CN104465912A - LED epitaxial structure and method achieving high luminous energy density output - Google Patents
LED epitaxial structure and method achieving high luminous energy density output Download PDFInfo
- Publication number
- CN104465912A CN104465912A CN201410638182.5A CN201410638182A CN104465912A CN 104465912 A CN104465912 A CN 104465912A CN 201410638182 A CN201410638182 A CN 201410638182A CN 104465912 A CN104465912 A CN 104465912A
- Authority
- CN
- China
- Prior art keywords
- layer
- type
- led
- light
- energy density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000000407 epitaxy Methods 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims description 42
- 150000004767 nitrides Chemical class 0.000 claims description 21
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 229910052790 beryllium Inorganic materials 0.000 claims description 12
- 229910052793 cadmium Inorganic materials 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 229910052749 magnesium Inorganic materials 0.000 claims description 12
- 229910052711 selenium Inorganic materials 0.000 claims description 12
- 229910052717 sulfur Inorganic materials 0.000 claims description 12
- 229910052718 tin Inorganic materials 0.000 claims description 12
- 229910052725 zinc Inorganic materials 0.000 claims description 12
- 229910052714 tellurium Inorganic materials 0.000 claims description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims 4
- 239000011248 coating agent Substances 0.000 claims 3
- 238000000576 coating method Methods 0.000 claims 3
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 238000002347 injection Methods 0.000 abstract description 4
- 239000007924 injection Substances 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 132
- 229910002601 GaN Inorganic materials 0.000 description 27
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 12
- 239000010409 thin film Substances 0.000 description 10
- 239000011701 zinc Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- 229910010271 silicon carbide Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 4
- 238000004549 pulsed laser deposition Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 3
- MNKMDLVKGZBOEW-UHFFFAOYSA-M lithium;3,4,5-trihydroxybenzoate Chemical compound [Li+].OC1=CC(C([O-])=O)=CC(O)=C1O MNKMDLVKGZBOEW-UHFFFAOYSA-M 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- LRTTZMZPZHBOPO-UHFFFAOYSA-N [B].[B].[Hf] Chemical compound [B].[B].[Hf] LRTTZMZPZHBOPO-UHFFFAOYSA-N 0.000 description 2
- 229910052789 astatine Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- YQNQTEBHHUSESQ-UHFFFAOYSA-N lithium aluminate Chemical compound [Li+].[O-][Al]=O YQNQTEBHHUSESQ-UHFFFAOYSA-N 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
- H10H20/0364—Manufacture or treatment of packages of interconnections
Landscapes
- Led Devices (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明涉及一种高光能密度输出的LED外延结构及外延方法,将两组或两组以上的LED基本结构单元以隧道节的结构进行连接而形成统一的外延器件结构,LED基本结构单元包括:n型层、发光层和P型层,其中,发光层处于n型层和p型层之间。并且,n型层、发光层和P型层又由若干子层组成。本发明所述LED外延结构可以在较低的电流密度注入条件下即获得较高的光子能流密度输出,提高了器件的光学控制因子。同时,它也缓解了LED器件在大电流密度驱动条件下的“能效降低”(Efficiency Droop)问题,维持了器件较高的能量转换效率。
The invention relates to an LED epitaxy structure and an epitaxy method with high light energy density output. Two or more groups of LED basic structural units are connected in a tunnel structure to form a unified epitaxial device structure. The LED basic structural units include: An n-type layer, a light-emitting layer and a p-type layer, wherein the light-emitting layer is between the n-type layer and the p-type layer. Moreover, the n-type layer, the light-emitting layer and the p-type layer are composed of several sublayers. The LED epitaxial structure of the present invention can obtain higher photon energy flow density output under the lower current density injection condition, and improve the optical control factor of the device. At the same time, it also alleviates the problem of "efficiency droop" (Efficiency Droop) of LED devices under high current density driving conditions, and maintains a high energy conversion efficiency of the device.
Description
技术领域 technical field
本发明涉及一种高光能密度输出的LED外延结构及外延方法,属于LED光电子器件的制造领域。 The invention relates to an LED epitaxy structure and an epitaxy method with high light energy density output, and belongs to the field of manufacturing LED optoelectronic devices.
背景技术 Background technique
基于砷化物AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)和氮化物AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1;纤锌矿晶体结构)半导体材料的发光二极管LED以其节能、环保、长寿命等优点逐渐在电子显示屏、景观照明、矿灯、路灯、液晶显示器背光源、普通照明、光盘信息存储、生物医药等领域展开广泛应用。上述化合物半导体可以覆盖从红外、可见到紫外光的全部光谱能量范围,而通过控制氮化物合金的阳离子组分可以准确地定制LED器件的发射波长。从应用领域范围、市场容量来看,又以氮化物LED的应用为大宗、主流,比如,以白光LED为应用代表的半导体照明行业。 Based on arsenide Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1), phosphide Al x In y Ga 1-xy P (0≤x, y≤1; x+ y≤1), phosphorous arsenide Al x In y Ga 1-xy As 1-z P z (0≤x,y,z≤1; x+y≤1) and nitride Al x In y Ga 1-xy N (0≤x, y≤1; x+y≤1; wurtzite crystal structure) light-emitting diode LEDs made of semiconductor materials are gradually being used in electronic display screens, landscape lighting, miner's lamps, and street lamps due to their advantages in energy saving, environmental protection, and long life. , liquid crystal display backlight, general lighting, optical disc information storage, biomedicine and other fields are widely used. The above-mentioned compound semiconductors can cover the entire spectral energy range from infrared, visible to ultraviolet light, and the emission wavelength of LED devices can be accurately customized by controlling the cationic composition of the nitride alloy. From the perspective of the scope of application fields and market capacity, the application of nitride LEDs is the bulk and mainstream. For example, the semiconductor lighting industry represented by white LEDs.
虽然由上述化合物半导体制作的LED属直接带隙跃迁发光而具有较高的发光效率,但是,在目前技术条件下,LED器件在大电流密度驱动条件下,会出现电光转换效率降低的现象,即“能效降低”(Efficiency Droop)现象。而且,这种现象在氮化物LED上表现尤为明显。所以,在通常情况下,为了维持较高的能量转换效率和保证高可靠性,器件所使用的驱动电流密度都较低,如此便降低了LED器件输出的光子能流密度和光子总输出功率。 Although the LEDs made of the above-mentioned compound semiconductors have high luminous efficiency due to direct bandgap transition luminescence, under the current technical conditions, the electro-optical conversion efficiency of LED devices will decrease under the driving condition of high current density, that is, "Efficiency Droop" phenomenon. Moreover, this phenomenon is particularly evident in nitride LEDs. Therefore, in general, in order to maintain high energy conversion efficiency and ensure high reliability, the drive current density used by the device is low, which reduces the photon energy flux density and the total photon output power of the LED device.
对于某些需要器件具有高光子能流密度输出的场合,亦即需要器件具有高光学控制因子的定向照明应用领域,例如,汽车前大灯、射灯、筒灯、投 影仪光源、体育场馆照明等,上述问题带来的矛盾就会突显出来。在传统LED外延结构下制作的照明灯具为了获得较高的光子能量密度,往往会用增大驱动电流而牺牲效率的办法来实现。 For some occasions that require devices to have high photon energy flux density output, that is, directional lighting applications that require devices to have high optical control factors, such as automotive headlights, spotlights, downlights, projector light sources, stadiums Lighting, etc., the contradictions caused by the above problems will be highlighted. In order to obtain higher photon energy density, the lighting fixtures manufactured under the traditional LED epitaxial structure often increase the driving current at the expense of efficiency.
发明内容 Contents of the invention
本发明所要解决的技术问题是,针对传统LED外延结构仅有一组基本结构单元的现状,提供一种将两组或两组以上的LED基本结构单元以隧道节(隧道二极管)的结构进行连接而形成统一的具有高光能密度输出的LED外延结构。 The technical problem to be solved by the present invention is to provide a method for connecting two or more groups of LED basic structural units with a structure of tunnel nodes (tunnel diodes) for the current situation that the traditional LED epitaxial structure has only one group of basic structural units. A uniform LED epitaxial structure with high light energy density output is formed.
本发明解决上述技术问题的技术方案如下:一种高光能密度输出的LED外延结构,包括依次设置的衬底层和外延层;所述外延层包括至少两组LED基本单元和至少一个隧道节; The technical solution of the present invention to solve the above-mentioned technical problems is as follows: an LED epitaxial structure with high luminous energy density output, including a substrate layer and an epitaxial layer arranged in sequence; the epitaxial layer includes at least two groups of LED basic units and at least one tunnel section;
所述每两组LED基本单元之间通过一个隧道节连接。 Each two groups of LED basic units are connected through a tunnel section.
本发明的有益效果是:采用本发明所述LED外延结构制作的器件可以在保证输入电功率不变的情况下,通过提高工作总电压来实现工作电流的降低,即每个基本结构单元的正向压降通过隧道节实现串联累加,而每个基本结构的正向电流都是恒定的。这样便可以缓解LED器件在大电流密度驱动条件下的“能效降低”(Efficiency Droop)问题,使器件在较低的工作电流下维持较高的能量转换效率。因此,采用本发明所述LED外延结构可以在较低的电流密度注入条件下即获得较高的光能流度输出,因而提高了器件的光学控制因子,为后继LED灯珠、灯具和照明系统的开发提供了更好的灵活性,更多的可能性。 The beneficial effects of the present invention are: the device made by adopting the LED epitaxial structure of the present invention can realize the reduction of the working current by increasing the total working voltage under the condition that the input electric power is kept constant, that is, the positive direction of each basic structural unit The voltage drop is accumulated in series through the tunnel junction, while the forward current of each basic structure is constant. In this way, the problem of "efficiency droop" of LED devices under high current density driving conditions can be alleviated, and the device can maintain a high energy conversion efficiency at a low operating current. Therefore, the adoption of the LED epitaxial structure of the present invention can obtain higher luminous energy flow output under the condition of lower current density injection, thereby improving the optical control factor of the device, and providing a better solution for subsequent LED lamp beads, lamps and lighting systems. The development of provides better flexibility and more possibilities.
在上述技术方案的基础上,本发明还可以做如下改进。 On the basis of the above technical solutions, the present invention can also be improved as follows.
进一步,所述LED基本单元包括依次设置的n型层、发光层和p型层。 Further, the LED basic unit includes an n-type layer, a light-emitting layer and a p-type layer arranged in sequence.
采用上述进一步方案的有益效果是,n型层、p型层分别提供载流子电子和空穴的注入,而发光层则是电子和空穴复合发光的场所。 The beneficial effect of adopting the above further solution is that the n-type layer and the p-type layer respectively provide the injection of carrier electrons and holes, and the light-emitting layer is a place where electrons and holes recombine and emit light.
进一步,所述n型层包括至少一个n型子层,砷化物AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)和氮化物AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)中的至少一种构成至少一个n型子层; Further, the n-type layer includes at least one n-type sublayer, arsenide Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1), phosphide Al x In y Ga 1 -xy P(0≤x,y≤1; x+y≤1), phosphorous arsenide Al x In y Ga 1-xy As 1-z P z (0≤x,y,z≤1; x+y ≤1) and at least one of nitrides Al x In y Ga 1-xy N (0≤x, y≤1; x+y≤1) constitutes at least one n-type sublayer;
所述每个n型子层分别进行n型掺杂;所述每个n型子层的n型掺杂的掺杂浓度相同或不同,n型掺杂元素为Si、Sn、S、Se和Te中的至少一种。 Each of the n-type sublayers is respectively n-type doped; the n-type doping concentration of each n-type sublayer is the same or different, and the n-type doping elements are Si, Sn, S, Se and At least one of Te.
进一步,所述p型层包括至少一个p型子层,砷化物AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)和氮化物AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)中的至少一种构成至少一个p型子层; Further, the p-type layer includes at least one p-type sublayer, arsenide Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1), phosphide Al x In y Ga 1 -xy P(0≤x,y≤1; x+y≤1), phosphorous arsenide Al x In y Ga 1-xy As 1-z P z (0≤x,y,z≤1; x+y ≤1) and at least one of nitrides Al x In y Ga 1-xy N (0≤x, y≤1; x+y≤1) constitutes at least one p-type sublayer;
所述每个p型子层分别进行p型掺杂; Each of the p-type sublayers is doped with p-type respectively;
所述每个p型子层的p型掺杂的掺杂浓度相同或不同;p型掺杂元素为Be、Mg、Zn、Cd和C中的至少一种。 The p-type doping concentration of each p-type sublayer is the same or different; the p-type doping element is at least one of Be, Mg, Zn, Cd and C.
进一步,所述发光层包括至少一个薄膜子层,砷化物AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)和氮化物AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)中的至少一种构成至少一个薄膜子层; Further, the light-emitting layer includes at least one thin film sublayer, arsenide Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1), phosphide Al x In y Ga 1-xy P(0≤x, y≤1; x+y≤1), phosphorous arsenide Al x In y Ga 1-xy As 1-z P z (0≤x, y, z≤1; x+y≤1 ) and at least one of nitrides Al x In y Ga 1-xy N (0≤x, y≤1; x+y≤1) constitutes at least one thin film sublayer;
所述至少一薄膜子层进行n型、p型掺杂或非掺杂;所述n型掺杂元素为Si、Sn、S、Se、Te中的至少一种;所述p型掺杂元素为Be、Mg、Zn、Cd、C中的至少一种。 The at least one thin film sublayer is n-type, p-type doped or undoped; the n-type doping element is at least one of Si, Sn, S, Se, Te; the p-type doping element It is at least one of Be, Mg, Zn, Cd, and C.
进一步,所述隧道节包括至少两个隧道子层,砷化物AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)和氮化物AlxInyGa1-x-yN(0≤x,y ≤1;x+y≤1)中的至少一种构成至少两个隧道子层。 Further, the tunnel section includes at least two tunnel sublayers, arsenide Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1), phosphide Al x In y Ga 1- xy P (0≤x, y≤1; x+y≤1), phosphorous arsenide Al x In y Ga 1-xy As 1-z P z (0≤x, y, z≤1; x+y≤ 1) and at least one of nitrides AlxInyGa1 -xyN (0≤x, y≤1; x+y≤1) constitute at least two tunnel sublayers.
进一步,所述至少两个隧道子层分别进行n型重掺杂和p型重掺杂;所述n型重掺杂元素为Si、Sn、S、Se、Te中的至少一种;p型重掺杂元素为Be、Mg、Zn、Cd、C中的至少一种。 Further, the at least two tunnel sublayers are heavily n-type doped and p-type heavily doped respectively; the n-type heavily doped element is at least one of Si, Sn, S, Se, Te; p-type The heavy doping element is at least one of Be, Mg, Zn, Cd and C.
进一步,所述衬底层为同质衬底或异质衬底;当衬底层为异质衬底时,衬底层和外延层之间还设有缓冲层,所述衬底层由蓝宝石、碳化硅、硅、氮化镓、氮化铝、砷化镓、尖晶石、磷化铟、氮化硼、金刚石、氧化锌、二氧化硅、铝酸锂、镓酸锂、铌酸锂、硼化锆和硼化铪中的一种构成。 Further, the substrate layer is a homogeneous substrate or a heterogeneous substrate; when the substrate layer is a heterogeneous substrate, a buffer layer is also provided between the substrate layer and the epitaxial layer, and the substrate layer is made of sapphire, silicon carbide, Silicon, gallium nitride, aluminum nitride, gallium arsenide, spinel, indium phosphide, boron nitride, diamond, zinc oxide, silicon dioxide, lithium aluminate, lithium gallate, lithium niobate, zirconium boride and one of hafnium borides.
本发明所要解决的技术问题是,针对传统LED外延结构仅有一组基本结构单元的现状,提供一种将两组或两组以上的LED基本结构单元以隧道节(隧道二极管)的结构进行连接而形成统一的具有高光能密度输出的LED外延方法。 The technical problem to be solved by the present invention is to provide a method for connecting two or more groups of LED basic structural units with a structure of tunnel nodes (tunnel diodes) for the current situation that the traditional LED epitaxial structure has only one group of basic structural units. Form a unified LED epitaxy method with high light energy density output.
本发明解决上述技术问题的技术方案如下:一种高光能密度输出的LED外延方法,具体包括以下步骤: The technical solution of the present invention to solve the above-mentioned technical problems is as follows: an LED epitaxy method with high light energy density output, specifically comprising the following steps:
步骤1:判断衬底层是否为同质衬底,如果是,执行步骤3;否则,执行步骤2; Step 1: Determine whether the substrate layer is a homogeneous substrate, if yes, perform step 3; otherwise, perform step 2;
步骤2:在衬底层上表面生长缓冲层; Step 2: growing a buffer layer on the surface of the substrate layer;
步骤3:在衬底层或缓冲层上表面生长一组LED基本单元; Step 3: Grow a group of LED basic units on the surface of the substrate layer or the buffer layer;
步骤4:在LED基本单元上表面生长一个隧道节; Step 4: growing a tunnel node on the upper surface of the LED basic unit;
步骤5:在隧道节上生长一组LED基本单元; Step 5: Grow a group of LED basic units on the tunnel section;
步骤6:判断LED基本单元的数量是否达到预设值,如果是,执行步骤7;否则,执行步骤4; Step 6: Determine whether the number of LED basic units reaches the preset value, if yes, go to step 7; otherwise, go to step 4;
步骤7:结束LED外延结构的生长。 Step 7: End the growth of the LED epitaxial structure.
在上述技术方案的基础上,本发明还可以做如下改进。 On the basis of the above technical solutions, the present invention can also be improved as follows.
进一步,所述步骤3具体包括以下步骤: Further, the step 3 specifically includes the following steps:
步骤3.1:在衬底层或缓冲层上表面生长n型层; Step 3.1: growing an n-type layer on the surface of the substrate layer or the buffer layer;
步骤3.2:在n型层上表面生长发光层; Step 3.2: growing a light-emitting layer on the surface of the n-type layer;
步骤3.3:在发光层上表面生长p型层。 Step 3.3: growing a p-type layer on the surface of the light-emitting layer.
采用上述进一步方案的有益效果是,n型层、p型层分别提供载流子电子和空穴的注入,而发光层则是电子和空穴复合发光的场所。 The beneficial effect of adopting the above further solution is that the n-type layer and the p-type layer respectively provide the injection of carrier electrons and holes, and the light-emitting layer is a place where electrons and holes recombine and emit light.
进一步,所述隧道节包括依次设置在两个LED基本单元之间的至少两个隧道子层;并对至少两个隧道子层分别进行n型重掺杂和p型重掺杂。 Further, the tunnel section includes at least two tunnel sublayers sequentially arranged between two LED basic units; and the at least two tunnel sublayers are heavily doped with n-type and heavily doped with p-type respectively.
进一步,所述步骤1至步骤5中的生长方法采用有机金属气相沉积(MOCVD)、氢化物气相外延(HVPE)、脉冲激光沉积(PLD)、射频磁控溅射(RF-MS)、分子束外延(MBE)中的至少一种制备方法实现。 Further, the growth method in step 1 to step 5 adopts metal organic vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), pulsed laser deposition (PLD), radio frequency magnetron sputtering (RF-MS), molecular beam At least one fabrication method in Epitaxy (MBE) is implemented.
附图说明 Description of drawings
图1为本发明具体实施例1所述的一种高光能密度输出的LED外延结构截面示意图; Fig. 1 is a schematic cross-sectional view of an LED epitaxial structure with high luminous energy density output according to Embodiment 1 of the present invention;
图2为本发明具体实施例2所述的一种高光能密度输出的LED外延结构截面示意图; 2 is a schematic cross-sectional view of an LED epitaxial structure with high luminous energy density output according to Embodiment 2 of the present invention;
图3为本发明所述的一种高光能密度输出的LED外延方法流程图; Fig. 3 is a flow chart of an LED epitaxy method with high luminous energy density output according to the present invention;
图4为本发明具体实施3所述的一种高光能密度输出的LED外延结构的截面示意图; 4 is a schematic cross-sectional view of an LED epitaxial structure with high luminous energy density output according to Embodiment 3 of the present invention;
图5为本发明实施例3所述的LED外延结构中隧道节的具体结构截面示意图。 FIG. 5 is a schematic cross-sectional view of the specific structure of the tunnel node in the LED epitaxial structure described in Embodiment 3 of the present invention.
附图中,各标号所代表的部件列表如下: In the accompanying drawings, the list of parts represented by each label is as follows:
1、衬底层,2、缓冲层,3、n型层,4、发光层,5、p型层,6、隧道节,7、应力释放层,8、电子阻挡层,9、GaN层,10、p型重掺杂的GaN层。 1. Substrate layer, 2. Buffer layer, 3. n-type layer, 4. Light emitting layer, 5. p-type layer, 6. Tunnel node, 7. Stress release layer, 8. Electron blocking layer, 9. GaN layer, 10 , p-type heavily doped GaN layer.
具体实施方式 Detailed ways
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。 The principles and features of the present invention are described below in conjunction with the accompanying drawings, and the examples given are only used to explain the present invention, and are not intended to limit the scope of the present invention.
如图1所示,为本发明具体实施例1所述的一种高光能密度输出的LED外延结构截面示意图,包括依次设置的衬底层1、缓冲层2、一个隧道节6和两组LED基本结构单元;其中第一组LED基本结构单元分别由n型层3、p型层5和发光层4构成,发光层4位于n型层3与p型层5之间;第二组LED基本结构单元分别由n型层3、p型层5和发光层4构成,发光层4位于n型层3与p型层5之间。第一组LED基本结构单元和第二组LED基本结构单元之间通过隧道节6实现连接导通。在本实施例中,衬底材料相对外延层而言是异质衬底,因此,在n型层和衬底之间有缓冲层2。 As shown in Figure 1, it is a schematic cross-sectional view of an LED epitaxial structure with high luminous energy density output according to Embodiment 1 of the present invention, including a substrate layer 1, a buffer layer 2, a tunnel node 6 and two groups of LEDs arranged in sequence. Structural unit; the basic structural unit of the first group of LEDs is composed of n-type layer 3, p-type layer 5 and light-emitting layer 4, and the light-emitting layer 4 is located between n-type layer 3 and p-type layer 5; the second group of LED basic structure The units are composed of an n-type layer 3 , a p-type layer 5 and a light-emitting layer 4 , and the light-emitting layer 4 is located between the n-type layer 3 and the p-type layer 5 . The first group of LED basic structural units and the second group of LED basic structural units are connected through the tunnel node 6 . In this embodiment, the substrate material is a heterogeneous substrate with respect to the epitaxial layer, therefore, there is a buffer layer 2 between the n-type layer and the substrate.
在具体的外延生长过程,首先选择衬底晶圆,例如选择异质衬底1,然后生长缓冲层2,之后便开始陆续生长第一组LED基本结构单元的各层,依次是n型层3、发光层4和p型层5。然后,生长隧道节6。接着,陆续生长第二组LED基本结构单元的各层,依次是n型层3、发光层4和p型层5。如此,便完成了具备两组LED基本结构单元的新型LED器件结构。 In the specific epitaxial growth process, first select the substrate wafer, for example, select the heterogeneous substrate 1, then grow the buffer layer 2, and then start to grow the layers of the first group of LED basic structural units, followed by the n-type layer 3 , light emitting layer 4 and p-type layer 5 . Then, the tunnel section 6 is grown. Next, each layer of the basic structural unit of the second group of LEDs is grown successively, including the n-type layer 3 , the light-emitting layer 4 and the p-type layer 5 in sequence. In this way, a novel LED device structure with two sets of LED basic structural units is completed.
在通常情况下,应注意调整外延工艺参数,使得第一组和第二组LED的发射波长保持一致或保持较小的波长差范围。 Under normal circumstances, care should be taken to adjust the epitaxial process parameters so that the emission wavelengths of the first group and the second group of LEDs are consistent or maintain a small wavelength difference range.
所述n型层包括至少一个n型子层,砷化物AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)和氮化物AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)中的至少一种构成至少一个n型子层; The n-type layer includes at least one n-type sublayer, arsenide Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1), phosphide Al x In y Ga 1-xy P(0≤x, y≤1; x+y≤1), phosphorous arsenide Al x In y Ga 1-xy As 1-z P z (0≤x, y, z≤1; x+y≤1 ) and at least one of nitrides Al x In y Ga 1-xy N (0≤x, y≤1; x+y≤1) constitute at least one n-type sublayer;
所述每个n型子层分别进行n型掺杂;所述每个n型子层的n型掺杂的掺杂浓度相同或不同,n型掺杂元素为Si、Sn、S、Se和Te中的至少一种。 Each of the n-type sublayers is respectively n-type doped; the n-type doping concentration of each n-type sublayer is the same or different, and the n-type doping elements are Si, Sn, S, Se and At least one of Te.
所述p型层包括至少一个p型子层,砷化物AlxInyGa1-x-yAs(0≤x,y≤1; x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)和氮化物AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)中的至少一种构成至少一个p型子层; The p-type layer includes at least one p-type sublayer, arsenide Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1), phosphide Al x In y Ga 1-xy P(0≤x, y≤1; x+y≤1), phosphorous arsenide Al x In y Ga 1-xy As 1-z P z (0≤x, y, z≤1; x+y≤1 ) and at least one of nitrides Al x In y Ga 1-xy N (0≤x, y≤1; x+y≤1) constitute at least one p-type sublayer;
所述每个p型子层分别进行p型掺杂; Each of the p-type sublayers is doped with p-type respectively;
所述每个p型子层的p型掺杂的掺杂浓度相同或不同;p型掺杂元素为Be、Mg、Zn、Cd和C中的至少一种。 The p-type doping concentration of each p-type sublayer is the same or different; the p-type doping element is at least one of Be, Mg, Zn, Cd and C.
所述发光层包括至少一个薄膜子层,砷化物AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)和氮化物AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)中的至少一种构成至少一个薄膜子层; The light-emitting layer includes at least one thin film sublayer, arsenide Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1), phosphide Al x In y Ga 1-xy P ( 0≤x,y≤1; x+y≤1), phosphorous arsenide Al x In y Ga 1-xy As 1-z P z (0≤x,y,z≤1; x+y≤1) and At least one of the nitrides Al x In y Ga 1-xy N (0≤x, y≤1; x+y≤1) constitutes at least one thin film sublayer;
所述至少一薄膜子层进行n型、p型掺杂或非掺杂;所述n型掺杂元素为Si、Sn、S、Se、Te中的至少一种;所述p型掺杂元素为Be、Mg、Zn、Cd、C中的至少一种。 The at least one thin film sublayer is n-type, p-type doped or undoped; the n-type doping element is at least one of Si, Sn, S, Se, Te; the p-type doping element It is at least one of Be, Mg, Zn, Cd, and C.
所述隧道节包括至少两个隧道子层,砷化物AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)和氮化物AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)中的至少一种构成至少两个隧道子层。 The tunnel section includes at least two tunnel sublayers, arsenide Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1), phosphide Al x In y Ga 1-xy P (0≤x, y≤1; x+y≤1), phosphorous arsenide Al x In y Ga 1-xy As 1-z P z (0≤x, y, z≤1; x+y≤1) and at least one of nitrides AlxInyGa1 - xyN (0≤x, y≤1; x+y≤1) constitute at least two tunnel sublayers.
所述至少两个隧道子层分别进行n型重掺杂和p型重掺杂;所述n型重掺杂元素为Si、Sn、S、Se、Te中的至少一种;p型重掺杂元素为Be、Mg、Zn、Cd、C中的至少一种。 The at least two tunnel sublayers are heavily n-type doped and p-type heavily doped respectively; the n-type heavily doped element is at least one of Si, Sn, S, Se, Te; p-type heavily doped The hetero element is at least one of Be, Mg, Zn, Cd, and C.
所述衬底层1由蓝宝石、碳化硅、硅、氮化镓、氮化铝、砷化镓、尖晶石、磷化铟、氮化硼、金刚石、氧化锌、二氧化硅、铝酸锂、镓酸锂、铌酸锂、硼化锆和硼化铪中的一种构成。 The substrate layer 1 is made of sapphire, silicon carbide, silicon, gallium nitride, aluminum nitride, gallium arsenide, spinel, indium phosphide, boron nitride, diamond, zinc oxide, silicon dioxide, lithium aluminate, One of lithium gallate, lithium niobate, zirconium boride, and hafnium boride.
如图2所示,为本发明具体实施例2所述的一种高光能密度输出的LED外延结构截面示意图;列举了N组(若干组)LED基本结构单元通过N-1组 隧道节相连接而进行磊叠的情形。该情形与图1中两组LED基本结构相连接的方式类似,只是基本结构单元的数量增加了。可以看到,在第N组LED结构单元中,包含了n型层3、p型层5和发光层4构成,发光层4位于n型层3与p型层5之间。并且,第N-1组LED基本结构单元与第N组LED基本结构单元通过隧道节6连接导通。对于外延生长方法,其过程与两组LED基本结构单元的情况类似,需要逐一生长每个结构单元以及两个结构单元之间的隧道节。同时,通常要保证每个LED基本结构单元的发射波长相近或相同。 As shown in Figure 2, it is a schematic cross-sectional view of a LED epitaxial structure with high luminous energy density output described in Embodiment 2 of the present invention; N groups (several groups) of LED basic structural units are connected through N-1 groups of tunnel nodes And carry out the situation of Lei stack. This situation is similar to the way in which two groups of LED basic structures are connected in FIG. 1 , except that the number of basic structural units is increased. It can be seen that the Nth group of LED structural units includes an n-type layer 3 , a p-type layer 5 and a light-emitting layer 4 , and the light-emitting layer 4 is located between the n-type layer 3 and the p-type layer 5 . Moreover, the N-1th group of LED basic structural units is connected to the Nth group of LED basic structural units through the tunnel node 6 . For the epitaxial growth method, the process is similar to the case of two groups of LED basic structural units, and each structural unit and the tunnel node between the two structural units need to be grown one by one. At the same time, it is usually necessary to ensure that the emission wavelength of each LED basic structural unit is similar or the same.
对于衬底的材质,可以从蓝宝石、碳化硅、硅、氮化镓、氮化铝、砷化镓、尖晶石、磷化铟、氮化硼、金刚石、氧化锌、二氧化硅、铝酸锂、镓酸锂、铌酸锂、硼化锆或硼化铪中选取一种。 For the material of the substrate, it can be selected from sapphire, silicon carbide, silicon, gallium nitride, aluminum nitride, gallium arsenide, spinel, indium phosphide, boron nitride, diamond, zinc oxide, silicon dioxide, aluminate One selected from lithium, lithium gallate, lithium niobate, zirconium boride or hafnium boride.
对于n型层,其组成材料为砷化物AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)和氮化物AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)中的至少一种。并且,由一层或若干层不同组分的AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)或AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)或AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)或AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)(0≤x,y≤1;x+y≤1)构成。同时,每一子层均进行n型掺杂。n型层中的掺杂元素为Si、Sn、S、Se、Te中的至少一种。 For the n-type layer, its composition material is arsenide Al x In y Ga 1-xy As (0 ≤ x, y ≤ 1; x+y ≤ 1), phosphide Al x In y Ga 1-xy P (0 ≤ x,y≤1; x+y≤1), phosphorous arsenide Al x In y Ga 1-xy As 1-z P z (0≤x,y,z≤1; x+y≤1) and nitride At least one of Al x In y Ga 1-xy N (0≤x, y≤1; x+y≤1). Moreover, Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1) or Al x In y Ga 1-xy P (0≤x ,y≤1; x+y≤1) or Al x In y Ga 1-xy As 1-z P z (0≤x,y,z≤1; x+y≤1) or Al x In y Ga 1 -xy N(0≤x, y≤1; x+y≤1) (0≤x, y≤1; x+y≤1). At the same time, each sublayer is doped with n-type. The doping element in the n-type layer is at least one of Si, Sn, S, Se and Te.
对于p型层,其组成材料为砷化物AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)和氮化物AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)中的至少一种。并且,由一层或若干层不同组分的AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)或AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)或AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)或AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)(0≤x,y≤1;x+y≤1)构成。同时,每一子层均进行p型掺杂。p型层中的掺杂元素为Be、Mg、Zn、Cd、 C中的至少一种。 For the p-type layer, its constituent materials are arsenide Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1), phosphide Al x In y Ga 1-xy P (0≤ x,y≤1; x+y≤1), phosphorous arsenide Al x In y Ga 1-xy As 1-z P z (0≤x,y,z≤1; x+y≤1) and nitride At least one of Al x In y Ga 1-xy N (0≤x, y≤1; x+y≤1). Moreover, Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1) or Al x In y Ga 1-xy P (0≤x ,y≤1; x+y≤1) or Al x In y Ga 1-xy As 1-z P z (0≤x,y,z≤1; x+y≤1) or Al x In y Ga 1 -xy N(0≤x, y≤1; x+y≤1) (0≤x, y≤1; x+y≤1). At the same time, each sublayer is doped with p-type. The doping element in the p-type layer is at least one of Be, Mg, Zn, Cd and C.
对于发光层,其组成材料为砷化物AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)、氮化物AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)中的至少一种。并且,由一层或若干层不同组分的AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)或AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)或AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)或AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)(0≤x,y≤1;x+y≤1)构成。 For the light-emitting layer, its composition materials are arsenide Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1), phosphide Al x In y Ga 1-xy P (0≤x ,y≤1; x+y≤1), phosphorus arsenide Al x In y Ga 1-xy As 1-z P z (0≤x,y,z≤1; x+y≤1), nitride Al At least one of x In y Ga 1-xy N (0≤x, y≤1; x+y≤1). Moreover, Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1) or Al x In y Ga 1-xy P (0≤x ,y≤1; x+y≤1) or Al x In y Ga 1-xy As 1-z P z (0≤x,y,z≤1; x+y≤1) or Al x In y Ga 1 -xy N(0≤x, y≤1; x+y≤1) (0≤x, y≤1; x+y≤1).
此外,发光层中的至少一层薄膜子层可进行n型或p型掺杂或非掺杂。其中,n型掺杂元素为Si、Sn、S、Se、Te中的至少一种;p型掺杂元素为Be、Mg、Zn、Cd、C中的至少一种。 In addition, at least one thin film sublayer in the light emitting layer can be n-type or p-type doped or undoped. Wherein, the n-type doping element is at least one of Si, Sn, S, Se, Te; the p-type doping element is at least one of Be, Mg, Zn, Cd, C.
对于隧道节,其特征在于,组成材料为砷化物AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)、磷化物AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)、磷砷化物AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)、氮化物AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)中的至少一种,且由两层相同组分或两层以上不同组分的AlxInyGa1-x-yAs(0≤x,y≤1;x+y≤1)或AlxInyGa1-x-yP(0≤x,y≤1;x+y≤1)或AlxInyGa1-x-yAs1-zPz(0≤x,y,z≤1;x+y≤1)或AlxInyGa1-x-yN(0≤x,y≤1;x+y≤1)(0≤x,y≤1;x+y≤1)构成。 For the tunnel section, it is characterized in that the constituent materials are arsenide Al x In y Ga 1-xy As (0≤x, y≤1; x+y≤1), phosphide Al x In y Ga 1-xy P( 0≤x, y≤1; x+y≤1), phosphorous arsenide Al x In y Ga 1-xy As 1-z P z (0≤x, y, z≤1; x+y≤1), At least one of the nitrides Al x In y Ga 1-xy N (0≤x, y≤1; x+y≤1), and consists of two layers of Al x In with the same composition or more than two layers of different compositions y Ga 1-xy As (0≤x, y≤1; x+y≤1) or Al x In y Ga 1-xy P (0≤x, y≤1; x+y≤1) or Al x In y Ga 1-xy As 1-z P z (0≤x,y,z≤1; x+y≤1) or Al x In y Ga 1-xy N(0≤x,y≤1; x+y ≤1) (0≤x, y≤1; x+y≤1).
除此之外,隧道节的特征还在于,隧道节中的至少两层薄膜子层分别进行n型重掺杂和p型重掺杂。其中,n型掺杂元素为Si、Sn、S、Se、Te中的至少一种;p型掺杂元素为Be、Mg、Zn、Cd、C中的至少一种。 In addition, the feature of the tunnel section is that at least two thin film sublayers in the tunnel section are heavily doped with n-type and heavily doped with p-type respectively. Wherein, the n-type doping element is at least one of Si, Sn, S, Se, Te; the p-type doping element is at least one of Be, Mg, Zn, Cd, C.
如图3所示,为本发明所述的一种高光能密度输出的LED外延方法,具体包括以下步骤: As shown in Figure 3, it is a LED epitaxy method with high light energy density output according to the present invention, which specifically includes the following steps:
步骤1:判断衬底是否为同质衬底,如果是,执行步骤3;否则,执行步骤2; Step 1: Determine whether the substrate is a homogeneous substrate, if yes, perform step 3; otherwise, perform step 2;
步骤2:在衬底层上表面生长缓冲层; Step 2: growing a buffer layer on the surface of the substrate layer;
步骤3:在衬底或缓冲层上表面生长n型层; Step 3: growing an n-type layer on the substrate or buffer layer;
步骤4:在n型层上表面生长发光层; Step 4: growing a light-emitting layer on the surface of the n-type layer;
步骤5:在发光层上表面生长p型层。 Step 5: growing a p-type layer on the surface of the light-emitting layer.
步骤6:在LED基本单元上表面生长一个隧道节; Step 6: growing a tunnel node on the upper surface of the LED basic unit;
步骤7:在隧道节上生长一组LED基本单元; Step 7: Grow a group of LED basic units on the tunnel section;
步骤8:判断LED基本单元的数量是否达到预设值,如果是,执行步骤8;否则,执行步骤5; Step 8: Determine whether the number of LED basic units reaches the preset value, if yes, go to step 8; otherwise, go to step 5;
步骤9:结束LED外延结构的生长。 Step 9: End the growth of the LED epitaxial structure.
所述隧道节包括依次设置在两个LED基本单元之间的至少两个隧道子层;并对至少两个隧道子层分别进行n型重掺杂和p型重掺杂。 The tunnel section includes at least two tunnel sublayers sequentially arranged between two LED basic units; and the at least two tunnel sublayers are heavily doped with n-type and heavily doped with p-type respectively.
所述步骤1至步骤7中的生长方法采用有机金属气相沉积(MOCVD)、氢化物气相外延(HVPE)、脉冲激光沉积(PLD)、射频磁控溅射(RF-MS)、分子束外延(MBE)中的至少一种制备方法实现。 The growth method in the steps 1 to 7 adopts metal organic vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), pulsed laser deposition (PLD), radio frequency magnetron sputtering (RF-MS), molecular beam epitaxy ( At least one preparation method in MBE) is realized.
如图4所示,为本发明具体实施3所述的一种高光能密度输出的LED外延结构的截面示意图;本实施例选择在SiC衬底上进行氮化物蓝光LED外延结构,说明本发明所述高光能密度输出的LED器件结构和制作方法。 As shown in Figure 4, it is a schematic cross-sectional view of an LED epitaxial structure with high luminous energy density output as described in Embodiment 3 of the present invention; this embodiment chooses to carry out a nitride blue LED epitaxial structure on a SiC substrate, illustrating the present invention. The LED device structure and manufacturing method with high light energy density output are described.
高光能密度输出的LED外延结构,从衬底开始从下到上,依次出现的膜层结构包括:在SiC衬底1上有一层AlGaN/GaN复合缓冲层2,紧接着是一层非故意掺杂的GaN薄膜层9。从GaN薄膜层9开始,将会生长两组LED基本结构单元。其中,第一组LED基本结构单元的膜层结构包括:n型GaN层3、应力释放层7、发光层4、电子阻挡层8、p型GaN层5;第二组LED基本结构单元在第一组基本结构单元的上方,膜层结构与第一组相似,包括以下膜层:n型GaN层3、应力释放层7、发光层4、电子阻挡层8、p型GaN层5。在p型GaN层5的上方还有一层p型重掺杂的GaN层10,该层是为了后期进行芯片加工时形成金属电极的欧姆接触。两组LED基本结构单元之间为隧道 节6,且该隧道节的具体结构如图5所示,即在p型重掺杂GaN与n型重掺杂GaN之间插入一层In0.2Ga0.8N。 The LED epitaxial structure with high light energy density output starts from the substrate and goes from bottom to top. The film layer structure that appears in sequence includes: a layer of AlGaN/GaN composite buffer layer 2 on the SiC substrate 1, followed by a layer of unintentionally doped Doped GaN thin film layer 9. Starting from the GaN thin film layer 9, two sets of LED basic structural units will be grown. Among them, the film layer structure of the first group of LED basic structural units includes: n-type GaN layer 3, stress release layer 7, light-emitting layer 4, electron blocking layer 8, p-type GaN layer 5; the second group of LED basic structural units Above one group of basic structural units, the film layer structure is similar to the first group, including the following film layers: n-type GaN layer 3, stress release layer 7, light-emitting layer 4, electron blocking layer 8, and p-type GaN layer 5. There is also a p-type heavily doped GaN layer 10 above the p-type GaN layer 5 , which is used to form an ohmic contact of the metal electrode during later chip processing. There is a tunnel section 6 between the two groups of LED basic structural units, and the specific structure of the tunnel section is shown in Figure 5, that is, a layer of In 0.2 Ga 0.8 is inserted between p-type heavily doped GaN and n-type heavily doped GaN. N.
按照图4所示LED外延器件结构示意图,在MOCVD机台上进行外延生长的具体方法为:首先,在SiC衬底1上生长一层厚度为400nm的AlGaN/GaN复合缓冲层2,生长温度控制在大约1000℃。然后,生长一层2μm厚的非掺杂GaN层9。接着,开始生长第一组LED基本结构单元:先生长一层2μm厚的n型GaN层3,掺杂元素为Si,且掺杂浓度为1.0×1019。接下来,生长一组In0.04Ga0.96N/GaN超晶格组成的应力释放层7,其中,In0.04Ga0.96N和GaN的单层厚度均为5nm,总厚度为200nm。此后,生长In0.15Ga0.85N/GaN多量子阱发光层4,其中,In0.15Ga0.85N和GaN的单层厚度分别为3nm和10nm,多量子阱的周期数为4。紧接着,生长一层150nm的Al0.14Ga0.86N电子阻挡层8。再生长一层0.2μm厚的p型GaN层5,p型掺杂元素为Mg,且掺杂浓度为1.0×1020。如此,便完成了第一组LED基本结构单元的生长。 According to the schematic diagram of the LED epitaxial device structure shown in Figure 4, the specific method of epitaxial growth on the MOCVD machine is as follows: first, a layer of AlGaN/GaN composite buffer layer 2 with a thickness of 400nm is grown on the SiC substrate 1, and the growth temperature is controlled. at about 1000°C. Then, a non-doped GaN layer 9 is grown to a thickness of 2 μm. Next, start to grow the first group of LED basic structural units: first grow a 2 μm thick n-type GaN layer 3 , the doping element is Si, and the doping concentration is 1.0×10 19 . Next, grow a group of stress release layers 7 composed of In 0.04 Ga 0.96 N/GaN superlattice, wherein the single layer thickness of In 0.04 Ga 0.96 N and GaN is both 5 nm and the total thickness is 200 nm. Thereafter, the In 0.15 Ga 0.85 N/GaN multi-quantum well light-emitting layer 4 is grown, wherein the single-layer thicknesses of In 0.15 Ga 0.85 N and GaN are 3nm and 10nm respectively, and the number of periods of the multi-quantum well is four. Next, a 150nm Al 0.14 Ga 0.86 N electron blocking layer 8 is grown. A 0.2 μm thick p-type GaN layer 5 is grown again, the p-type doping element is Mg, and the doping concentration is 1.0×10 20 . In this way, the growth of the first group of LED basic structural units is completed.
然后,生长隧道节6。具体地,如图5所示,隧道节包括3个子层:先生长一层10nm厚的p型重掺杂p++-GaN层,且掺杂浓度为5.0×1020;再生长一层3nm后的非掺杂In0.2Ga0.8N层;最后生长一层10nm厚的n型重掺杂n++-GaN层,且掺杂浓度为2.0×1020。 Then, the tunnel section 6 is grown. Specifically, as shown in Figure 5, the tunneling section includes three sublayers: first grow a p-type heavily doped p ++ -GaN layer with a thickness of 10nm, and the doping concentration is 5.0×10 20 ; grow another layer of 3nm The final non-doped In 0.2 Ga 0.8 N layer; finally grow a 10nm-thick n-type heavily doped n ++ -GaN layer with a doping concentration of 2.0×10 20 .
此后,按照与第一组LED基本结构单元相同的参数条件和方法进行第二组LED基本结构单元的外延生长,但是,其中也有参数条件不同的地方:需要调整发光层4的工艺条件使得其发射波长与发光层4的发射波长相等或近似相等。最后,在第二组LED基本结构单元上生长一层10nm厚的p型Mg重掺杂浓度为3.0×1020的GaN层10。 Thereafter, the epitaxial growth of the second group of LED basic structural units is carried out according to the same parameter conditions and methods as the first group of LED basic structural units, but there are also places where the parameter conditions are different: the process conditions of the light-emitting layer 4 need to be adjusted to make it emit The wavelength is equal or approximately equal to the emission wavelength of the light emitting layer 4 . Finally, a layer of 10 nm-thick p-type Mg heavily doped GaN layer 10 with a concentration of 3.0×10 20 is grown on the basic structural units of the second group of LEDs.
为避免对众多结构参数、工艺条件作冗余描述,本实施例仅对其中部分变化因素进行了举例。通过对其它结构或工艺变化因素的调整亦能达到类似的效果,在此不作一一列举。 In order to avoid redundant descriptions of many structural parameters and process conditions, this embodiment only gives examples of some of the changing factors. Similar effects can also be achieved by adjusting other structural or technological change factors, which will not be listed here.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410638182.5A CN104465912A (en) | 2014-08-22 | 2014-11-12 | LED epitaxial structure and method achieving high luminous energy density output |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410419879 | 2014-08-22 | ||
CN2014104198793 | 2014-08-22 | ||
CN201410638182.5A CN104465912A (en) | 2014-08-22 | 2014-11-12 | LED epitaxial structure and method achieving high luminous energy density output |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104465912A true CN104465912A (en) | 2015-03-25 |
Family
ID=52911641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410638182.5A Pending CN104465912A (en) | 2014-08-22 | 2014-11-12 | LED epitaxial structure and method achieving high luminous energy density output |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104465912A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105633226A (en) * | 2015-12-31 | 2016-06-01 | 天津三安光电有限公司 | Infrared light-emitting diode with double junctions |
CN107394018A (en) * | 2017-08-10 | 2017-11-24 | 湘能华磊光电股份有限公司 | A kind of LED epitaxial growth methods |
CN108140582A (en) * | 2015-09-30 | 2018-06-08 | 三垦电气株式会社 | Semiconductor substrate, semiconductor device, the manufacturing method of Semiconductor substrate and semiconductor device manufacturing method |
CN109742203A (en) * | 2019-01-14 | 2019-05-10 | 江西兆驰半导体有限公司 | A kind of iii-nitride light emitting devices |
WO2024138417A1 (en) * | 2022-12-28 | 2024-07-04 | 安徽三安光电有限公司 | Nitride light-emitting diode and preparation method therefor, and light-emitting apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040066816A1 (en) * | 2002-09-30 | 2004-04-08 | Collins William D. | Light emitting devices including tunnel junctions |
CN101262037A (en) * | 2007-03-08 | 2008-09-10 | 夏普株式会社 | Nitride semiconductor light emitting device |
CN102208511A (en) * | 2010-03-31 | 2011-10-05 | 丰田合成株式会社 | Group lll nitride semiconductor light-emitting device |
CN103367574A (en) * | 2012-03-30 | 2013-10-23 | 华夏光股份有限公司 | Light emitting diode device |
-
2014
- 2014-11-12 CN CN201410638182.5A patent/CN104465912A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040066816A1 (en) * | 2002-09-30 | 2004-04-08 | Collins William D. | Light emitting devices including tunnel junctions |
CN101262037A (en) * | 2007-03-08 | 2008-09-10 | 夏普株式会社 | Nitride semiconductor light emitting device |
CN102208511A (en) * | 2010-03-31 | 2011-10-05 | 丰田合成株式会社 | Group lll nitride semiconductor light-emitting device |
CN103367574A (en) * | 2012-03-30 | 2013-10-23 | 华夏光股份有限公司 | Light emitting diode device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108140582A (en) * | 2015-09-30 | 2018-06-08 | 三垦电气株式会社 | Semiconductor substrate, semiconductor device, the manufacturing method of Semiconductor substrate and semiconductor device manufacturing method |
CN105633226A (en) * | 2015-12-31 | 2016-06-01 | 天津三安光电有限公司 | Infrared light-emitting diode with double junctions |
CN107394018A (en) * | 2017-08-10 | 2017-11-24 | 湘能华磊光电股份有限公司 | A kind of LED epitaxial growth methods |
CN109742203A (en) * | 2019-01-14 | 2019-05-10 | 江西兆驰半导体有限公司 | A kind of iii-nitride light emitting devices |
WO2024138417A1 (en) * | 2022-12-28 | 2024-07-04 | 安徽三安光电有限公司 | Nitride light-emitting diode and preparation method therefor, and light-emitting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101427431B (en) | High-efficiency light-emitting diodes with tunnel junctions | |
US6987281B2 (en) | Group III nitride contact structures for light emitting devices | |
US9461196B2 (en) | Non-crystalline inorganic light emitting diode | |
KR101737981B1 (en) | GAlIUM-NITRIDE LIGHT EMITTING DEVICE OF MICROARRAY TYPE STRUCTURE AND MANUFACTURING THEREOF | |
US10971649B2 (en) | Semiconductor device and light emitting device package comprising same | |
KR20130042784A (en) | Nitride semiconductor light emitting device | |
CN104465912A (en) | LED epitaxial structure and method achieving high luminous energy density output | |
US11158666B2 (en) | Multiple wavelength light-emitting diode epitaxial structure with asymmetric multiple quantum wells | |
KR20110084683A (en) | Light emitting device having an active region of quantum well structure | |
CN108604622B (en) | Light emitting device and light emitting device package including the same | |
JP2010141331A (en) | Semiconductor light-emitting element and manufacturing method therefor | |
CN104282811B (en) | Light-emitting device and its manufacture method | |
US20220005970A1 (en) | Semiconductor light emitting device and manufacturing method | |
KR101201641B1 (en) | Transparent thin film, light emitting device comprising the same, and methods for preparing the same | |
RU60269U1 (en) | LED HETEROSTRUCTURE ON A SUBSTRATE OF SINGLE-CRYSTAL SAPPHIRE | |
CN102064260B (en) | Device structure of grid modulation positively-mounted structure GaN base light emitting diode and manufacturing method | |
CN204407350U (en) | The LED epitaxial structure that a kind of high-light-energy density exports | |
KR20130021931A (en) | Semiconductor light emitting device and manufacturing method of the same | |
JP2008071803A (en) | Compound mixed crystal semiconductor light-emitting device | |
KR101744931B1 (en) | Semiconductor Light Emitting Device and Manufacturing Method Thereof | |
CN101055906A (en) | High brightness light emitting diode and its manufacturing method | |
KR20170137393A (en) | Semiconductor device and light emitting device package having thereof | |
TWI387134B (en) | Light-emitting device and method for manufacturing the same | |
KR101562928B1 (en) | Light Emitting Diode and manufacturing method of the same | |
CN117878205A (en) | Ultraviolet light emitting diode, light emitting device and chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150325 |