[go: up one dir, main page]

CN104498805B - Production method of high-carbon low-nitrogen steel for strand wires - Google Patents

Production method of high-carbon low-nitrogen steel for strand wires Download PDF

Info

Publication number
CN104498805B
CN104498805B CN201410838487.0A CN201410838487A CN104498805B CN 104498805 B CN104498805 B CN 104498805B CN 201410838487 A CN201410838487 A CN 201410838487A CN 104498805 B CN104498805 B CN 104498805B
Authority
CN
China
Prior art keywords
steel
slag
tundish
carbon
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410838487.0A
Other languages
Chinese (zh)
Other versions
CN104498805A (en
Inventor
孔祥涛
周德
孙齐松
王勇
张玮
李政嵩
周剑波
丁宁
程四华
张慧峰
王立峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shougang Group Co Ltd
Original Assignee
Shougang Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shougang Corp filed Critical Shougang Corp
Priority to CN201410838487.0A priority Critical patent/CN104498805B/en
Publication of CN104498805A publication Critical patent/CN104498805A/en
Application granted granted Critical
Publication of CN104498805B publication Critical patent/CN104498805B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

一种高碳低氮绞线用钢的生产方法,属于炼钢应用技术领域。转炉采用80吨小转炉双渣操作,终点碳按0.15%控制,出钢温度1610℃,挡渣出钢,控制转炉出钢过程中的下渣厚度在0~40mm之间;微氮增碳剂:N:0.005~0.025%,配碳6kg/吨钢,用Si‑Ca‑Ba脱氧,加入量2.0kg/吨钢,4.5kg/吨钢合成渣;LF80吨精炼炉造渣料使用合成渣;采用150mm×150mm小方坯连铸,结晶器采用380A、4Hz的电磁搅拌,采用高碱度大包覆盖剂,大包氩封、中间包全程吹氩、浸入式水口全保护浇铸。采用本发明生产的钢绞线用钢,钢中氮控制在40ppm以内,达到走真空脱气工艺、大方坯连铸两火成材工艺生产的钢绞线用钢质量水平,大幅度降低炼钢工序生产成本,增加企业产品竞争力,具有较大的经济效益和社会效益。

The invention discloses a production method of steel for high-carbon and low-nitrogen strands, which belongs to the technical field of steelmaking application. The converter adopts 80 tons of small converter double slag operation, the end point carbon is controlled by 0.15%, the tapping temperature is 1610°C, the slag is blocked and the steel is tapped, and the thickness of the slag during the tapping process of the converter is controlled between 0 and 40mm; micro-nitrogen carburizer : N: 0.005~0.025%, carbon 6kg/ton steel, Si-Ca-Ba deoxidation, adding amount 2.0kg/ton steel, 4.5kg/ton steel synthetic slag; LF80 tons refining furnace slag-making material uses synthetic slag; Continuous casting of 150mm×150mm billet is adopted, the crystallizer adopts 380A, 4Hz electromagnetic stirring, high alkalinity ladle covering agent, ladle argon sealing, tundish full argon blowing, submerged nozzle full protection casting. The steel for steel strands produced by the present invention is controlled within 40ppm of nitrogen in the steel, reaching the quality level of steel for steel strands produced by the vacuum degassing process and the bloom continuous casting two-fire process, and greatly reducing the steelmaking process Reduce production costs, increase the competitiveness of enterprise products, and have greater economic and social benefits.

Description

一种高碳低氮绞线用钢的生产方法A production method of steel for high-carbon and low-nitrogen stranded wire

技术领域technical field

本发明属于炼钢技术领域,特别是涉及一种高碳低氮绞线用钢的生产方法,采用小转炉(80吨)+LF(80吨)精炼炉+小方坯(150mm×150mm)连铸非真空流程工艺生产高碳低氮用钢,适用于转炉、LF炉、小方坯连铸非真空工艺生产高碳低氮绞线用钢(碳含量0.75~0.83%;氮含量:20~40ppm)的方法,应用于高等级建筑预应力混凝土领域。The invention belongs to the technical field of steelmaking, and in particular relates to a production method of steel for high-carbon and low-nitrogen strands. Casting non-vacuum process to produce high-carbon and low-nitrogen steel, suitable for converter, LF furnace, and billet continuous casting non-vacuum process to produce high-carbon and low-nitrogen strand steel (carbon content: 0.75-0.83%; nitrogen content: 20- 40ppm) method, applied to the field of high-grade building prestressed concrete.

背景技术Background technique

过共析钢(C>0.77%)中氮含量越高,位错间应力越大,钢的塑性指标越差,时间越长。特定条件下钢中的氮会降低材料的性能,它的存在降低了钢的韧性和塑形。使钢产生应变时效、时效沉淀和时效脆性。实践证明,钢中的氮控制在不同的水平,对钢的塑性和时效时间影响非常大。某厂(附图1)生产高碳钢SWRH82B所经历的氮的不同控制过程:钢中氮控制在55~90ppm之间,平均含量为65ppm。当天下线的面缩率保持在0~12.5%,盘条断口基本上为脆性断口或者心部仅有微小塑性变形的断口形貌;10天的面缩率为21.6%;15天的面缩率为28.9%;30天的面缩率为36.5%。The higher the nitrogen content in the hypereutectoid steel (C>0.77%), the greater the stress between dislocations, the worse the plasticity index of the steel, and the longer the time. Nitrogen in steel under certain conditions reduces the properties of the material, its presence reduces the toughness and plasticity of the steel. Make steel produce strain aging, aging precipitation and aging brittleness. Practice has proved that nitrogen in steel is controlled at different levels, which has a great influence on the plasticity and aging time of steel. Different control processes of nitrogen in the production of high carbon steel SWRH82B by a certain factory (attachment 1): the nitrogen in the steel is controlled between 55-90ppm, and the average content is 65ppm. The area reduction rate on the day of production was maintained at 0-12.5%, and the fracture of the wire rod was basically a brittle fracture or a fracture shape with only slight plastic deformation in the center; the area reduction rate was 21.6% in 10 days; The rate is 28.9%; the 30-day shrinkage rate is 36.5%.

钢中氮控制在45~70ppm之间,平均含量为55ppm。当天下线的面缩率保持在10~14.5%,盘条断口基本上心部仅有微小塑性变形的断口形貌;10天的面缩率为29.2%;15天的面缩率为32.3%;30天的面缩率为37.4%。钢中氮控制在32~42ppm之间,平均含量为38ppm。当天下线的面缩率为17.5%,正常断口为塑性变形断口形貌;5天的面缩率为32.7%;10天的面缩率为35.5%;11~30天的面缩率为波动在37.3~37.9%之间,面缩率波动很小。钢中氮控制在20~32ppm之间,平均含量为27ppm。当天下线的面缩率为26%,2天的面缩率为30%;5天的面缩率为35%;6~30天的面缩率波动在36~38%之间。Nitrogen in steel is controlled between 45-70ppm, with an average content of 55ppm. The area reduction rate on the day of production was maintained at 10-14.5%, and the fracture surface of the wire rod basically only had a small plastic deformation in the center; the area reduction rate was 29.2% on the 10th day; the area reduction rate was 32.3% on the 15th day ; The shrinkage rate in 30 days was 37.4%. Nitrogen in steel is controlled between 32-42ppm, with an average content of 38ppm. The surface shrinkage rate of the production line on the same day was 17.5%, and the normal fracture was a plastic deformation fracture shape; the area shrinkage rate of 5 days was 32.7%; the area shrinkage rate of 10 days was 35.5%; the area shrinkage rate fluctuated between 11 and 30 days Between 37.3 and 37.9%, the area shrinkage fluctuates very little. Nitrogen in steel is controlled between 20 and 32ppm, with an average content of 27ppm. The area reduction rate of the first day of production is 26%, the area reduction rate of 2 days is 30%, the area reduction rate of 5 days is 35%, and the area reduction rate of 6-30 days fluctuates between 36-38%.

总的来说,钢中氮含量越低,盘条的面缩率就越高,这也就是炼钢工艺总是追求钢中的氮含量控制越低越好的原因,这涉及到一个生产工序成本和经济效益问题。In general, the lower the nitrogen content in the steel, the higher the area reduction of the wire rod. This is why the steelmaking process always pursues the lower the better the nitrogen content in the steel. This involves a production process Questions of cost and economics.

目前,国际上生产高碳、低氮用钢(60Si2Mn、GCr15、SWRH77B和SWRH82B)的主要方式是:铁水预处理→转炉冶炼+LF(+RH)精炼→模铸(大断面连铸方坯)→二次开坯→高速线材控轧→斯太尔摩最强力冷却。这是目前日本、欧洲最广泛采用的方式,如瑞典的桑德维克厂铸坯断面为265mm×365mm,比利时ARBED铸机断面为260mm×260mm,德国的ROECHLJNG厂铸机断面为240mm×240mm,蒂森ruhrort厂铸机断面260mm×330mm,新日铁的铸机断面为220mm×220mm。宝钢采用模铸工艺,由模铸坯(大断面连铸坯)初轧出130mm×130mm~160mm×160mm的坯子。邢钢采用280mm×325mm矩形坯开坯轧成150mm×150mm,其工艺优点是:最大程度地满足了钢绞线用钢SWRH82B盘条的生产技术要求:钢水洁净度度好,脱氧去除夹杂物充分(如新日铁、宝钢产品:T[O]<20ppm;[N]<60ppm)、二次加热开坯避免了连铸坯的中心偏析和缩孔的危害、表面质量好、压缩比大。缺点是工序复杂、成材率低、生产成本高、能源消耗多污染大。At present, the main methods of producing high-carbon and low-nitrogen steels (60Si2Mn, GCr15, SWRH77B and SWRH82B) internationally are: molten iron pretreatment → converter smelting + LF (+RH) refining → die casting (large-section continuous casting billet) →Secondary billet opening→High-speed wire rod controlled rolling→Stelmo most powerful cooling. This is currently the most widely used method in Japan and Europe. For example, the cross-section of the billet in the Sandvik plant in Sweden is 265mm×365mm, the cross-section of the ARBED casting machine in Belgium is 260mm×260mm, and the cross-section of the casting machine in the ROECHLJNG factory in Germany is 240mm×240mm. The casting machine section of Thyssen Ruhrort Plant is 260mm×330mm, and the casting machine section of Nippon Steel is 220mm×220mm. Baosteel adopts die-casting technology, and the billets of 130mm×130mm~160mm×160mm are initially rolled out from the die-cast billets (large-section continuous casting billets). Xinggang adopts 280mm×325mm rectangular billet to be opened and rolled into 150mm×150mm. Its technological advantages are: it meets the production technical requirements of steel strand SWRH82B wire rod to the greatest extent; (such as products of Nippon Steel and Baosteel: T[O]<20ppm; [N]<60ppm), secondary heating billet opening avoids the harm of central segregation and shrinkage cavity of continuous casting billet, with good surface quality and large compression ratio. The disadvantages are complicated process, low finished product rate, high production cost, high energy consumption and heavy pollution.

为降低生产成本,国内各钢铁企业在冶炼钢绞线用钢SWRH82B时,普遍取消了真空脱气装置,钢中氮、氢气体含量较高。目前,国内SWRH82B钢中的氮正常水平在50~70ppm,同时在轧制过程中,由于强制变形、强制冷却和相变,刚下线的盘条中存在大量的残余应力(轧制应力、温度应力、相变应力)。In order to reduce production costs, domestic iron and steel enterprises have generally canceled the vacuum degassing device when smelting the steel SWRH82B for steel strands, and the nitrogen and hydrogen gas content in the steel is relatively high. At present, the normal level of nitrogen in domestic SWRH82B steel is 50-70ppm. At the same time, during the rolling process, due to forced deformation, forced cooling and phase transformation, there is a large amount of residual stress (rolling stress, temperature stress, phase transformation stress).

由于气体和残余应力的释放需要时间,这便导致SWRH82B盘条在用户使用前需要进行时效处理。氮在SWRH82B中主要危害表现为与钢中钛、铝等元素形成带棱角而性脆的夹杂物,在一定量的塑性变形后,内部首先出现微小的空洞,随着变形量的增加,空洞数量增加并相互聚合,最终导致材料断裂。与塑性夹杂物相比,氮化物形成脆性夹杂物更易成为高碳钢冷拔加工过程中延性破坏的起源。Since the release of gas and residual stress takes time, this leads to aging treatment of SWRH82B wire rod before use by users. The main hazard of nitrogen in SWRH82B is that it forms angular and brittle inclusions with titanium, aluminum and other elements in the steel. After a certain amount of plastic deformation, tiny cavities first appear inside. With the increase of deformation, the number of cavities increases. increase and aggregate with each other, eventually causing the material to fracture. Compared with plastic inclusions, brittle inclusions formed by nitrides are more likely to be the origin of ductile failure during cold drawing of high carbon steel.

多数生产高碳钢的企业受到现有冶炼装备的限制,造成SWRH77B、SWRH82B钢的化学成分不稳定,钢的纯净度低。特别是钢中氮含量波动范围从标准下限波动到上限、甚至超标,造成拉丝的拉拔及捻制过程中断丝率偏高,典型由于钢中氮含量偏高造成的断口形貌见附图2、3。这样,造成制品企业拉拔后产品强度、韧性等指标波动范围大,成品合格率低;另一方面容易在拉拔中造成脆断,严重时无法加工。Most enterprises producing high-carbon steel are limited by the existing smelting equipment, resulting in unstable chemical composition of SWRH77B and SWRH82B steel, and low purity of steel. In particular, the fluctuation range of nitrogen content in the steel fluctuates from the lower limit of the standard to the upper limit, or even exceeds the standard, resulting in a high rate of broken wires during the drawing and twisting process of the wire drawing. The typical fracture morphology caused by the high nitrogen content in the steel is shown in Figure 2 , 3. In this way, the index fluctuation range of product strength and toughness after drawing by the product enterprise is large, and the qualified rate of finished products is low; on the other hand, it is easy to cause brittle fracture during drawing, and it cannot be processed in severe cases.

发明内容Contents of the invention

本发明目的在于提供一种高碳低氮绞线用钢的生产方法,采用小转炉(80吨)+LF(80吨)精炼炉+小方坯(150mm×150mm)连铸非真空流程工艺生产高碳低氮用钢方法,适用于转炉、LF炉、小方坯连铸非真空工艺生产高碳、低氮钢绞线用钢(碳含量0.75~0.83%;氮含量20~40ppm);包括铁水→转炉冶炼→挡渣出钢→钢包配碳、脱氧及合金化→钢包渣改质→LF钢包精炼→喂Si-Ca线→钢包底吹氩软吹→150mm×150mm小方坯全保护浇铸→结晶器电磁搅拌→加热→控制轧制→控制冷却。应用于高等级建筑预应力混凝土领域。The purpose of the present invention is to provide a production method of steel for high-carbon and low-nitrogen stranded wire, which is produced by using a small converter (80 tons)+LF (80 tons) refining furnace+billet (150mm×150mm) continuous casting non-vacuum flow process The method for high-carbon and low-nitrogen steel is suitable for the production of high-carbon and low-nitrogen steel strands (carbon content 0.75-0.83%; nitrogen content 20-40ppm) in converters, LF furnaces, and billet continuous casting non-vacuum processes; including Molten iron→converter smelting→slag blocking and tapping→ladle carbonization, deoxidation and alloying→ladle slag modification→LF ladle refining→feeding Si-Ca line→ladle bottom blowing with argon and soft blowing→150mm×150mm billet full protection casting →Mold electromagnetic stirring→heating→controlled rolling→controlled cooling. It is used in the field of high-grade building prestressed concrete.

采用本发明生产的钢绞线用钢,钢中氮控制在40ppm以内,达到走真空脱气工艺、大方坯连铸两火成材工艺生产的钢绞线用钢质量水平,大幅度降低炼钢工序生产成本,增加企业产品竞争力,具有较大的经济效益和社会效益。The steel for steel strands produced by the present invention is controlled within 40ppm of nitrogen in the steel, reaching the quality level of steel for steel strands produced by the vacuum degassing process and the bloom continuous casting two-fire process, and greatly reducing the steelmaking process Reduce production costs, increase the competitiveness of enterprise products, and have greater economic and social benefits.

工艺中控制的技术参数如下:The technical parameters controlled in the process are as follows:

转炉采用80吨小转炉双渣操作,终点碳按0.15%控制,出钢温度1610~1620℃,挡渣出钢,控制转炉出钢过程中的下渣厚度在0~40mm之间;微氮增碳剂:N:0.005~0.025%,配碳6kg/吨钢,用Si-Ca-Ba脱氧,加入量2.0kg/吨钢,4.5kg/吨钢合成渣;The converter adopts 80 tons of small converter double slag operation, the carbon at the end point is controlled at 0.15%, the tapping temperature is 1610-1620°C, the slag is blocked and the steel is tapped, and the thickness of the slag during the tapping process of the converter is controlled between 0 and 40mm; Carbon agent: N: 0.005~0.025%, with carbon 6kg/ton steel, deoxidized with Si-Ca-Ba, adding amount 2.0kg/ton steel, 4.5kg/ton steel synthetic slag;

LF(80吨)精炼炉造渣料使用合成渣,活性石灰:(CaO+MgO):96.5~98%,SiO2:1~1.5%,CO2:1~2.0%,活性度(4mol/ml-HCl,温度40±1℃,10min)>350ml;铝钒土:Al2O3:75~97%,SiO2:0~10%;CaO:1~5%,MgO:2~9.5%,H2O:0~0.5%;萤石:CaF2:85.44~99%,SiO2:1~14%,S:0~0.5%,P:0~0.06%,总渣量按照1.0~1.2吨控制,铝钒土控制在80~100Kg以内,渣面加入Fe-Si粉和电石脱氧,在供电15min分钟内形成白渣及终渣TFe<1.0%,降低钢中a[o]、S含量;LF炉处理结束时喂入Ca-Si线1m/吨钢,喂线后软吹氩,流量40~60L/min,时间≥10min,以渣面微微涌动不裸露钢为宜,使钢中夹杂充分上浮,精炼处理毕目标a[o]:0~10ppm。LF (80 tons) refining furnace slagging material uses synthetic slag, active lime: (CaO+MgO): 96.5-98%, SiO 2 : 1-1.5%, CO 2 : 1-2.0%, activity (4mol/ml -HCl, temperature 40±1℃, 10min)>350ml; bauxite: Al 2 O 3 : 75-97%, SiO 2 : 0-10%; CaO: 1-5%, MgO: 2-9.5%, H 2 O: 0-0.5%; Fluorite: CaF 2 : 85.44-99%, SiO 2 : 1-14%, S: 0-0.5%, P: 0-0.06%, the total slag content is 1.0-1.2 tons Control, bauxite is controlled within 80-100Kg, Fe-Si powder and calcium carbide are added to the slag surface for deoxidation, white slag and final slag TFe<1.0% will be formed within 15 minutes of power supply, and the content of a[o] and S in the steel will be reduced; At the end of the LF furnace treatment, feed the Ca-Si wire 1m/ton of steel. After feeding the wire, blow argon softly, the flow rate is 40-60L/min, and the time is ≥10min. Floating fully, after refining, target a[o]: 0~10ppm.

采用150mm×150mm小方坯连铸,结晶器采用380A、4Hz的电磁搅拌,采用高碱度大包覆盖剂,大包氩封、中间包全程吹氩、浸入式水口全保护浇铸,浇注按照1.8~2.0m/min恒拉速控制,中间包钢水过热度控制在25~35℃,连铸二冷采用0.75L/Kg比水量进行浇注;使用Mg-Ca质干式料带挡墙中间包,全保护浇注,大包氩封保护套管氩气流量30~50L/min,未加套管时严禁向中包冲击区加入覆盖剂,开浇前中间包充氩,中间包选用高碱度覆盖剂;结晶器保护渣低粘度高碱度专用(粘度:1300℃,4~6泊;碱度(CaO/SiO2):0.80~1.1)高碳钢保护渣,结晶器水流量120吨/小时,二次冷却配水曲线选用0.75L/kg钢比水量;引锭头出结晶器后开启结晶器电磁搅拌,最后一炉塞棒停浇后停止电磁搅拌;保持高中包液面浇注,过程中液面700mm,保持液面稳定;执行最低中包液面不低于400mm进行浇注制度,开浇第一支坯和最后一支坯切头、尾按照2.0米长度进行切除。连浇停浇时,采用先停浇后摘套管。150mm×150mm billet continuous casting is adopted, the crystallizer adopts 380A, 4Hz electromagnetic stirring, high alkalinity ladle covering agent, ladle argon sealing, tundish full argon blowing, submerged nozzle full protection casting, pouring according to 1.8 ~2.0m/min constant casting speed control, tundish molten steel superheat controlled at 25~35℃, continuous casting secondary cooling with 0.75L/Kg specific water volume for pouring; use Mg-Ca dry material belt retaining wall tundish , full protection pouring, argon gas flow rate of 30-50L/min in the large bag argon-sealed protective casing, it is strictly forbidden to add covering agent to the impact area of the tundish when no casing is added, the tundish is filled with argon before pouring, and the tundish is selected with high alkalinity Covering agent; mold flux for low viscosity and high alkalinity (viscosity: 1300°C, 4-6 poise; alkalinity (CaO/SiO 2 ): 0.80-1.1) high-carbon steel flux, mold water flow rate 120 tons/ hour, the secondary cooling water distribution curve selects 0.75L/kg steel specific water; after the dummy head comes out of the crystallizer, the electromagnetic stirring of the crystallizer is turned on, and the electromagnetic stirring is stopped after the stopper of the last furnace is stopped; The liquid level is 700mm, and the liquid level is kept stable; the minimum tundish liquid level is not lower than 400mm for pouring system, and the head and tail of the first billet and the last billet are cut according to the length of 2.0 meters. When continuous pouring is stopped, the casing shall be removed after the pouring is stopped first.

转炉采用双渣操作,头批脱磷渣:耗氧量:820~900m3/N;半钢温度1380~1400℃,炉渣二元碱度R:2.0~2.5;脱碳渣:终点碳按0.10~0.20%控制,出钢温度1610~1630℃,炉渣终渣二元碱度R:3.0~3.5;挡渣出钢,控制渣厚在0~40mm之间。Converter adopts double slag operation, the first batch of dephosphorization slag: oxygen consumption: 820~900m 3 /N; semi-steel temperature 1380~1400℃, binary basicity R of slag: 2.0~2.5; decarburization slag: terminal carbon according to 0.10 ~0.20% control, tapping temperature 1610~1630℃, slag final slag binary basicity R: 3.0~3.5; slag blocking and tapping, control slag thickness between 0~40mm.

采用微氮增碳剂(N:0.005~0.025%)6kg/吨钢增碳,采用硅钙钡合金2.0kg/吨钢脱氧,4.5kg/吨钢合成渣;进LF精炼站控制氧活度8~18ppm,精炼终渣Fe+MnO≤1.0%;喂Ca-Si线1m/吨钢进行夹杂变性处理,软吹氩时间在10分钟。Use micro-nitrogen carburizer (N: 0.005~0.025%) 6kg/ton steel to increase carbon, use silicon-calcium-barium alloy 2.0kg/ton steel to deoxidize, 4.5kg/ton steel synthetic slag; enter LF refining station to control oxygen activity 8 ~18ppm, the final refining slag Fe+MnO≤1.0%; feed Ca-Si wire 1m/ton steel for inclusion denaturation treatment, soft argon blowing time is 10 minutes.

采用结晶器配电磁搅拌以降低铸坯中心碳偏析和缩孔,控制中间包钢水过热度25~35℃,采用1.80~2.0m/min拉速全保护浇铸,0.75kg/L二次比水量,钢中的氮含量区间为0.0020~0.0033%,平均为0.0027%,氮控制水平超过铁水预处理→转炉冶炼+LF(+RH)精炼→模铸(大断面连铸方坯)→二次开坯工艺流程的控制水平。The crystallizer is equipped with electromagnetic stirring to reduce carbon segregation and shrinkage cavity in the center of the slab, the superheat of molten steel in the tundish is controlled to 25-35°C, the casting speed is 1.80-2.0m/min for full protection casting, and the secondary specific water volume is 0.75kg/L , the nitrogen content in steel ranges from 0.0020 to 0.0033%, with an average of 0.0027%, and the nitrogen control level exceeds molten iron pretreatment → converter smelting + LF (+RH) refining → die casting (large-section continuous casting billet) → secondary opening The control level of billet process.

具体工艺路线:Specific process route:

铁水→80吨转炉冶炼(双渣操作)→挡渣出钢→钢包脱氧合金化→钢包渣改质→LF(80吨)钢包精炼(包括提温、合金微调、脱硫)→喂Si-Ca线→钢包吹软吹氩→150mm×150mm方坯连铸机全保护浇铸、结晶器电磁搅拌→铸坯检查→加热→控制轧制→控制冷却。Molten iron → 80 tons of converter smelting (double slag operation) → slag blocking and tapping → ladle deoxidation alloying → ladle slag modification → LF (80 tons) ladle refining (including temperature raising, alloy fine-tuning, desulfurization) → feeding Si-Ca line → Ladle soft blowing and argon blowing → 150mm×150mm billet continuous casting machine full protection casting, mold electromagnetic stirring → billet inspection → heating → controlled rolling → controlled cooling.

主要工艺措施:Main technological measures:

—当铁水Si:0.30~0.60%;S<0.040%,才能进行入炉冶炼。转炉采用双渣操作,头批脱磷渣:耗氧量按照880m3/N控制;半钢温度1360~1400℃区间控制,脱磷渣碱度按照2.0控制,吹炼时间按照240秒控制。终点碳按0.15%控制,P≤0.015%,S≤0.020%,终渣碱度(CaO/SiO2)>3.0。出钢温度按1610~1630℃控制。前期挡渣球配合后期挡渣锥出钢,控制钢包渣层厚度0~40mm。—When molten iron Si:0.30~0.60%; S<0.040%, it can be smelted into the furnace. The converter adopts double slag operation, the first batch of dephosphorization slag: the oxygen consumption is controlled according to 880m 3 /N; the semi-steel temperature is controlled within the range of 1360-1400℃, the basicity of dephosphorization slag is controlled according to 2.0, and the blowing time is controlled according to 240 seconds. The end carbon is controlled by 0.15%, P≤0.015%, S≤0.020%, and the final slag basicity (CaO/SiO 2 )>3.0. The tapping temperature is controlled at 1610-1630°C. The slag blocking ball in the early stage cooperates with the slag blocking cone in the later stage to control the thickness of the ladle slag layer from 0 to 40mm.

—炉前配碳采用6kg/吨钢微氮增碳剂(N:0.005~0.025%),其余部分采用普通增碳剂补齐;用Si-Ca-Ba脱氧,加入量2.0kg/t钢。采用Mn-Fe配锰,Si-Fe配硅,吸收率按照92%控制。- Use 6kg/ton steel micro-nitrogen recarburizer (N: 0.005~0.025%) for carbon distribution in front of the furnace, and use ordinary recarburizers for the rest; use Si-Ca-Ba for deoxidation, and the addition amount is 2.0kg/t steel. Using Mn-Fe with manganese and Si-Fe with silicon, the absorption rate is controlled according to 92%.

—出钢时间≥5min。采用挡渣出钢,钢包内转炉下渣渣厚≤40mm;出钢时加入二元合成渣4kg/吨钢合成渣;出钢过程全程底吹氩(氩气压力必须保证在1.0~1.1MPa之间)。- Tapping time ≥ 5min. The slag is used to tap the steel, and the thickness of the slag under the converter in the ladle is ≤40mm; the binary synthetic slag is added at 4kg/ton of steel synthetic slag when tapping; argon is blown at the bottom during the tapping process (the pressure of the argon gas must be guaranteed to be between 1.0-1.1MPa) between).

—钢水到精炼站后预吹氩气3分钟(流量300~400NL/min),并根据液面翻腾情况适当调整。造渣料使用合成渣,活性石灰(CaO+MgO:93~99%,活性度(4mol/ml-HCl,温度40±1℃,10min)>350ml),铝钒土(Al2O3:75~95%;SiO2:0~10%)),萤石(CaF2:90~98%;SiO2:0~9%),渣量按1.2吨控制(铝钒土少加控制在100Kg以内),渣面加入Fe-Si粉和电石脱氧,争取在供电15min分钟内形成白渣及终渣TFe<1.0%,尽可能降低钢中ao、S含量。确保快速化渣,各种渣料要尽早加入。最后一批合金调整完毕吹氩搅拌≥5min(流量300~400NL/min),以保证合金成分均匀。— Pre-blow argon for 3 minutes after the molten steel arrives at the refining station (flow rate 300-400NL/min), and make appropriate adjustments according to the churning of the liquid level. The slagging material uses synthetic slag, active lime (CaO+MgO: 93-99%, activity (4mol/ml-HCl, temperature 40±1°C, 10min)>350ml), bauxite (Al 2 O 3 : 75 ~95%; SiO 2 : 0~10%)), fluorite (CaF 2 : 90~98%; SiO 2 : 0~9%), the amount of slag should be controlled at 1.2 tons (less addition of bauxite should be controlled within 100Kg ), add Fe-Si powder and calcium carbide deoxidation to the slag surface, strive to form white slag and final slag TFe<1.0% within 15 minutes of power supply, and reduce the content of a o and S in the steel as much as possible. To ensure rapid slag melting, various slag materials should be added as soon as possible. The last batch of alloys is adjusted and stirred with argon blowing for ≥5min (flow rate 300-400NL/min) to ensure uniform alloy composition.

—LF炉处理结束时喂入Ca-Si线1m/吨钢炉,进行夹杂物变形处理,喂线后软吹氩(流量40~60L/min)时间必保≥10min,以渣面微微涌动不裸露钢为宜,使钢中夹杂充分上浮。精炼处理毕目标a[o]:0~10ppm。—At the end of the LF furnace treatment, feed the Ca-Si wire 1m/ton steel furnace to carry out inclusion deformation treatment. After feeding the wire, the time of soft argon blowing (flow rate 40-60L/min) must be guaranteed to be ≥ 10min, and the slag surface will slightly surge It is advisable not to expose the steel, so that the inclusions in the steel can fully float up. Target a[o] after refining treatment: 0~10ppm.

—150mm×150mm小方坯连铸,结晶器采用380A、4Hz的电磁搅拌,采用高碱度大包覆盖剂,大包氩封、中间包全程吹氩、浸入式水口全保护浇铸,浇注按照1.80m/min拉速控制,中间包钢水过热度25~35℃控制,连铸二冷采用0.75L/Kg比水量进行浇注。—150mm×150mm billet continuous casting, the crystallizer adopts 380A, 4Hz electromagnetic stirring, high alkalinity ladle covering agent, ladle argon seal, tundish full argon blowing, submerged nozzle full protection casting, pouring according to 1.80 The casting speed is controlled by m/min, the superheat of molten steel in the tundish is controlled at 25-35°C, and the secondary cooling of continuous casting is poured with a specific water volume of 0.75L/Kg.

—大包采用带Ar封长水口,保护浇注。使用Mg-Ca质干式料带挡墙中间包,全保护浇注,大包保护套管氩气流量30~50L/min,未加套管时严禁向中包冲击区加入覆盖剂。开浇前中包充氩。中间包选用高碱度覆盖剂;结晶器保护渣选用低粘度、保温性能好的高碳钢专用保护渣,避免结晶器卷渣。—The ladle adopts long nozzle with Ar seal to protect pouring. Use Mg-Ca dry-type materials with retaining wall tundish, fully protected pouring, argon gas flow rate of 30-50L/min in the large ladle protective casing, and it is strictly forbidden to add covering agent to the impact area of the tundish when no casing is added. The tundish is filled with argon before pouring. The tundish is made of high-alkalinity covering agent; the mold powder is used for high-carbon steel with low viscosity and good thermal insulation performance, so as to avoid mold slag entrainment.

—结晶器水流量120~130m3/h,二次冷却配水曲线选用0.75L/kg钢比水量。引锭头出结晶器后开启结晶器电磁搅拌,最后一炉塞棒停浇后停止电磁搅拌。结晶器电磁搅拌参数:380A,4Hz。保持高中包液面浇注,过程中液面700mm,保持液面稳定。严格执行最低中包液面不低于400mm。开浇第一支坯和最后一支坯切头、尾按照2.0米长度。连浇停浇时采用先停浇后摘套管,严禁裸浇。—The crystallizer water flow rate is 120-130m 3 /h, and the secondary cooling water distribution curve adopts 0.75L/kg steel specific water volume. Turn on the electromagnetic stirring of the mold after the dummy head exits the crystallizer, and stop the electromagnetic stirring after the stopper of the last furnace stops pouring. Crystallizer electromagnetic stirring parameters: 380A, 4Hz. Keep pouring at the liquid level of the high and middle ladle, and keep the liquid level stable at 700mm during the process. Strictly implement the minimum tundish liquid level not lower than 400mm. Cut the head and tail of the first billet and the last billet according to the length of 2.0 meters. When continuous pouring is stopped, the casing should be stopped first and then the casing should be removed. Bare pouring is strictly prohibited.

附图说明Description of drawings

图1为某厂不同阶段SWRH82B时效数据。Figure 1 shows the aging data of SWRH82B in different stages of a factory.

图2为拉丝劈裂照片。Figure 2 is a photo of the wire drawing and splitting.

图3为拉丝横裂照片图。Figure 3 is a photograph of wire drawing transverse cracks.

具体实施方式detailed description

本发明可在钢铁联合企业实施,下面是首钢长治钢铁有限公司炼钢厂,采用该发明生产的实例。The present invention can be implemented in iron and steel complexes, and the following is the steelmaking plant of Shougang Changzhi Iron and Steel Co., Ltd., which adopts the example produced by the invention.

工艺路线为:优质铁水→LD(80吨)转炉冶炼→转炉挡渣出钢→钢包脱氧合金化→LF(80吨)钢包精炼炉→喂Si-Ca线→钢包底吹氩软吹→150mm×150mm方坯连铸机→铸坯。The process route is: high-quality molten iron → LD (80 tons) converter smelting → converter slag blocking and tapping → ladle deoxidation alloying → LF (80 tons) ladle refining furnace → feeding Si-Ca line → ladle bottom blowing argon soft blowing → 150mm× 150mm billet continuous casting machine → billet.

LD转炉冶炼主要工艺参数:Main process parameters of LD converter smelting:

砌砖后容积:58.5m3;容积比[V/T]:0.83;出钢口直径[D内]:150mm;出钢口夹角:10°喷头类型:四孔拉瓦尔;喉口直径:31.86mm;出口直径:41.05mm;喷孔与氧枪中心线夹角:12°40′;马赫数:1.98;氧气工作压力为0.75~0.95MPa;氧气流量:13000~16000m3/h;钢包材质:采用铝镁碳砖和尖晶石浇注料。Volume after bricklaying: 58.5m3; Volume ratio [V/T]: 0.83; Tapping hole diameter [D]: 150mm; Tapping hole angle: 10° Nozzle type: Four-hole Laval; Throat diameter: 31.86 mm; outlet diameter: 41.05mm; angle between the nozzle hole and the center line of the oxygen lance: 12°40′; Mach number: 1.98; oxygen working pressure: 0.75-0.95MPa; Alumina-magnesia-carbon bricks and spinel castables.

LF钢包精炼炉主要工艺参数:Main process parameters of LF ladle refining furnace:

采用一块底吹透气砖,实行底吹精炼(全部使用氩气)。钢包烘烤:采用蓄热式烘烤装置(使用焦炉煤气)。精炼系统:炉后在线吹氩和喂线;80吨双工位LF钢包精炼炉,加热能力3~5℃/min,功率14MVA。A bottom-blowing air brick is used to carry out bottom-blowing refining (all use argon). Ladle baking: adopt regenerative baking device (using coke oven gas). Refining system: online argon blowing and wire feeding behind the furnace; 80-ton double-station LF ladle refining furnace with a heating capacity of 3-5°C/min and a power of 14MVA.

连铸主要工艺参数:Main process parameters of continuous casting:

5机5流小方坯连铸机基本弧半径:R10m;浇注断面:150mm×150mm;定尺长度:3.8~12m。断面:150mm×150mm。拉速:1.5~3m/min,平均2.5m/min。结晶器:铜管长度1000mm。结晶器振动型式:正弦振动。频率:60~240次/分。振幅±5mm。液面自动控制方式:Ce137放射源。检测精度:±3mm。结晶器水流量:160m3/h。电磁搅拌规格参数:电磁搅拌器额定电流:350A;额定电压:380V。视在功率:230KVA有功功率:40KW(max)频率:2~8Hz(6Hz)。绝缘等级:H级。结晶器水流量:150m3/h。红外定尺控制系统:检测定尺长度9~12m;引锭杆形式:挠性链式引锭杆。Basic arc radius of 5-machine 5-strand billet continuous casting machine: R10m; pouring section: 150mm×150mm; fixed length: 3.8-12m. Section: 150mm×150mm. Pulling speed: 1.5~3m/min, average 2.5m/min. Crystallizer: copper tube length 1000mm. Crystallizer vibration type: sinusoidal vibration. Frequency: 60~240 times/min. Amplitude ±5mm. Liquid level automatic control method: Ce137 radioactive source. Detection accuracy: ±3mm. Crystallizer water flow: 160m3/h. Electromagnetic stirring specifications: electromagnetic stirrer rated current: 350A; rated voltage: 380V. Apparent power: 230KVA Active power: 40KW(max) Frequency: 2~8Hz(6Hz). Insulation class: H class. Crystallizer water flow: 150m3/h. Infrared sizing control system: detection sizing length 9 ~ 12m; dummy rod form: flexible chain dummy rod.

实施例1:炉号6A201382Embodiment 1: furnace number 6A201382

转炉冶炼:Converter smelting:

铁水条件C:4.25%,Si:0.56%,Mn:0.51%,P:0.12%,S:0.022%,温度:1318℃。Hot metal condition C: 4.25%, Si: 0.56%, Mn: 0.51%, P: 0.12%, S: 0.022%, temperature: 1318°C.

炉料结构:铁水加入量68.4吨,废钢4.4吨。Charge structure: 68.4 tons of molten iron, 4.4 tons of steel scrap.

头批脱磷渣消耗:石灰850kg,轻烧白云石1099kg;奥矿1900kg;耗氧量880m3/N;吹炼时间:238秒;半钢温度:1320℃。半钢渣样:CaO:42.09%,SiO2:21.46%,TFe:11.71%,R:1.96。转炉终点:C:0.14%,P:0.014%,S:0.018%。终点渣样:CaO:46.43%,SiO2:13.44%,TFe:17.82%,R:3.46。出钢温度1610℃。出钢时间5分21秒,渣后34mm。脱氧合金化:微氮增碳剂6kg/吨钢;硅钙钡2kg/吨钢;锰铁450kg,硅铁150kg,碳素铬铁110kg。Consumption of the first batch of dephosphorization slag: lime 850kg, light-burned dolomite 1099kg; Austrian mine 1900kg; oxygen consumption 880m 3 /N; blowing time: 238 seconds; semi-steel temperature: 1320℃. Semi-steel slag sample: CaO: 42.09%, SiO 2 : 21.46%, TFe: 11.71%, R: 1.96. BOF endpoint: C: 0.14%, P: 0.014%, S: 0.018%. Final slag sample: CaO: 46.43%, SiO 2 : 13.44%, TFe: 17.82%, R: 3.46. The tapping temperature is 1610°C. The tapping time is 5 minutes and 21 seconds, and the slag back is 34mm. Deoxidation alloying: micro-nitrogen carburizer 6kg/ton steel; silicon calcium barium 2kg/ton steel; ferromanganese 450kg, ferrosilicon 150kg, carbon ferrochrome 110kg.

LF钢包精炼炉:LF ladle refining furnace:

石灰910kg;精炼渣112kg;埋弧渣145kg;萤石180kg;铝矾土100kg;硅铁粉100kg;硅钙线1m/吨钢;软吹氩流量65NL/min,时间12分30秒;精炼结束出站a[o]:9.8ppm。910kg of lime; 112kg of refining slag; 145kg of submerged arc slag; 180kg of fluorite; 100kg of bauxite; 100kg of ferrosilicon powder; Outbound a[o]: 9.8ppm.

连铸工艺:Continuous casting process:

结晶器电磁搅拌参数:380A、4Hz;结晶器水流量120t/h,二次冷却选用0.75L/kg比水量;中包钢水过热度25℃;拉速1.80m/min。Crystallizer electromagnetic stirring parameters: 380A, 4Hz; crystallizer water flow rate 120t/h, 0.75L/kg specific water volume for secondary cooling; tundish molten steel superheat 25°C; casting speed 1.80m/min.

SWRH82B各工位碳、氮含量变化:转炉(C:0.15%;N:0.0016%)→进LF炉(C:0.65%;N:0.0017%)→出LF炉(C:0.75%;N:0.002%)→中包(C:0.76%;N:0.0021%)→轧材(C:0.76%;N:0.0022%)。Changes of carbon and nitrogen content at each station of SWRH82B: Converter (C: 0.15%; N: 0.0016%) → into LF furnace (C: 0.65%; N: 0.0017%) → out of LF furnace (C: 0.75%; N: 0.002 %) → tundish (C: 0.76%; N: 0.0021%) → rolled material (C: 0.76%; N: 0.0022%).

实施例2:炉号6A201383Embodiment 2: furnace number 6A201383

转炉冶炼:Converter smelting:

铁水条件C:4.15%,Si:0.43%,Mn:0.36%,P:0.129%,S:0.011%,温度:1288℃。Hot metal condition C: 4.15%, Si: 0.43%, Mn: 0.36%, P: 0.129%, S: 0.011%, temperature: 1288°C.

炉料结构:铁水加入量69.1吨,废钢5.1吨。Charge structure: 69.1 tons of molten iron, 5.1 tons of steel scrap.

头批脱磷渣消耗:石灰1800kg,轻烧白云石475kg;奥矿807kg;耗氧量900m3/N;吹炼时间:242秒;半钢温度:1399℃。半钢渣样:CaO:47.50%,SiO2:20.41%,TFe:11.05%,R:2.31。转炉终点:C:0.16%,P:0.012%,S:0.015%。终点渣样:CaO:52.53%,SiO2:14.94%,TFe:13.42%,R:3.52。出钢温度1612℃。出钢时间5分25秒,渣后30mm。脱氧合金化:微氮增碳剂6kg/吨钢;硅钙钡2kg/吨钢;锰铁440kg,硅铁155kg,碳素铬铁115kg。Consumption of the first batch of dephosphorization slag: lime 1800kg, lightly burned dolomite 475kg; Austrian ore 807kg; oxygen consumption 900m 3 /N; blowing time: 242 seconds; semi-steel temperature: 1399℃. Semi-steel slag sample: CaO: 47.50%, SiO 2 : 20.41%, TFe: 11.05%, R: 2.31. Converter endpoint: C: 0.16%, P: 0.012%, S: 0.015%. Final slag sample: CaO: 52.53%, SiO 2 : 14.94%, TFe: 13.42%, R: 3.52. The tapping temperature is 1612°C. The tapping time is 5 minutes and 25 seconds, and the slag is 30mm behind. Deoxidation alloying: Micro-nitrogen carburizer 6kg/ton of steel; silicon calcium barium 2kg/ton of steel; ferromanganese 440kg, ferrosilicon 155kg, carbon ferrochrome 115kg.

LF钢包精炼炉:LF ladle refining furnace:

石灰912kg;精炼渣110kg;埋弧渣135kg;萤石150kg;铝矾土110kg;硅铁粉90kg;硅钙线1m/吨钢;软吹氩流量60NL/min,时间11分45秒;精炼结束出站a[o]:7.8ppm。912kg of lime; 110kg of refining slag; 135kg of submerged arc slag; 150kg of fluorite; 110kg of bauxite; 90kg of ferrosilicon powder; Outbound a[o]: 7.8ppm.

连铸工艺:Continuous casting process:

结晶器电磁搅拌参数:380A、4Hz;结晶器水流量120t/h,二次冷却选用0.75L/kg比水量;中包钢水过热度29℃;拉速1.82m/min。Crystallizer electromagnetic stirring parameters: 380A, 4Hz; crystallizer water flow rate 120t/h, 0.75L/kg specific water volume for secondary cooling; tundish molten steel superheat 29°C; casting speed 1.82m/min.

SWRH82B各工位氮含量变化:转炉(C:0.16%;N:0.0018%)→进LF炉(C:0.67%;N:0.0020%)→出LF炉(C:0.77%;N:0.0022%)→中包(C:0.77%;N:0.0016%)→轧材(C:0.77%;N:0.0025%)。Changes of nitrogen content at each station of SWRH82B: converter (C: 0.16%; N: 0.0018%) → into LF furnace (C: 0.67%; N: 0.0020%) → out of LF furnace (C: 0.77%; N: 0.0022%) → Tundish (C: 0.77%; N: 0.0016%) → Rolled material (C: 0.77%; N: 0.0025%).

实施例3:炉号6A201384Embodiment 3: furnace number 6A201384

转炉冶炼:Converter smelting:

铁水条件C:4.23%,Si:0.56%,Mn:0.51%,P:0.12%,S:0.025%,温度:1320℃。Hot metal condition C: 4.23%, Si: 0.56%, Mn: 0.51%, P: 0.12%, S: 0.025%, temperature: 1320°C.

炉料结构:铁水加入量68.4吨,废钢4.4吨。Charge structure: 68.4 tons of molten iron, 4.4 tons of steel scrap.

头批脱磷渣消耗:石灰850kg,轻烧白云石1099kg;奥矿1900kg;耗氧量880m3/N;吹炼时间:238秒;半钢温度:1320℃。半钢渣样:CaO:44.66%,SiO2:20.16%,TFe:13.36%,R:2.22。转炉终点:C:0.15%,P:0.012%,S:0.018%。终点渣样:CaO:48.78%,SiO2:15.22%,TFe:13.01%,R:3.21。出钢温度1615℃。出钢时间5分09秒,渣后39mm。脱氧合金化:微氮增碳剂6kg/吨钢;硅钙钡2kg/吨钢;锰铁450kg,硅铁150kg,碳素铬铁110kg。Consumption of the first batch of dephosphorization slag: lime 850kg, light-burned dolomite 1099kg; Austrian mine 1900kg; oxygen consumption 880m 3 /N; blowing time: 238 seconds; semi-steel temperature: 1320℃. Semi-steel slag sample: CaO: 44.66%, SiO 2 : 20.16%, TFe: 13.36%, R: 2.22. Converter endpoint: C: 0.15%, P: 0.012%, S: 0.018%. Final slag sample: CaO: 48.78%, SiO 2 : 15.22%, TFe: 13.01%, R: 3.21. The tapping temperature is 1615°C. The tapping time is 5 minutes and 09 seconds, and the slag back is 39mm. Deoxidation alloying: micro-nitrogen carburizer 6kg/ton steel; silicon calcium barium 2kg/ton steel; ferromanganese 450kg, ferrosilicon 150kg, carbon ferrochrome 110kg.

LF钢包精炼炉:LF ladle refining furnace:

石灰880kg;精炼渣1102kg;埋弧渣150kg;萤石170kg;铝矾土110kg;硅铁粉120kg;硅钙线1m/吨钢;软吹氩流量66NL/min,时间11分23秒。880kg of lime; 1102kg of refining slag; 150kg of submerged arc slag; 170kg of fluorite; 110kg of bauxite; 120kg of ferrosilicon powder;

连铸工艺:Continuous casting process:

结晶器电磁搅拌参数:380A、4Hz;结晶器水流量120t/h,二次冷却选用0.75L/kg比水量;中包钢水过热度25℃;拉速1.81m/min。Crystallizer electromagnetic stirring parameters: 380A, 4Hz; crystallizer water flow rate 120t/h, 0.75L/kg specific water volume for secondary cooling; tundish molten steel superheat 25°C; casting speed 1.81m/min.

SWRH82B各工位氮含量变化:转炉(C:0.15%;N:0.0022%)→进LF炉(C:0.70%;N:0.0025%)→出LF炉(C:0.78%;N:0.0026%)→中包(C:0.80%;N:0.0028%)→轧材(C:0.81%;N:0.0030%)。Changes of nitrogen content at each station of SWRH82B: Converter (C: 0.15%; N: 0.0022%) → into LF furnace (C: 0.70%; N: 0.0025%) → out of LF furnace (C: 0.78%; N: 0.0026%) → Tundish (C: 0.80%; N: 0.0028%) → Rolled material (C: 0.81%; N: 0.0030%).

实施例4:炉号6A201385Embodiment 4: furnace number 6A201385

转炉冶炼:Converter smelting:

铁水条件C:4.2%,Si:0.56%,Mn:0.51%,P:0.12%,S:0.022%,温度:1318℃。Hot metal condition C: 4.2%, Si: 0.56%, Mn: 0.51%, P: 0.12%, S: 0.022%, temperature: 1318°C.

炉料结构:铁水加入量68.4吨,废钢4.4吨。Charge structure: 68.4 tons of molten iron, 4.4 tons of steel scrap.

头批脱磷渣消耗:石灰850kg,轻烧白云石1099kg;奥矿1810kg;耗氧量870m3/N;吹炼时间:238秒;半钢温度:1320℃。半钢渣样:CaO:42.09%,SiO2:21.46%,TFe:11.71%,R:1.96。转炉终点:C:0.14%,P:0.014%,S:0.018%。终点渣样:CaO:46.43%,SiO2:13.44%,TFe:17.82%,R:3.46。出钢温度1618℃。出钢时间5分21秒,渣后34mm。脱氧合金化:微氮增碳剂6kg/吨钢;硅钙钡2kg/吨钢;锰铁450kg,硅铁150kg,碳素铬铁110kg。Consumption of the first batch of dephosphorization slag: lime 850kg, light-burned dolomite 1099kg; Austrian ore 1810kg; oxygen consumption 870m 3 /N; blowing time: 238 seconds; semi-steel temperature: 1320℃. Semi-steel slag sample: CaO: 42.09%, SiO 2 : 21.46%, TFe: 11.71%, R: 1.96. BOF endpoint: C: 0.14%, P: 0.014%, S: 0.018%. Final slag sample: CaO: 46.43%, SiO 2 : 13.44%, TFe: 17.82%, R: 3.46. The tapping temperature is 1618°C. The tapping time is 5 minutes and 21 seconds, and the slag back is 34mm. Deoxidation alloying: micro-nitrogen carburizer 6kg/ton steel; silicon calcium barium 2kg/ton steel; ferromanganese 450kg, ferrosilicon 150kg, carbon ferrochrome 110kg.

LF钢包精炼炉:LF ladle refining furnace:

石灰910kg;精炼渣112kg;埋弧渣145kg;萤石180kg;铝矾土100kg;硅铁粉100kg;硅钙线1m/吨钢;软吹氩流量65NL/min,时间12分30秒。910kg of lime; 112kg of refining slag; 145kg of submerged arc slag; 180kg of fluorite; 100kg of bauxite; 100kg of ferrosilicon powder;

连铸工艺:Continuous casting process:

结晶器电磁搅拌参数:380A、4Hz;结晶器水流量120t/h,二次冷却选用0.75L/kg比水量;中包钢水过热度35℃;拉速1.85m/min。Crystallizer electromagnetic stirring parameters: 380A, 4Hz; crystallizer water flow rate 120t/h, 0.75L/kg specific water volume for secondary cooling; tundish molten steel superheat 35°C; casting speed 1.85m/min.

SWRH82B各工位氮含量变化:转炉(C:0.14%;N:0.0023%)→进LF炉(C:0.74%;N:0.0026%)→出LF炉(C:0.81%;N:0.0028%)→中包(C:0.83%;N:0.0030%)→轧材(C:0.83%;N:0.0033%)。Changes of nitrogen content at each station of SWRH82B: Converter (C: 0.14%; N: 0.0023%) → into LF furnace (C: 0.74%; N: 0.0026%) → out of LF furnace (C: 0.81%; N: 0.0028%) → Tundish (C: 0.83%; N: 0.0030%) → Rolled material (C: 0.83%; N: 0.0033%).

Claims (1)

1.一种生产高碳低氮绞线用钢的方法,工艺包括:铁水脱硫扒渣→转炉冶炼→挡渣出钢→钢包脱氧及合金化→钢包渣改质→LF钢包精炼→喂Si-Ca线→钢包底吹氩软吹→150mm×150mm小方坯全保护浇铸→结晶器电磁搅拌;其特征在于,工艺中控制的技术参数如下:1. A method for producing steel for high-carbon and low-nitrogen strands, the process comprising: molten iron desulfurization and slag removal → converter smelting → slag blocking and tapping → ladle deoxidation and alloying → ladle slag modification → LF ladle refining → feeding Si- Ca line → ladle bottom blowing argon soft blowing → 150mm×150mm billet full protection casting → crystallizer electromagnetic stirring; the characteristic is that the technical parameters controlled in the process are as follows: 转炉采用80吨小转炉双渣操作,终点碳按0.15%控制,出钢温度1610~1620℃,挡渣出钢,控制转炉出钢过程中的下渣厚度在0~40mm之间;微氮增碳剂:N:0.005~0.025%,配碳6kg/吨钢,用Si-Ca-Ba脱氧,加入量2.0kg/吨钢,4.5kg/吨钢合成渣;The converter adopts 80 tons of small converter double slag operation, the carbon at the end point is controlled at 0.15%, the tapping temperature is 1610-1620°C, the slag is blocked and the steel is tapped, and the thickness of the slag during the tapping process of the converter is controlled between 0 and 40mm; Carbon agent: N: 0.005~0.025%, with carbon 6kg/ton steel, deoxidized with Si-Ca-Ba, adding amount 2.0kg/ton steel, 4.5kg/ton steel synthetic slag; 80吨LF精炼炉造渣料使用合成渣,活性石灰:CaO+MgO:96.5~98%,SiO2:1~1.5%,CO2:1~2.0%,活性度>350ml,活度的测试条件:4mol/ml-HCl,温度40±1℃,10min;铝钒土:Al2O3:75~97%,SiO2:0~10%,CaO:1~5%,MgO:2~9.5%,H2O:0~0.5%;萤石:CaF2:85.44~99%,SiO2:1~14%,S:0~0.5%,P:0~0.06%,渣量按1~1.2吨控制,铝钒土控制在80~100Kg,渣面加入Fe-Si粉和电石脱氧,在供电15分钟内形成白渣及终渣TFe<1.0%,降低钢中a[o]、S含量;LF炉处理结束时喂入Ca-Si线1m/吨钢,喂线后软吹氩,流量40~60L/min,时间≥10min,以渣面微微涌动不裸露钢为宜,使钢中夹杂充分上浮,精炼处理完毕目标a[o]:0~10ppm;80 tons of LF refining furnace slagging material uses synthetic slag, active lime: CaO+MgO: 96.5-98%, SiO 2 : 1-1.5%, CO 2 : 1-2.0%, activity > 350ml, activity test conditions : 4mol/ml-HCl, temperature 40±1℃, 10min; bauxite: Al 2 O 3 : 75-97%, SiO 2 : 0-10%, CaO: 1-5%, MgO: 2-9.5% , H 2 O: 0~0.5%; Fluorite: CaF 2 : 85.44~99%, SiO 2 : 1~14%, S: 0~0.5%, P: 0~0.06%, the amount of slag is 1~1.2 tons Control, bauxite is controlled at 80-100Kg, Fe-Si powder and calcium carbide are added to the slag surface to deoxidize, white slag and final slag TFe<1.0% will be formed within 15 minutes of power supply, and the content of a [o] and S in the steel will be reduced; LF Feed Ca-Si wire 1m/ton of steel at the end of furnace treatment, blow argon softly after feeding the wire, flow rate 40-60L/min, time ≥ 10min, it is advisable that the slag surface is slightly surging and the steel is not exposed, so that the inclusions in the steel are fully Float up, after refining treatment target a [o] : 0~10ppm; 采用150mm×150mm小方坯连铸,结晶器采用380A、4Hz的电磁搅拌,采用高碱度大包覆盖剂,大包氩封、中间包全程吹氩、浸入式水口全保护浇铸,浇注按照1.8~2.0m/min拉速控制,中间包钢水过热度控制在25~35℃,连铸二冷采用0.75L/kg比水量进行浇注;使用Mg-Ca质干式料带挡墙中间包,全保护浇注,大包氩封保护套管氩气流量30~50L/min,未加套管时严禁向中间包冲击区加入覆盖剂,开浇前中间包充氩,中间包选用高碱度覆盖剂;结晶器低粘度高碱度专用高碳钢保护渣:粘度:1300℃,4~6泊;CaO/SiO2碱度:0.80~1.1,结晶器水流量120~130m3/h,二次冷却配水曲线选用0.75L/kg钢比水量;引锭头出结晶器后开启结晶器电磁搅拌,最后一炉塞棒停浇后停止电磁搅拌;保持高中间包液面浇注,过程中液面700mm,保持液面稳定;执行最低中间包液面不低于400mm进行浇注制度,开浇第一支坯和最后一支坯切头、尾按照2.0米长度进行切除;连浇停浇时,采用先停浇后摘套管。150mm×150mm billet continuous casting is adopted, the crystallizer adopts 380A, 4Hz electromagnetic stirring, high alkalinity ladle covering agent, ladle argon sealing, tundish full argon blowing, submerged nozzle full protection casting, pouring according to 1.8 ~2.0m/min casting speed control, tundish molten steel superheat controlled at 25~35℃, continuous casting secondary cooling with 0.75L/kg specific water volume for pouring; use Mg-Ca dry material belt retaining wall tundish, Full protection pouring, argon flow rate of 30-50L/min in the protective casing of large argon seal, it is strictly forbidden to add covering agent to the impact area of the tundish when no casing is added, the tundish is filled with argon before pouring, and the tundish is covered with high alkalinity agent; low-viscosity and high-alkalinity special high-carbon steel mold flux for crystallizer: viscosity: 1300°C, 4-6 poise; CaO/SiO 2 alkalinity: 0.80-1.1, crystallizer water flow rate 120-130m 3 /h, secondary The cooling water distribution curve adopts 0.75L/kg steel specific water volume; the electromagnetic stirring of the crystallizer is turned on after the dummy head comes out of the crystallizer, and the electromagnetic stirring is stopped after the stopper of the last furnace is stopped; the liquid level of the high tundish is kept pouring, and the liquid level is 700mm during the process , keep the liquid level stable; the minimum tundish liquid level is not lower than 400mm for pouring system, the first billet and the last billet cutting head and tail are cut according to the length of 2.0 meters; when continuous pouring stops, the first Remove the casing after stopping pouring.
CN201410838487.0A 2014-12-29 2014-12-29 Production method of high-carbon low-nitrogen steel for strand wires Active CN104498805B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410838487.0A CN104498805B (en) 2014-12-29 2014-12-29 Production method of high-carbon low-nitrogen steel for strand wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410838487.0A CN104498805B (en) 2014-12-29 2014-12-29 Production method of high-carbon low-nitrogen steel for strand wires

Publications (2)

Publication Number Publication Date
CN104498805A CN104498805A (en) 2015-04-08
CN104498805B true CN104498805B (en) 2017-01-25

Family

ID=52940255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410838487.0A Active CN104498805B (en) 2014-12-29 2014-12-29 Production method of high-carbon low-nitrogen steel for strand wires

Country Status (1)

Country Link
CN (1) CN104498805B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002424A (en) * 2015-07-31 2015-10-28 河北钢铁股份有限公司承德分公司 Continuous casting method for high-carbon low-nitrogen steel
CN105127386A (en) * 2015-08-19 2015-12-09 河北钢铁股份有限公司 Continuous casting method for controlling center carbon segregation of small high-carbon hard-wire steel square billet
CN106735025A (en) * 2017-02-09 2017-05-31 首钢总公司 A kind of control method of prestress steel continuous small-billet casting center segregation
CN107236894B (en) * 2017-06-16 2019-03-15 马鞍山钢铁股份有限公司 A kind of method for making steel of low-sulfur, low titanium Aluminum steel
CN107385139A (en) * 2017-07-30 2017-11-24 湖南华菱湘潭钢铁有限公司 A kind of smelting process of high-carbon steel
CN108251598B (en) * 2018-01-12 2020-05-05 唐山钢铁集团有限责任公司 Carbon increasing and nitrogen controlling production method of medium-carbon high-alloy steel
CN108913844A (en) * 2018-08-02 2018-11-30 本钢板材股份有限公司 The control nitrogen technique of twisted wire steel steel series
CN109943683B (en) * 2019-03-06 2021-04-02 鞍钢股份有限公司 A kind of refining and continuous casting method for producing alloy cold heading steel from billet
CN110629132B (en) * 2019-09-26 2020-11-17 江苏省沙钢钢铁研究院有限公司 Wire rod for ultra-high strength steel cord and method for producing same
CN110923401A (en) * 2019-12-17 2020-03-27 芜湖新兴铸管有限责任公司 Method for controlling carbon segregation of high-carbon steel
CN111020107A (en) * 2019-12-17 2020-04-17 芜湖新兴铸管有限责任公司 Method for controlling carbon segregation of high-carbon steel
CN111471831A (en) * 2020-05-18 2020-07-31 芜湖新兴铸管有限责任公司 Ternary refining slag for high-carbon stranded wire steel, high-carbon stranded wire steel and slagging method thereof
CN112317706A (en) * 2020-09-11 2021-02-05 南京钢铁股份有限公司 Argon protection pouring operation method for continuous casting tundish
CN114082913B (en) * 2021-11-15 2022-11-22 包头钢铁(集团)有限责任公司 Control method for improving center carbon segregation of hypereutectoid steel produced by small square billet section
CN114774619B (en) * 2022-04-29 2023-10-24 中国铁建重工集团股份有限公司 Low-nitrogen high-carbon chromium bearing steel and production method thereof
CN115369207A (en) * 2022-09-06 2022-11-22 重庆钢铁股份有限公司 Method for controlling nitrogen content of non-vacuum smelting plate blank

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650027A (en) * 1993-05-25 1997-07-22 Nippon Steel Corporation High-carbon steel wire rod and wire excellent in drawability and methods of producing the same
CN1778484A (en) * 2004-11-17 2006-05-31 首钢总公司 Continuous-casting and rolling manufacture for 82B wire rod steel strand
CN101597713A (en) * 2009-07-03 2009-12-09 首钢总公司 A kind of microalloying SWRH87B gren rod and manufacture method thereof
CN102534094B (en) * 2012-01-01 2013-05-22 首钢总公司 A method for producing cord steel wire rods through converter billet continuous casting process
CN103103307B (en) * 2013-01-24 2015-02-25 首钢总公司 Method for producing steel for low-nitrogen stranded wire by use of non-vacuum process of converter

Also Published As

Publication number Publication date
CN104498805A (en) 2015-04-08

Similar Documents

Publication Publication Date Title
CN104498805B (en) Production method of high-carbon low-nitrogen steel for strand wires
CN103103307B (en) Method for producing steel for low-nitrogen stranded wire by use of non-vacuum process of converter
CN103627853B (en) A kind of low-carbon low-silicon steel manufacture method
CN103451349B (en) Control method for preventing nozzle clogging in casting process of ultra-low carbon-aluminium deoxidized molten steel
CN103397249B (en) Hypoxemia low-carbon electrical steel and production method thereof
CN1247799C (en) Production method for reducing and fining the high-carbon chromium bearing steel D-type impurity
CN101519710B (en) A method for controlling non-metallic inclusions in alloy structural steel
CN104789859B (en) Method for producing peritectic steel by using medium-thin slab continuous caster
CN103334050B (en) Process utilizing sheet billet continuous casting to manufacture low aluminum silicon calm carbon structural steel
CN104694819A (en) Production method for low-carbon low-silicon steel
CN103233162B (en) Process for producing IF steel by using medium sheet billet in continuous casting manner
CN112760550B (en) Production method of nickel-free copper-phosphorus weathering steel casting blank
CN103834848B (en) A kind of boracic compressor wire and steel strand steel and smelting technology thereof
CN113061688B (en) SWRH82B high-carbon steel wire and preparation method thereof
CN105316558B (en) Preparation method of boron-containing steel preventing casting blank corner cracking
CN102534094A (en) Method for producing tire cord steel wire by converter billet continuous casting process
CN102071287A (en) Method for melting high-temperature-resistance and high-pressure-resistance alloy steel
CN114293101B (en) An economical high-grade welding wire steel H04E and its preparation method
CN103320571B (en) A refining method for reducing inclusions in steel for steel cords
CN116875912B (en) High-purity high-carbon steel wire rod and production method thereof
CN102051435A (en) Method for smelting low-carbon aluminium-killed steel and method for continuously casting low-carbon aluminium-killed steel
CN105861781B (en) Method for refining silicon killed steel by ANS-OB process
CN103436654A (en) Low-cost production method for container steel casting blanks
CN113802045A (en) Refining process of ultra-low carbon low aluminum steel
CN103667581A (en) Low-nitrogen SWR82B steel smelting method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 100041 Shijingshan Road, Shijingshan District, Shijingshan District, Beijing

Patentee after: Shougang Group Co. Ltd.

Address before: 100041 Shijingshan Road, Shijingshan District, Shijingshan District, Beijing

Patentee before: Capital Iron & Steel General Company