CN104465428B - A kind of method of copper copper metal thermocompression bonding - Google Patents
A kind of method of copper copper metal thermocompression bonding Download PDFInfo
- Publication number
- CN104465428B CN104465428B CN201310423177.8A CN201310423177A CN104465428B CN 104465428 B CN104465428 B CN 104465428B CN 201310423177 A CN201310423177 A CN 201310423177A CN 104465428 B CN104465428 B CN 104465428B
- Authority
- CN
- China
- Prior art keywords
- passivation layer
- copper
- bonding
- wafer
- thermocompression bonding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 239000002184 metal Substances 0.000 title claims abstract description 52
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 52
- ALKZAGKDWUSJED-UHFFFAOYSA-N dinuclear copper ion Chemical compound [Cu].[Cu] ALKZAGKDWUSJED-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910004353 Ti-Cu Inorganic materials 0.000 claims abstract description 84
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 83
- 239000000956 alloy Substances 0.000 claims abstract description 83
- 238000002161 passivation Methods 0.000 claims abstract description 72
- 239000010949 copper Substances 0.000 claims abstract description 57
- 239000000758 substrate Substances 0.000 claims abstract description 56
- 239000010408 film Substances 0.000 claims abstract description 55
- 238000004544 sputter deposition Methods 0.000 claims abstract description 35
- 239000010409 thin film Substances 0.000 claims abstract description 34
- 230000008569 process Effects 0.000 claims abstract description 29
- 238000000137 annealing Methods 0.000 claims abstract description 23
- 230000004888 barrier function Effects 0.000 claims abstract description 21
- 229910052802 copper Inorganic materials 0.000 claims abstract description 18
- 230000001681 protective effect Effects 0.000 claims abstract description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 238000004140 cleaning Methods 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 5
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 229910000881 Cu alloy Inorganic materials 0.000 claims 1
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 85
- 235000012431 wafers Nutrition 0.000 description 34
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000010354 integration Effects 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical group 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/27—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/60—Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
- H01L21/603—Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving the application of pressure, e.g. thermo-compression bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/03—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/03011—Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
本发明提供一种铜‑铜金属热压键合的方法,所述方法至少包括步骤:先提供待键合的第一圆片和第二圆片,所述第一圆片包括第一衬底、第一钝化层及第一Ti‑Cu合金薄膜,所述第二圆片包括第二衬底、第二钝化层及第二Ti‑Cu合金薄膜;再将所述第一圆片的第一Ti‑Cu合金薄膜表面和第二圆片的第二Ti‑Cu合金薄膜表面进行热压键合;最后在保护性气体中进行退火处理,使第一Ti‑Cu合金薄膜中的Ti原子向第一钝化层表面扩散,第二Ti‑Cu合金薄膜中的Ti原子向第二钝化层表面扩散,并最终在第一、第二钝化层表面形成Ti粘附/阻挡层,而Cu原子向键合面扩散,实现键合。本发明的方法在键合前仅需要对两个衬底分别进行一次共溅射,溅射次数减少了一半,工艺相对简单,可靠性好,且工艺成本较低,最后经过退火处理扩散形成Ti粘附/阻挡层,并使铜的键合效果更佳。
The present invention provides a copper-copper metal thermocompression bonding method, the method at least includes the steps of: first providing a first wafer to be bonded and a second wafer, the first wafer includes a first substrate , the first passivation layer and the first Ti-Cu alloy thin film, the second wafer includes a second substrate, the second passivation layer and the second Ti-Cu alloy thin film; The surface of the first Ti-Cu alloy film and the surface of the second Ti-Cu alloy film of the second disc are bonded by thermocompression; finally annealing is carried out in a protective gas to make the Ti atoms in the first Ti-Cu alloy film Diffusion to the surface of the first passivation layer, the Ti atoms in the second Ti-Cu alloy film diffuse to the surface of the second passivation layer, and finally form a Ti adhesion/barrier layer on the surface of the first and second passivation layer, and Cu atoms diffuse to the bonding surface to realize bonding. The method of the present invention only needs to co-sputter the two substrates once before bonding, the number of sputtering is reduced by half, the process is relatively simple, the reliability is good, and the process cost is low. Finally, the annealing treatment is diffused to form Ti Adhesion/barrier layer and enables better copper bonding.
Description
技术领域technical field
本发明属于半导体器件领域,涉及三维封装领域中圆片的键合,特别是涉及一种铜-铜金属热压键合的方法。The invention belongs to the field of semiconductor devices and relates to the bonding of wafers in the field of three-dimensional packaging, in particular to a copper-copper metal thermocompression bonding method.
背景技术Background technique
随着芯片尺寸减小以及集成度的提高,传统的二维集成技术遇到难以克服的发展瓶颈。与二维集成技术相比,三维集成技术可实现芯片多功能化,提高芯片集成度、减小信号延时、降低功耗。三维集成技术一般可分为晶体管堆叠、管芯级键合、管芯-晶圆键合、晶圆级键合,其中晶圆级键合是最理想的实现形式,可用于异质结集成,成本低产量高,各层芯片之间的互连是通过硅通孔(TSV)实现的。With the reduction of chip size and the improvement of integration, the traditional two-dimensional integration technology encounters an insurmountable development bottleneck. Compared with two-dimensional integration technology, three-dimensional integration technology can realize chip multi-function, improve chip integration, reduce signal delay, and reduce power consumption. Three-dimensional integration technology can generally be divided into transistor stacking, die-level bonding, die-wafer bonding, and wafer-level bonding. Among them, wafer-level bonding is the most ideal implementation form and can be used for heterojunction integration. The cost is low and the output is high. The interconnection between chips of each layer is realized through silicon vias (TSV).
圆片键合是指在外界能量的帮助下使圆片键合界面的原子反应形成共价键而结合成一体,并达到一定键合强度的微加工技术。常用的键合技术有氧化物直接键合、金属-金属键合和粘胶键合。Wafer bonding refers to the micromachining technology that makes the atoms at the bonding interface of the wafer react to form a covalent bond with the help of external energy to combine into one body and achieve a certain bonding strength. Commonly used bonding techniques are oxide direct bonding, metal-metal bonding and adhesive bonding.
如图1所示,传统的铜-铜金属直接键合工艺步骤为:As shown in Figure 1, the traditional copper-copper metal direct bonding process steps are:
首先,提供待处理的第一衬底101’和第二衬底201’,在所述第一衬底101’上形成第一钝化层102’,在第二衬底201’上形成第二钝化层202’;Firstly, the first substrate 101' and the second substrate 201' to be processed are provided, the first passivation layer 102' is formed on the first substrate 101', and the second passivation layer 102' is formed on the second substrate 201'. passivation layer 202';
然后,在所述第一钝化层102’上依次溅射第一Ti粘附/阻挡层104’和第一Cu金属层105’,在所述第二钝化层202’上依次溅射第二Ti粘附/阻挡层204’和第二Cu金属层205’;Then, the first Ti adhesion/barrier layer 104' and the first Cu metal layer 105' are sequentially sputtered on the first passivation layer 102', and the first Cu metal layer 105' is sequentially sputtered on the second passivation layer 202'. Two Ti adhesion/barrier layer 204' and second Cu metal layer 205';
最后,将第一衬底101’含有第一Cu金属层105’的表面与第二衬底201’含有第二Cu金属层205’的表面进行接触键合。如图2所示为键合前的结构示意图。Finally, the surface of the first substrate 101' containing the first Cu metal layer 105' is contact-bonded with the surface of the second substrate 201' containing the second Cu metal layer 205'. Figure 2 is a schematic diagram of the structure before bonding.
由上述步骤可知,传统的铜-铜金属直接键合工艺需要分别对待键合的两个衬底溅射粘附/阻挡层和铜,之后进行键合,溅射次数较多,工艺较为复杂。From the above steps, it can be seen that the traditional copper-copper metal direct bonding process needs to sputter the adhesion/barrier layer and copper on the two substrates to be bonded separately, and then perform bonding. The number of sputtering is more and the process is more complicated.
为此,本发明提出一种新的铜-铜金属热压键合的方法,在衬底表面共溅射Ti-Cu金属薄膜,键合后进行一次额外的退火,退火过程中,Ti会向衬底方向积聚并最终形成粘附/阻挡层。本发明的方法键合效果良好,工艺简单,可靠性良好。For this reason, the present invention proposes a new copper-copper metal thermocompression bonding method, co-sputtering Ti-Cu metal film on the substrate surface, and performing an additional annealing after bonding, during the annealing process, Ti will The substrate direction builds up and eventually forms an adhesion/barrier layer. The method of the invention has good bonding effect, simple process and good reliability.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种铜-铜金属热压键合的方法,用于解决现有技术中键合前的溅射次数多、工艺复杂的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a copper-copper metal thermocompression bonding method, which is used to solve the problems of many sputtering times and complicated processes before bonding in the prior art.
为实现上述目的及其他相关目的,本发明提供一种铜-铜金属热压键合的方法,所述铜-铜金属热压键合的方法至少包括以下步骤:In order to achieve the above object and other related objects, the present invention provides a copper-copper metal thermocompression bonding method, the copper-copper metal thermocompression bonding method at least includes the following steps:
1)提供待键合的第一圆片和第二圆片,所述第一圆片包括第一衬底、制作在所述第一衬底表面的第一钝化层及制作在所述第一钝化层表面的第一Ti-Cu合金薄膜;所述第二圆片包括第二衬底、制作在所述第二衬底表面的第二钝化层及制作在所述第二钝化层表面的第二Ti-Cu合金薄膜;1) Provide a first wafer and a second wafer to be bonded, the first wafer includes a first substrate, a first passivation layer fabricated on the surface of the first substrate, and a first passivation layer fabricated on the surface of the first substrate. The first Ti-Cu alloy film on the surface of a passivation layer; the second wafer includes a second substrate, a second passivation layer made on the surface of the second substrate and a second passivation layer made on the second passivation layer. The second Ti-Cu alloy film on the surface of the layer;
2)将所述第一圆片和第二圆片进行热压键合,第一圆片含有第一Ti-Cu合金薄膜的表面和第二圆片含有第二Ti-Cu合金薄膜的表面接触形成键合面;2) The first wafer and the second wafer are subjected to thermocompression bonding, and the surface of the first wafer containing the first Ti-Cu alloy film is in contact with the surface of the second wafer containing the second Ti-Cu alloy film form a bonding surface;
3)在保护性气体中进行退火处理,使第一Ti-Cu合金薄膜中的Ti原子向第一钝化层表面扩散形成第一Ti粘附/阻挡层、Cu原子向键合面扩散;第二Ti-Cu合金薄膜中的Ti原子向第二钝化层表面扩散形成第二Ti粘附/阻挡层、Cu原子向键合面扩散;第一Ti-Cu合金薄膜中的Cu原子和第二Ti-Cu合金-薄膜中Cu原子扩散后形成共同的Cu金属层,最终实现键合。3) Perform annealing treatment in a protective gas, so that the Ti atoms in the first Ti-Cu alloy film diffuse to the surface of the first passivation layer to form the first Ti adhesion/barrier layer, and the Cu atoms diffuse to the bonding surface; The Ti atoms in the second Ti-Cu alloy film diffuse to the surface of the second passivation layer to form the second Ti adhesion/barrier layer, and the Cu atoms diffuse to the bonding surface; the Cu atoms in the first Ti-Cu alloy film and the second Ti-Cu alloy-Cu atoms diffuse in the film to form a common Cu metal layer, and finally achieve bonding.
作为本发明的铜-铜金属热压键合的方法的一种优选方案,所述第一Ti-Cu合金薄膜和第二Ti-Cu合金薄膜均采用共溅射工艺来制作。As a preferred solution of the copper-copper metal thermocompression bonding method of the present invention, both the first Ti-Cu alloy thin film and the second Ti-Cu alloy thin film are produced by a co-sputtering process.
作为本发明的铜-铜金属热压键合的方法的一种优选方案,所述共溅射工艺在多靶腔体内进行,靶材为Ti和Cu,溅射时的工作压强小于10-2托,Cu的溅射速率为Ti的溅射速率的5~8倍。As a preferred solution of the copper-copper metal thermocompression bonding method of the present invention, the co-sputtering process is carried out in a multi-target cavity, the targets are Ti and Cu, and the working pressure during sputtering is less than 10 -2 Torr, the sputtering rate of Cu is 5 to 8 times that of Ti.
作为本发明的铜-铜金属热压键合的方法的一种优选方案,制作形成的所述第一Ti-Cu合金薄膜的厚度为0.2~10μm,所述第二Ti-Cu合金薄膜的厚度为0.2~10μm。As a preferred version of the copper-copper metal thermocompression bonding method of the present invention, the thickness of the first Ti-Cu alloy film formed is 0.2-10 μm, and the thickness of the second Ti-Cu alloy film is 0.2 to 10 μm.
作为本发明的铜-铜金属热压键合的方法的一种优选方案,步骤2)中进行热压键合前还包括对所述第一Ti-Cu合金薄膜和第二Ti-Cu合金薄膜表面进行乙酸清洗并甩干的步骤。As a preferred solution of the copper-copper metal thermocompression bonding method of the present invention, before performing thermocompression bonding in step 2), the first Ti-Cu alloy film and the second Ti-Cu alloy film are also included The surface is cleaned with acetic acid and dried.
作为本发明的铜-铜金属热压键合的方法的一种优选方案,进行热压键合的温度为350~450℃,时间为30~40分钟,压力为2000~4000N。As a preferred solution of the copper-copper metal thermocompression bonding method of the present invention, the temperature for thermocompression bonding is 350-450°C, the time is 30-40 minutes, and the pressure is 2000-4000N.
作为本发明的铜-铜金属热压键合的方法的一种优选方案,在N2气氛中进行退火处理,退火处理的温度范围为350~450℃,退火的时间范围为60~100分钟。As a preferred solution of the copper-copper metal thermocompression bonding method of the present invention, the annealing treatment is carried out in an N 2 atmosphere, the temperature range of the annealing treatment is 350-450° C., and the annealing time range is 60-100 minutes.
作为本发明的铜-铜金属热压键合的方法的一种优选方案,所述步骤1)中在制作第一钝化层和第二钝化层之前分别对第一衬底和第二衬底表面进行清洗。As a preferred solution of the copper-copper metal thermocompression bonding method of the present invention, in the step 1) before making the first passivation layer and the second passivation layer, respectively, the first substrate and the second lining Clean the bottom surface.
作为本发明的铜-铜金属热压键合的方法的一种优选方案,所述第一钝化层为二氧化硅、氮化硅、PI或BCB,所述第一钝化层的厚度为0.2~5μm;所述第二钝化层为二氧化硅、氮化硅、PI或BCB,所述第二钝化层的厚度为0.2~5μm。As a preferred version of the copper-copper metal thermocompression bonding method of the present invention, the first passivation layer is silicon dioxide, silicon nitride, PI or BCB, and the thickness of the first passivation layer is 0.2-5 μm; the second passivation layer is silicon dioxide, silicon nitride, PI or BCB, and the thickness of the second passivation layer is 0.2-5 μm.
作为本发明的铜-铜金属热压键合的方法的一种优选方案,所述第一钝化层和第二钝化层采用热氧化、化学气相沉积或旋涂工艺来制作。As a preferred solution of the copper-copper metal thermocompression bonding method of the present invention, the first passivation layer and the second passivation layer are produced by thermal oxidation, chemical vapor deposition or spin coating.
如上所述,本发明的铜-铜金属热压键合的方法,具有以下有益效果:先在两个衬底上分别制备第一Ti-Cu合金薄膜和第二Ti-Cu合金薄膜,再将第一Ti-Cu合金薄膜和第二Ti-Cu合金薄膜进行键合,之后经历一次退火过程便可将Ti和Cu分离,其中,Ti向衬底端移动并形成稳定的粘附/阻挡层,而铜向键合接触面扩散,最终得到良好的键合效果。本发明的方法在键合前仅需要对两个衬底分别进行一次共溅射,溅射次数减少了一半,工艺相对较为简单,可靠性好,且工艺成本较低,由退火处理扩散形成的铜键合效果也更佳。As mentioned above, the copper-copper metal thermocompression bonding method of the present invention has the following beneficial effects: the first Ti-Cu alloy thin film and the second Ti-Cu alloy thin film are respectively prepared on two substrates, and then The first Ti-Cu alloy film and the second Ti-Cu alloy film are bonded, and after an annealing process, Ti and Cu can be separated, wherein Ti moves toward the substrate end and forms a stable adhesion/barrier layer, The copper diffuses to the bonding interface, and finally a good bonding effect is obtained. The method of the present invention only needs to perform co-sputtering on the two substrates once before bonding, the number of sputtering is reduced by half, the process is relatively simple, the reliability is good, and the process cost is low. Copper bonding is also better.
附图说明Description of drawings
图1为现有技术的铜-铜金属键合的方法流程示意图。FIG. 1 is a schematic flow chart of a copper-copper metal bonding method in the prior art.
图2为现有技术采用铜-铜金属键合的方法进行键合的圆片结构示意图。FIG. 2 is a schematic diagram of a wafer structure bonded by a copper-copper metal bonding method in the prior art.
图3为本发明的铜-铜金属热压键合的方法流程示意图。Fig. 3 is a schematic flow chart of the copper-copper metal thermocompression bonding method of the present invention.
图4~图5为本发明的铜-铜金属热压键合的方法步骤1)中呈现的结构示意图。4 to 5 are structural schematic diagrams presented in step 1) of the copper-copper metal thermocompression bonding method of the present invention.
图6为本发明的铜-铜金属热压键合的方法进行步骤2)键合前的结构示意图。FIG. 6 is a schematic diagram of the structure of the copper-copper metal thermocompression bonding method before step 2) bonding of the present invention.
图7为本发明的铜-铜金属热压键合的方法进行步骤2)键合中的结构示意图。FIG. 7 is a schematic structural diagram of step 2) bonding of the copper-copper metal thermocompression bonding method of the present invention.
图8为本发明的铜-铜金属热压键合的方法进行步骤3)退火后的结构示意图。FIG. 8 is a schematic structural view of the copper-copper metal thermocompression bonding method of the present invention after step 3) annealing.
元件标号说明Component designation description
S1~S3 步骤S1~S3 steps
1 第一圆片1 first wafer
101,101’ 第一衬底101,101’ first substrate
102,102’ 第一钝化层102,102’ first passivation layer
103 第一Ti-Cu合金薄膜103 The first Ti-Cu alloy film
104,104’ 第一Ti粘附/阻挡层104,104' first Ti adhesion/barrier layer
105 Cu金属层105 Cu metal layer
105’ 第一Cu金属层105' first Cu metal layer
2 第二圆片2 second wafer
201,201’ 第二衬底201,201’ second substrate
202,202’ 第二钝化层202,202’ second passivation layer
203 第二Ti-Cu合金薄膜203 The second Ti-Cu alloy film
204,204’ 第二Ti粘附/阻挡层204, 204' Second Ti adhesion/barrier layer
205’ 第二Cu金属层205' second Cu metal layer
具体实施方式detailed description
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅附图。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。Please refer to attached picture. It should be noted that the diagrams provided in this embodiment are only schematically illustrating the basic idea of the present invention, and only the components related to the present invention are shown in the diagrams rather than the number, shape and shape of the components in actual implementation. Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.
本发明提供一种铜-铜热压键合的方法,如图3所示,所述铜-铜热压键合的方法至少包括以下步骤:The present invention provides a copper-copper thermocompression bonding method, as shown in Figure 3, the copper-copper thermocompression bonding method at least includes the following steps:
首先执行步骤S1,如图4和图5所示,提供待键合的第一圆片1和第二圆片2,所述第一圆片1包括第一衬底101、制作在所述第一衬底101表面的第一钝化层102及制作在所述第一钝化层102表面的第一Ti-Cu合金薄膜103;所述第二圆片2包括第二衬底201、制作在所述第二衬底201表面的第二钝化层202及制作在所述第二钝化层202表面的第二Ti-Cu合金薄膜203。First execute step S1, as shown in FIG. 4 and FIG. 5 , provide a first wafer 1 and a second wafer 2 to be bonded, the first wafer 1 includes a first substrate 101, and is fabricated on the second wafer. A first passivation layer 102 on the surface of a substrate 101 and a first Ti-Cu alloy thin film 103 made on the surface of the first passivation layer 102; the second wafer 2 includes a second substrate 201, made on The second passivation layer 202 on the surface of the second substrate 201 and the second Ti—Cu alloy thin film 203 formed on the surface of the second passivation layer 202 .
所述第一衬底101、第二衬底201可以是硅衬底或SOI,当然,也可以是其他适合的衬底。本实施例中,所述第一衬底101和第二衬底201均为硅衬底。所述第一衬底101和第二衬底201中还可以包括外围电路和平面存储结构等,在此不限。The first substrate 101 and the second substrate 201 may be silicon substrates or SOI, of course, they may also be other suitable substrates. In this embodiment, both the first substrate 101 and the second substrate 201 are silicon substrates. The first substrate 101 and the second substrate 201 may also include peripheral circuits and planar storage structures, etc., which are not limited here.
所述第一衬底101和第二衬底201的直径包括但不限于4寸、8寸等。本实施例中,提供两片4寸的硅片作为待处理的第一衬底101和第二衬底201。The diameters of the first substrate 101 and the second substrate 201 include but are not limited to 4 inches, 8 inches and so on. In this embodiment, two 4-inch silicon wafers are provided as the first substrate 101 and the second substrate 201 to be processed.
在进行第一钝化层102和第二钝化层202的制作前,需要对第一衬底101和第二衬底201表面进行清洗,一般采用丙酮超声+乙醇超声+RC1+RC2的标准清洗工艺清洗。具体地,先采用丙酮与酒精溶液,在超声波作用下各清洗衬底3~5分钟,之后用RC1(NH4OH:H2O2:H2O)和RC2(HCl:H2O2:H2O)分别清洗15分钟。Before the production of the first passivation layer 102 and the second passivation layer 202, the surface of the first substrate 101 and the second substrate 201 needs to be cleaned, generally using the standard cleaning of acetone ultrasonic + ethanol ultrasonic + RC1 + RC2 Process cleaning. Specifically, first use acetone and alcohol solutions to clean the substrate under the action of ultrasonic waves for 3 to 5 minutes, and then use RC1 (NH 4 OH:H 2 O 2 :H 2 O) and RC2 (HCl:H 2 O 2 : H 2 O) for 15 minutes respectively.
采用热氧化、化学气相沉积(CVD)或者旋涂工艺来制作所述第一钝化层102和第二钝化层202。本实施例中,均采用化学气相沉积工艺中的等离子增强化学气相沉积工艺(PECVD)来制作所述第一钝化层102和第二钝化层202。制作形成的第一钝化层102和第二钝化层202的材料可以是无机材料类,比如,二氧化硅或者氮化硅等,也可以是有机类材料,比如,PI(聚酰亚胺,Polyimide,缩写为PI,)或者BCB(苯并环丁烯)等,当然,也可以是其他适合的材料。本实施例中,所述第一钝化层102和第二钝化层202均为二氧化硅,用于作为硅衬底的保护层,防止后续沉积的金属向硅衬底扩散,还可以防止硅衬底或硅衬底中的外围电路等结构在后续的清洗工艺中被腐蚀。为了使所述第一钝化层102和第二钝化层202最大限度起到保护作用,所述第一钝化层102和第二钝化层202的厚度可以制作在0.2~5μm范围内。本实施例中,所述第一钝化层102和第二钝化层202的厚度均为1μm。The first passivation layer 102 and the second passivation layer 202 are fabricated by thermal oxidation, chemical vapor deposition (CVD) or spin coating. In this embodiment, the first passivation layer 102 and the second passivation layer 202 are fabricated by plasma enhanced chemical vapor deposition (PECVD) in the chemical vapor deposition process. The materials for forming the first passivation layer 102 and the second passivation layer 202 can be inorganic materials, such as silicon dioxide or silicon nitride, or organic materials, such as PI (polyimide , Polyimide, abbreviated as PI,) or BCB (benzocyclobutene), etc. Of course, other suitable materials can also be used. In this embodiment, both the first passivation layer 102 and the second passivation layer 202 are silicon dioxide, which are used as a protective layer for the silicon substrate to prevent subsequent deposition of metals from diffusing to the silicon substrate, and can also prevent Structures such as the silicon substrate or peripheral circuits in the silicon substrate are corroded in the subsequent cleaning process. In order to maximize the protective effect of the first passivation layer 102 and the second passivation layer 202 , the thickness of the first passivation layer 102 and the second passivation layer 202 can be made in the range of 0.2-5 μm. In this embodiment, the thicknesses of the first passivation layer 102 and the second passivation layer 202 are both 1 μm.
采用共溅射或电镀工艺来制作所述第一Ti-Cu合金薄膜103和第二Ti-Cu合金薄膜203,当然,也可以采用其他适合的工艺来完成制备。本实施例中,均采用的是共溅射工艺制作第一Ti-Cu合金薄膜103和第二Ti-Cu合金薄膜203,工艺简单且合金薄膜的质量高。共溅射工艺在多靶腔体内进行,先进行第一Ti-Cu合金薄膜103的制备,再进行第二Ti-Cu合金薄膜203的制备。采用的靶材分别为Ti和Cu,两种靶材材料同时溅射到第一钝化层102表面形成第一Ti-Cu合金薄膜103。第二Ti-Cu合金薄膜203的制备也采用同样的方式。制备过程中,工作压强小于10-2托,Cu的溅射速率为Ti的溅射速率的5~8倍。溅射时间根据溅射功率和合金薄膜所需溅射的厚度来定,一般来说,若溅射功率越小,溅射时间就越长,反之则反;若合金薄膜所需溅射的厚度越小,溅射时间就越短,反之则反。作为本发明优化的一种方案,制备形成的所述第一Ti-Cu合金薄膜103和第二Ti-Cu合金薄膜203的厚度范围均为0.2~10μm,共溅射时的溅射功率为150~200瓦,所需溅射的时间范围为60~100分钟。所述第一Ti-Cu合金薄膜103和第二Ti-Cu合金薄膜203的厚度也可根据需要进行适当调整。The first Ti-Cu alloy thin film 103 and the second Ti-Cu alloy thin film 203 are produced by co-sputtering or electroplating process, of course, other suitable processes can also be used to complete the preparation. In this embodiment, the first Ti-Cu alloy thin film 103 and the second Ti-Cu alloy thin film 203 are manufactured by co-sputtering process, which is simple in process and high in quality. The co-sputtering process is carried out in a multi-target cavity, and the first Ti-Cu alloy thin film 103 is prepared first, and then the second Ti-Cu alloy thin film 203 is prepared. The target materials used are respectively Ti and Cu, and the two target materials are simultaneously sputtered onto the surface of the first passivation layer 102 to form the first Ti—Cu alloy thin film 103 . The second Ti-Cu alloy thin film 203 is also prepared in the same manner. During the preparation process, the working pressure is less than 10 -2 Torr, and the sputtering rate of Cu is 5-8 times that of Ti. The sputtering time is determined by the sputtering power and the sputtering thickness of the alloy film. Generally speaking, the smaller the sputtering power, the longer the sputtering time, and vice versa; if the sputtering thickness of the alloy film is The smaller the value, the shorter the sputtering time, and vice versa. As an optimized scheme of the present invention, the thickness ranges of the first Ti-Cu alloy thin film 103 and the second Ti-Cu alloy thin film 203 are both 0.2-10 μm, and the sputtering power during co-sputtering is 150 ~200 watts, the required sputtering time ranges from 60 to 100 minutes. The thicknesses of the first Ti-Cu alloy thin film 103 and the second Ti-Cu alloy thin film 203 can also be properly adjusted as required.
作为示例,共溅射时的工作压强为5×10-3托,Cu和Ti的溅射速率分别为0.08nm/s和0.01nm/s,溅射功率为160瓦,溅射时间为90分钟,形成的所述第一Ti-Cu合金薄膜103和第二Ti-Cu合金薄膜203的厚度分别为9μm。As an example, the working pressure during co-sputtering is 5× 10-3 Torr, the sputtering rates of Cu and Ti are 0.08nm/s and 0.01nm/s, respectively, the sputtering power is 160W, and the sputtering time is 90 minutes , the thicknesses of the first Ti-Cu alloy thin film 103 and the second Ti-Cu alloy thin film 203 formed are respectively 9 μm.
然后执行步骤S2,如图6和图7所示,将所述第一圆片1和第二圆片2进行热压键合,第一圆片1含有第一Ti-Cu合金薄膜103的表面和第二圆片2含有第二Ti-Cu合金薄膜203的表面接触形成键合面。Then perform step S2, as shown in Figure 6 and Figure 7, the first wafer 1 and the second wafer 2 are subjected to thermocompression bonding, the first wafer 1 contains the surface of the first Ti-Cu alloy film 103 Contact with the surface of the second wafer 2 containing the second Ti-Cu alloy thin film 203 to form a bonding surface.
进行热压键合前需要所述第一Ti-Cu合金薄膜103的表面和第二Ti-Cu合金薄膜203表面进行清洗并甩干,清洗采用的清洗液包括但不限于乙酸、稀盐酸或稀硫酸等。本实施例中,采用乙酸对所述第一Ti-Cu合金薄膜103的表面和第二Ti-Cu合金薄膜203表面进行清洗。Before thermocompression bonding, the surface of the first Ti-Cu alloy film 103 and the surface of the second Ti-Cu alloy film 203 need to be cleaned and dried. The cleaning solution used for cleaning includes but is not limited to acetic acid, dilute hydrochloric acid or dilute Sulfuric acid etc. In this embodiment, the surface of the first Ti—Cu alloy film 103 and the surface of the second Ti—Cu alloy film 203 are cleaned with acetic acid.
将第一圆片1和第二圆片2进行热压键合,键合前的结构如图6所示,将待键合的第一Ti-Cu合金薄膜103的表面和第二Ti-Cu合金薄膜203表面相对。如图7所示为键合中的第一圆片1和第二圆片2,将该结构置于350~450℃温度范围内的键合装置内,并沿如图7所示的箭头方向上施加大小为2000~4000N的压力,保持上述温度和压力约30~40分钟的时间,获得第一Ti-Cu合金薄膜103和第二Ti-Cu合金薄膜203键合为一体的键合结构。The first wafer 1 and the second wafer 2 are thermocompressively bonded, the structure before bonding is shown in Figure 6, the surface of the first Ti-Cu alloy film 103 to be bonded and the second Ti-Cu The surfaces of the alloy thin film 203 are opposite. As shown in Figure 7, the first wafer 1 and the second wafer 2 are being bonded, and the structure is placed in a bonding device within the temperature range of 350-450 ° C, and along the direction of the arrow shown in Figure 7 Apply a pressure of 2000-4000N on the top, and maintain the above temperature and pressure for about 30-40 minutes to obtain a bonded structure in which the first Ti-Cu alloy film 103 and the second Ti-Cu alloy film 203 are bonded together.
作为示例,热压键合的过程为:抽真空至0.01mbar,并升温至400℃,在待键合的第一圆片1和第二圆片2上施加3000N的压力,键合时间为30分钟,之后冷却至室温。As an example, the thermocompression bonding process is: evacuate to 0.01mbar, and raise the temperature to 400°C, apply a pressure of 3000N on the first wafer 1 and the second wafer 2 to be bonded, and the bonding time is 30 minutes, and then cooled to room temperature.
最后执行步骤S3,在保护性气体中进行退火处理,使第一Ti-Cu合金薄膜103中的Ti原子向第一钝化层102表面扩散形成第一Ti粘附/阻挡层104、Cu原子向键合面扩散;第二Ti-Cu合金薄膜203中的Ti原子向第二钝化层202表面扩散形成第二Ti粘附/阻挡层204、Cu原子向键合面扩散;第一Ti-Cu合金薄膜103中的Cu原子和第二Ti-Cu合金-薄膜203中Cu原子扩散后形成共同的Cu金属层105,最终实现键合。Finally, step S3 is performed, annealing is performed in a protective gas, so that the Ti atoms in the first Ti-Cu alloy film 103 diffuse to the surface of the first passivation layer 102 to form the first Ti adhesion/barrier layer 104, and the Cu atoms diffuse to the surface of the first passivation layer 102. Bonding surface diffusion; Ti atoms in the second Ti-Cu alloy film 203 diffuse to the surface of the second passivation layer 202 to form a second Ti adhesion/barrier layer 204, Cu atoms diffuse to the bonding surface; the first Ti-Cu The Cu atoms in the alloy film 103 and the Cu atoms in the second Ti—Cu alloy-film 203 diffuse to form a common Cu metal layer 105 , and finally achieve bonding.
进行退火工艺的温度可以在350~450℃范围内,处理时间在60~100分钟以内。作为示例,退火温度为400℃,退火时间为90分钟。进一步地,退火工艺在N2气氛中进行,当然,也可以用惰性气体或其他不活泼气体作为保护性气体进行退火,比如,Ar气。The temperature for the annealing process may be in the range of 350-450° C., and the treatment time is within 60-100 minutes. As an example, the annealing temperature is 400° C., and the annealing time is 90 minutes. Further, the annealing process is performed in N 2 atmosphere, of course, an inert gas or other inert gas can also be used as a protective gas for annealing, such as Ar gas.
进行退火之后,第一Ti-Cu合金薄膜103和第二Ti-Cu合金-薄膜203中的Cu原子和Ti原子会逐渐分离,其中,第一Ti-Cu合金薄膜中103的Ti原子向第一钝化层102表面扩散,在第一钝化层102表面形成稳定的第一Ti粘附/阻挡层104;第二Ti-Cu合金203薄膜中的Ti原子向第二钝化层202表面扩散,在第二钝化层202表面形成稳定的第二Ti粘附/阻挡层204;而第一Ti-Cu合金薄膜103和第二Ti-Cu合金薄膜203中的Cu原子都向键合接触面扩散,在键合面上形成共同的Cu金属层105,该Cu金属层105将第一圆片1和第二圆片2稳固地键合在一起,如图8所示。After annealing, the Cu atoms and Ti atoms in the first Ti-Cu alloy film 103 and the second Ti-Cu alloy-film 203 will gradually separate, wherein the Ti atoms in the first Ti-Cu alloy film 103 move towards the first Ti-Cu alloy film. The surface of the passivation layer 102 diffuses to form a stable first Ti adhesion/barrier layer 104 on the surface of the first passivation layer 102; the Ti atoms in the second Ti-Cu alloy 203 film diffuse to the surface of the second passivation layer 202, A stable second Ti adhesion/barrier layer 204 is formed on the surface of the second passivation layer 202; while the Cu atoms in the first Ti-Cu alloy film 103 and the second Ti-Cu alloy film 203 all diffuse to the bonding interface , forming a common Cu metal layer 105 on the bonding surface, and the Cu metal layer 105 firmly bonds the first wafer 1 and the second wafer 2 together, as shown in FIG. 8 .
第一Ti-Cu合金薄103膜和第二Ti-Cu合金薄膜203中的Ti原子和Cu原子分离之后的形成的第一Ti粘附/阻挡层104和第二Ti粘附/阻挡层204的厚度与溅射时Cu与Ti的溅射速率有关,比如,若Cu和Ti的溅射速率分别为0.08nm/s和0.01nm/s,形成的第一Ti-Cu合金薄膜103的厚度为9μm,则分离后,第一Ti粘附/阻挡层204的厚度大约为1μm,第一Ti-Cu合金薄膜103分离出来的Cu层约8μm,同样,第二Ti-Cu合金薄膜分离后的Ti和Cu的厚度也可以用该方式来估算。当然,由于分离前后原子密度有一定的改变,分离后的厚度可以在允许范围内存在一定的偏差。The formation of the first Ti adhesion/barrier layer 104 and the second Ti adhesion/barrier layer 204 after the Ti atoms and Cu atoms in the first Ti-Cu alloy thin film 103 and the second Ti-Cu alloy thin film 203 are separated The thickness is related to the sputtering rate of Cu and Ti during sputtering. For example, if the sputtering rates of Cu and Ti are respectively 0.08nm/s and 0.01nm/s, the thickness of the first Ti-Cu alloy thin film 103 formed is 9 μm , then after separation, the thickness of the first Ti adhesion/barrier layer 204 is about 1 μm, and the Cu layer separated from the first Ti-Cu alloy film 103 is about 8 μm. Similarly, the Ti and Cu layers separated from the second Ti-Cu alloy film The thickness of Cu can also be estimated in this way. Of course, since the atomic density has a certain change before and after the separation, the thickness after separation may have a certain deviation within the allowable range.
Ti原子和Cu原子之所以可以向特定的方向扩散,原因是:Ti和Cu的扩散是通过原子的相对位移来实现的,在晶体点阵内,任何原子要从一个位置迁移到另一个位置必须要获得一定的扩散激活能,由于Ti的熔点是Cu的1.53倍,Ti的原子结合能也是Cu的1.4倍,因此Ti的扩散激活要能远远大于Cu,且Cu和Ti的原子大小相当,容易发生扩散。此外,位于合金薄膜表面(键合接触面)位置的铜的扩散激活能更小。因此,在键合后的退火过程中,Cu有向键合接触面扩散的趋势,相应的铜扩散之后留下的空穴会由Ti原子来填充,宏观上观察到Ti会向衬底方向扩散。The reason why Ti atoms and Cu atoms can diffuse in a specific direction is that the diffusion of Ti and Cu is achieved through the relative displacement of atoms. In the crystal lattice, any atom must move from one position to another. To obtain a certain diffusion activation energy, since the melting point of Ti is 1.53 times that of Cu, and the atomic binding energy of Ti is also 1.4 times that of Cu, the diffusion activation of Ti must be much larger than that of Cu, and the atomic size of Cu and Ti is equivalent. Diffusion easily occurs. In addition, the activation energy for diffusion of copper at the surface (bonding interface) of the alloy film is smaller. Therefore, during the annealing process after bonding, Cu has a tendency to diffuse to the bonding contact surface, and the holes left after the corresponding copper diffusion will be filled by Ti atoms, and it is observed macroscopically that Ti will diffuse toward the substrate. .
综上所述,本发明提供一种铜-铜金属热压键合的方法,该方法在键合时采用先制备第一Ti-Cu合金薄膜和第二Ti-Cu合金薄膜,键合后经历一次退火过程,便可将Ti和Cu分离,其中,Ti向衬底端移动并形成稳定的阻挡层/粘附层,而铜向键合接触面扩散,最终得到良好的键合效果。In summary, the present invention provides a method for copper-copper metal thermocompression bonding, which adopts the method of first preparing the first Ti-Cu alloy thin film and the second Ti-Cu alloy thin film during bonding, and undergoes a process after bonding. In one annealing process, Ti and Cu can be separated, in which Ti moves to the substrate end and forms a stable barrier layer/adhesion layer, while copper diffuses to the bonding contact surface, and finally a good bonding effect is obtained.
所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention shall still be covered by the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310423177.8A CN104465428B (en) | 2013-09-16 | 2013-09-16 | A kind of method of copper copper metal thermocompression bonding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310423177.8A CN104465428B (en) | 2013-09-16 | 2013-09-16 | A kind of method of copper copper metal thermocompression bonding |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104465428A CN104465428A (en) | 2015-03-25 |
CN104465428B true CN104465428B (en) | 2017-10-13 |
Family
ID=52911280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310423177.8A Expired - Fee Related CN104465428B (en) | 2013-09-16 | 2013-09-16 | A kind of method of copper copper metal thermocompression bonding |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104465428B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015121775B3 (en) * | 2015-12-15 | 2016-12-15 | Infineon Technologies Ag | Method for connecting a semiconductor chip to a metallic surface of a substrate by means of two contact metallization layers and method for producing an electronic assembly |
CN106298452B (en) * | 2016-08-29 | 2019-05-17 | 中国科学院微电子研究所 | Wafer bonding method based on array type point pressure |
CN117747573A (en) * | 2022-09-13 | 2024-03-22 | 华为技术有限公司 | Chip packaging structure, manufacturing method thereof and electronic equipment |
CN115821397B (en) * | 2022-12-22 | 2024-08-13 | 燕山大学 | Bonded copper single crystal and atomic-scale diffusion bonding process method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6193139B1 (en) * | 1996-10-17 | 2001-02-27 | Jorma Kivilahti | Method for joining metals by soldering |
CN1711149A (en) * | 2002-11-01 | 2005-12-21 | 埃托特克德国有限公司 | Method of connecting module layers suitable for the production of microstructure components and a microstructure component |
EP1720204A1 (en) * | 2005-05-03 | 2006-11-08 | Rosemount Aerospace Inc. | Transient liquid phase eutectic bonding |
CN101362253A (en) * | 2008-09-12 | 2009-02-11 | 北京工业大学 | Joining method of TiNi shape memory alloy and stainless steel by instantaneous liquid phase diffusion welding |
CN101764121A (en) * | 2010-01-08 | 2010-06-30 | 湖南大学 | Interlayer insulated stacked composite material and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130122968A (en) * | 2011-03-01 | 2013-11-11 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Copper-titanium alloy sputtering target, semiconductor wiring line formed using the sputtering target, and semiconductor element and device each equipped with the semiconductor wiring line |
JP2013000796A (en) * | 2011-06-22 | 2013-01-07 | Mitsubishi Electric Corp | Diffusion joining method |
TWI433268B (en) * | 2011-09-16 | 2014-04-01 | Univ Nat Chiao Tung | Bonding method for three-dimensional integrated circuit and three-dimensional integrated circuit thereof |
-
2013
- 2013-09-16 CN CN201310423177.8A patent/CN104465428B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6193139B1 (en) * | 1996-10-17 | 2001-02-27 | Jorma Kivilahti | Method for joining metals by soldering |
CN1711149A (en) * | 2002-11-01 | 2005-12-21 | 埃托特克德国有限公司 | Method of connecting module layers suitable for the production of microstructure components and a microstructure component |
EP1720204A1 (en) * | 2005-05-03 | 2006-11-08 | Rosemount Aerospace Inc. | Transient liquid phase eutectic bonding |
CN101362253A (en) * | 2008-09-12 | 2009-02-11 | 北京工业大学 | Joining method of TiNi shape memory alloy and stainless steel by instantaneous liquid phase diffusion welding |
CN101764121A (en) * | 2010-01-08 | 2010-06-30 | 湖南大学 | Interlayer insulated stacked composite material and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
Characterization of Self-Formed Ti-Rich Iterface Layers in Cu(Ti)/Low-k Samples;KAZUYUKI KOHAMA;《Journal of ELECTRONIC MATERIALS》;20080522;全文 * |
Cosputtered Cu/Ti Bonded Interconnects With a Self-Formed Adhesion Layer for Three-Dimensional Integration Applications;Sheng-Yao Hsu;《IEEE ELECTRON DEVICE LETTERS》;20120731;1048页右栏第1行-1050页右栏第9行以及说明书附图5 * |
Also Published As
Publication number | Publication date |
---|---|
CN104465428A (en) | 2015-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024145034A1 (en) | Directly bonded metal structures having aluminum features and methods of preparing same | |
CN104465428B (en) | A kind of method of copper copper metal thermocompression bonding | |
JP6272807B2 (en) | Method for permanently connecting two metal surfaces | |
JP2008207221A (en) | Room temperature bonding method | |
JP2010046696A (en) | Nuclear diffusion joining method and structure joined thereby | |
TWI476839B (en) | Sub-micro connection method for wafer and connection layer | |
US20170236800A1 (en) | Method for direct adhesion via low-roughness metal layers | |
JP6290222B2 (en) | Method for coating substrates and method for bonding substrates | |
TW202001983A (en) | Semiconductor structure and method of forming the same | |
CN102064120A (en) | Soldering flux-free reflow technological method based on indium bumps | |
CN101844740A (en) | Low-temperature bonding method based on gold silicon eutectic | |
CN102130026A (en) | Wafer-level low-temperature packaging method based on gold-tin alloy bonding | |
TW202105459A (en) | Methods for bonding substrates | |
CN105679687A (en) | Micro-interconnection method based on self-propagating reaction | |
Tan et al. | Cu surface passivation with self-assembled monolayer (SAM) and its application for wafer bonding at moderately low temperature | |
Hu et al. | Two-step Ar/N 2 plasma-activated Al surface for Al-Al direct bonding | |
Suga et al. | Surface activated bonding method for low temperature bonding | |
JP5391599B2 (en) | Substrate bonding method and electronic component | |
CN102485639B (en) | Low-temperature bonding method based on gold-induced amorphous silicon crystals | |
TWI433268B (en) | Bonding method for three-dimensional integrated circuit and three-dimensional integrated circuit thereof | |
Hu et al. | Plasma-Activated Cu-Cu and Al-Al Direct Bonding for Electronics Packaging | |
Jong-Kyung et al. | Advancements in Metal Passivation Process for Low-Temperature Cu-Cu Direct Bonding | |
CN108203076B (en) | Wafer bonding method | |
CN117276102A (en) | Ultra-fine pitch all-copper low-temperature interconnection structure and interconnection method thereof | |
JP2024116118A (en) | Shutter disc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171013 Termination date: 20190916 |
|
CF01 | Termination of patent right due to non-payment of annual fee |