the quadrature signal amplitude and the benchmark: set the quadrature calibration benchmark 235 to be "0", compare the quadrature signal amplitude obtained in the step 1) with the quadrature calibration benchmark 235, the former is greater than the latter Or the comparator 234 outputs a positive value, otherwise the output amplitude;
2.2)正交校正控制信号的产生:正交校正控制器236主要采用PI控制形式且以积分为主,当比较器234输出正值时控制器236为负饱和,反之为正饱和。合理选择PI参数可调节控制器的灵敏度,使之适应控制需求,其控制信号为Vqc;2.2) Generation of the quadrature correction control signal: the quadrature correction controller 236 mainly adopts PI control form and mainly integrates. When the comparator 234 outputs a positive value, the controller 236 is negatively saturated, otherwise it is positively saturated. Reasonable selection of PI parameters can adjust the sensitivity of the controller to meet the control requirements, and its control signal is V qc ;
2.3)QS信号的获取:为了满足式(A12)和式(A13)描述的控制信号形式,在信号转换装置237中加入了反相器2372用于得到-Vqc,再与直流电压发生器2371叠加得到VqD+Vqc和VqD-Vqc。为了减小结构中信号对电路的干扰,加入第一缓冲器2373和第二缓冲器2374;2.3) Acquisition of QS signal: In order to satisfy the control signal forms described by formula (A12) and formula (A13), an inverter 2372 is added to the signal conversion device 237 to obtain -V qc , and then connected with a DC voltage generator 2371 The superposition results in V qD +V qc and V qD -V qc . In order to reduce the interference of the signal to the circuit in the structure, a first buffer 2373 and a second buffer 2374 are added;
2.4)通过调节直流装置2371中的直流信号VqD可使一定变化范围的Vqc信号调节正交校正刚度的范围更大。2.4) By adjusting the DC signal V qD in the DC device 2371 , the V qc signal in a certain range can adjust the quadrature correction stiffness to a wider range.
所述步骤3)的详细步骤包括:The detailed steps of described step 3) include:
3.1)静电负刚度的产生:根据式(A14)所述,不同的控制信号Vqc可产生对应的静电负刚度;3.1) Generation of electrostatic negative stiffness: according to formula (A14), different control signals V qc can generate corresponding electrostatic negative stiffness;
3.2)静电负刚度对耦合刚度的补偿:在初始状态,耦合刚度还未被校正并处于最大状态,回路中的正交信号幅值为最大,控制信号处于饱和(假设处于正饱和)。则负刚度kqyx最大,当kqyx+kyx<0时处于过校正状态,则正交信号相位反向,则控制器输出信号反转为负饱和,则kqyx减小,只有当kqyx=kyx时系统处于稳定,控制器输出值可反映耦合刚度的大小。3.2) Compensation of electrostatic negative stiffness for coupling stiffness: In the initial state, the coupling stiffness has not been corrected and is in the maximum state, the amplitude of the quadrature signal in the loop is the maximum, and the control signal is saturated (assumed to be in positive saturation). Then the negative stiffness k qyx is the largest, and when k qyx +k yx <0, it is in the over-correction state, then the phase of the quadrature signal is reversed, and the output signal of the controller is reversed to negative saturation, then k qyx decreases, only when k qyx = k yx when the system is stable, the controller output value can reflect the size of the coupling stiffness.
综合上述实施例,本发明以校正正交耦合刚度为目的,以简单、可靠的正交校正控制器配合正交校正负刚度产生机构达到了消除正交刚度的目的。系统可根据陀螺结构的不同耦合刚度系数自动调节控制量,可在现有加工技术基础上大大提高硅微机械陀螺仪的标度因数非线性,改善零偏漂移,减小常值误差,对硅微机械陀螺的工程化生产有重大的实际意义。Based on the above-mentioned embodiments, the present invention aims to correct the orthogonal coupling stiffness, and achieves the purpose of eliminating the orthogonal stiffness by using a simple and reliable quadrature correction controller in cooperation with the quadrature correction negative stiffness generating mechanism. The system can automatically adjust the control amount according to the different coupling stiffness coefficients of the gyro structure, which can greatly improve the nonlinearity of the scale factor of the silicon micromachined gyroscope on the basis of the existing processing technology, improve the zero offset drift, and reduce the constant value error. The engineering production of micromechanical gyroscope has great practical significance.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410830124.2A CN104535057B (en) | 2014-12-26 | 2014-12-26 | A kind of silicon micro mechanical linearly coupled formula gyro and its quadrature error rigidity bearing calibration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410830124.2A CN104535057B (en) | 2014-12-26 | 2014-12-26 | A kind of silicon micro mechanical linearly coupled formula gyro and its quadrature error rigidity bearing calibration |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104535057A true CN104535057A (en) | 2015-04-22 |
CN104535057B CN104535057B (en) | 2018-02-02 |
Family
ID=52850632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410830124.2A Expired - Fee Related CN104535057B (en) | 2014-12-26 | 2014-12-26 | A kind of silicon micro mechanical linearly coupled formula gyro and its quadrature error rigidity bearing calibration |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104535057B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106500732A (en) * | 2016-12-22 | 2017-03-15 | 四川纳杰微电子技术有限公司 | A kind of micro-mechanical gyroscope quadrature error collocation structure |
CN106597839A (en) * | 2016-12-08 | 2017-04-26 | 东南大学 | MEMS gyro automatic modal matching control device and method based on negative stiffness effect |
CN106918351A (en) * | 2017-03-24 | 2017-07-04 | 北方电子研究院安徽有限公司 | A kind of micro mechanical gyroscope automatic fault selftesting method based on quadrature error signal |
CN107238381A (en) * | 2017-05-23 | 2017-10-10 | 东南大学 | For mode vectors correlation state silicon micromechanical gyroscope bandwidth broadning less digit correction method |
CN107389090A (en) * | 2017-06-12 | 2017-11-24 | 中国航空工业集团公司西安飞行自动控制研究所 | A kind of mechanical non-orthogonal closed-loop policy for improving MEMS gyro anti-vibration characteristic |
CN107436144A (en) * | 2016-05-26 | 2017-12-05 | 中国科学院微电子研究所 | Circuit for automatically eliminating quadrature error of gyroscope |
CN109029498A (en) * | 2018-06-15 | 2018-12-18 | 东南大学 | A kind of digital TT&C system for ring silicon micro-gyroscope mode reciprocity of shaking |
CN109931959A (en) * | 2019-03-27 | 2019-06-25 | 河海大学常州校区 | Quadrature Error Correction Method of Silicon Microgyroscope |
CN110514189A (en) * | 2019-09-03 | 2019-11-29 | 深迪半导体(上海)有限公司 | The method of gyroscope and fusing amendment gyroscope quadrature error |
CN110514188A (en) * | 2019-09-03 | 2019-11-29 | 深迪半导体(上海)有限公司 | The method of gyroscope and process corrections gyroscope quadrature error |
CN110823249A (en) * | 2019-10-18 | 2020-02-21 | 中国航空工业集团公司西安飞行自动控制研究所 | Automatic mode matching control structure and method for silicon micro gyroscope |
CN111551162A (en) * | 2020-04-28 | 2020-08-18 | 东南大学 | System and method for demodulating phase angle compensation of normal-pressure packaged MEMS gyroscope |
CN112444240A (en) * | 2019-08-30 | 2021-03-05 | 北京大学 | Rigid spindle positioning and laser balance matching algorithm of silicon micro-ring resonator gyroscope |
CN113074756A (en) * | 2021-03-31 | 2021-07-06 | 中国人民解放军国防科技大学 | Error compensation method and device of rate integral type vibration gyro |
CN114370886A (en) * | 2021-11-23 | 2022-04-19 | 上海航天控制技术研究所 | Full-angle mode vibration gyro measurement error self-calibration method based on virtual rotation |
CN114838741A (en) * | 2022-07-04 | 2022-08-02 | 中国船舶重工集团公司第七0七研究所 | Error compensation method for excitation electrode of full-angle hemispherical resonator gyroscope |
CN118114506A (en) * | 2024-04-28 | 2024-05-31 | 广东工业大学 | MEMS gyroscope electric coupling and mechanical coupling characterization modeling method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101135560A (en) * | 2007-10-12 | 2008-03-05 | 南京理工大学 | Two-wire vibrating silicon microgyroscope |
RU2346239C1 (en) * | 2007-07-17 | 2009-02-10 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Электроприбор" | Method of specifyng coefficients of micromechanical gyroscope gimbal rigidity and damping crosses and micromechanical gyroscope with method implemented |
CN102353366A (en) * | 2011-06-29 | 2012-02-15 | 东南大学 | Closed loop detection apparatus for silicon micromachined/dynamically tuned hybrid gyroscope |
CN102759365A (en) * | 2012-07-12 | 2012-10-31 | 中国人民解放军国防科学技术大学 | Bias stability improving method and device for silicon micromechanical gyroscope |
CN103134484A (en) * | 2013-01-30 | 2013-06-05 | 中国科学院半导体研究所 | Circuit and method for regulating detecting end resonant frequency of capacitor type micro-electromechanical systems (MEMS) gyroscope |
-
2014
- 2014-12-26 CN CN201410830124.2A patent/CN104535057B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2346239C1 (en) * | 2007-07-17 | 2009-02-10 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Электроприбор" | Method of specifyng coefficients of micromechanical gyroscope gimbal rigidity and damping crosses and micromechanical gyroscope with method implemented |
CN101135560A (en) * | 2007-10-12 | 2008-03-05 | 南京理工大学 | Two-wire vibrating silicon microgyroscope |
CN102353366A (en) * | 2011-06-29 | 2012-02-15 | 东南大学 | Closed loop detection apparatus for silicon micromachined/dynamically tuned hybrid gyroscope |
CN102759365A (en) * | 2012-07-12 | 2012-10-31 | 中国人民解放军国防科学技术大学 | Bias stability improving method and device for silicon micromechanical gyroscope |
CN103134484A (en) * | 2013-01-30 | 2013-06-05 | 中国科学院半导体研究所 | Circuit and method for regulating detecting end resonant frequency of capacitor type micro-electromechanical systems (MEMS) gyroscope |
Non-Patent Citations (3)
Title |
---|
倪云舫等: "硅微陀螺正交误差直流校正设计与分析", 《中国惯性技术学报》 * |
杨波等: "利用负刚度效应调谐的硅调谐式陀螺仪", 《光学 精密工程》 * |
王攀等: "硅微陀螺仪闭环正交校正研究", 《传感技术学报》 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107436144B (en) * | 2016-05-26 | 2020-10-16 | 中科芯未来微电子科技成都有限公司 | Circuit for automatically eliminating quadrature error of gyroscope |
CN107436144A (en) * | 2016-05-26 | 2017-12-05 | 中国科学院微电子研究所 | Circuit for automatically eliminating quadrature error of gyroscope |
CN106597839B (en) * | 2016-12-08 | 2019-04-09 | 东南大学 | A MEMS gyroscope automatic mode matching control device and method based on negative stiffness effect |
CN106597839A (en) * | 2016-12-08 | 2017-04-26 | 东南大学 | MEMS gyro automatic modal matching control device and method based on negative stiffness effect |
CN106500732A (en) * | 2016-12-22 | 2017-03-15 | 四川纳杰微电子技术有限公司 | A kind of micro-mechanical gyroscope quadrature error collocation structure |
CN106918351A (en) * | 2017-03-24 | 2017-07-04 | 北方电子研究院安徽有限公司 | A kind of micro mechanical gyroscope automatic fault selftesting method based on quadrature error signal |
CN107238381A (en) * | 2017-05-23 | 2017-10-10 | 东南大学 | For mode vectors correlation state silicon micromechanical gyroscope bandwidth broadning less digit correction method |
CN107389090A (en) * | 2017-06-12 | 2017-11-24 | 中国航空工业集团公司西安飞行自动控制研究所 | A kind of mechanical non-orthogonal closed-loop policy for improving MEMS gyro anti-vibration characteristic |
CN109029498A (en) * | 2018-06-15 | 2018-12-18 | 东南大学 | A kind of digital TT&C system for ring silicon micro-gyroscope mode reciprocity of shaking |
CN109931959A (en) * | 2019-03-27 | 2019-06-25 | 河海大学常州校区 | Quadrature Error Correction Method of Silicon Microgyroscope |
CN112444240A (en) * | 2019-08-30 | 2021-03-05 | 北京大学 | Rigid spindle positioning and laser balance matching algorithm of silicon micro-ring resonator gyroscope |
CN110514189A (en) * | 2019-09-03 | 2019-11-29 | 深迪半导体(上海)有限公司 | The method of gyroscope and fusing amendment gyroscope quadrature error |
CN110514188A (en) * | 2019-09-03 | 2019-11-29 | 深迪半导体(上海)有限公司 | The method of gyroscope and process corrections gyroscope quadrature error |
CN110514189B (en) * | 2019-09-03 | 2020-12-01 | 深迪半导体(上海)有限公司 | Gyroscope and method for fusing and correcting quadrature error of gyroscope |
CN110823249A (en) * | 2019-10-18 | 2020-02-21 | 中国航空工业集团公司西安飞行自动控制研究所 | Automatic mode matching control structure and method for silicon micro gyroscope |
CN110823249B (en) * | 2019-10-18 | 2023-01-13 | 中国航空工业集团公司西安飞行自动控制研究所 | Automatic mode matching control structure and method for silicon micro gyroscope |
CN111551162A (en) * | 2020-04-28 | 2020-08-18 | 东南大学 | System and method for demodulating phase angle compensation of normal-pressure packaged MEMS gyroscope |
CN111551162B (en) * | 2020-04-28 | 2022-01-28 | 东南大学 | System and method for demodulating phase angle compensation of normal-pressure packaged MEMS gyroscope |
CN113074756A (en) * | 2021-03-31 | 2021-07-06 | 中国人民解放军国防科技大学 | Error compensation method and device of rate integral type vibration gyro |
CN114370886A (en) * | 2021-11-23 | 2022-04-19 | 上海航天控制技术研究所 | Full-angle mode vibration gyro measurement error self-calibration method based on virtual rotation |
CN114370886B (en) * | 2021-11-23 | 2024-01-02 | 上海航天控制技术研究所 | Full-angle mode vibration gyro measurement error self-calibration method based on virtual rotation |
CN114838741A (en) * | 2022-07-04 | 2022-08-02 | 中国船舶重工集团公司第七0七研究所 | Error compensation method for excitation electrode of full-angle hemispherical resonator gyroscope |
CN114838741B (en) * | 2022-07-04 | 2022-09-02 | 中国船舶重工集团公司第七0七研究所 | Error compensation method for excitation electrode of full-angle hemispherical resonator gyroscope |
CN118114506A (en) * | 2024-04-28 | 2024-05-31 | 广东工业大学 | MEMS gyroscope electric coupling and mechanical coupling characterization modeling method |
Also Published As
Publication number | Publication date |
---|---|
CN104535057B (en) | 2018-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104535057B (en) | A kind of silicon micro mechanical linearly coupled formula gyro and its quadrature error rigidity bearing calibration | |
CN108253952B (en) | A zero-bias self-calibration MEMS gyroscope and its zero-bias self-calibration method | |
CN102759365B (en) | Bias stability improving method and device for silicon micromechanical gyroscope | |
Minotti et al. | High scale-factor stability frequency-modulated MEMS gyroscope: 3-axis sensor and integrated electronics design | |
CN109061226B (en) | Design method of electrostatic negative stiffness type accelerometer | |
CN103162680B (en) | Based on silicon micromechanical gyroscope performance improvement method and the device of force-balance closed-loop control | |
CN102879655B (en) | Vibrating micro mechanical electric field sensor | |
CN104567849B (en) | A kind of silicon micro mechanical linearly coupled formula gyro and its bandwidth broadning method | |
US20060033588A1 (en) | Resonant micro-electro-mechanical system with analog driving | |
CN102607546B (en) | Orthogonal error processing method for micromechanical gyroscope and device | |
CN112284368A (en) | A fully differential high-precision X-axis silicon micro-gyroscope | |
CN108535511B (en) | FM accelerometer force balance detection method based on electrostatic negative stiffness frequency solution | |
CN101135563A (en) | A dual-mass tuned output silicon MEMS gyroscope | |
CN109813341B (en) | A silicon micromachined gyroscope driving force coupling error online self-calibration system | |
CN109029409B (en) | A parametric amplification method and device in a tunable gate structure micromachined gyroscope | |
CN105258689A (en) | Signal control processing system of digital gyroscope | |
CN101261126A (en) | Micro Solid Mode Gyroscope | |
CN106969785B (en) | Gyroscope self-calibration device and method | |
CN104596496A (en) | Self-adapted time lag feedback control micromechanical gyroscope system | |
CN101398305B (en) | Piezo-electricity micro-solid mode gyroscope with concentrated mass blocks | |
Trusov et al. | Gyroscope architecture with structurally forced anti-phase drive-mode and linearly coupled anti-phase sense-mode | |
CN113607150A (en) | Quartz gyro error suppression method of time division driving and orthogonal force feedback closed loop | |
CN105021176A (en) | Mems gyroscope measurement and control circuit | |
CN107979351A (en) | A kind of coupling pressure drag MEMS oscillator based on high-order synchronization | |
He et al. | A research of the bandwidth of a mode-matching MEMS vibratory gyroscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180202 |
|
CF01 | Termination of patent right due to non-payment of annual fee |