CN104483378B - Reverse expansion HADAMARD transform ion mobility spectrometer - Google Patents
Reverse expansion HADAMARD transform ion mobility spectrometer Download PDFInfo
- Publication number
- CN104483378B CN104483378B CN201410797512.5A CN201410797512A CN104483378B CN 104483378 B CN104483378 B CN 104483378B CN 201410797512 A CN201410797512 A CN 201410797512A CN 104483378 B CN104483378 B CN 104483378B
- Authority
- CN
- China
- Prior art keywords
- ion
- hadamard transformation
- ionization
- module
- ion mobility
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000009466 transformation Effects 0.000 claims abstract description 40
- 238000001228 spectrum Methods 0.000 claims abstract description 37
- 238000001514 detection method Methods 0.000 claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- 238000013508 migration Methods 0.000 claims abstract description 27
- 230000005012 migration Effects 0.000 claims abstract description 26
- 238000012545 processing Methods 0.000 claims abstract description 23
- 150000002500 ions Chemical class 0.000 claims description 107
- 238000000034 method Methods 0.000 claims description 17
- 230000005684 electric field Effects 0.000 claims description 9
- 238000007781 pre-processing Methods 0.000 claims description 8
- 239000000376 reactant Substances 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 230000002285 radioactive effect Effects 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- -1 polytetrafluoroethylene rings Polymers 0.000 claims description 2
- 238000000132 electrospray ionisation Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 20
- 238000001871 ion mobility spectroscopy Methods 0.000 description 14
- 238000012935 Averaging Methods 0.000 description 5
- 239000002575 chemical warfare agent Substances 0.000 description 4
- 238000011426 transformation method Methods 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明涉及一种反向扩展HADAMARD变换离子迁移谱仪,包括电离区、帘气区、反应区、反向扩展HADAMARD变换离子门控模块、迁移区、电荷探测区、逆HADAMARD变换信号处理模块,电离区有电离源,所述帘气区用于阻隔样品进入电离区,所述反应区与所述迁移区之间设置有离子门,所述离子门与所述反向扩展HADAMARD变换门控模块相连,所述反向扩展HADAMARD变换门控模块用于周期性地控制所述离子门的高速开关,实现离子流的多路复用,所电荷探测区连接有一逆HADAMARD变换信号处理模块,信号处理模块主要完成多路叠加谱信号的采集、A/D转换、逆HADAMARD变换处理、还原谱的显示。
The invention relates to an ion mobility spectrometer with reverse expansion HADAMARD transformation, comprising an ionization region, a curtain gas region, a reaction region, a reverse expansion HADAMARD transformation ion gating module, a migration region, a charge detection region, and an inverse HADAMARD transformation signal processing module. The ionization area has an ionization source, the curtain gas area is used to block the sample from entering the ionization area, and an ion gate is set between the reaction area and the migration area, and the ion gate is connected with the reverse expansion HADAMARD conversion gating module connected, the reverse expansion HADAMARD conversion gating module is used to periodically control the high-speed switch of the ion gate to realize the multiplexing of ion currents, and the charge detection area is connected with an inverse HADAMARD conversion signal processing module, the signal processing The module mainly completes the collection of multi-channel superimposed spectrum signals, A/D conversion, inverse HADAMARD transformation processing, and display of restored spectrum.
Description
技术领域technical field
本发明涉及一种离子迁移谱仪,特别涉及一种反向扩展HADAMARD变换离子迁移谱仪。The invention relates to an ion mobility spectrometer, in particular to a reverse expansion HADAMARD transformation ion mobility spectrometer.
背景技术Background technique
近年来,无论是国外还是国内,各种恐怖活动在不断加剧,为了更有效地保障公民财产和生命安全,人们加大了对炸药、化学战剂、毒品等的快速检测仪器的研发投入,离子迁移谱仪作为一种快速的痕量化学战剂检测设备,也在如火如荼的发展。In recent years, various terrorist activities have been intensifying, both abroad and at home. In order to more effectively protect citizens' property and life safety, people have increased investment in research and development of rapid detection instruments for explosives, chemical warfare agents, and drugs. Mobility spectrometer, as a rapid trace chemical warfare agent detection equipment, is also in full swing.
离子迁移谱相比于其他防暴反恐探测仪,其优势主要是能对一些痕量毒害气体进行快速检测,利用不同离子在均匀弱电场条件下具有不同的迁移速度来区分被测物,具有检测速度快、灵敏度高等特点。离子迁移谱探测装置最早出现在20世纪60年代,早期主要应用在军事方面,主要进行痕量化学战剂等的检测,当前,随着各种暴恐活动的日益猖獗,在机场、火车站、海关口岸等场所的安检部门中也大量投入了离子迁移谱仪,以辅助安检人员完成痕量爆炸物、毒品及化学战剂等的快速检测。Compared with other anti-riot and anti-terrorism detectors, the ion mobility spectrometer has the main advantage of being able to quickly detect some trace toxic gases, and distinguish the measured objects by using the different migration speeds of different ions under uniform and weak electric field conditions. Fast and high sensitivity. The ion mobility spectrometry detection device first appeared in the 1960s, and was mainly used in the military in the early days, mainly for the detection of trace chemical warfare agents. A large number of ion mobility spectrometers have also been invested in the security inspection departments of customs ports and other places to assist security inspection personnel to complete the rapid detection of trace explosives, drugs and chemical warfare agents.
电晕放电离子迁移谱仪的工作机理:在放电区,首先由高压模块对高纯N2或空气放电,生成反应物离子,随后反应物离子进入到反应区;在反应区,反应物离子与通过载气进入反应区的样品分子发生一系列的离子-分子反应,从而将中性的样品分子离子化形成产物离子。连接反应区和迁移区的离子门是周期性打开和关闭的,离子门打开时,产物离子进入到迁移区,迁移区具有均匀稳定的弱电场,它对产物离子作用使其进行横向漂移,在漂移过程中与迎面而来的迁移气体中性分子发生碰撞,由于不同的产物离子具有不同的质量、电荷以及碰撞截面结构,因此其在迁移和碰撞的作用下形成不同的迁移速率,这也就决定了不同的产物离子到达探测器端的时间不同,最终实现了不同离子的有效分离。The working mechanism of the corona discharge ion mobility spectrometer: in the discharge area, the high-purity N2 or air is firstly discharged by the high-voltage module to generate reactant ions, and then the reactant ions enter the reaction area; in the reaction area, the reactant ions and The sample molecules entering the reaction zone through the carrier gas undergo a series of ion-molecule reactions, thereby ionizing the neutral sample molecules to form product ions. The ion gate connecting the reaction zone and the migration zone is periodically opened and closed. When the ion gate is opened, the product ions enter the migration zone. The migration zone has a uniform and stable weak electric field, which acts on the product ions to make them drift laterally. During the drift process, it collides with the oncoming neutral molecules of the migrating gas. Since different product ions have different masses, charges, and collision cross-section structures, they form different migration rates under the action of migration and collision, which is also It determines that different product ions arrive at the detector at different times, and finally realizes the effective separation of different ions.
随着检测性能要求的不断提升,高分辨率和高信噪比已经成为衡量离子迁移谱检测性能的重要技术指标。为了提高离子迁移谱的检测性能,前人做了大量的研究,21世纪初,人们尝试将HADAMARD多路复用技术引入到离子迁移谱中,成功构建了HADAMARD变换离子迁移谱仪,从一定程度上提高了离子迁移谱的信号利用率即占空比,进而提高了离子迁移谱的信噪比。中国专利CN200910051783.5公开了一种使用HADAMARD变换方法的离子迁移谱仪,它的电离源采用63Ni放射性电离源,利用常规伪随机序列来控制离子门,提高了离子通量和信噪比,利用该方法生成的HADAMARD变换离子迁移谱存在较多假峰,而且该方法生成的离子迁移谱不能有效提高离子迁移谱的分辨率。With the continuous improvement of detection performance requirements, high resolution and high signal-to-noise ratio have become important technical indicators to measure the detection performance of ion mobility spectrometry. In order to improve the detection performance of ion mobility spectrometry, predecessors have done a lot of research. At the beginning of the 21st century, people tried to introduce HADAMARD multiplexing technology into ion mobility spectrometry, and successfully built a HADAMARD transform ion mobility spectrometer. The signal utilization rate of the ion mobility spectrum is improved, that is, the duty cycle, and the signal-to-noise ratio of the ion mobility spectrum is improved. Chinese patent CN200910051783.5 discloses an ion mobility spectrometer using the HADAMARD transformation method. Its ionization source uses a 63 Ni radioactive ionization source, and uses a conventional pseudo-random sequence to control the ion gate, which improves the ion flux and signal-to-noise ratio. There are many false peaks in the HADAMARD transformed ion mobility spectrum generated by this method, and the ion mobility spectrum generated by this method cannot effectively improve the resolution of the ion mobility spectrum.
因此,在不进行大规模改变离子迁移谱硬件结构的条件下,既能提高信噪比又能有效提高离子迁移谱的分辨率则成为离子迁移谱仪研究和发展的必然趋势。目前与之相关的文献报道较少。Therefore, it has become an inevitable trend in the research and development of ion mobility spectrometers to improve the signal-to-noise ratio and effectively improve the resolution of ion mobility spectrometers without large-scale changes in the hardware structure of ion mobility spectrometers. At present, there are few related literature reports.
发明内容Contents of the invention
本发明技术解决问题:针对传统的信号平均法离子迁移谱分辨率和信噪比低,常规的HADAMARD变换离子迁移谱仅能提高信噪比不能提高分辨率的问题,提出一种反向扩展HADAMARD变换离子迁移谱仪,该发明同时提高了离子迁移谱的信噪比和分辨率,改善了离子迁移谱仪的综合检测性能。The technical solution of the present invention: In view of the low resolution and signal-to-noise ratio of the traditional signal averaging method ion mobility spectrum, and the conventional HADAMARD transformation ion mobility spectrum can only improve the signal-to-noise ratio but not the resolution, a reverse expansion HADAMARD is proposed By changing the ion mobility spectrometer, the invention simultaneously improves the signal-to-noise ratio and resolution of the ion mobility spectrometer, and improves the comprehensive detection performance of the ion mobility spectrometer.
本发明技术解决方案:一种反向扩展HADAMARD变换离子迁移谱仪,它包括电离区、帘气区、反应区、反向扩展HADAMARD变换离子门控模块、迁移区、电荷探测区、逆HADAMARD变换信号处理模块,所述电离区内有电离源,所述电离区与所述反应区之间设置有帘气区,所述帘气区中通入的帘气能阻隔样品气体进入所述电离区,所述反应区与所述迁移区间设置有离子门,特征在于,所述离子门与所述反向扩展HADAMARD变换离子门控模块相连,由所述离子门控模块完成离子门的高速开关控制,所述电荷探测区与所述逆HADAMARD变换信号处理模块相连,所述信号处理模块主要完成叠加谱的采集、A/D转换、逆HADAMARD变换处理、还原谱的显示。The technical solution of the present invention: a reverse expansion HADAMARD transformation ion mobility spectrometer, which includes an ionization zone, a curtain gas zone, a reaction zone, a reverse expansion HADAMARD transformation ion gating module, a migration zone, a charge detection zone, and an inverse HADAMARD transformation Signal processing module, there is an ionization source in the ionization zone, a curtain gas zone is set between the ionization zone and the reaction zone, and the curtain gas passed into the curtain gas zone can prevent sample gas from entering the ionization zone , the reaction zone and the migration interval are provided with an ion gate, characterized in that the ion gate is connected to the reverse expansion HADAMARD transformation ion gate control module, and the high-speed switch control of the ion gate is completed by the ion gate control module , the charge detection area is connected to the inverse HADAMARD transform signal processing module, and the signal processing module mainly completes the acquisition of superimposed spectra, A/D conversion, inverse HADAMARD transform processing, and display of restored spectra.
在本发明的一个实施例中,所述电离区采用负高压针对板式放电模式,电离源是一负高压模块,其输出的负高压是-10000V。In one embodiment of the present invention, the ionization region adopts a negative high-voltage target plate discharge mode, and the ionization source is a negative high-voltage module whose output negative high voltage is -10000V.
在本发明的一个实施例中,所述反应区与迁移区通过BN型离子门隔离,所述离子门与所述反向扩展HADAMARD门控模块相连;在本发明的一个实施例中,所述反向扩展HADAMARD变换离子门控模块由伪随机序列发生器、扩展编码器、反向编码器和升压模块组成,首先由8阶伪随机序列发生器生成255位伪随机二进制序列,其中含有128个1,127个0;所述扩展编码器将所述255位的伪随机序列转换成255*4(1020)位的扩展伪随机序列码;所述反向编码器将所述扩展伪随机码转换成反向扩展伪随机序列码,由此得到离子门控数字序列;所述升压模块,将该数字序列(TTL电平)转换成0~220V的离子门控电压信号,该信号直接连接所述离子门两端。所述离子门的调制分辨率(脉宽)为200μs。In one embodiment of the present invention, the reaction zone and the migration zone are isolated by a BN-type ion gate, and the ion gate is connected to the reverse expansion HADAMARD gating module; in one embodiment of the present invention, the The reverse extension HADAMARD transformation ion gating module is composed of a pseudo-random sequence generator, an extension encoder, a reverse encoder and a boost module. First, a 255-bit pseudo-random binary sequence is generated by an 8-order pseudo-random sequence generator, which contains 128 1, 127 0s; the extended coder converts the 255-bit pseudo-random sequence into an extended pseudo-random sequence code of 255*4 (1020) bits; the reverse encoder converts the extended pseudo-random code Converted into a reverse-expanded pseudo-random sequence code, thereby obtaining an ion-gated digital sequence; the booster module converts the digital sequence (TTL level) into an ion-gated voltage signal of 0-220V, and the signal is directly connected to the ion gate ends. The modulation resolution (pulse width) of the ion gate is 200 μs.
在本发明的一个实施例中,所述迁移区由一组等阻值电阻均匀串联组成,为离子运动提供一个均匀的弱电场,迁移区电场由分压方式得到400V/cm的均匀弱电场。In one embodiment of the present invention, the migration region is composed of a group of resistors with equal resistances connected in series evenly to provide a uniform weak electric field for ion movement, and the electric field in the migration region obtains a uniform weak electric field of 400V/cm by voltage division.
在本发明的一个实施例中,所述电荷探测区由电荷探测板和信号预处理单元构成,所述电荷探测板主要将离子信号转换成电流信号,所述信号预处理单元是利用放大器将表征离子强度的电流信号放大并转换成电压信号。In one embodiment of the present invention, the charge detection area is composed of a charge detection board and a signal preprocessing unit, the charge detection board mainly converts the ion signal into a current signal, and the signal preprocessing unit uses an amplifier to convert the characterization The current signal of ionic strength is amplified and converted into a voltage signal.
进一步,所述逆HADAMARD变换信号处理模块完成HADAMARD变换叠加谱数据的采集和高速A/D转换以及迁移谱的逆HADAMARD变换处理。数据采集受控于周期性的脉冲同步信号,该同步信号与反向扩展伪随机序列周期大小一致,由反向扩展HADAMARD离子门控模块输出控制,所述信号处理模块的采样频率为20KHz,数据采集采用连续采集模式,分通道接收采集到的数据。Further, the inverse HADAMARD transform signal processing module completes the acquisition of HADAMARD transform superposition spectrum data, high-speed A/D conversion and inverse HADAMARD transform processing of migration spectrum. The data acquisition is controlled by a periodic pulse synchronization signal, which is consistent with the period of the reverse expansion pseudo-random sequence, and is controlled by the output of the reverse expansion HADAMARD ion gating module. The sampling frequency of the signal processing module is 20KHz, and the data The acquisition adopts the continuous acquisition mode, and the collected data is received in separate channels.
在本发明的一个实施例中,所述离子迁移谱是在常温、常压下工作,无需调节离子迁移区的温度和湿度。In one embodiment of the present invention, the ion mobility spectrometer works at normal temperature and pressure without adjusting the temperature and humidity of the ion mobility region.
本发明与现有技术相比的优点在于:本发明一种反向扩展HADAMARD变换离子迁移谱仪,不仅能有效提高离子通量,提高信噪比,而且能充分利用离子间的扩散排斥作用压缩离子峰的半高宽,从而有效地提高了离子迁移谱的分辨率。本发明不需要对现有离子迁移谱做较大硬件改动;在检测性能方面,相对于传统的信号平均法离子迁移谱,本发明装置将检测信噪比提高了约6.5倍,将分辨率提高了约33%左右,而常规HADAMARD变换方法不能改善离子迁移谱的分辨率,这表明本发明在综合检测性能方面优于传统信号平均法和常规HADAMARD变换法离子迁移谱。另外本发明技术成果还可用于其它类似的分析技术中,应用前景广阔。Compared with the prior art, the present invention has the advantages that: a reverse expansion HADAMARD transformation ion mobility spectrometer of the present invention can not only effectively improve the ion flux, improve the signal-to-noise ratio, but also fully utilize the diffusion repulsion between ions to compress The full width at half maximum of the ion peak, thus effectively improving the resolution of the ion mobility spectrum. The present invention does not need to make major hardware changes to the existing ion mobility spectrometer; in terms of detection performance, compared with the traditional signal averaging method ion mobility spectrometry, the device of the present invention improves the detection signal-to-noise ratio by about 6.5 times, and improves the resolution The conventional HADAMARD transformation method can not improve the resolution of the ion mobility spectrum, which shows that the present invention is superior to the traditional signal averaging method and the conventional HADAMARD transformation method ion mobility spectrum in terms of comprehensive detection performance. In addition, the technical achievements of the present invention can also be used in other similar analysis techniques, and the application prospect is broad.
附图说明Description of drawings
图1为本发明一种反向扩展HADAMARD变换离子迁移谱仪结构;Fig. 1 is a kind of reverse expansion HADAMARD transformation ion mobility spectrometer structure of the present invention;
图2为本发明反向扩展HADAMARD变换离子门控模块控制示意图;Fig. 2 is the control schematic diagram of reverse expansion HADAMARD transformation ion gating module of the present invention;
图3为信号平均法离子迁移谱检测结果;Fig. 3 is the ion mobility spectrometry detection result of signal averaging method;
图4为常规HADAMARD变换离子迁移谱与反向扩展HADAMARD变换离子迁移谱检测性能对比图)。Figure 4 is a comparison chart of detection performance between conventional HADAMARD transformed ion mobility spectrometry and inverse extended HADAMARD transformed ion mobility spectrometer).
其中,1-电离区,2-帘气区,3-反应区,4-反向扩展HADAMARD变换离子门控模块,5-迁移区,6-电荷探测区,7-逆HADAMARD变换信号处理模块,8-负高压模块,9-第一气体出口,10-帘气,11-第二气体出口,12-载气入口,13-离子门,14-均匀迁移电场,15-迁移气入口,16-法拉第板,17-信号预处理单元,18-最长线性反馈移位寄存器,19-扩展编码器,20-反向编码器,21-升压模块。Among them, 1-ionization area, 2-curtain gas area, 3-reaction area, 4-reverse expansion HADAMARD transformation ion gating module, 5-migration area, 6-charge detection area, 7-inverse HADAMARD transformation signal processing module, 8-Negative high voltage module, 9-First gas outlet, 10-Curtain gas, 11-Second gas outlet, 12-Carrier gas inlet, 13-Ion gate, 14-Uniform transfer electric field, 15-Transfer gas inlet, 16- Faraday board, 17-signal preprocessing unit, 18-longest linear feedback shift register, 19-extended encoder, 20-reverse encoder, 21-boost module.
具体实施方式detailed description
以下结合附图,对本发明的具体实施方式进行详细阐述。The specific implementation manners of the present invention will be described in detail below in conjunction with the accompanying drawings.
如图1所示,一种反向扩展HADAMARD变换离子迁移谱仪,它包括电离区1、帘气区2、反应区3、反向扩展HADAMARD变换离子门控模块4、迁移区5、电荷探测区6、逆HADAMARD变换信号处理模块7。所述电离区采用负电晕放电模式,利用10000V的负高压模块8输出给高压放电针,通过针对板式放电模式,将通入的气体电离,生成反应物离子,电离区内设有第一气体出口9;所述帘气区利用吹入的帘气10阻止样品气体进入电离区;所述反应区设置有第二气体出口11和载气入口12;所述反应区与迁移区之间设置有BN型离子门13,所述离子门与所述反向扩展HADAMARD变换离子门控模块4连接,以实现离子门的高速开关控制;所述迁移区由一系列金属环和聚四氟乙烯环交替放置组成,通过均匀电阻将各个金属环连接形成均匀迁移电场14,所述迁移区末端有迁移气入口15用于将中性分子气体反吹,阻止其到达法拉第板;所述电荷探测区通过法拉第板16探测电荷信号,并将信号接入信号预处理单元17,完成信号放大并转换成0~10V电压信号;所述逆HADAMARD变换信号处理模块与所述电荷探测区相连,实现叠加谱的采集、A/D转换、逆HADAMARD变换处理、还原谱的显示。As shown in Figure 1, a reverse expansion HADAMARD transformation ion mobility spectrometer, it includes ionization zone 1, curtain gas zone 2, reaction zone 3, reverse expansion HADAMARD transformation ion gating module 4, migration zone 5, charge detection Area 6. Inverse HADAMARD transform signal processing module 7. The ionization area adopts the negative corona discharge mode, and the negative high voltage module 8 of 10000V is used to output to the high voltage discharge needle, and through the plate type discharge mode, the incoming gas is ionized to generate reactant ions, and the first gas outlet is provided in the ionization area 9; the curtain gas zone utilizes the blown curtain gas 10 to prevent the sample gas from entering the ionization zone; the reaction zone is provided with a second gas outlet 11 and a carrier gas inlet 12; a BN is provided between the reaction zone and the migration zone Type ion gate 13, the ion gate is connected with the reverse expansion HADAMARD transformation ion gate control module 4 to realize the high-speed switch control of the ion gate; the migration area is alternately placed by a series of metal rings and polytetrafluoroethylene rings Each metal ring is connected through a uniform resistance to form a uniform migration electric field 14, and there is a migration gas inlet 15 at the end of the migration region for blowing back the neutral molecular gas to prevent it from reaching the Faraday plate; the charge detection region passes through the Faraday plate 16 detects the charge signal, and connects the signal to the signal preprocessing unit 17, completes the signal amplification and converts it into a 0-10V voltage signal; the inverse HADAMARD transformation signal processing module is connected to the charge detection area to realize the collection of superposition spectrum, A/D conversion, inverse HADAMARD conversion processing, display of restored spectrum.
反向扩展HADAMARD变换门控模块是本发明的主要创新之处。早在2006年,国外学者已经开始探寻多路复用离子迁移谱(IMS),HADAMARD多路复用技术由此被引入IMS,相对于信号平均法来说,采用多路复用技术的HADAMARD变换IMS显著地提升了分析仪器的信噪比,但缺点是无法同时提高离子迁移谱的分辨率,而且其逆变换谱中存在假峰现象。为此,本发明做了两方面处理,一方面是将伪随机序列码隔离,即进行扩展处理,形成扩展的伪随机序列码(通过在每位伪随机序列码后加入扩展码来实现),另一方面是将扩展的伪随机序列作反向编码处理,该处理主要是为了提高离子迁移谱的分辨率。Reversely extending the HADAMARD transformation gating module is the main innovation of the present invention. As early as 2006, foreign scholars have begun to explore multiplexed ion mobility spectrometry (IMS), and HADAMARD multiplexing technology has been introduced into IMS. Compared with the signal averaging method, the HADAMARD transformation using multiplexing technology IMS significantly improves the signal-to-noise ratio of the analytical instrument, but the disadvantage is that it cannot improve the resolution of the ion mobility spectrum at the same time, and there are false peaks in the inverse transform spectrum. For this reason, the present invention has done two aspects of processing, on the one hand is to isolate the pseudo-random sequence code, promptly carry out extension process, form the pseudo-random sequence code of extension (by adding extension code after each pseudo-random sequence code to realize), On the other hand, the extended pseudo-random sequence is reverse-coded, which is mainly for improving the resolution of the ion mobility spectrum.
本发明的反向扩展HADAMARD变换离子门控模块完整结构如图2所示。实施例中,首先通过FPGA构造8阶最长线性反馈移位寄存器18,其线性反馈逻辑表达式为x8=x4+x3+x2+1,生成的伪随机序列长度为255位(128个1,127个0),占空比约为50%,通过扩展编码器19将该伪随机序列转换为扩展的伪随机序列,每位伪随机序列码后加入3个0,该序列的占空比则下降到12.5%左右,再通过反向编码器20将该扩展的伪随机序列变换为反向扩展伪随机序列,占空比又提升到87.5%左右,最后经升压模块21将反向扩展伪随机序列转换成开门电压为0V、关门电压为180V的离子门控脉冲信号,最终由其驱动离子门的开关(与所述离子门13两端相连)。The complete structure of the reverse extended HADAMARD transform ion gating module of the present invention is shown in FIG. 2 . In the embodiment, the 8th-order longest linear feedback shift register 18 is first constructed by FPGA, and its linear feedback logic expression is x 8 =x 4 +x 3 +x 2 +1, and the length of the generated pseudo-random sequence is 255 bits ( 128 1s, 127 0s), and the duty cycle is about 50%. The pseudo-random sequence is converted into an extended pseudo-random sequence by the extension encoder 19, and three 0s are added after each pseudo-random sequence code. The duty cycle then drops to about 12.5%, and then the extended pseudo-random sequence is transformed into a reverse-extended pseudo-random sequence by the reverse encoder 20, and the duty cycle is raised to about 87.5%, and finally the boost module 21 converts the The reverse expansion pseudo-random sequence is converted into an ion gating pulse signal with a gate opening voltage of 0V and a gate closing voltage of 180V, which finally drives the switch of the ion gate (connected to both ends of the ion gate 13).
本发明中离子门13的脉宽(调制分辨率)选择为200μs。In the present invention, the pulse width (modulation resolution) of the ion gate 13 is selected as 200 μs.
本发明中,电荷探测区利用信号预处理单元将法拉第板探测到的离子电流进行放大和电流电压转换处理,得到0~10V的电压信号;逆HADAMARD变换信号处理模块首先通过其自带的A/D转换通道完成叠加谱数据的采集、转换、存储,然后进行逆HADAMARD变换处理,并将还原谱进行显示。最后对信号平均法离子迁移谱、常规HADAMARD变换离子迁移谱和反向扩展HADAMARD变换离子迁移谱的检测结果进行了对比分析,信号平均法的谱图如图3所示,常规的HADAMARD变换离子迁移谱和反向扩展HADAMARD变换离子迁移谱如图4所示。实验结果表明,以255位的伪随机序列为例,常规HADAMARD变换离子迁移谱,其信噪比提高约为信号平均法离子迁移谱的1.58倍,但其分辨率却略小于信号平均法离子迁移谱;本发明——反向扩展HADAMARD变换离子迁移谱相比于信号平均法,其信噪比约为信号平均法的6.5倍,分辨率比信号平均法提高了33%左右,对比可得,本发明提出的反向扩展HADAMARD变换方法离子迁移谱综合性能比常规HADAMARD变换离子迁移谱的综合检测性能明显要好。In the present invention, the charge detection area uses the signal preprocessing unit to amplify the ion current detected by the Faraday plate and convert the current and voltage to obtain a voltage signal of 0-10V; the inverse HADAMARD transformation signal processing module first passes its own A/ The D conversion channel completes the acquisition, conversion, and storage of the superimposed spectrum data, and then performs inverse HADAMARD transformation processing, and displays the restored spectrum. Finally, the detection results of signal average method ion mobility spectrometry, conventional HADAMARD transform ion mobility spectrometry and reverse expansion HADAMARD transform ion mobility spectrometry were compared and analyzed. The spectrum of signal average method is shown in Figure 3. The spectra and the reverse extended HADAMARD transformed ion mobility spectra are shown in Fig. 4. The experimental results show that, taking the 255-bit pseudo-random sequence as an example, the conventional HADAMARD transforms the ion mobility spectrum, and its signal-to-noise ratio is about 1.58 times higher than that of the signal-averaged ion mobility spectrum, but its resolution is slightly smaller than that of the signal-averaged ion mobility spectrum. Spectrum; The present invention-reverse expansion HADAMARD transformation ion mobility spectrum is compared with the signal average method, and its signal-to-noise ratio is about 6.5 times of the signal average method, and the resolution has improved about 33% than the signal average method, and the comparison can be obtained, The comprehensive performance of the ion mobility spectrum of the reverse expansion HADAMARD transformation method proposed by the present invention is obviously better than the comprehensive detection performance of the conventional HADAMARD transformation ion mobility spectrum.
提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本发明的范围由所附权利要求限定。不脱离本发明的精神和原理而做出的各种等同替换和修改,均应涵盖在本发明的范围之内。The above embodiments are provided only for the purpose of describing the present invention, not to limit the scope of the present invention. The scope of the invention is defined by the appended claims. Various equivalent replacements and modifications made without departing from the spirit and principle of the present invention shall fall within the scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410797512.5A CN104483378B (en) | 2014-12-19 | 2014-12-19 | Reverse expansion HADAMARD transform ion mobility spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410797512.5A CN104483378B (en) | 2014-12-19 | 2014-12-19 | Reverse expansion HADAMARD transform ion mobility spectrometer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104483378A CN104483378A (en) | 2015-04-01 |
CN104483378B true CN104483378B (en) | 2017-02-08 |
Family
ID=52757947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410797512.5A Active CN104483378B (en) | 2014-12-19 | 2014-12-19 | Reverse expansion HADAMARD transform ion mobility spectrometer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104483378B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106324078A (en) * | 2016-09-12 | 2017-01-11 | 安徽理工大学 | Modified Hadamard multiplexing counter ion migration spectrum experimental apparatus |
CN106248780A (en) * | 2016-09-12 | 2016-12-21 | 安徽理工大学 | A kind of reverse impulse HADAMARD ion mobility spectrometry |
CN107516628B (en) * | 2017-08-15 | 2019-08-27 | 中国科学院合肥物质科学研究院 | A Bipolar Hadamard Transform Ion Mobility Spectrometer |
CN108776166A (en) * | 2018-05-29 | 2018-11-09 | 中国科学院合肥物质科学研究院 | A kind of spectrum modulation Hadamard transform ionic migration spectrometer |
CN113466318A (en) * | 2021-06-22 | 2021-10-01 | 西安电子科技大学 | Control method, system and equipment of super-resolution ion mobility spectrometer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101562114A (en) * | 2009-05-22 | 2009-10-21 | 公安部第三研究所 | Ion mobility spectrometer using Hadamard transform method |
CN102592940A (en) * | 2007-12-27 | 2012-07-18 | 同方威视技术股份有限公司 | Ion migration spectrometer and method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6900431B2 (en) * | 2003-03-21 | 2005-05-31 | Predicant Biosciences, Inc. | Multiplexed orthogonal time-of-flight mass spectrometer |
EP2428797B1 (en) * | 2010-09-14 | 2016-05-18 | Airsense Analytics GmbH | Device for identifying and detecting gases by means of ion mobility spectrometry |
EP2587259A1 (en) * | 2011-10-26 | 2013-05-01 | Tofwerk AG | Method and apparatus for determining a mobility of ions |
-
2014
- 2014-12-19 CN CN201410797512.5A patent/CN104483378B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102592940A (en) * | 2007-12-27 | 2012-07-18 | 同方威视技术股份有限公司 | Ion migration spectrometer and method thereof |
CN101562114A (en) * | 2009-05-22 | 2009-10-21 | 公安部第三研究所 | Ion mobility spectrometer using Hadamard transform method |
Non-Patent Citations (5)
Title |
---|
Hadamard transform ion mobility spectrometry;Clowers BH;《Analytical Chemistry》;20061231;第78卷(第1期);第44-51页 * |
Hadamard transform time of flight mass spectrometry;A Brock;《Analytical Chemistry》;19981231;第70卷(第18期);第3735-3741页 * |
Hadamard变换在离子迁移谱仪上的应用研究;沙淼淼;《核技术》;20080630;第31卷(第6期);第469-472页 * |
Hadamard变换离子迁移谱的理论模拟初步研究;方英兰 等;《量子电子学报》;20130930;第30卷(第5期);第524-528页 * |
离子迁移谱Hadamard编解码模块设计与实现;梁辰;《工业仪表与自动化装置》;20101231(第6期);第54-57页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104483378A (en) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104483378B (en) | Reverse expansion HADAMARD transform ion mobility spectrometer | |
CN101738429B (en) | Ion separation, enrichment and detection device | |
Creaser et al. | Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement | |
US9293313B2 (en) | Spatial focusing ion gate assembly and spatial focusing ion mobility spectrometer | |
US8866072B2 (en) | Method and apparatus for detecting and identifying gases by means of ion mobility spectrometry | |
US9070542B2 (en) | Selective ionization using high frequency filtering of reactive ions | |
CN101413919A (en) | Method for recognizing and analyzing sample and ion transfer spectrometer | |
CA2915502C (en) | Dual polarity spark ion source | |
CN102683151B (en) | Chemical ionization mass spectrometer for selectively controlling reaction ions | |
US20140034844A1 (en) | Non-radioactive ion source using high energy electrons | |
CN104658852B (en) | Multi-ion source time-of-flight mass spectrometer | |
US3626181A (en) | Gas detecting apparatus with means to record detection signals in superposition for improved signal-to-noise ratios | |
CN110828281B (en) | An ion enrichment ion transfer tube | |
CN101562114A (en) | Ion mobility spectrometer using Hadamard transform method | |
CN106324078A (en) | Modified Hadamard multiplexing counter ion migration spectrum experimental apparatus | |
CN106248780A (en) | A kind of reverse impulse HADAMARD ion mobility spectrometry | |
CN110828279B (en) | A two-dimensional separation ion transfer tube | |
CN103165390A (en) | Ozone modified beta radioactive ion source and application thereof | |
CN103460330A (en) | Combination ion gate and modifier | |
CN203351552U (en) | Organic matter detection apparatus of negative ion proton reverse transfer reaction mass spectrum | |
JP4991566B2 (en) | Analysis equipment | |
CN203929711U (en) | The ion mobility spectrometry apparatus in a kind of surface desorption atmospheric chemical ionization source | |
CN214099579U (en) | A reflection type ion mobility spectrometer | |
CN110487884B (en) | Use method of ion migration tube for complex sample separation and analysis | |
CN103776893A (en) | Ionic migration spectrometer of dielectric barrier discharging ionization source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |