CN104480493B - Method for recycling copper and cadmium and preparing cadmium bronze precursor employing compact biological electrochemical reactor - Google Patents
Method for recycling copper and cadmium and preparing cadmium bronze precursor employing compact biological electrochemical reactor Download PDFInfo
- Publication number
- CN104480493B CN104480493B CN201410669734.9A CN201410669734A CN104480493B CN 104480493 B CN104480493 B CN 104480493B CN 201410669734 A CN201410669734 A CN 201410669734A CN 104480493 B CN104480493 B CN 104480493B
- Authority
- CN
- China
- Prior art keywords
- vitamin
- cadmium
- copper
- reactor
- electrochemical reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052793 cadmium Inorganic materials 0.000 title claims abstract description 59
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 239000010949 copper Substances 0.000 title claims abstract description 43
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 23
- 229910000906 Bronze Inorganic materials 0.000 title claims abstract description 16
- 239000010974 bronze Substances 0.000 title claims abstract description 16
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 239000002243 precursor Substances 0.000 title claims abstract description 14
- 238000004064 recycling Methods 0.000 title 1
- 239000012266 salt solution Substances 0.000 claims abstract description 9
- 244000005700 microbiome Species 0.000 claims abstract description 6
- 239000000446 fuel Substances 0.000 claims abstract description 5
- 239000010865 sewage Substances 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 11
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 claims description 8
- 229930003231 vitamin Natural products 0.000 claims description 8
- 235000013343 vitamin Nutrition 0.000 claims description 8
- 239000011782 vitamin Substances 0.000 claims description 8
- 229940088594 vitamin Drugs 0.000 claims description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 claims description 5
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 claims description 5
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 5
- 235000019136 lipoic acid Nutrition 0.000 claims description 5
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims description 5
- 239000001632 sodium acetate Substances 0.000 claims description 5
- 235000017281 sodium acetate Nutrition 0.000 claims description 5
- 229960002663 thioctic acid Drugs 0.000 claims description 5
- QCUOBSQYDGUHHT-UHFFFAOYSA-L cadmium sulfate Chemical compound [Cd+2].[O-]S([O-])(=O)=O QCUOBSQYDGUHHT-UHFFFAOYSA-L 0.000 claims description 4
- 229910000331 cadmium sulfate Inorganic materials 0.000 claims description 4
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 239000004744 fabric Substances 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 239000000460 chlorine Substances 0.000 claims description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 2
- 238000005868 electrolysis reaction Methods 0.000 claims description 2
- 150000003722 vitamin derivatives Chemical class 0.000 claims 6
- AGBQKNBQESQNJD-SSDOTTSWSA-N (R)-lipoic acid Chemical compound OC(=O)CCCC[C@@H]1CCSS1 AGBQKNBQESQNJD-SSDOTTSWSA-N 0.000 claims 3
- 229910002566 KAl(SO4)2·12H2O Inorganic materials 0.000 claims 3
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 claims 3
- AGBQKNBQESQNJD-UHFFFAOYSA-N alpha-Lipoic acid Natural products OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 claims 3
- 238000000151 deposition Methods 0.000 claims 3
- 239000002366 mineral element Substances 0.000 claims 3
- ZUFQODAHGAHPFQ-UHFFFAOYSA-N pyridoxine hydrochloride Chemical compound Cl.CC1=NC=C(CO)C(CO)=C1O ZUFQODAHGAHPFQ-UHFFFAOYSA-N 0.000 claims 3
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 claims 3
- 230000002906 microbiologic effect Effects 0.000 claims 2
- 239000000725 suspension Substances 0.000 claims 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- BDKZHNJTLHOSDW-UHFFFAOYSA-N [Na].CC(O)=O Chemical compound [Na].CC(O)=O BDKZHNJTLHOSDW-UHFFFAOYSA-N 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 229910052801 chlorine Inorganic materials 0.000 claims 1
- 239000004020 conductor Substances 0.000 claims 1
- UKJLNMAFNRKWGR-UHFFFAOYSA-N cyclohexatrienamine Chemical group NC1=CC=C=C[CH]1 UKJLNMAFNRKWGR-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 239000011593 sulfur Substances 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 abstract description 12
- 239000002351 wastewater Substances 0.000 abstract description 9
- 230000000813 microbial effect Effects 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 7
- 239000010802 sludge Substances 0.000 abstract description 4
- 239000003575 carbonaceous material Substances 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract description 3
- 238000011084 recovery Methods 0.000 description 27
- 229910052739 hydrogen Inorganic materials 0.000 description 16
- 239000001257 hydrogen Substances 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000009467 reduction Effects 0.000 description 8
- PLZFHNWCKKPCMI-UHFFFAOYSA-N cadmium copper Chemical compound [Cu].[Cd] PLZFHNWCKKPCMI-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 4
- 229930003270 Vitamin B Natural products 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000011720 vitamin B Substances 0.000 description 3
- 235000019156 vitamin B Nutrition 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- RBCOYOYDYNXAFA-UHFFFAOYSA-L (5-hydroxy-4,6-dimethylpyridin-3-yl)methyl phosphate Chemical compound CC1=NC=C(COP([O-])([O-])=O)C(C)=C1O RBCOYOYDYNXAFA-UHFFFAOYSA-L 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229930003756 Vitamin B7 Natural products 0.000 description 2
- 229960004050 aminobenzoic acid Drugs 0.000 description 2
- WLZRMCYVCSSEQC-UHFFFAOYSA-N cadmium(2+) Chemical compound [Cd+2] WLZRMCYVCSSEQC-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical compound [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- JZRWCGZRTZMZEH-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 2
- 238000004758 underpotential deposition Methods 0.000 description 2
- 239000011735 vitamin B7 Substances 0.000 description 2
- 235000011912 vitamin B7 Nutrition 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000012533 medium component Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- -1 phosphors Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- BHZOKUMUHVTPBX-UHFFFAOYSA-M sodium acetic acid acetate Chemical compound [Na+].CC(O)=O.CC([O-])=O BHZOKUMUHVTPBX-UHFFFAOYSA-M 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000011727 vitamin B9 Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/24—Alloys obtained by cathodic reduction of all their ions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/16—Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- General Chemical & Material Sciences (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
本发明提供了一种紧凑型生物电化学反应器回收铜、镉并制备镉青铜前体的方法,属于生物电化学技术领域。通过继电开关将生物电化学反应器切换为微生物燃料电池或微生物电解池模式;在微生物燃料电池模式下串联外阻;在微生物电解池模式下串联小电阻,并外接电源;在反应器的阴极室装入Cu(II)和Cd(II)的混合盐溶液;反应器的阴极和阳极均为导电的碳材料;反应器的阳极室接种污水处理厂的澄清池污泥作为电化学活性微生物。本发明过程清洁高效、反应器紧凑、结构简单、操作方便,对于铜、镉废水的处理与镉青铜前体的制备具有很好的应用前景。
The invention provides a compact bioelectrochemical reactor for recovering copper and cadmium and preparing a cadmium bronze precursor, which belongs to the technical field of bioelectrochemistry. The bioelectrochemical reactor is switched to microbial fuel cell or microbial electrolytic cell mode through a relay switch; in the microbial fuel cell mode, the external resistance is connected in series; in the microbial electrolytic cell mode, a small resistance is connected in series, and an external power supply is connected; The chamber is filled with a mixed salt solution of Cu(II) and Cd(II); the cathode and anode of the reactor are conductive carbon materials; the anode chamber of the reactor is inoculated with the clarifier sludge of the sewage treatment plant as electrochemically active microorganisms. The process of the invention is clean and efficient, the reactor is compact, the structure is simple, and the operation is convenient, and it has good application prospects for the treatment of copper and cadmium wastewater and the preparation of cadmium bronze precursor.
Description
技术领域technical field
本发明属于生物电化学技术领域,利用微生物燃料电池(MFCs)将铜从铜镉废水中选择性分离并回收;在不改变反应器主体的前提下,将MFCs切换到微生物电解池(MECs)模式,进一步回收上述废水中的金属镉,具有反应器结构紧凑、操作方便等特点。基于MFCs模式下回收铜的催化作用,系统原位利用铜并实现镉的高效回收。生成的铜镉复合物是制备良好导电性和导热性的镉青铜的前体和原料。The invention belongs to the technical field of bioelectrochemistry, uses microbial fuel cells (MFCs) to selectively separate and recycle copper from copper-cadmium wastewater; and switches the MFCs to the microbial electrolysis cell (MECs) mode without changing the main body of the reactor , and further recover the metal cadmium in the above wastewater, which has the characteristics of compact reactor structure and convenient operation. Based on the catalysis of copper recovery in MFCs mode, the system utilizes copper in situ and realizes efficient recovery of cadmium. The resulting copper-cadmium complex is the precursor and raw material for preparing cadmium bronze with good electrical and thermal conductivity.
背景技术Background technique
重金属铜、镉广泛应用于工业生产的诸多领域,如合金、电镀、中子吸收控制棒、颜料、塑料稳定剂、荧光粉、杀虫剂、杀菌剂、油漆。因此,铜镉重金属废水处理一直是人们关注的焦点之一。目前,含铜镉废水的处理与回收专利达20余项。这些方法主要有化学沉淀法、吸附法、离子交换法、铁氧化法和电化学法。例如,专利CN201310533532、CN201310615806、CN201410111803等等。这些方法的缺点主要为处理剂使用量大、反应不易控制、易二次污染、成本高、回收金属难、能耗高等。寻找清洁、高效、无/低能耗的铜镉回收新方法是可持续社会发展的必然要求。Heavy metal copper and cadmium are widely used in many fields of industrial production, such as alloys, electroplating, neutron absorption control rods, pigments, plastic stabilizers, phosphors, insecticides, fungicides, and paints. Therefore, copper and cadmium heavy metal wastewater treatment has always been one of the focuses of attention. At present, there are more than 20 patents on the treatment and recovery of wastewater containing copper and cadmium. These methods mainly include chemical precipitation, adsorption, ion exchange, iron oxidation and electrochemical methods. For example, patents CN201310533532, CN201310615806, CN201410111803, etc. The disadvantages of these methods are mainly the large amount of treatment agent used, the reaction is not easy to control, easy to cause secondary pollution, high cost, difficult to recover metals, and high energy consumption. Finding new methods for copper and cadmium recovery that are clean, efficient, and energy-free/low-energy is an inevitable requirement for sustainable social development.
镉青铜是具有高层电性、导热性、且有良好耐磨性的金属材料,是应用于国防军工业的重要有色金属材料之一。镉青铜的生产一般是使用镉铜合金,在高频电炉中选择一定的固溶处理温度和时间,经熔炼而成。如果能选择清洁有效的方法在回收铜镉废水中的有价金属铜、镉的同时,制备镉青铜的前体,则能实现铜镉废水的资源化。Cadmium bronze is a metal material with high electrical properties, thermal conductivity, and good wear resistance. It is one of the important non-ferrous metal materials used in the defense industry. The production of cadmium bronze is generally made of cadmium copper alloy, which is smelted by selecting a certain solution treatment temperature and time in a high-frequency electric furnace. If a clean and effective method can be selected to recover the valuable metals copper and cadmium in the copper-cadmium wastewater and prepare the precursor of the cadmium bronze, the resource utilization of the copper-cadmium wastewater can be realized.
生物电化学系统是近年兴起的新技术,当阳极和阴极的化学反应能自发进行时,该系统为MFCs;当外界需要施加小电压才能使阳极和阴极反应进行时,该系统为MECs。随着研发工作的开展和深入,MFCs和MECs的应用领域得以拓展。就目前已公开或授权的国内外35件MECs、543件MFCs专利而言,研究目标已从单纯的有机废水处理与制氢(WO2014082989、CN201310627011、CN201410209650、CN201310148645、CN201210369997)到固定CO2(CN201110209149、CN201410169707)、脱氮脱盐(WO2010124079、CN201210550133)、生产甲烷(CN201210240982)、传感与监测(CN201410298473、CN201310226890、CN201310214163)、污染场地修复(CN201420151230)、有机产品制备(US2013256149、CN201310212120)、钴和镍等单一金属浸取与回收(CN201310345579、CN201210153753、CN201210153753、CN201310145779)等等。就混合金属废水的生物电化学处理和回收而言,研发工作还比较少见,且仅限于通过施加不同电压的MECs回收铜、铅、镉和锌(Modin O,Wang X,Wu X,RauchS,Fedje KK.Bioelectrochemical recovery of Cu,Pb,Cd,and Zn from dilutesolutions.J Hazard Mater 2012,235-236:291-297)。本研究小组也曾研发了MFCs驱动MECs回收铬、铜和镉(CN201410175987),以及Cu(II)促进Co(III)(201310071793.1)浸取的工作。与上述研究思路、研究内容和原理、研究目标以及拟解决的问题完全不同,本发明在不改变反应器主体结构前提下,通过继电开关的(自动)控制,巧妙实现MFCs与MECs的切换和功能转换,在节省反应器和节约场地空间的同时,利用MFCs模式下回收铜的欠电位沉积镉效应,实现MECs模式下镉的高效回收与镉青铜前体的制备。The bioelectrochemical system is a new technology emerging in recent years. When the chemical reaction between the anode and the cathode can proceed spontaneously, the system is MFCs; when a small voltage needs to be applied from the outside to make the anode and cathode reaction proceed, the system is MECs. With the development and deepening of research and development, the application fields of MFCs and MECs have been expanded. As far as 35 MECs and 543 MFCs patents have been published or authorized at home and abroad, the research goals have changed from simple organic wastewater treatment and hydrogen production (WO2014082989, CN201310627011, CN201410209650, CN201310148645, CN201210369997) to CO2 fixation (CN201110209149, CN201410169707)、脱氮脱盐(WO2010124079、CN201210550133)、生产甲烷(CN201210240982)、传感与监测(CN201410298473、CN201310226890、CN201310214163)、污染场地修复(CN201420151230)、有机产品制备(US2013256149、CN201310212120)、钴和镍等Single metal leaching and recovery (CN201310345579, CN201210153753, CN201210153753, CN201310145779) and so on. As far as bioelectrochemical treatment and recovery of mixed metal wastewater is concerned, research and development work is relatively rare and limited to the recovery of copper, lead, cadmium, and zinc by MECs with different applied voltages (Modin O, Wang X, Wu X, Rauch S, Fedje et al. KK. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. J Hazard Mater 2012, 235-236: 291-297). Our research group has also developed MFCs to drive MECs to recover chromium, copper and cadmium (CN201410175987), and Cu(II) to promote the leaching of Co(III) (201310071793.1). Completely different from the above-mentioned research ideas, research content and principles, research objectives and problems to be solved, the present invention cleverly realizes the switching and Function conversion, while saving reactor and site space, utilizes the underpotential deposition cadmium effect of copper recovery in MFCs mode to realize efficient recovery of cadmium and preparation of cadmium bronze precursor in MECs mode.
发明内容Contents of the invention
本发明提供了一种过程清洁、反应器结构紧凑、操作方便、处理铜和镉废水同步回收铜和镉并制备镉青铜前体的方法。The invention provides a method with clean process, compact reactor structure, convenient operation, copper and cadmium waste water treatment, simultaneous recovery of copper and cadmium and preparation of cadmium bronze precursor.
本发明采用的技术方案如下:一种紧凑型生物电化学反应器回收铜、镉并制备镉青铜前体的方法,具体步骤如下:The technical scheme adopted in the present invention is as follows: a method for reclaiming copper and cadmium in a compact bioelectrochemical reactor and preparing a cadmium bronze precursor, the specific steps are as follows:
通过时间电磁继电器控制继电开关,将生物电化学反应器切换为微生物燃料电池或微生物电解池模式;The relay switch is controlled by the time electromagnetic relay to switch the bioelectrochemical reactor to the microbial fuel cell or microbial electrolytic cell mode;
当生物电化学反应器处于MFCs模式时,串联100-500Ω的外阻;When the bioelectrochemical reactor is in MFCs mode, connect an external resistance of 100-500Ω in series;
当生物电化学反应器处于MECs模式时,串联5-50Ω的电阻,并外接电源0.5-1.0V;When the bioelectrochemical reactor is in the MECs mode, connect a 5-50Ω resistor in series and an external power supply of 0.5-1.0V;
生物电化学反应器的阴极室装入Cu(II)和Cd(II)的混合盐溶液,生物电化学反应器的阴极和阳极电极为导电的碳材料;The cathode compartment of the bioelectrochemical reactor is filled with a mixed salt solution of Cu(II) and Cd(II), and the cathode and anode electrodes of the bioelectrochemical reactor are conductive carbon materials;
生物电化学反应器的阳极室中装有电化学活性微生物以及阳极液;The anode compartment of the bioelectrochemical reactor is filled with electrochemically active microorganisms and anolyte;
将生物电化学反应器的阳极室接种污水处理厂的澄清池污泥作为电化学活性微生物。The anode compartment of the bioelectrochemical reactor was inoculated with clarifier sludge from a sewage treatment plant as electrochemically active microorganisms.
所述的Cu(II)和Cd(II)的混合盐溶液为硫酸铜和硫酸镉的混合盐溶液、硫酸铜和氯化镉的混合液、氯化铜和硫酸镉的混合盐溶液、氯化铜和氯化镉的混合液。The mixed salt solution of Cu(II) and Cd(II) is a mixed salt solution of copper sulfate and cadmium sulfate, a mixed solution of copper sulfate and cadmium chloride, a mixed salt solution of copper chloride and cadmium sulfate, A mixture of copper and cadmium chloride.
所述的碳材料为碳布、碳棒或碳毡。The carbon material is carbon cloth, carbon rod or carbon felt.
所述澄清池污泥pH:6.8-7.0;电导率:0.80-0.93mS/cm;悬浮性固形物:30-35g/L;化学需氧量:150-300mg/L。The clarifier sludge pH: 6.8-7.0; electrical conductivity: 0.80-0.93mS/cm; suspended solids: 30-35g/L; chemical oxygen demand: 150-300mg/L.
所述的阳极液成分为:12.0mM乙酸钠;5.8mM NH4Cl;1.7mM KCl;17.8mM NaH2PO4·H2O;32.3mM Na2HPO4;矿质元素:12.5mL/L,组成为MgSO4:3.0g/L;MnSO4·H2O:0.5g/L;NaCl:1.0g/L;FeSO4·7H2O:0.1g/L;CaCl2·2H2O:0.1g/L;CoCl2·6H2O:0.1g/L;ZnCl2:0.13g/L;CuSO4·5H2O:0.01g/L;KAl(SO4)2·12H2O:0.01g/L;H3BO3:0.01g/L;Na2MoO4:0.025g/L;NiCl2·6H2O:0.024g/L;Na2WO4·2H2O:0.024g/L;维生素:12.5mL/L,组成为维生素B1:5.0g/L;维生素B2:5.0g/L;维生素B3:5.0g/L;维生素B5:5.0g/L;维生素B6:10.0g/L;维生素B11:2.0g/L;维生素H:2.0g/L;对氨基苯甲酸:5.0g/L;硫辛酸:5.0g/L;氨基三乙酸:1.5g/L。The composition of the anolyte is: 12.0mM sodium acetate; 5.8mM NH 4 Cl; 1.7mM KCl; 17.8mM NaH 2 PO 4 ·H 2 O; 32.3mM Na 2 HPO 4 ; MgSO 4 : 3.0g/L; MnSO 4 ·H 2 O: 0.5g/L; NaCl: 1.0g/L; FeSO 4 ·7H 2 O: 0.1g/L; CaCl 2 ·2H 2 O: 0.1g/L L; CoCl 2 6H 2 O: 0.1g/L; ZnCl 2 : 0.13g/L; CuSO 4 5H 2 O: 0.01g/L; KAl(SO 4 ) 2 12H 2 O: 0.01g/L; H 3 BO 3 : 0.01g/L; Na 2 MoO 4 : 0.025g/L; NiCl 2 6H 2 O: 0.024g/L; Na 2 WO 4 2H 2 O: 0.024g/L; Vitamins: 12.5mL /L, composed of vitamin B 1 :5.0g/L; vitamin B 2 :5.0g/L; vitamin B 3 :5.0g/L; vitamin B 5 :5.0g/L; vitamin B 6 :10.0g/L; Vitamin B11 : 2.0g/L; Vitamin H: 2.0g/L; p-aminobenzoic acid: 5.0g/L; lipoic acid: 5.0g/L; aminotriacetic acid: 1.5g/L.
本发明的反应器的阳极室和阴极室在运行过程中需保持无氧环境,可通过通入氮气以实现厌氧条件。The anode chamber and the cathode chamber of the reactor of the present invention need to maintain an oxygen-free environment during operation, and anaerobic conditions can be realized by feeding nitrogen.
本发明的反应器运行阶段流程为:阳极液中的有机物在阳极室内被微生物氧化,过程产生的质子穿过质子透过膜进入阴极室,电子通过外电路导入阴电极。在阴电极表面,由于Cu(II)和Cd(II)的标准氧化还原电位分别为+0.52V和–0.40V,吸附在电极上的Cu(II)和Cd(II)将分别在MFCs和MECs模式下被选择性还原为单质铜或镉。The process flow of the reactor operation stage of the present invention is as follows: the organic matter in the anolyte is oxidized by microorganisms in the anode chamber, the protons produced in the process pass through the proton permeable membrane and enter the cathode chamber, and the electrons are introduced into the cathode electrode through an external circuit. On the surface of the cathode electrode, since the standard redox potentials of Cu(II) and Cd(II) are +0.52 V and –0.40 V, respectively, the Cu(II) and Cd(II) adsorbed on the electrode will flow in MFCs and MECs, respectively. mode is selectively reduced to elemental copper or cadmium.
本发明的提高MECs镉回收率的运行阶段流程为:在MFCs模式下Cu(II)被还原为单质。此镀铜的电极依据铜的欠电位沉积镉效应,在MECs模式下催化并高效回收镉,同步制备镉青铜前体。The process flow of the operating stage for improving the recovery rate of cadmium in MECs of the present invention is as follows: Cu(II) is reduced to simple substances in MFCs mode. According to the underpotential deposition cadmium effect of copper, the copper-plated electrode catalyzes and efficiently recovers cadmium in the MECs mode, and simultaneously prepares the cadmium bronze precursor.
附图说明Description of drawings
图1是回收铜、镉并制备镉青铜前体的生物电化学反应器示意图。Figure 1 is a schematic diagram of a bioelectrochemical reactor for recovering copper and cadmium and preparing cadmium bronze precursor.
图2是实施例1的MFCs模式下Cu(II)、Cd(II)回收率随时间的变化。Fig. 2 is the variation of Cu(II), Cd(II) recovery rate over time under the MFCs mode of embodiment 1.
图3是实施例1的MECs模式运行4h的Cd(II)回收率和氢气收率,以及未镀铜电极的对照。Fig. 3 is the Cd (II) recovery rate and the hydrogen yield of the MECs mode operation 4h of embodiment 1, and the contrast of non-copper-plated electrode.
图4是实施例1的MECs模式下的电流密度,以及未镀铜电极的对照。Fig. 4 is the current density under the MECs mode of embodiment 1, and the contrast of non-copper plated electrode.
图5是实施例1的MECs模式下的循环伏安曲线,以及未镀铜电极、电极未镀铜-无Cd(II)、电极镀铜-无Cd(II)的对照。Fig. 5 is the cyclic voltammetry curve in the MECs mode of Example 1, and the comparison of non-copper-plated electrodes, no copper-plated electrodes-no Cd(II), and copper-plated electrodes-no Cd(II).
图中:1碳棒;2参比电极;3碳布;4氢气收集管;5阴极混合液;In the figure: 1 carbon rod; 2 reference electrode; 3 carbon cloth; 4 hydrogen collection tube; 5 cathode mixture;
6阳离子交换膜;7阳极室;8阴极室;9电源;10MFCs模式下外阻;6 cation exchange membrane; 7 anode chamber; 8 cathode chamber; 9 power supply; external resistance in 10MFCs mode;
11MECs模式下电阻;12时间电磁继电器;13进出样口。11 Resistor in MECs mode; 12 Time electromagnetic relay; 13 In and out sample port.
具体实施方式detailed description
以下结合附图和技术方案,进一步说明本发明的具体实施方式。The specific implementation manners of the present invention will be further described below in conjunction with the accompanying drawings and technical solutions.
实施例1Example 1
步骤一:构建反应器,如图1所示:反应器阳极室7和阴极室8为有机玻璃材质,阳极室溶液体积为15mL,阴极室溶液体积为25mL,以离子交换膜(CMI-7000)6隔开,MFCs模式下串联200Ω外阻10,MECs模式时串联10Ω电阻11并外加0.5V电压。Step 1: Build the reactor, as shown in Figure 1: the anode chamber 7 and the cathode chamber 8 of the reactor are made of plexiglass, the volume of the solution in the anode chamber is 15mL, and the volume of the solution in the cathode chamber is 25mL, and the ion exchange membrane (CMI-7000) 6 separated, 200Ω external resistance 10 in series in MFCs mode, 10Ω resistance 11 in series in MECs mode and 0.5V voltage applied.
步骤二:分别将反应器阳极电极(碳棒和碳毡)和阴极电极(碳布)置于反应器阳极室7和阴极室8中。碳棒(北京三业碳材料公司)表观尺寸为 ,碳毡(北京三业碳材料公司)表观尺寸为3.0cm×2.0cm×1.0cm)。在反应器阴极室接入参比电极2,通过电脑与数据采集系统收集电阻11两端电压并计算电流;根据参比电极收集反应器的阴极电势。Step 2: Place the reactor anode electrode (carbon rod and carbon felt) and cathode electrode (carbon cloth) in the reactor anode chamber 7 and cathode chamber 8 respectively. The apparent size of the carbon rod (Beijing Sanye Carbon Material Co., Ltd.) is , carbon felt (Beijing Sanye Carbon Materials Co., Ltd.) with an apparent size of 3.0cm×2.0cm×1.0cm). The reference electrode 2 is connected to the cathode chamber of the reactor, and the voltage across the resistor 11 is collected through the computer and the data acquisition system and the current is calculated; the cathode potential of the reactor is collected according to the reference electrode.
步骤三:在反应器阳极室中加入15mL培养液,其组成为12.0mM乙酸钠;5.8mMNH4Cl;1.7mM KCl;17.8mM NaH2PO4·H2O;32.3mM Na2HPO4;矿质元素:12.5mL/L(MgSO4:3.0g/L;MnSO4·H2O:0.5g/L;NaCl:1.0g/L;FeSO4·7H2O:0.1g/L;CaCl2·2H2O:0.1g/L;CoCl2·6H2O:0.1g/L;ZnCl2:0.13g/L;CuSO4·5H2O:0.01g/L;KAl(SO4)2·12H2O:0.01g/L;H3BO3:0.01g/L;Na2MoO4:0.025g/L;NiCl2·6H2O:0.024g/L;Na2WO4·2H2O:0.024g/L);维生素:12.5mL/L(维生素B1:5.0g/L;维生素B2:5.0g/L;维生素B3:5.0g/L;维生素B5:5.0g/L;维生素B6:10.0g/L;维生素B11:2.0g/L;维生素H:2.0g/L;对氨基苯甲酸:5.0g/L;硫辛酸:5.0g/L;氨基三乙酸:1.5g/L)。阳极室接种污水处理厂澄清池污泥10g(大连凌水河污水处理厂)。阳极液曝氮气20min后密封。Step 3: Add 15mL of culture solution to the anode chamber of the reactor, the composition of which is 12.0mM sodium acetate; 5.8mM NH 4 Cl; 1.7mM KCl; 17.8mM NaH 2 PO 4 ·H 2 O; 32.3mM Na 2 HPO 4 ; Elements: 12.5mL/L (MgSO 4 : 3.0g/L; MnSO 4 ·H 2 O: 0.5g/L; NaCl: 1.0g/L; FeSO 4 ·7H 2 O: 0.1g/L; CaCl 2 ·2H 2 O: 0.1g/L; CoCl 2 6H 2 O: 0.1g/L; ZnCl 2 : 0.13g/L; CuSO 4 5H 2 O: 0.01g/L; KAl(SO 4 ) 2 12H 2 O :0.01g/L; H 3 BO 3 :0.01g/L; Na 2 MoO 4 :0.025g/L; NiCl 2 ·6H 2 O:0.024g/L; Na 2 WO 4 ·2H 2 O:0.024g/L L); vitamins: 12.5mL/L (vitamin B 1 : 5.0g/L; vitamin B 2 : 5.0g/L; vitamin B 3 : 5.0g/L; vitamin B 5 : 5.0g/L; vitamin B 6 : 10.0g/L; vitamin B 11 :2.0g/L; vitamin H:2.0g/L; p-aminobenzoic acid: 5.0g/L; lipoic acid: 5.0g/L; aminotriacetic acid: 1.5g/L). The anode chamber was inoculated with 10g of sludge from the clarification tank of the sewage treatment plant (Dalian Lingshuihe sewage treatment plant). The anolyte was exposed to nitrogen for 20 minutes and then sealed.
步骤四:在反应器阴极室加入25mL的去离子水。Step 4: Add 25 mL of deionized water to the cathode chamber of the reactor.
步骤五:将电路总开关闭合,电磁继电器的开关置于MFCs模式下。将装置置于室温(20-25℃)下驯化和运行。当电流下降至0.02mA以下时,即完成一个周期,并补加上述培养基成分。连续五个周期驯化和富集阳极电化学活性菌。Step 5: Close the main switch of the circuit, and place the switch of the electromagnetic relay in the MFCs mode. The device was brought to room temperature (20-25°C) for acclimation and operation. When the current drops below 0.02mA, one cycle is completed, and the above-mentioned medium components are added. Five consecutive cycles of domestication and enrichment of anodic electrochemically active bacteria.
步骤六:将步骤四中阴极去离子水换为100mg/L的CuSO4和50mg/L的CdSO4混合液,介质为0.1M醋酸钠-醋酸缓冲溶液(pH=4.6),曝氮气20min。Step 6: Replace the cathode deionized water in step 4 with a mixture of 100 mg/L CuSO 4 and 50 mg/L CdSO 4 , the medium is 0.1M sodium acetate-acetic acid buffer solution (pH=4.6), and aerate with nitrogen for 20 minutes.
步骤七:将电磁继电器开关置于MFCs模式下,定期取样,分析液相中Cu(II)和Cd(II)含量,计算其回收率。Step 7: Place the electromagnetic relay switch in the MFCs mode, take samples regularly, analyze the Cu(II) and Cd(II) content in the liquid phase, and calculate the recovery rate.
步骤八:在MFCs模式运行21h时铜基本回收,将电磁继电器开关置于MECs模式下,定期取样,分析液相中Cd(II)、气相中氢气含量。Step 8: Copper is basically recovered when the MFCs mode is operated for 21 hours, and the electromagnetic relay switch is placed in the MECs mode, and samples are taken regularly to analyze the Cd(II) in the liquid phase and the hydrogen content in the gas phase.
步骤九:表征MECs模式镀铜电极、以及未镀铜空白电极、有无Cd(II)对照等的循环伏安曲线;计算MECs模式下基于镉、氢气的阴极库仑效率、外加电能效率、系统总能量效率、镉收率、氢气收率。Step 9: Characterize the cyclic voltammetry curves of the copper-plated electrode in MECs mode, the blank electrode without copper plating, and the control with or without Cd(II); calculate the cathode Coulombic efficiency, external electric energy efficiency, and total system efficiency based on cadmium and hydrogen in MECs mode. Energy efficiency, cadmium yield, hydrogen yield.
下表是实施例1的MECs模式下基于镉、氢气的阴极库仑效率、外加电能效率、系统总能量效率、镉收率、氢气收率。The following table is the cathode coulombic efficiency, external electric energy efficiency, total system energy efficiency, cadmium yield, and hydrogen yield based on cadmium and hydrogen in the MECs mode of Example 1.
本实施事例回收铜、镉并制备一定组成的镉青铜前体。在MFCs模式时阴极发生的反应为式(1),在MECs模式时阴极进行的反应为式(2)和(3)。MECs模式时基于镉的阴极库仑效率(CECd)、基于氢气的阴极库仑效率(CEH2)、外加电能效率(ηE,Cd,ηE,H2)、系统总能量效率(ηE+S,Cd,ηE+S,H2)、镉收率(YCd)、氢气收率(YH2)的计算如式(4)-(11)所示。In this example, copper and cadmium are recovered and a cadmium bronze precursor with a certain composition is prepared. The reactions that occur at the cathode in the MFCs mode are formula (1), and the reactions at the cathode in the MECs mode are formulas (2) and (3). In MECs mode, cathode coulombic efficiency based on cadmium (CE Cd ), cathode coulombic efficiency based on hydrogen (CE H2 ), external electric energy efficiency (η E,Cd ,η E,H2 ), total system energy efficiency (η E+S, The calculations of Cd ,η E+S,H2 ), cadmium yield (Y Cd ), and hydrogen yield (Y H2 ) are shown in formulas (4)-(11).
Cu2++2e-→Cu(s) (1)Cu 2+ +2e - → Cu(s) (1)
Cd2++2e-→Cd(s) (2)Cd 2+ +2e - →Cd(s) (2)
2H++2e-→H2(g) (3)2H + +2e - →H 2 (g) (3)
在MECs模式中反应初始和终态的镉离子浓度的变化值(mg/L),b1和b2分别是还原单位镉和产生单位氢气所需要的电子数;Vca、Van是反应器的阴、阳极液体积(L);ECd2+是实验条件下Cd(II)的理论还原电极电势(V),Eap是外加的电压(V),nH2和nS分别是反应初始到终态氢气的物质的量、阳极消耗底物的物质的量(mol),GS是实验条件下乙酸钠氧化的吉布斯自由能(J/mol),ΔHS,H2是氢气的燃烧热(J/mol),ΔCOD反应器阳极中化学需氧量的变化值(g/L),I是回路中电流(A),t是反应器运行时间(s),MCd和MO2分别是单质镉和氧气的相对分子(g/mol),96485为法拉第常数,(C/mol e-);1000是量纲转换单位(mg/g)。 In the MECs mode, the change value (mg/L) of the cadmium ion concentration in the initial and final states of the reaction, b 1 and b 2 are the number of electrons required to reduce a unit of cadmium and generate a unit of hydrogen, respectively; V ca and Van are the reactor The cathode and anolyte volumes (L); E Cd2+ is the theoretical reduction electrode potential (V) of Cd(II) under experimental conditions, E ap is the applied voltage (V), n H2 and n S are the reaction from the beginning to the end, respectively The amount of substance in state hydrogen, the amount of substance (mol) consumed by the anode substrate, G S is the Gibbs free energy (J/mol) of sodium acetate oxidation under experimental conditions, ΔH S, H2 is the combustion heat of hydrogen ( J/mol), the change value of chemical oxygen demand in the anode of the ΔCOD reactor (g/L), I is the current in the circuit (A), t is the running time of the reactor (s), M Cd and M O2 are elemental The relative molecules of cadmium and oxygen (g/mol), 96485 is Faraday's constant, (C/mol e - ); 1000 is the dimension conversion unit (mg/g).
结果:反应器在MFCs模式下随着运行时间的延长,Cu(II)回收率不断提高,在21h的Cu(II)回收率达96.8±1.6%(图2);而整个过程中Cd(II)的减少(10.6±1.3%(图2))主要归因于电极的吸附作用。将反应器切换为MECs模式时,4h时Cd(II)的回收率为46.6±1.3%(图3);而同样条件下的未镀铜阴极对比实验表明,Cd(II)回收率仅为26.1±1.1%(图3),故镀铜电极的镉回收效率提高了78.5%。镀铜、未镀铜电极条件下的电流密度分别为1.52±0.09A/m2和0.31±0.01A/m2(图4),说明MFCs模式下沉积的铜通过提高MECs模式中的电流密度促进Cd(II)的回收与还原。循环伏安分析表明(图5),MECs模式下的镀铜、未镀铜阴极的镉的还原峰电位分别出现在–0.57V和–0.61V,前者较后者的电位正移,表明电极表面生成的铜对后续的Cd(II)的还原具有催化作用;相应地,镀铜电极的镉的还原峰电流也较大,说明MFCs模式生成的铜加快了MECs模式下的电极反应速度。Results: With the prolongation of the operation time of the reactor in MFCs mode, the recovery rate of Cu(II) increased continuously, and the recovery rate of Cu(II) in 21h reached 96.8±1.6% (Fig. 2); while the Cd(II) recovery rate in the whole process ) (10.6 ± 1.3% (Fig. 2)) was mainly attributed to the adsorption of the electrodes. When the reactor was switched to MECs mode, the recovery rate of Cd(II) was 46.6±1.3% at 4h (Figure 3); while the comparison experiment of non-copper-coated cathode under the same conditions showed that the recovery rate of Cd(II) was only 26.1% ±1.1% (Figure 3), so the cadmium recovery efficiency of the copper-plated electrode has increased by 78.5%. The current densities under copper-plated and non-copper-plated electrode conditions were 1.52±0.09A/m 2 and 0.31±0.01A/m 2 (Figure 4), indicating that copper deposited in MFCs mode promotes Recovery and reduction of Cd(II). Cyclic voltammetry analysis (Figure 5) shows that the reduction peak potentials of cadmium in copper-plated and non-copper-plated cathodes in MECs mode appear at –0.57V and –0.61V, respectively, and the potential of the former is positive compared with the latter, indicating that the electrode surface The generated copper has a catalytic effect on the subsequent reduction of Cd(II); correspondingly, the reduction peak current of cadmium on the copper-plated electrode is also larger, indicating that the copper generated in the MFCs mode accelerates the electrode reaction speed in the MECs mode.
在MECs模式下(上表),与未镀铜的对照电极相比,镀铜电极的系统总能量效率和镉收率均增加;而基于镉的阴极库伦效率和外加电能效率均较低;基于氢气的阴极库伦效率、外加电能效率、系统总能量效率和氢气收率均增加。这些结果表明,阴极在镀铜之后对镉的还原效率提高,同时也增加了氢气的逸出,且产氢竞争了镉的还原。In the MECs mode (above table), compared with the non-copper-coated control electrode, the total system energy efficiency and cadmium yield of the copper-coated electrode are both increased; while the cadmium-based cathode Coulombic efficiency and the external electric energy efficiency are lower; based on The cathode coulombic efficiency of hydrogen, the efficiency of external electric energy, the total energy efficiency of the system and the yield of hydrogen all increase. These results indicate that the reduction efficiency of cadmium at the cathode is enhanced after copper plating, and the evolution of hydrogen gas is also increased, and the hydrogen production competes for the reduction of cadmium.
综上,利用MFCs将铜从铜镉废水中选择性分离并回收,Cu(II)的回收率达96.8±1.6%;在不改变反应器主体的前提下,将MFCs切换到MECs模式,进一步回收废水中的金属镉。与电极上未镀铜的空白相比,镀铜电极对Cd(II)的回收率提高了78.5%,从而实现MFCs模式下的回收铜原位催化和高效回收MECs模式下的Cd(II)。制备的镉青铜前体中铜镉比例为4.16±0.07g/g。通过时间电磁继电器控制MECs模式下的Cd(II)还原量,可进一步调节铜镉产物中镉的含量,依据需要制备不同比例组成的镉青铜前体。该过程清洁无污染,兼具环境和生态效益、社会效益和经济效益。In summary, MFCs were used to selectively separate and recover copper from copper-cadmium wastewater, and the recovery rate of Cu(II) reached 96.8±1.6%. On the premise of not changing the main body of the reactor, the MFCs were switched to the MECs mode for further recovery Metallic cadmium in wastewater. Compared with the blank without copper plating on the electrode, the recovery rate of Cd(II) was increased by 78.5% on the copper-coated electrode, thus realizing the in-situ catalysis of copper recovery in MFCs mode and the efficient recovery of Cd(II) in MECs mode. The ratio of copper and cadmium in the prepared cadmium bronze precursor is 4.16±0.07g/g. By controlling the amount of Cd(II) reduction in the MECs mode through a time electromagnetic relay, the content of cadmium in the copper-cadmium product can be further adjusted, and cadmium bronze precursors with different proportions can be prepared according to the needs. The process is clean and pollution-free, and has both environmental and ecological benefits, social benefits and economic benefits.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410669734.9A CN104480493B (en) | 2014-11-21 | 2014-11-21 | Method for recycling copper and cadmium and preparing cadmium bronze precursor employing compact biological electrochemical reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410669734.9A CN104480493B (en) | 2014-11-21 | 2014-11-21 | Method for recycling copper and cadmium and preparing cadmium bronze precursor employing compact biological electrochemical reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104480493A CN104480493A (en) | 2015-04-01 |
CN104480493B true CN104480493B (en) | 2017-01-18 |
Family
ID=52755092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410669734.9A Expired - Fee Related CN104480493B (en) | 2014-11-21 | 2014-11-21 | Method for recycling copper and cadmium and preparing cadmium bronze precursor employing compact biological electrochemical reactor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104480493B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105621593B (en) * | 2016-01-18 | 2018-04-10 | 大连理工大学 | It is a kind of to clean the method that tungsten is effectively separated from tungsten hydrochlorate mixed solution |
CN107245580B (en) * | 2017-05-08 | 2018-10-16 | 大连理工大学 | A method of cleaning is effectively separated and recovered from copper, tin and iron from spent acidic etching solution |
CN109319942A (en) * | 2018-09-20 | 2019-02-12 | 江苏理工学院 | Construction method of a bioelectrochemical treatment system and application of treating copper and nickel in electroplating wastewater |
CN112573799B (en) * | 2020-12-31 | 2022-10-14 | 哈尔滨工业大学 | Combined wetland system based on mine remediation sludge drying |
CN115159665A (en) * | 2022-09-09 | 2022-10-11 | 太原理工大学 | A device for removing heavy metal ions in coking sludge |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102400169A (en) * | 2011-11-01 | 2012-04-04 | 浙江大学 | Method for producing hydrogen by alkalescent microbe electrolysis |
CN103266331A (en) * | 2013-04-24 | 2013-08-28 | 大连理工大学 | Method for recovery of elemental cobalt from lithium cobaltate by microbial fuel cell (MFC) self-driven microbial electrolysis cell (MEC) coupled system |
CN103966626A (en) * | 2014-04-29 | 2014-08-06 | 大连理工大学 | Method for recovering multiple metals through driving microbial electrolysis cells by microbial fuel cells |
CN104141147A (en) * | 2014-08-01 | 2014-11-12 | 太原理工大学 | Method for making microorganism electrolytic cell generate and store hydrogen through microbial fuel cells in self-driven mode |
-
2014
- 2014-11-21 CN CN201410669734.9A patent/CN104480493B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102400169A (en) * | 2011-11-01 | 2012-04-04 | 浙江大学 | Method for producing hydrogen by alkalescent microbe electrolysis |
CN103266331A (en) * | 2013-04-24 | 2013-08-28 | 大连理工大学 | Method for recovery of elemental cobalt from lithium cobaltate by microbial fuel cell (MFC) self-driven microbial electrolysis cell (MEC) coupled system |
CN103966626A (en) * | 2014-04-29 | 2014-08-06 | 大连理工大学 | Method for recovering multiple metals through driving microbial electrolysis cells by microbial fuel cells |
CN104141147A (en) * | 2014-08-01 | 2014-11-12 | 太原理工大学 | Method for making microorganism electrolytic cell generate and store hydrogen through microbial fuel cells in self-driven mode |
Non-Patent Citations (2)
Title |
---|
Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions;Oskar Modin等;《Journal of Hazardous Materials》;20121015;第235-236卷(第15期);第291-297页 * |
微生物电解池效能及其与微生物燃料电池的联合运行探索;谢倍珍等;《环境科学与技术》;20140930;第37卷(第9期);第59-64页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104480493A (en) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies | |
Luo et al. | Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell | |
CN103966626B (en) | A kind of microbiological fuel cell that improves drives microorganism electrolysis cell to reclaim polymetallic method | |
CN103397195B (en) | Recovery device and recovery method for metallic copper in waste printed circuit boards | |
CN103266331B (en) | The self-driven microorganism electrolysis cell coupled system of a kind of microbiological fuel cell reclaims the method for simple substance cobalt from cobalt acid lithium | |
CN104480493B (en) | Method for recycling copper and cadmium and preparing cadmium bronze precursor employing compact biological electrochemical reactor | |
Modin et al. | Microbial electrochemical recovery of zinc | |
CN106086934B (en) | Method for recovering elemental copper from copper-containing wastewater by using microbial fuel cell | |
CN102646843B (en) | Method for leaching Cobalt (III) (Co (III)) of lithium cobalt oxide in chemical cathode microbial fuel cell | |
Wu et al. | Progress in heavy metals-containing wastewater treatment via microbial electrolysis cell: a review | |
CN103397340B (en) | Utilize the method that microorganism electrolysis cell reclaims nickel from nickel-containing waste water | |
CN108796531B (en) | A clean and thorough method for treating tungsten and molybdenum organic mixed wastewater with simultaneous recovery of metals and by-product hydrogen | |
CN106571498B (en) | Molybdenum tin method is separated and recovered from from molybdenum stannic acid mixed salt solution using microbiological fuel cell | |
CN107265573A (en) | A kind of porous electrode material is prepared and its for electrochemistry efficient algae removal | |
Xing et al. | Hydrogen production from waste stream with microbial electrolysis cells | |
CN107245580B (en) | A method of cleaning is effectively separated and recovered from copper, tin and iron from spent acidic etching solution | |
CN102650063B (en) | Method for recovering elementary-substance cobalt from lithium cobaltate in one step by utilizing microbial electrolysis cell | |
CN107200422A (en) | A kind of method that electrochemical pre-treatment gold mine selects smelting residual organic matter and cyanide wastewater | |
CN103208666B (en) | A kind of method improving Co (III) in microbiological fuel cell leaching cobalt acid lithium | |
Chen et al. | Research on treatment of wastewater containing heavy metal by microbial fuel cell | |
CN107089745A (en) | A kind of method of wastewater treatment | |
CN107215988A (en) | A kind of advanced treatment method for carbonization wastewater | |
CN105621593A (en) | Clean effective method for separating tungsten and molybdenum from tungsten molybdate mixed solution | |
Cai et al. | Sequential recovery of copper and nickel from wastewater without net energy input | |
CN204885295U (en) | Little biological metallurgy battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170118 Termination date: 20201121 |