CN104492367B - Super high sensitivity precious metal-modified ZnO micro-nano hierarchical structure and preparation method thereof - Google Patents
Super high sensitivity precious metal-modified ZnO micro-nano hierarchical structure and preparation method thereof Download PDFInfo
- Publication number
- CN104492367B CN104492367B CN201410686529.3A CN201410686529A CN104492367B CN 104492367 B CN104492367 B CN 104492367B CN 201410686529 A CN201410686529 A CN 201410686529A CN 104492367 B CN104492367 B CN 104492367B
- Authority
- CN
- China
- Prior art keywords
- hierarchical structure
- zno
- nano hierarchical
- micro
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 36
- 230000035945 sensitivity Effects 0.000 title claims abstract description 35
- 239000002135 nanosheet Substances 0.000 claims abstract description 37
- 238000012986 modification Methods 0.000 claims abstract description 30
- 239000013078 crystal Substances 0.000 claims abstract description 29
- 230000004048 modification Effects 0.000 claims abstract description 29
- 239000003344 environmental pollutant Substances 0.000 claims abstract description 17
- 231100000719 pollutant Toxicity 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 16
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 13
- 239000010970 precious metal Substances 0.000 claims abstract description 12
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 12
- 239000002105 nanoparticle Substances 0.000 claims abstract description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 195
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid group Chemical group C(CC(O)(C(=O)O)CC(=O)O)(=O)O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 48
- 239000002245 particle Substances 0.000 claims description 39
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 30
- 238000003756 stirring Methods 0.000 claims description 28
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 27
- 229910052737 gold Inorganic materials 0.000 claims description 27
- 239000010931 gold Substances 0.000 claims description 27
- 229910000510 noble metal Inorganic materials 0.000 claims description 27
- 239000002243 precursor Substances 0.000 claims description 21
- 239000002253 acid Substances 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000008367 deionised water Substances 0.000 claims description 19
- 229910021641 deionized water Inorganic materials 0.000 claims description 19
- 238000005119 centrifugation Methods 0.000 claims description 17
- 239000002082 metal nanoparticle Substances 0.000 claims description 17
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- 229910052709 silver Inorganic materials 0.000 claims description 14
- 239000004332 silver Substances 0.000 claims description 14
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 13
- 238000001035 drying Methods 0.000 claims description 12
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 11
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims description 11
- 239000004202 carbamide Substances 0.000 claims description 11
- 230000009881 electrostatic interaction Effects 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 239000011701 zinc Substances 0.000 claims description 11
- 239000004246 zinc acetate Substances 0.000 claims description 11
- 229920002873 Polyethylenimine Polymers 0.000 claims description 10
- 238000009835 boiling Methods 0.000 claims description 10
- 239000006185 dispersion Substances 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 10
- 239000007822 coupling agent Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910052763 palladium Inorganic materials 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 239000003638 chemical reducing agent Substances 0.000 claims description 6
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- 239000001509 sodium citrate Substances 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 claims description 4
- 229940038773 trisodium citrate Drugs 0.000 claims description 4
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 3
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 2
- BRSVJNYNWNMJKC-UHFFFAOYSA-N [Cl].[Au] Chemical compound [Cl].[Au] BRSVJNYNWNMJKC-UHFFFAOYSA-N 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 18
- 239000000463 material Substances 0.000 abstract description 15
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 230000006872 improvement Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 76
- 239000007789 gas Substances 0.000 description 22
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 17
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 12
- 230000004044 response Effects 0.000 description 11
- 238000011068 loading method Methods 0.000 description 8
- 239000012046 mixed solvent Substances 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 238000001291 vacuum drying Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000809 air pollutant Substances 0.000 description 3
- 231100001243 air pollutant Toxicity 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000012491 analyte Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002957 persistent organic pollutant Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 238000011896 sensitive detection Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- -1 silver particle-modified ZnO Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical compound S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
- B01J20/28019—Spherical, ellipsoidal or cylindrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/54—Sorbents specially adapted for analytical or investigative chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/80—Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及有机气体污染物的检测仪器,具体涉及一种对有机污染物具有超高灵敏度的贵金属修饰的超薄单晶多孔ZnO微纳分级结构及其制备方法。The invention relates to a detection instrument for organic gas pollutants, in particular to a noble metal-modified ultra-thin single-crystal porous ZnO micro-nano hierarchical structure with ultra-high sensitivity to organic pollutants and a preparation method thereof.
背景技术Background technique
由装修材料带来的有机气体污染物乙醇、甲醛、苯、甲苯等,对人的身体健康有着非常大的损害,容易引起呼吸道疾病、肺炎和气管炎等疾病,甚至还有致癌的风险。因此对有机气体污染物的检测与实时监测一直被广为关注。目前有机气体污染物的检测传统技术是化学分析法,例如气相色谱和质谱联用法,这种检测方法工作量大、程序复杂、设备昂贵,且不能实现实时检测。基于半导体氧化物的电学气敏传感器,由于具有功耗低、响应快、结构简单、工艺成熟等优点,在有机污染物的检测与实时监测方面具有广泛的应用前景。Organic gas pollutants such as ethanol, formaldehyde, benzene, and toluene brought by decoration materials have great damage to human health, and are likely to cause respiratory diseases, pneumonia, bronchitis and other diseases, and even have the risk of cancer. Therefore, the detection and real-time monitoring of organic gas pollutants have been widely concerned. At present, the traditional detection techniques of organic gas pollutants are chemical analysis methods, such as gas chromatography and mass spectrometry. This detection method has a large workload, complicated procedures, expensive equipment, and cannot realize real-time detection. Electrical gas sensors based on semiconductor oxides have broad application prospects in the detection and real-time monitoring of organic pollutants due to their advantages such as low power consumption, fast response, simple structure, and mature technology.
ZnO作为一种宽禁带(3.37eV)半导体,具有电子迁移率高、化学稳定性好等特点,其对室内空气污染物均体现出较好的气敏特性。然而传统传感器往往基于块体的ZnO敏感材料,因此其灵敏度并不高。研究表明,具有超薄、单晶、多孔、分级结构的ZnO材料以及辅以贵金属纳米颗粒修饰均可提高ZnO对室内空气污染物的灵敏度,因为:(1)当ZnO尺寸小于耗尽层宽度的2倍时(即22nm),整个颗粒都变成了耗尽层,几乎所有半导体材料的流动电荷都被束缚在吸附的氧分子上,当颗粒表面捕获目标分子释放电荷时,电子由表面吸附氧分子释放,引起响应电流的巨大变化,从而提高传感器的灵敏度;(2)单晶结构则由于没有晶界,电子在体内传输时没有损耗,不仅可以提高灵敏度,还可以保证传感器的稳定性;(3)多孔结构有利于增加材料的比表面积,从而增加对待测物的活性吸附位点;(4)分级结构则不仅可以提供待测气体扩散所需要的通道,并且还能保证超薄材料免于团聚;(5)贵金属纳米颗粒由于具有高催化活性,可以增加敏感材料的反应活性。As a semiconductor with a wide bandgap (3.37eV), ZnO has the characteristics of high electron mobility and good chemical stability, and it has good gas-sensing properties for indoor air pollutants. However, traditional sensors are often based on bulk ZnO sensitive materials, so their sensitivity is not high. Studies have shown that ZnO materials with ultra-thin, single-crystal, porous, hierarchical structures and supplemented with noble metal nanoparticles can improve the sensitivity of ZnO to indoor air pollutants, because: (1) when the size of ZnO is smaller than the width of the depletion layer At 2 times (that is, 22nm), the entire particle becomes a depletion layer, and almost all the mobile charges of the semiconductor material are bound to the adsorbed oxygen molecules. Molecules are released, causing a huge change in the response current, thereby improving the sensitivity of the sensor; (2) the single crystal structure has no grain boundary, and there is no loss when electrons are transported in the body, which can not only improve the sensitivity, but also ensure the stability of the sensor; ( 3) The porous structure is conducive to increasing the specific surface area of the material, thereby increasing the active adsorption sites of the analyte; (4) The hierarchical structure can not only provide the channels required for the diffusion of the analyte gas, but also ensure that the ultra-thin material is free from Agglomeration; (5) Noble metal nanoparticles can increase the reactivity of sensitive materials due to their high catalytic activity.
现有的基于ZnO的传感器往往都是利用上面提到五项中的一项或者几项来实现灵敏度的提升,然而能同时实现这五项的却未见报道。因此,如何制备出具有超薄多孔单晶ZnO的分级结构以及如何实现贵金属材料纳米的修饰成为了提高传感器灵敏度的一项巨大挑战。Existing ZnO-based sensors often use one or several of the five items mentioned above to improve sensitivity, but there are no reports that can achieve these five items at the same time. Therefore, how to prepare a hierarchical structure with ultrathin porous single-crystal ZnO and how to achieve nano-modification of noble metal materials has become a great challenge to improve the sensitivity of sensors.
发明内容Contents of the invention
本发明针对基于传统ZnO材料灵敏度不足的缺点,提出了一种贵金属颗粒修饰的超薄单晶多孔ZnO纳米片组成的ZnO微纳分级结构。Aiming at the shortcomings of insufficient sensitivity based on traditional ZnO materials, the invention proposes a ZnO micro-nano hierarchical structure composed of ultra-thin single-crystal porous ZnO nanosheets modified by precious metal particles.
一种超高灵敏度的贵金属修饰的ZnO微纳分级结构的制备方法,包括下述步骤:A method for preparing an ultrahigh-sensitivity noble metal-modified ZnO micro-nano hierarchical structure, comprising the steps of:
(1)合成ZnO微纳分级结构:(1) Synthesis of ZnO micro-nano hierarchical structure:
将醋酸锌(Zn(CH3COO)2)和尿素(CO(NH2)2)溶解在溶剂中形成透明溶液;然后将透明溶液进行密封、保温3-24h后,对其进行离心分离、洗涤、干燥得到超薄纳米ZnO前驱体;最后将超薄纳米ZnO前驱体进行退火处理,即得到由超薄单晶多孔ZnO纳米片组成的ZnO微纳分级结构;Dissolve zinc acetate (Zn(CH 3 COO) 2 ) and urea (CO(NH 2 ) 2 ) in a solvent to form a transparent solution; then seal the transparent solution and keep it warm for 3-24 hours, then centrifuge and wash it , drying to obtain an ultra-thin nano-ZnO precursor; finally, the ultra-thin nano-ZnO precursor is annealed to obtain a ZnO micro-nano hierarchical structure composed of ultra-thin single-crystal porous ZnO nanosheets;
(2)ZnO微纳分级结构的改性:(2) Modification of ZnO micro-nano hierarchical structure:
将经(1)制备的ZnO微纳分级结构通过超声分散于pH值为7.5-9的高分子偶联剂溶液中,搅拌均匀后,通过离心再将ZnO微纳分级结构分离出来,并烘干得改性ZnO微纳分级结构;The ZnO micro-nano hierarchical structure prepared by (1) is ultrasonically dispersed in a polymer coupling agent solution with a pH value of 7.5-9. After stirring evenly, the ZnO micro-nano hierarchical structure is separated by centrifugation and dried. Obtain the modified ZnO micro-nano hierarchical structure;
(3)制备贵金属纳米颗粒溶胶:(3) Preparation of noble metal nanoparticle sol:
先将质量浓度为0.1%-4%的可溶性贵金属溶液加入去离子水中煮沸,在沸腾过程中加入还原剂,然后继续加热5-10分钟后,自然冷却即得到具有一定尺寸且分散性良好的贵金属纳米颗粒溶胶;First, add the soluble precious metal solution with a mass concentration of 0.1%-4% into deionized water and boil, add a reducing agent during the boiling process, then continue heating for 5-10 minutes, and cool naturally to obtain a precious metal with a certain size and good dispersion Nanoparticle sol;
(4)制备贵金属修饰的ZnO微纳分级结构:(4) Preparation of noble metal-modified ZnO micro-nano hierarchical structure:
将改性ZnO微纳分级结构与贵金属纳米颗粒溶胶进行混合,搅拌0.5-4h,通过静电相互作用即在ZnO微纳分级结构上修饰贵金属颗粒,离心,烘干即得贵金属修饰的ZnO微纳分级结构。Mix the modified ZnO micro-nano hierarchical structure with the noble metal nano-particle sol, stir for 0.5-4 hours, modify the noble metal particles on the ZnO micro-nano hierarchical structure through electrostatic interaction, centrifuge, and dry to obtain the precious metal-modified ZnO micro-nano fraction structure.
进一步,所述步骤(1)中醋酸锌和尿素的质量比为0.5-2:1-8;Further, the mass ratio of zinc acetate to urea in the step (1) is 0.5-2:1-8;
所述溶剂是由去离子水与乙二醇按体积比为0.5-5:1构成。The solvent is composed of deionized water and ethylene glycol in a volume ratio of 0.5-5:1.
进一步,所述步骤(1)中保温3-24h是指在温度为70-110℃的烘箱中保温3-24h;Further, in the step (1), heat preservation for 3-24 hours refers to heat preservation for 3-24 hours in an oven at a temperature of 70-110°C;
所述退火处理是指在温度为250-500℃的马弗炉或管式炉内退火处理。The annealing treatment refers to annealing treatment in a muffle furnace or a tube furnace at a temperature of 250-500°C.
进一步,所述步骤(1)中超薄单晶多孔ZnO纳米片是指长度为1-20µm、宽度为50nm-10µm、厚度不超过22nm、晶相为纤锌矿相的ZnO纳米片;Further, the ultra-thin single crystal porous ZnO nanosheets in the step (1) refer to ZnO nanosheets with a length of 1-20µm, a width of 50nm-10µm, a thickness of no more than 22nm, and a wurtzite phase;
所述ZnO微纳分级结构是指由ZnO纳米片组成的花状或球状、粒径为1-100µm的分级结构。The ZnO micro-nano hierarchical structure refers to a flower-shaped or spherical hierarchical structure composed of ZnO nanosheets with a particle size of 1-100 μm.
进一步,所述步骤(2)中高分子偶联剂指氨基硅烷偶联剂、巯基硅烷偶联剂或聚乙烯亚胺。Further, the polymer coupling agent in the step (2) refers to aminosilane coupling agent, mercaptosilane coupling agent or polyethyleneimine.
进一步,所述步骤(2)中超声分散后搅拌的时间2-24h;所述烘干是指在温度低于80℃的烘箱中进行烘干。Further, in the step (2), the stirring time after ultrasonic dispersion is 2-24 hours; the drying refers to drying in an oven with a temperature lower than 80°C.
进一步,所述步骤(3)中所述可溶性贵金属指颗粒大小为5-100nm的金、银、铂或钯;所述可溶性贵金属溶液包括氯金酸溶液、硝酸银溶液、氯铂酸溶液和氯钯酸溶液等。Further, the soluble noble metal in the step (3) refers to gold, silver, platinum or palladium with a particle size of 5-100 nm; the soluble noble metal solution includes chloroauric acid solution, silver nitrate solution, chloroplatinic acid solution and chlorine Palladium acid solution, etc.
进一步,所述步骤(3)中还原剂是质量浓度为0.1%-4%的柠檬酸溶液或柠檬酸三钠溶液,所述可溶性贵金属溶液与还原剂的质量比为0.5:1-1:5。Further, the reducing agent in the step (3) is a citric acid solution or trisodium citrate solution with a mass concentration of 0.1%-4%, and the mass ratio of the soluble precious metal solution to the reducing agent is 0.5:1-1:5 .
进一步,所述步骤(4)中改性ZnO微纳分级结构与贵金属纳米颗粒的重量比1:0.005-0.05。Further, in the step (4), the weight ratio of the modified ZnO micro-nano hierarchical structure to the noble metal nanoparticles is 1:0.005-0.05.
本发明的另一个目的是提供一种由上述制备方法所制备的贵金属修饰的ZnO微纳分级结构,所述贵金属修饰的ZnO微纳分级结构的形态为球状或花状、粒径为1-100µm,其对低浓度有机气体污染物具有超高灵敏度。Another object of the present invention is to provide a ZnO micro-nano hierarchical structure modified by noble metals prepared by the above preparation method, the shape of the ZnO micro-nano hierarchical structure modified by noble metals is spherical or flower-like, and the particle size is 1-100 μm , which has ultrahigh sensitivity to low concentrations of organic gas pollutants.
由于ZnO是两性金属氧化物,如果高分子聚合物分散液的pH过高,碱性过强会造成ZnO分级结构在聚合物溶液中的溶解,因此其pH值必须控制在7.5-9这一范围内。Since ZnO is an amphoteric metal oxide, if the pH of the polymer dispersion is too high, too strong alkalinity will cause the dissolution of the ZnO hierarchical structure in the polymer solution, so its pH must be controlled in the range of 7.5-9 Inside.
本发明通过水热法由尺寸在100nm-10µm的平整ZnO纳米片堆体组成的具有球状或花状分级结构的ZnO前驱体;再由ZnO前驱体进行退火处理获得由超薄单晶多孔ZnO纳米片组成的ZnO微纳分级结构;然后将其进行改性。最后将改性ZnO微纳分级结构与贵金属纳米颗粒溶胶进行混合,通过静电相互作用进行修饰,即得贵金属修饰的ZnO微纳分级结构。即本发明制备的贵金属修饰的ZnO微纳分级结构是利用其多孔与分级结构的特点提高待检测分子在ZnO表面的吸附能力;利用超薄、单晶及贵金属修饰的优势增加传感器的灵敏度及稳定性,从而实现对低浓度有机气体污染物的超高灵敏度检测。The present invention is a ZnO precursor with a spherical or flower-like hierarchical structure composed of flat ZnO nanosheet stacks with a size of 100nm-10μm by a hydrothermal method; ZnO micro-nano hierarchical structure composed of flakes; then it was modified. Finally, the modified ZnO micro-nano hierarchical structure is mixed with the noble metal nanoparticle sol, and modified by electrostatic interaction to obtain the noble metal-modified ZnO micro-nano hierarchical structure. That is, the noble metal-modified ZnO micro-nano hierarchical structure prepared by the present invention utilizes its porous and hierarchical structure characteristics to improve the adsorption capacity of molecules to be detected on the surface of ZnO; utilizes the advantages of ultra-thin, single crystal and noble metal modification to increase the sensitivity and stability of the sensor , so as to achieve ultra-high sensitivity detection of low-concentration organic gas pollutants.
所以本发明的有益效果有:So the beneficial effects of the present invention have:
1、本发明制备的贵金属修饰的ZnO微纳分级结构具有超薄、单晶、多孔、分级结构特点,以及辅以贵金属纳米颗粒修饰均可提高ZnO对室内空气污染物的灵敏度,其相对于现有的ZnO材料,对有机气体污染物乙醇、甲醛、丙酮等具有超高气敏灵敏度,检测限可达1ppb,比于现有ZnO块体及粉体材料的灵敏度高三个数量级,也远高于常规纳米材料。1. The noble metal-modified ZnO micro-nano hierarchical structure prepared by the present invention has the characteristics of ultra-thin, single crystal, porous, and hierarchical structure, and the modification with noble metal nanoparticles can improve the sensitivity of ZnO to indoor air pollutants. Compared with existing Some ZnO materials have ultra-high gas sensitivity to organic gas pollutants such as ethanol, formaldehyde, and acetone, and the detection limit can reach 1ppb, which is three orders of magnitude higher than the sensitivity of existing ZnO bulk and powder materials, and is also much higher than conventional nano Material.
2、本发明制备的贵金属修饰的ZnO微纳分级结构利用多孔与分级结构的特点提高待检测分子在ZnO表面的吸附能力,利用超薄、单晶及贵金属修饰的优势增加传感器的灵敏度及稳定性,从而实现对低浓度有机气体污染物的超高灵敏度检测。2. The noble metal-modified ZnO micro-nano hierarchical structure prepared by the present invention utilizes the characteristics of porous and hierarchical structures to improve the adsorption capacity of the molecules to be detected on the surface of ZnO, and utilizes the advantages of ultra-thin, single crystal and noble metal modification to increase the sensitivity and stability of the sensor , so as to achieve ultra-high sensitivity detection of low-concentration organic gas pollutants.
3、本发明的制备方法可以精确控制ZnO微纳分级结构的大小、形貌及组成其的多孔超薄单晶ZnO纳米片的多孔结构、尺寸和厚度,均有利于ZnO微纳分级结构灵敏度的提高,具体是:通过控制ZnO微纳分级结构的大小和形貌,可以有效调控分级结构中的孔结构,可以使待测分子能有效地在ZnO材料内部扩散;通过控制组成其多孔超薄单晶ZnO纳米片的孔结构,可以增加ZnO材料上的吸附活性位点,从而有效的捕捉待测分子;通过控制纳米片的尺寸和厚度,可以控制ZnO纳米片上耗尽层的比例,减少电子的内部损耗。3. The preparation method of the present invention can accurately control the size and morphology of the ZnO micro-nano hierarchical structure and the porous structure, size and thickness of the porous ultra-thin single crystal ZnO nanosheets that make up it, which is beneficial to the sensitivity of the ZnO micro-nano hierarchical structure Improvement, specifically: by controlling the size and shape of the ZnO micro-nano hierarchical structure, the pore structure in the hierarchical structure can be effectively regulated, and the molecules to be tested can be effectively diffused inside the ZnO material; by controlling the composition of its porous and ultra-thin single The pore structure of the crystalline ZnO nanosheets can increase the adsorption active sites on the ZnO material, thereby effectively capturing the molecules to be measured; by controlling the size and thickness of the nanosheets, the proportion of the depletion layer on the ZnO nanosheets can be controlled to reduce the electron loss. internal loss.
4、本发明通过控制高分子偶联剂溶液pH值为7.5-9来调节高分子偶联剂溶液的浓度,在实现ZnO微纳分级结构改性的同时还可以有效的防止由于高分子偶联剂溶液碱性过强造成的ZnO溶解。4. The present invention adjusts the concentration of the polymer coupling agent solution by controlling the pH value of the polymer coupling agent solution to 7.5-9, and can effectively prevent the formation of the polymer coupling agent while realizing the modification of the ZnO micro-nano hierarchical structure. The ZnO dissolution caused by the alkaline solution of the agent is too strong.
5、本发明提供了一种新颖的在ZnO微纳分级结构上修饰贵金属颗粒的方法,可以精确控制需要修饰的贵金属颗粒的修饰量,并有效增加ZnO微纳分级结构的气敏灵敏度。同时,制备设备投资少,合成工艺简单,操作容易。5. The present invention provides a novel method for modifying noble metal particles on the ZnO micro-nano hierarchical structure, which can accurately control the modification amount of the noble metal particles to be modified, and effectively increase the gas sensitivity of the ZnO micro-nano hierarchical structure. At the same time, the investment in preparation equipment is small, the synthesis process is simple, and the operation is easy.
6、本发明所提供的ZnO敏感材料的设计思路及制备方法,为具有超高敏感性能的传感器敏感材料的实际应用提供了新的设计思路和制备方法。6. The design idea and preparation method of the ZnO sensitive material provided by the present invention provide a new design idea and preparation method for the practical application of sensor sensitive materials with ultra-high sensitivity performance.
附图说明Description of drawings
图1是本发明所制备的ZnO微纳分级结构的电镜扫描图。Fig. 1 is a scanning electron microscope image of the ZnO micro-nano hierarchical structure prepared by the present invention.
图2是构成ZnO微纳分级结构的超薄单晶多孔ZnO纳米片的电镜扫描图和电子衍射图。Fig. 2 is a scanning electron microscope image and an electron diffraction image of an ultra-thin single crystal porous ZnO nanosheet constituting a ZnO micro-nano hierarchical structure.
图3是银颗粒修饰的ZnO微纳分级结构的电镜扫描图和透射图。Fig. 3 is a scanning electron microscope image and a transmission image of the ZnO micro-nano hierarchical structure modified by silver particles.
图4是银颗粒修饰前和修饰后的ZnO微纳分级结构的XRD谱图对照。Fig. 4 is a comparison of the XRD spectra of the ZnO micro-nano hierarchical structure before and after silver particle modification.
图5是银颗粒修饰前和修饰后的ZnO微纳分级结构对乙醇的气敏检测图。Fig. 5 is the gas sensitive detection diagram of the ZnO micro-nano hierarchical structure to ethanol before and after silver particle modification.
具体实施方式detailed description
实施例1Example 1
(1)ZnO微纳分级结构的合成:将1g的醋酸锌(Zn(CH3COO)2)和4g尿素(CO(NH2)2)溶解于40ml由去离子水和乙二醇按体积比为3:1构成的混合溶剂中,搅拌形成透明溶液;再将其转移至一个密封的锥形瓶中,并放置于90ºC温度的烘箱中,保温10h;然后进行离心分离出白色沉淀,用去离子水将其清洗2-3次后将其放入60ºC真空干燥箱干燥得ZnO前驱体;最后将干燥的ZnO前驱体在400ºC的马弗炉或管式炉内退火处理,即得到由超薄单晶多孔ZnO纳米片组成的ZnO微纳分级结构。(1) Synthesis of ZnO micro-nano hierarchical structure: Dissolve 1g of zinc acetate (Zn(CH 3 COO) 2 ) and 4g of urea (CO(NH 2 ) 2 ) in 40ml of deionized water and ethylene glycol by volume In a mixed solvent composed of 3:1, stir to form a transparent solution; then transfer it to a sealed Erlenmeyer flask, and place it in an oven at a temperature of 90°C for 10 hours; then centrifuge to separate the white precipitate and use it to After washing it with ion water for 2-3 times, put it into a 60ºC vacuum drying oven to dry to obtain the ZnO precursor; finally, anneal the dried ZnO precursor in a muffle furnace or tube furnace at 400ºC to obtain an ultra-thin ZnO micro-nano hierarchical structure composed of single crystal porous ZnO nanosheets.
本实施例制备的ZnO微纳分级结构如图1中1d所示,其形状为花状。The ZnO micro-nano hierarchical structure prepared in this example is shown in Figure 1 1d, and its shape is flower-like.
另外,本实施例制备的超薄单晶多孔ZnO纳米片的电镜扫描图和电子衍射图如图2所示,其长约5µm、宽度约1µm、厚度约10nm,并且纳米孔洞均匀分布在整个纳米片上。其中图2中的2a、2b是本实施例制备的超薄单晶多孔ZnO纳米片的正面及侧面电镜扫描图,可见单片的ZnO纳米片的孔状结构及超薄的厚度; 2c、2d是单片ZnO纳米片的透射照片,其多孔结构清晰可见;2e是单片ZnO纳米片的电子衍射图,其衍射花样呈现为规则的点状结构,这说明了纳米片为单晶结构;2f是ZnO纳米片的晶格条纹像,可见其晶格条纹排列非常整齐,也证明了ZnO纳米片的单晶结构。In addition, the scanning electron microscope image and electron diffraction image of the ultra-thin single-crystal porous ZnO nanosheet prepared in this example are shown in Figure 2, which is about 5 µm in length, 1 µm in width, and 10 nm in thickness, and the nanopores are evenly distributed throughout the nanometer sheet. Chip. 2a and 2b in Fig. 2 are the front and side electron microscope scanning images of the ultra-thin single crystal porous ZnO nanosheets prepared in this embodiment, and the porous structure and ultrathin thickness of the single ZnO nanosheets can be seen; 2c, 2d It is a transmission photo of a single ZnO nanosheet, and its porous structure is clearly visible; 2e is an electron diffraction pattern of a single ZnO nanosheet, and its diffraction pattern is a regular point-like structure, which shows that the nanosheet is a single crystal structure; 2f It is the lattice fringe image of ZnO nanosheets. It can be seen that the lattice fringes are arranged very neatly, which also proves the single crystal structure of ZnO nanosheets.
(2)ZnO微纳分级结构的改性:取50mg经(1)所制备的花状ZnO微纳分级结构超声分散于 pH值为8.5的聚乙烯亚胺溶液中,搅拌3h后通过离心将改性后的ZnO微纳分级结构从溶液中分离出来,并在75ºC烘箱中烘干。(2) Modification of ZnO micro-nano hierarchical structure: Take 50 mg of the flower-like ZnO micro-nano hierarchical structure prepared by (1) and ultrasonically disperse it in a polyethyleneimine solution with a pH value of 8.5. After stirring for 3 hours, the modified The activated ZnO micro-nano hierarchical structure was separated from the solution and dried in an oven at 75ºC.
(3)制备贵金属纳米颗粒溶胶:先将1wt%的硝酸银溶液100ml煮沸,在沸腾过程中加入硝酸银溶液和1wt%柠檬酸溶液,硝酸银溶液和柠檬酸溶液的质量比为1:3,继续加热10分钟后自然冷却即可得到具有一定尺寸分散性良好的银颗粒溶胶。(3) Preparation of noble metal nanoparticle sol: first boil 100ml of 1wt% silver nitrate solution, add silver nitrate solution and 1wt% citric acid solution during boiling, the mass ratio of silver nitrate solution and citric acid solution is 1:3, Continue heating for 10 minutes and then cool naturally to obtain a silver particle sol with a certain size and good dispersion.
(4)制备贵金属修饰的ZnO微纳分级结构:将改性后的球状ZnO微纳分级结构100mg与含银纳米颗粒1mg的银溶胶按比例混合,搅拌0.5h,通过静电相互作用即在花状ZnO微纳分级结构上修饰上银颗粒,然后离心、烘干即得负载量为1%的银颗粒修饰的花状ZnO微纳分级结构。(4) Preparation of precious metal-modified ZnO micro-nano hierarchical structure: Mix 100 mg of the modified spherical ZnO micro-nano hierarchical structure with silver sol containing 1 mg of silver nanoparticles in proportion, stir for 0.5 h, and form a flower-shaped structure through electrostatic interaction. The ZnO micro-nano hierarchical structure is modified with silver particles, and then centrifuged and dried to obtain a flower-shaped ZnO micro-nano hierarchical structure decorated with silver particles with a loading capacity of 1%.
本发明制备的银颗粒修饰的花状ZnO微纳分级结构的电镜扫描图如图3中3a、3b所示,可见Ag大量的分布在在微纳结构的纳米片上;其透射图如图3中3c、3d所示,可看出银颗粒粒径均一,且在ZnO纳米片表面上均匀分布。The scanning electron micrographs of the flower-like ZnO micro-nano hierarchical structure modified by silver particles prepared by the present invention are shown in 3a and 3b in Figure 3, and it can be seen that a large amount of Ag is distributed on the nanosheets of the micro-nano structure; its transmission diagram is shown in Figure 3 As shown in 3c and 3d, it can be seen that the silver particles have a uniform particle size and are evenly distributed on the surface of the ZnO nanosheets.
改性后的ZnO微纳分级结构的XRD谱图如图4中4a所示,而银颗粒修饰的花状ZnO微纳分级结构的XRD谱图如图4中4b所示,可见银颗粒修饰前的ZnO微纳分级结构的XRD衍射峰全部属于纤锌矿ZnO结构,而银颗粒修饰后明显出现了一个属于Ag(200)面的衍射峰,证明了Ag在ZnO微纳分级上的修饰;并且4b图中除了Zn和O,还有出现了Ag的峰,也证明了Ag已经修饰在了ZnO微纳分级上。The XRD spectrum of the modified ZnO micro-nano hierarchical structure is shown in Figure 4a, while the XRD spectrum of the flower-like ZnO micro-nano hierarchical structure modified by silver particles is shown in Figure 4b. The XRD diffraction peaks of the ZnO micro-nano hierarchical structure all belong to the wurtzite ZnO structure, and a diffraction peak belonging to the Ag(200) plane obviously appears after the silver particle modification, which proves the modification of Ag on the ZnO micro-nano hierarchical structure; and In addition to Zn and O in Figure 4b, Ag peaks also appear, which also proves that Ag has been modified on the ZnO micro-nano fraction.
对本实施例制备后的银颗粒修饰的ZnO微纳分级结构对有机气体污染物有着优异的响应灵敏度,其对乙醇的气敏检测如图5中5a所示,其对乙醇的检测限可达1 ppb;而其响应灵敏度和气体浓度线性关系图见图5中5b所示,可见Ag颗粒修饰的ZnO微纳分级结构对乙醇的响应存在着良好的线性,有望应用于实际的乙醇传感器检测。The silver particle-modified ZnO micro-nano hierarchical structure prepared in this example has excellent response sensitivity to organic gas pollutants, and its gas-sensitive detection of ethanol is shown in Figure 5 in 5a, and its detection limit for ethanol can reach 1 ppb; and its response sensitivity and gas concentration linear relationship diagram is shown in 5b in Figure 5. It can be seen that the Ag particle-modified ZnO micro-nano hierarchical structure has a good linear response to ethanol, which is expected to be applied to the actual ethanol sensor detection.
实施例2Example 2
(1)ZnO微纳分级结构的合成:将0.5g的醋酸锌(Zn(CH3COO)2)和3g尿素(CO(NH2)2)溶解于50ml由去离子水和乙二醇按体积比为1:1构成的混合溶剂中,搅拌3min形成透明溶液;再将其转移至一个密封的锥形瓶中,并放置于75ºC温度的烘箱中,保温8h;然后使用离心的方法将得到的白色沉淀从溶液中分离出来,并用去离子水将其清洗2-3次后将其放入60ºC真空干燥箱干燥得ZnO前驱体;最后将干燥的ZnO前驱体在300ºC下退火处理,即可得到如图1中1c所示的球状ZnO微纳分级结构,组成其的超薄单晶多孔ZnO纳米片的长约2µm,宽度约400nm,厚度约8nm,并且纳米孔洞均匀分布在整个纳米片上。(1) Synthesis of ZnO micro-nano hierarchical structure: Dissolve 0.5g of zinc acetate (Zn(CH 3 COO) 2 ) and 3g of urea (CO(NH 2 ) 2 ) in 50ml of deionized water and ethylene glycol by volume In a mixed solvent with a ratio of 1:1, stir for 3 minutes to form a transparent solution; then transfer it to a sealed Erlenmeyer flask, and place it in an oven at 75°C for 8 hours; then centrifuge the obtained The white precipitate is separated from the solution, washed with deionized water for 2-3 times, and then dried in a 60ºC vacuum oven to obtain a ZnO precursor; finally, the dried ZnO precursor is annealed at 300ºC to obtain The spherical ZnO micro-nano hierarchical structure shown in Figure 1c is composed of ultra-thin single crystal porous ZnO nanosheets with a length of about 2 µm, a width of about 400 nm, and a thickness of about 8 nm, and the nanoholes are evenly distributed throughout the nanosheet.
(2)ZnO微纳分级结构的改性:取50mg经(1)制备的花状ZnO微纳分级结构超声分散于pH值为7.8的聚乙烯亚胺溶液中,搅拌2h。然后通过离心将改性ZnO微纳分级结构从溶液中分离出来,在70ºC烘箱中烘干。(2) Modification of ZnO micro-nano hierarchical structure: 50 mg of the flower-like ZnO micro-nano hierarchical structure prepared by (1) was ultrasonically dispersed in a polyethyleneimine solution with a pH value of 7.8, and stirred for 2 hours. Then the modified ZnO micro-nano hierarchical structure was separated from the solution by centrifugation and dried in an oven at 70ºC.
(3)制备贵金属纳米颗粒溶胶:首先将0.5 wt %的氯金酸溶液100ml煮沸。在沸腾过程中加入0.5%柠檬酸三钠,其氯金酸溶液和柠檬酸三钠的质量比为1:2 ,然后继续加热10分钟后自然冷却即可得到具有一定尺寸分散性良好的金溶胶。(3) Preparation of noble metal nanoparticle sol: first boil 100ml of 0.5 wt% chloroauric acid solution. Add 0.5% trisodium citrate during the boiling process, the mass ratio of its chloroauric acid solution to trisodium citrate is 1:2, then continue to heat for 10 minutes and cool naturally to obtain a gold sol with a certain size and good dispersion .
(4)制备贵金属修饰的ZnO微纳分级结构:将改性后的球状ZnO微纳分级结构1000mg与含金纳米颗粒10mg的金溶胶按比例混合,搅拌1h,通过静电相互作用即可实现金颗粒在球状ZnO微纳分级结构上的修饰,离心,烘干即得负载量为1%的金颗粒修饰的球状ZnO微纳分级结构,其对有机气体污染物有着优异的响应灵敏度,其中对甲醛的检测限可达0.05 ppm。(4) Preparation of precious metal-modified ZnO micro-nano hierarchical structure: Mix 1000 mg of the modified spherical ZnO micro-nano hierarchical structure with gold sol containing 10 mg of gold nanoparticles in proportion, stir for 1 hour, and realize gold particles through electrostatic interaction Modification on the spherical ZnO micro-nano hierarchical structure, centrifugation, and drying to obtain a spherical ZnO micro-nano hierarchical structure with a loading capacity of 1% gold particles, which has excellent response sensitivity to organic gas pollutants, among which formaldehyde The detection limit can reach 0.05 ppm.
实施例3Example 3
(1) ZnO微纳分级结构的合成:将0.5g的醋酸锌(Zn(CH3COO)2)和1g尿素(CO(NH2)2)溶解于40ml由去离子水和乙二醇按体积比为1:1构成的混合溶剂中,搅拌形成透明溶液,再将其转移至一个密封的锥形瓶中,并放置于75ºC温度的烘箱中,保温5h;然后使用离心的方法将得到的白色沉淀从溶液中分离出来,并用去离子水将其清洗2-3次后将其放入60ºC真空干燥箱干燥得ZnO前驱体;最后将干燥的ZnO前驱体在300ºC下退火,即可得到如图1中1b所示的球状ZnO微纳分级结构,组成其的超薄单晶多孔ZnO纳米片的长约4µm,宽度约500nm,厚度约12nm,并且纳米孔洞均匀分布在整个纳米片上。(1) Synthesis of ZnO micro-nano hierarchical structure: Dissolve 0.5g of zinc acetate (Zn(CH 3 COO) 2 ) and 1g of urea (CO(NH 2 ) 2 ) in 40ml of deionized water and ethylene glycol by volume In a mixed solvent with a ratio of 1:1, stir to form a transparent solution, then transfer it to a sealed Erlenmeyer flask, and place it in an oven at a temperature of 75°C for 5 hours; then centrifuge the obtained white The precipitate is separated from the solution, washed with deionized water for 2-3 times, and then dried in a 60ºC vacuum oven to obtain a ZnO precursor; finally, the dried ZnO precursor is annealed at 300ºC to obtain the The spherical ZnO micro-nano hierarchical structure shown in 1b of 1, the ultra-thin single crystal porous ZnO nanosheets are about 4 µm in length, 500 nm in width, and 12 nm in thickness, and the nanoholes are evenly distributed on the entire nanosheet.
(2)ZnO微纳分级结构的改性:取50mg经(1)制备的花状ZnO微纳分级结构超声分散于pH值为8的聚乙烯亚胺溶液中,搅拌5h。然后通过离心将ZnO微纳分级结构从溶液中分离出来,在65ºC烘箱中烘干。(2) Modification of ZnO micro-nano hierarchical structure: 50 mg of the flower-like ZnO micro-nano hierarchical structure prepared by (1) was ultrasonically dispersed in a polyethyleneimine solution with a pH value of 8, and stirred for 5 hours. Then the ZnO micro-nano hierarchical structure was separated from the solution by centrifugation and dried in a 65ºC oven.
(3)制备贵金属纳米颗粒溶胶:首先将1wt %的氯铂酸溶液100ml煮沸。在沸腾过程中加入1%柠檬酸,其氯铂酸溶液和柠檬酸的质量比为1:2;然后继续加热10分钟后自然冷却即可得到具有一定尺寸分散性良好的铂颗粒溶胶。(3) Preparation of noble metal nanoparticle sol: first boil 100ml of 1wt% chloroplatinic acid solution. Add 1% citric acid during the boiling process, and the mass ratio of chloroplatinic acid solution to citric acid is 1:2; then continue heating for 10 minutes and then cool naturally to obtain a platinum particle sol with a certain size and good dispersion.
(4)制备贵金属修饰的ZnO微纳分级结构:将改性后的球状ZnO微纳分级结构100mg与含铂纳米颗粒2mg的铂溶胶按比例混合,搅拌1h,通过静电相互作用即可实现铂颗粒在球状ZnO微纳分级结构上的修饰,离心,烘干即得负载量为2%的铂颗粒修饰的球状ZnO微纳分级结构,其对有机气体污染物有着优异的响应灵敏度,其中对丙酮的检测限可达10 ppb。(4) Preparation of precious metal-modified ZnO micro-nano hierarchical structure: Mix 100 mg of the modified spherical ZnO micro-nano hierarchical structure with platinum sol containing 2 mg of platinum nanoparticles in proportion, stir for 1 hour, and realize platinum particles through electrostatic interaction. Modification on the spherical ZnO micro-nano hierarchical structure, centrifugation, and drying to obtain a platinum particle-modified spherical ZnO micro-nano hierarchical structure with a loading capacity of 2%, which has excellent response sensitivity to organic gas pollutants, especially for acetone The detection limit can reach 10 ppb.
实施例4Example 4
(1) ZnO微纳分级结构的合成:将0.8g的醋酸锌(Zn(CH3COO)2)和3.5g尿素(CO(NH2)2)溶解于80ml由去离子水和乙二醇按体积比为2:1构成的混合溶剂中,搅拌形成透明溶液,再将其转移至一个密封的锥形瓶中,并放置于80ºC温度的烘箱中,保温8h;然后使用离心的方法将得到的白色沉淀从溶液中分离出来。用去离子水将其清洗2-3次后将其放入60ºC真空干燥箱干燥得ZnO前驱体;最后将干燥的ZnO前驱体在300ºC下退火,即可得到如图1中1c所示的球状ZnO微纳分级结构,组成其的超薄单晶多孔ZnO纳米片的长约5µm,宽度约800nm,厚度约10nm。(1) Synthesis of ZnO micro-nano hierarchical structure: Dissolve 0.8g of zinc acetate (Zn(CH 3 COO) 2 ) and 3.5g of urea (CO(NH 2 ) 2 ) in 80ml of deionized water and ethylene glycol In a mixed solvent with a volume ratio of 2:1, stir to form a transparent solution, then transfer it to a sealed Erlenmeyer flask, and place it in an oven at 80°C for 8 hours; then use centrifugation to extract the obtained A white precipitate separated out of solution. Wash it with deionized water for 2-3 times and put it into a 60ºC vacuum oven to dry to obtain the ZnO precursor; finally, anneal the dried ZnO precursor at 300ºC to obtain the spherical shape shown in 1c in Figure 1. ZnO micro-nano hierarchical structure, composed of ultra-thin single-crystal porous ZnO nanosheets with a length of about 5 µm, a width of about 800 nm, and a thickness of about 10 nm.
(2) ZnO微纳分级结构的改性:取50mg经(1)制备的花状ZnO微纳分级结构,超声分散于100ml pH值为8的聚乙烯亚胺溶液中,搅拌12h。然后通过离心将ZnO微纳分级结构从溶液中分离出来,在70ºC烘箱中烘干。(2) Modification of ZnO micro-nano hierarchical structure: Take 50 mg of the flower-like ZnO micro-nano hierarchical structure prepared by (1), ultrasonically disperse it in 100 ml polyethyleneimine solution with a pH value of 8, and stir for 12 hours. Then the ZnO micro-nano hierarchical structure was separated from the solution by centrifugation and dried in an oven at 70ºC.
(3)制备贵金属纳米颗粒溶胶:首先将0.1 wt %的氯钯酸溶液100ml煮沸。在沸腾过程中加入0. 1%柠檬酸溶液,其氯钯酸溶液和柠檬酸溶液的质量比为按1:1的比例添加,然后继续加热10分钟后自然冷却即可得到具有一定尺寸分散性良好的钯颗粒溶胶。(3) Preparation of noble metal nanoparticle sol: first boil 100ml of 0.1 wt% chloropalladium acid solution. Add 0.1% citric acid solution in the boiling process, the mass ratio of its chloropalladium acid solution and citric acid solution is to add in the ratio of 1:1, then continue to heat for 10 minutes and then cool naturally to obtain a certain size dispersion Good palladium particle sol.
(4)制备贵金属修饰的ZnO微纳分级结构:将改性后的球状ZnO微纳分级结构100mg与含钯纳米颗粒2mg的钯溶胶按比例混合,搅拌2h,通过静电相互作用即可实现钯颗粒在球状ZnO微纳分级结构上的修饰,离心,烘干即得负载量为2%的钯颗粒修饰的球状ZnO微纳分级结构,其对有机气体污染物有着优异的响应灵敏度,其中对丙酮的检测限可达5 ppb。(4) Preparation of precious metal-modified ZnO micro-nano hierarchical structure: Mix 100 mg of the modified spherical ZnO micro-nano hierarchical structure with palladium sol containing 2 mg of palladium nanoparticles in proportion, stir for 2 hours, and realize palladium particles through electrostatic interaction Modification on the spherical ZnO micro-nano hierarchical structure, centrifugation, and drying to obtain a spherical ZnO micro-nano hierarchical structure with a loading capacity of 2% palladium particles, which has excellent response sensitivity to organic gas pollutants, especially for acetone The detection limit can reach 5 ppb.
实施例5Example 5
(1) ZnO微纳分级结构的合成:将1g的醋酸锌(Zn(CH3COO)2)和1g尿素(CO(NH2)2)溶解于30ml由去离子水和乙二醇按体积比为0.5:1构成的混合溶剂中,搅拌5min以形成透明溶液,再将其转移至一个密封的锥形瓶中,并放置于70ºC温度的烘箱中,保温8h;然后使用离心的方法将得到的白色沉淀从溶液中分离出来。用去离子水将其清洗2-3次后将其放入60ºC真空干燥箱干燥得ZnO前驱体;最后将干燥的ZnO前驱体在300ºC下退火,即可得到如图1中1a所示的球状ZnO微纳分级结构,组成其的超薄单晶多孔ZnO纳米片长约1µm,宽度约50nm,厚度约8nm,并且纳米孔洞均匀分布在整个纳米片上。(1) Synthesis of ZnO micro-nano hierarchical structure: Dissolve 1g of zinc acetate (Zn(CH 3 COO) 2 ) and 1g of urea (CO(NH 2 ) 2 ) in 30ml of deionized water and ethylene glycol by volume In a mixed solvent composed of 0.5:1, stir for 5 minutes to form a transparent solution, then transfer it to a sealed Erlenmeyer flask, and place it in an oven at a temperature of 70°C for 8 hours; then centrifuge the obtained A white precipitate separated out of solution. Wash it with deionized water for 2-3 times, put it into a 60ºC vacuum drying oven to dry to obtain the ZnO precursor; finally anneal the dried ZnO precursor at 300ºC, and you can get the spherical shape shown in Figure 1 1a ZnO micro-nano hierarchical structure, composed of ultra-thin single-crystal porous ZnO nanosheets with a length of about 1 µm, a width of about 50 nm, and a thickness of about 8 nm, and the nanoholes are evenly distributed on the entire nanosheet.
(2)ZnO微纳分级结构的改性:取50mg经(1)制备的花状ZnO微纳分级结构,超声分散于100ml pH值为8的聚乙烯亚胺溶液中,搅拌18h。然后通过离心将ZnO微纳分级结构从溶液中分离出来,在75ºC烘箱中烘干。(2) Modification of ZnO micro-nano hierarchical structure: take 50 mg of the flower-like ZnO micro-nano hierarchical structure prepared by (1), ultrasonically disperse it in 100 ml of polyethyleneimine solution with a pH value of 8, and stir for 18 hours. Then the ZnO micro-nano hierarchical structure was separated from the solution by centrifugation and dried in an oven at 75ºC.
(3)制备贵金属纳米颗粒溶胶:首先将0.1 wt %的氯金酸溶液100ml煮沸。在沸腾过程中加入0.1%柠檬酸溶液,其氯金酸溶液和柠檬酸溶液的质量比为1:1,然后继续加热10分钟后自然冷却即可得到具有一定尺寸分散性良好的金颗粒溶胶。(3) Preparation of noble metal nanoparticle sol: first boil 100ml of 0.1 wt% chloroauric acid solution. Add 0.1% citric acid solution during the boiling process, the mass ratio of chloroauric acid solution to citric acid solution is 1:1, then continue heating for 10 minutes and then cool naturally to obtain a gold particle sol with a certain size and good dispersion.
(4)制备贵金属修饰的ZnO微纳分级结构:将改性后的球状ZnO微纳分级结构1000mg与含金纳米颗粒5mg的金溶胶按比例混合,搅拌0.5h,通过静电相互作用即可实现金颗粒在球状ZnO微纳分级结构上的修饰,离心,烘干即得负载量为0.5%的金颗粒修饰的球状ZnO微纳分级结构,其对有机气体污染物有着优异的响应灵敏度,其中对甲醛的检测限可达0.05 ppm。(4) Preparation of precious metal-modified ZnO micro-nano hierarchical structure: Mix 1000 mg of the modified spherical ZnO micro-nano hierarchical structure with gold sol containing 5 mg of gold nanoparticles in proportion, stir for 0.5 h, and realize gold through electrostatic interaction. Modification of particles on the spherical ZnO micro-nano hierarchical structure, centrifugation, and drying to obtain a spherical ZnO micro-nano hierarchical structure with a loading of 0.5% gold particles, which has excellent response sensitivity to organic gas pollutants, among which formaldehyde The detection limit can reach 0.05 ppm.
实施例6Example 6
(1)ZnO微纳分级结构的合成:将1.3g的醋酸锌(Zn(CH3COO)2)和5.5g尿素(CO(NH2)2)溶解于40ml由去离子水和乙二醇按体积比为4:1构成的混合溶剂中,搅拌一段时间以形成透明溶液,再将这透明的溶液转移至一个密封的锥形瓶中,并放置于100ºC温度的烘箱中,保温12h;然后使用离心的方法将得到的白色沉淀从溶液中分离出来。用去离子水将其清洗2-3次后将其放入60ºC真空干燥箱干燥得ZnO前驱体;最后将干燥的ZnO前驱体在400ºC下退火,即可得到花状ZnO微纳分级结构,组成其的超薄单晶多孔ZnO纳米片的长约10µm,宽度约2µm,厚度约8nm。(1) Synthesis of ZnO micro-nano hierarchical structure: 1.3g of zinc acetate (Zn(CH 3 COO) 2 ) and 5.5g of urea (CO(NH 2 ) 2 ) were dissolved in 40ml of deionized water and ethylene glycol In a mixed solvent with a volume ratio of 4:1, stir for a period of time to form a transparent solution, then transfer the transparent solution to a sealed Erlenmeyer flask, and place it in an oven at 100ºC for 12 hours; then use The resulting white precipitate was separated from solution by centrifugation. Wash it with deionized water for 2-3 times, put it into a 60ºC vacuum drying oven to dry to obtain the ZnO precursor; finally, anneal the dried ZnO precursor at 400ºC to obtain a flower-like ZnO micro-nano hierarchical structure. Its ultrathin single-crystal porous ZnO nanosheets are about 10 µm long, 2 µm wide, and 8 nm thick.
(2)ZnO微纳分级结构的改性:50mg经(1)制备的花状ZnO微纳分级结构取,超声分散于100ml pH值为9的聚乙烯亚胺溶液中,搅拌3h。然后通过离心将ZnO微纳分级结构从溶液中分离出来,在80ºC烘箱中烘干。(2) Modification of ZnO micro-nano hierarchical structure: take 50 mg of the flower-like ZnO micro-nano hierarchical structure prepared in (1), ultrasonically disperse it in 100 ml of polyethyleneimine solution with a pH value of 9, and stir for 3 hours. Then the ZnO micro-nano hierarchical structure was separated from the solution by centrifugation and dried in an oven at 80ºC.
(3)制备贵金属纳米颗粒溶胶:首先将1wt %的氯金酸溶液100ml煮沸。在沸腾过程中加入1%柠檬酸溶液,其氯金酸溶液和柠檬酸溶液的质量比为1:4,然后继续加热10分钟后自然冷却即可得到具有一定尺寸分散性良好的金颗粒溶胶。(3) Preparation of noble metal nanoparticle sol: first boil 100ml of 1wt% chloroauric acid solution. Add 1% citric acid solution during the boiling process, the mass ratio of the chloroauric acid solution to the citric acid solution is 1:4, then continue heating for 10 minutes and then cool naturally to obtain a gold particle sol with a certain size and good dispersion.
(4)制备贵金属修饰的ZnO微纳分级结构:将改性后的球状ZnO微纳分级结构100mg与含金纳米颗粒3mg的金溶胶按比例混合,搅拌3h,通过静电相互作用即可实现金颗粒在球状ZnO微纳分级结构上的修饰,离心,烘干即得负载量为3%的金颗粒修饰的球状ZnO微纳分级结构,其对有机气体污染物有着优异的响应灵敏度,其中对甲醛的检测限可达0.08 ppm。(4) Preparation of precious metal-modified ZnO micro-nano hierarchical structure: Mix 100 mg of the modified spherical ZnO micro-nano hierarchical structure with gold sol containing 3 mg of gold nanoparticles in proportion, stir for 3 hours, and realize gold particles through electrostatic interaction. Modification on the spherical ZnO micro-nano hierarchical structure, centrifugation, and drying to obtain a spherical ZnO micro-nano hierarchical structure with a loading capacity of 3% gold particles, which has excellent response sensitivity to organic gas pollutants, among which formaldehyde The detection limit can reach 0.08 ppm.
实施例7Example 7
(1) ZnO微纳分级结构的合成:将1.5g的醋酸锌(Zn(CH3COO)2)和6g尿素(CO(NH2)2)溶解于40ml由去离子水和乙二醇按体积比为5:1构成的混合溶剂中,搅拌一段时间以形成透明溶液,再将其转移至一个密封的锥形瓶中,并放置于110ºC温度的烘箱中,保温18h;然后使用离心的方法将得到的白色沉淀从溶液中分离出来。用去离子水将其清洗2-3次后将其放入60ºC真空干燥箱干燥得ZnO前驱体;最后将干燥的ZnO前驱体在500ºC下退火,即可得到花状ZnO微纳分级结构,组成其的超薄单晶多孔ZnO纳米片的长约15µm,宽度约5µm,厚度约8nm。(1) Synthesis of ZnO micro-nano hierarchical structure: Dissolve 1.5g of zinc acetate (Zn(CH 3 COO) 2 ) and 6g of urea (CO(NH 2 ) 2 ) in 40ml of deionized water and ethylene glycol by volume In a mixed solvent with a ratio of 5:1, stir for a period of time to form a transparent solution, then transfer it to a sealed Erlenmeyer flask, and place it in an oven at 110ºC for 18 hours; then centrifuge the The resulting white precipitate separated from solution. Wash it with deionized water for 2-3 times, put it into a 60ºC vacuum drying oven to dry to obtain the ZnO precursor; finally, anneal the dried ZnO precursor at 500ºC to obtain a flower-like ZnO micro-nano hierarchical structure. Its ultrathin single-crystal porous ZnO nanosheets are about 15 µm long, 5 µm wide, and 8 nm thick.
(2)ZnO微纳分级结构的改性:取50mg经(1)制备的花状ZnO微纳分级结构,超声分散于100ml pH值为8的聚乙烯亚胺溶液中,搅拌24h。然后通过离心将ZnO微纳分级结构从溶液中分离出来,在75ºC烘箱中烘干。(2) Modification of ZnO micro-nano hierarchical structure: Take 50 mg of the flower-like ZnO micro-nano hierarchical structure prepared by (1), ultrasonically disperse it in 100 ml of polyethyleneimine solution with a pH value of 8, and stir for 24 hours. Then the ZnO micro-nano hierarchical structure was separated from the solution by centrifugation and dried in an oven at 75ºC.
(3)制备贵金属纳米颗粒溶胶:首先将4 wt %的氯金酸溶液100ml煮沸。在沸腾过程中加入2%柠檬酸溶液,其氯金酸溶液和柠檬酸溶液的质量比为1:5,然后继续加热10分钟后自然冷却即可得到具有一定尺寸分散性良好的金颗粒溶胶。(3) Preparation of noble metal nanoparticle sol: first boil 100ml of 4 wt % chloroauric acid solution. Add 2% citric acid solution during the boiling process, the mass ratio of the chloroauric acid solution to the citric acid solution is 1:5, then continue heating for 10 minutes and then cool naturally to obtain a gold particle sol with a certain size and good dispersion.
(4)制备贵金属修饰的ZnO微纳分级结构:将改性后的球状ZnO微纳分级结构100mg与含金纳米颗粒5mg的金溶胶按比例混合,搅拌4h,通过静电相互作用即可实现金颗粒在球状ZnO微纳分级结构上的修饰,离心,烘干即得负载量为5%的金颗粒修饰的球状ZnO微纳分级结构,其对有机气体污染物有着优异的响应灵敏度,其中对乙醇的检测限可达0.01 ppm。(4) Preparation of precious metal-modified ZnO micro-nano hierarchical structure: Mix 100 mg of the modified spherical ZnO micro-nano hierarchical structure with gold sol containing 5 mg of gold nanoparticles in proportion, stir for 4 hours, and the gold particles can be realized through electrostatic interaction. After modifying the spherical ZnO micro-nano hierarchical structure, centrifuging and drying, the spherical ZnO micro-nano hierarchical structure modified by gold particles with a loading capacity of 5% has excellent response sensitivity to organic gas pollutants, especially for ethanol. The detection limit can reach 0.01 ppm.
实施例8Example 8
(1) ZnO微纳分级结构的合成:将2g的醋酸锌(Zn(CH3COO)2)和8g尿素(CO(NH2)2)溶解于40ml由去离子水和乙二醇按体积比为8:1构成的混合溶剂中,搅拌形成透明溶液,再将其转移至一个密封的锥形瓶中,并放置于110ºC温度的烘箱中,保温24h;然后使用离心的方法将得到的白色沉淀从溶液中分离出来。用去离子水将其清洗2-3次后将其放入60ºC真空干燥箱干燥得ZnO前驱体;最后将干燥的ZnO前驱体在500ºC下退火,即可得到花状ZnO微纳分级结构,组成其的超薄单晶多孔ZnO纳米片的长约20µm,宽度约10µm,厚度约22nm。(1) Synthesis of ZnO micro-nano hierarchical structure: Dissolve 2g of zinc acetate (Zn(CH 3 COO) 2 ) and 8g of urea (CO(NH 2 ) 2 ) in 40ml of deionized water and ethylene glycol by volume In a mixed solvent composed of 8:1, stir to form a transparent solution, then transfer it to a sealed Erlenmeyer flask, and place it in an oven at 110ºC for 24 hours; then centrifuge the obtained white precipitate separated from the solution. Wash it with deionized water for 2-3 times, put it into a 60ºC vacuum drying oven to dry to obtain the ZnO precursor; finally, anneal the dried ZnO precursor at 500ºC to obtain a flower-like ZnO micro-nano hierarchical structure. Its ultrathin single-crystal porous ZnO nanosheets are about 20 µm long, 10 µm wide, and 22 nm thick.
(2) ZnO微纳分级结构的改性:取50mg经(1)制备的花状ZnO微纳分级结构,超声分散于100ml pH值为7.5的聚乙烯亚胺溶液中,搅拌4h。然后通过离心将ZnO微纳分级结构从溶液中分离出来,在80ºC烘箱中烘干。(2) Modification of ZnO micro-nano hierarchical structure: Take 50 mg of the flower-like ZnO micro-nano hierarchical structure prepared by (1), ultrasonically disperse it in 100 ml polyethyleneimine solution with a pH value of 7.5, and stir for 4 hours. Then the ZnO micro-nano hierarchical structure was separated from the solution by centrifugation and dried in an oven at 80ºC.
(3)制备贵金属纳米颗粒溶胶:首先将4wt %的氯金酸溶液100ml煮沸。在沸腾过程中加入2%柠檬酸溶液,其氯金酸溶液和柠檬酸溶液的质量比为1:5,然后继续加热10分钟后自然冷却即可得到具有一定尺寸分散性良好的金颗粒溶胶。(3) Preparation of noble metal nanoparticle sol: first boil 100ml of 4wt% chloroauric acid solution. Add 2% citric acid solution during the boiling process, the mass ratio of the chloroauric acid solution to the citric acid solution is 1:5, then continue heating for 10 minutes and then cool naturally to obtain a gold particle sol with a certain size and good dispersion.
(4)制备贵金属修饰的ZnO微纳分级结构:将改性后的球状ZnO微纳分级结构100mg与含金纳米颗粒2.5mg的金溶胶混合,搅拌4h,通过静电相互作用即可实现金颗粒在球状ZnO微纳分级结构上的修饰,离心,烘干即得负载量为2.5%的金颗粒修饰的球状ZnO微纳分级结构,其对对甲醛的检测限可达0.01 ppm。(4) Preparation of precious metal-modified ZnO micro-nano hierarchical structure: Mix 100 mg of the modified spherical ZnO micro-nano hierarchical structure with 2.5 mg of gold sol containing gold nanoparticles, stir for 4 hours, and the gold particles can be realized through electrostatic interaction. Modification on the spherical ZnO micro-nano hierarchical structure, centrifugation, and drying to obtain a spherical ZnO micro-nano hierarchical structure modified with gold particles with a loading capacity of 2.5%, and the detection limit of formaldehyde can reach 0.01 ppm.
以上实施例并非仅限于本发明的保护范围,所有基于发明的基本思想而进行修改或变动的都属于本发明的保护范围。The above embodiments are not limited to the protection scope of the present invention, and all modifications or changes based on the basic idea of the invention belong to the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410686529.3A CN104492367B (en) | 2014-11-26 | 2014-11-26 | Super high sensitivity precious metal-modified ZnO micro-nano hierarchical structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410686529.3A CN104492367B (en) | 2014-11-26 | 2014-11-26 | Super high sensitivity precious metal-modified ZnO micro-nano hierarchical structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104492367A CN104492367A (en) | 2015-04-08 |
CN104492367B true CN104492367B (en) | 2017-05-03 |
Family
ID=52933869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410686529.3A Expired - Fee Related CN104492367B (en) | 2014-11-26 | 2014-11-26 | Super high sensitivity precious metal-modified ZnO micro-nano hierarchical structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104492367B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107064220B (en) * | 2017-01-23 | 2019-07-23 | 吉林大学 | A kind of the zno-based acetylene sensor and preparation method of ultra-fine Au particle modification |
CN109507251A (en) * | 2018-09-29 | 2019-03-22 | 中国科学院合肥物质科学研究院 | It palladium modification zinc oxide nanometer sheet, preparation method and its is applied in gas sensor |
CN109725039A (en) * | 2019-01-10 | 2019-05-07 | 沈阳化工大学 | Preparation and application of a Pd-modified ZnO nanorod array |
CN109975367A (en) * | 2019-03-11 | 2019-07-05 | 陕西科技大学 | WO3-SnO2 solid nanosphere acetone sensor with less than 60nm based on Ag quantum dots decoration and preparation method |
CN109954481A (en) * | 2019-04-04 | 2019-07-02 | 重庆大学 | Method for preparing silver-doped ZnO@ZIF-8 nanoflower composites |
CN110801804A (en) * | 2019-12-09 | 2020-02-18 | 安徽建筑大学 | A kind of micro-nano hierarchical structure metal oxide nano-adsorption material and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2495074A (en) * | 2011-09-12 | 2013-04-03 | Univ Swansea | ZnO nanomaterials and gas sensors made using the nanomaterials |
CN103046132B (en) * | 2011-10-12 | 2016-01-13 | 华东理工大学 | The preparation of the ZnO nano monocrystalline of multiple hole flower-like structure and application thereof |
CN103318944A (en) * | 2013-06-24 | 2013-09-25 | 上海大学 | Preparation method of zinc oxide multi-stage nanometer structure |
-
2014
- 2014-11-26 CN CN201410686529.3A patent/CN104492367B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104492367A (en) | 2015-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104492367B (en) | Super high sensitivity precious metal-modified ZnO micro-nano hierarchical structure and preparation method thereof | |
Liu et al. | Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit | |
Ding et al. | Enhanced NO2 gas sensing properties by Ag-doped hollow urchin-like In2O3 hierarchical nanostructures | |
Li et al. | Microwave-assisted hydrothermal synthesis of copper oxide-based gas-sensitive nanostructures | |
CN103776870B (en) | A flower-like hierarchical ZnO/SnO2 nanocomposite gas-sensing material and its preparation method | |
Krishnakumar et al. | CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route | |
Gu et al. | Controlled synthesis of porous Ni-doped SnO2 microstructures and their enhanced gas sensing properties | |
Gao et al. | Microwave-assisted synthesis of hierarchically porous Co3O4/rGO nanocomposite for low-temperature acetone detection | |
Sun et al. | Synthesis and room-temperature H2S sensing of Pt nanoparticle-functionalized SnO2 mesoporous nanoflowers | |
Liu et al. | Enhanced gas sensing characteristics of the flower-like ZnFe2O4/ZnO microstructures | |
Liu et al. | Mesoporous Au@ ZnO flower-like nanostructure for enhanced formaldehyde sensing performance | |
Wang et al. | Synthesis of Au decorated SnO 2 mesoporous spheres with enhanced gas sensing performance | |
Chen et al. | ZIF-8 derived hexagonal-like α-Fe2O3/ZnO/Au nanoplates with tunable surface heterostructures for superior ethanol gas-sensing performance | |
CN110133059A (en) | A kind of preparation method of Pt-SnO2 gas sensor for detecting low-concentration hydrogen sulfide gas at room temperature | |
CN102557114A (en) | Preparation method of indium oxide-based gas-sensitive material with three-dimensional hollow multi-stage structure and application thereof | |
KR101671405B1 (en) | Metal/oxide core-shell structure nanoparticle mixed sensing materials for semiconductor gas sensor | |
CN109052453B (en) | A kind of ZnCo2O4/ZnO heterostructure composite gas sensor material and preparation method | |
CN113740390B (en) | A kind of nickel-doped indium oxide nanoparticle and its preparation method and application | |
Zhang et al. | MOF-derived In2O3 nanotubes/Cr2O3 nanoparticles composites for superior ethanol gas-sensing performance at room temperature | |
CN110879238A (en) | Molybdenum trioxide nanostructure sensitive material and corresponding ammonia gas sensor and preparation method | |
Maheswari et al. | Noticeable enhancement in NH3 sensing performance of nebulizer spray pyrolysis deposited SnO2 thin films: An effect of Tb doping | |
Zhou et al. | Porous SnO2 nanospheres coated with reduced graphene oxide for formaldehyde gas sensor: synthesis, performance and mechanism | |
Liu et al. | Down to ppb level NO2 detection by vertically MoS2 nanoflakes grown on In2O3 microtubes at room temperature | |
Wang et al. | Synthesis of 1D SnO2 nanorods/2D NiO porous nanosheets pn heterostructures for enhanced ethanol gas sensing performance | |
Zhang et al. | Defect engineering of nanostructured ZnSnO3 for conductometric room temperature CO2 sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170503 Termination date: 20181126 |
|
CF01 | Termination of patent right due to non-payment of annual fee |