CN104463769A - Figure scrambling method based on 3D DFS labyrinth - Google Patents
Figure scrambling method based on 3D DFS labyrinth Download PDFInfo
- Publication number
- CN104463769A CN104463769A CN201410749012.4A CN201410749012A CN104463769A CN 104463769 A CN104463769 A CN 104463769A CN 201410749012 A CN201410749012 A CN 201410749012A CN 104463769 A CN104463769 A CN 104463769A
- Authority
- CN
- China
- Prior art keywords
- maze
- init
- update
- image
- scrambled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 184
- 238000013507 mapping Methods 0.000 claims description 51
- 101100049748 Archaeoglobus fulgidus (strain ATCC 49558 / DSM 4304 / JCM 9628 / NBRC 100126 / VC-16) wtpA gene Proteins 0.000 claims description 3
- 101100514057 Azotobacter vinelandii modE gene Proteins 0.000 claims description 3
- 101150103307 modA gene Proteins 0.000 claims description 3
- 230000001788 irregular Effects 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 abstract description 3
- 239000011159 matrix material Substances 0.000 description 19
- 230000009466 transformation Effects 0.000 description 19
- 238000012360 testing method Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 10
- 238000012795 verification Methods 0.000 description 9
- 238000011084 recovery Methods 0.000 description 8
- 238000004088 simulation Methods 0.000 description 6
- 238000013473 artificial intelligence Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 238000004883 computer application Methods 0.000 description 1
- 238000011960 computer-aided design Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Image Processing (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
本发明提供一种基于3D DFS迷宫的数字置乱方法,预先对DFS迷宫生成区域进行人为限定,从而可用于人为指定的任意3D封闭连通区域,同时按迷宫节点更新顺序对迷宫设定区域的每个节点赋予唯一的编号,由此产生迷宫设定区域所有节点的排列,在此基础上构造了基于3D DFS迷宫节点更新序列和节点更新序列复合的置乱方法,从而可将所有节点置乱。本发明所给出的置乱方法具有普适性和灵活性,在使用过程中不存在任何限制,不仅能应用于传统置乱方法所针对的规则区域,例如正方形和矩形区域,也可用于任意选定的3D封闭连通不规则区域置乱。本发明也给出了用于图像位面立方体,RGB立方体和RGB通道立方体的图像置乱方法。
The present invention provides a digital scrambling method based on a 3D DFS maze. The DFS maze generation area is artificially limited in advance, so that it can be used in any artificially designated 3D closed connected area. Each node is given a unique number, which produces the arrangement of all nodes in the maze setting area. On this basis, a scrambling method based on the 3D DFS maze node update sequence and the node update sequence composite is constructed, so that all nodes can be scrambled. The scrambling method given by the present invention has universality and flexibility, and there is no restriction in the use process. It can not only be applied to the regular areas targeted by traditional scrambling methods, such as square and rectangular areas, but also to any The selected 3D closed connected irregular regions are scrambled. The invention also provides image scrambling methods for image plane cube, RGB cube and RGB channel cube.
Description
技术领域 technical field
本发明主要涉及信息安全和数字信号处理等交叉研究领域,具体为基于DFS迷宫生成策略的数字置乱方法,特别涉及一种基于3D DFS迷宫的数字置乱方法。 The present invention mainly relates to cross-research fields such as information security and digital signal processing, and specifically relates to a digital scrambling method based on a DFS maze generation strategy, in particular to a digital scrambling method based on a 3D DFS maze. the
背景技术 Background technique
近年来,伴随着计算机和网络技术的发展,越来越多的图像在网络中传输,在给用户提供方便的同时,也带来了一系列的安全隐患。对图像的不当使用和恶意篡改,不仅涉及个人隐私,也会给社会带来严重负面影响。保障图像的核心技术是数字图像加密。 In recent years, with the development of computer and network technology, more and more images are transmitted on the network, which brings a series of security risks while providing convenience to users. Improper use and malicious tampering of images not only involve personal privacy, but also have serious negative impacts on society. The core technology to protect images is digital image encryption. the
在数字图像加密领域,研究最为广泛和灵活的一类图像加密方法,就是在同一空间内,对图像的重编码技术,即图像置乱技术。 In the field of digital image encryption, the most widely studied and flexible image encryption method is the re-encoding technology of images in the same space, that is, image scrambling technology. the
随着计算机技术的飞速发展,数字图像置乱技术已成为数字安全传输和保密的主要手段。其基本思路就是把一幅图像经过一定的数学变换,转变成面目全非的另一幅图像,以起到对图像的安全保密作用。 With the rapid development of computer technology, digital image scrambling technology has become the main means of digital security transmission and confidentiality. The basic idea is to transform an image into another image beyond recognition through a certain mathematical transformation, so as to play a role in the security and confidentiality of the image. the
数字图像置乱也是目前隐密术、数字水印、信息分存和可视密码技术中,一项关键预处理技术。已受到国内外学者的普遍重视,并取得丰硕的研究成果。 Digital image scrambling is also a key preprocessing technology in steganography, digital watermarking, information sharing and visual cryptography. It has been widely valued by scholars at home and abroad, and has achieved fruitful research results. the
数字图像置乱最初来源于有线电视信号加密,早期的置乱在位置空间进行,用于对图像像素位置打乱,这些置乱方法包括行倒置置乱、行平移置乱、行置换置乱、行循环置乱、行分量切割置乱等。随着置乱技术的不断发展,目前已提出的置乱方法多种多样,既可用于位置置换,也可用于灰度替代。 Digital image scrambling originally originated from cable TV signal encryption. Early scrambling was performed in position space to scramble image pixel positions. These scrambling methods include line inversion scrambling, line translation scrambling, line permutation scrambling, Row cycle scrambling, row component cutting scrambling, etc. With the continuous development of scrambling technology, various scrambling methods have been proposed, which can be used for both position replacement and grayscale replacement. the
当前已提出的置乱方法主要有:基于离散元素序列的置乱方法、基于扫描路线的置乱方法、基于遍历矩阵的置乱方法、基于迭代函数系统的置乱方法、基于离散混沌映射的置乱方法、基于中国拼图的置乱方法和基于矩阵变换的置乱方法等。 The currently proposed scrambling methods mainly include: scrambling method based on discrete element sequence, scrambling method based on scanning route, scrambling method based on traversal matrix, scrambling method based on iterative function system, scrambling method based on discrete chaotic map The scrambling method, the scrambling method based on Chinese jigsaw puzzle and the scrambling method based on matrix transformation, etc. the
目前尽管已提出了多种置乱方法,但传统置乱方法大多只能用于规则区域置乱,例如正方形和长方形区域,而不能对图像选定的任意不规则区域进行置乱。 Although a variety of scrambling methods have been proposed, most of the traditional scrambling methods can only be used to scramble regular areas, such as square and rectangular areas, but cannot scramble any irregular area selected by the image. the
例如基于Fibonacci序列和Lucas序列的置乱方法将置乱图像的宽、高拘泥为Fibonacci序列和Lucas序列元素;基于SCAN语言和Hilbert曲线的置乱方法将置换图像的大小约束为2n×2n的正方形图像;由于并非所有图像都存在骑士巡游路径,由此导致了基于骑士巡游的置乱方法只能用于图像宽、高在特定尺度上的图像;对于奇数阶幻方,其置乱图像边长为奇数,对于双偶阶幻方,其置乱图像边长为4的整数倍;由于任意阶的拉丁方并非都存在,基于拉丁方的置乱方法只能用于置乱图像边长为特定尺度的图像,例如边长为pn且p为素数的图像;对于离散Kolmogorov Flows Map和亚仿射变换,只能用于置乱正方形图像;传统的基于矩阵的图像置乱方法,其基本表示形式为X[i]=(AX[i-1])mod N,但由于只有一个尺度参数N,由此决定了基于矩阵的图像置乱方法只能用于置乱特定尺度的图像,例如正方形图像或和对矩形图像的灰度进行置乱。 For example, the scrambling method based on Fibonacci sequence and Lucas sequence restricts the width and height of the scrambled image to Fibonacci sequence and Lucas sequence elements; the scrambling method based on SCAN language and Hilbert curve restricts the size of the scrambled image to 2 n × 2 n square image; since not all images have a knight parade path, the scrambling method based on the knight parade can only be used for images with image width and height on a specific scale; for odd-order magic squares, the scrambled image The side length is an odd number. For a double-even order magic square, the side length of the scrambled image is an integer multiple of 4; since Latin squares of any order do not exist, the scrambling method based on the Latin square can only be used to scramble the side length of the image. is an image of a specific scale, such as an image whose side length is p n and p is a prime number; for discrete Kolmogorov Flows Map and subaffine transformation, it can only be used to scramble square images; traditional matrix-based image scrambling methods, its The basic expression is X [i] = (AX [i-1] ) mod N, but since there is only one scale parameter N, it is determined that the matrix-based image scrambling method can only be used to scramble images of a specific scale, Examples include square images or scrambling the grayscale of rectangular images.
在文献二维非等长图像置乱变换(电子学报,2007,35(7):1290-1294),二维三角映射及其在图像置乱上的应用(Information Technology Journal,2008,7(1):40-47),二维双尺度矩形映射及其在图像置乱上的应用(计算机辅助设计与图形学报,2009,21(7):1026-1034)和多尺度三角映射及其在变尺度置乱上的应用 (International Journal of Computer Applications in Technology,2010,38(1-3):74-85),我们将X[i]=(AX[i-1])modN拓展为X[i]=(AX[i-1])modN,N为有限个尺度构成的尺度向量,提出了2维非等长变换存在性判据,2维双尺度矩形映射的特殊形式-2维三角映射,以及2维双尺度矩形映射一般性构造方法和多尺度三角映射。尽管X[i]=(AX[i-1])modN可用于任意矩形图像置乱,并可对图像位置和灰度同时置乱,但所提出的方法只能对规则区域进行置乱,不能用于任意选定的任意不规则区域进行置乱。 In the literature two-dimensional non-equal-length image scrambling transformation (Acta Electronics, 2007, 35 (7): 1290-1294), two-dimensional triangular mapping and its application in image scrambling (Information Technology Journal, 2008, 7 (1 ):40-47), two-dimensional dual-scale rectangular mapping and its application in image scrambling (Journal of Computer-Aided Design and Graphics, 2009,21(7):1026-1034) and multi-scale triangular mapping and its The application of scale scrambling (International Journal of Computer Applications in Technology, 2010, 38(1-3):74-85), we expand X [i] = (AX [i-1] ) modN to X [i ] = (AX [i-1] ) modN, where N is a scale vector composed of finite scales, the existence criterion of 2-dimensional non-equal-length transformation is proposed, the special form of 2-dimensional double-scale rectangular mapping-2-dimensional triangular mapping, As well as general construction methods for 2D dual-scale rectangular maps and multi-scale triangular maps. Although X [i] = (AX [i-1] ) mod N can be used to scramble any rectangular image, and can scramble the image position and gray level at the same time, the proposed method can only scramble the regular area and cannot Used to scramble any arbitrary selected irregular region.
传统的迷宫生成方法在人工智能和优化计算领域应用较广,一般用于动态复杂场景的模拟和仿真,在信息安全领域涉及较少,在文献基于迷宫置换和Logistic混沌映射的图像加密算法(计算机应用,2014,34(7):1902-1908),我们探讨了基于DFS迷宫节点入栈顺序和行优先扫描顺序高效产生置换的方法,将迷宫生成方法应用于任意矩形图像加密,但所提出的方法不能应用于图像的任意连通不规则封闭区域加密。 The traditional maze generation method is widely used in the field of artificial intelligence and optimization computing. It is generally used for the simulation and simulation of dynamic and complex scenes. It is less involved in the field of information security. Application, 2014,34(7):1902-1908), we discussed the method of efficiently generating permutations based on the stacking order of DFS maze nodes and the row-first scanning order, and applied the maze generation method to any rectangular image encryption, but the proposed The method cannot be applied to any connected irregular closed area encryption of the image. the
发明内容 Contents of the invention
本发明的目的在于克服现有技术缺陷,提供一种基于3D DFS迷宫的数字置乱方法,该方法可用于3D任意连通封闭区域数据置乱。 The purpose of the present invention is to overcome the defects of the prior art and provide a digital scrambling method based on a 3D DFS maze, which can be used for data scrambling in 3D arbitrary connected closed areas. the
为实现上述目的,本发明采用以下技术方案: To achieve the above object, the present invention adopts the following technical solutions:
一种基于3D DFS迷宫的数字置乱方法,包括以下步骤: A digital scrambling method based on 3D DFS maze, comprising the following steps:
第1步:设定迷宫初始范围Sinit=()m×n×l和迷宫有效区域Smaze=(si,j,k)m×n×l,对于i=0,…,m-1,j=0,…,n-1,k=0,…,l-1,若则标记si,j,k=-1,反之则标记si,j,k=0表示该节点未访问,若si,j,k>0表示该节点已访问; Step 1: Set the initial range of the maze S init =() m×n×l and the effective area of the maze S maze =(si ,j,k ) m×n×l , for i=0,...,m-1,j=0,...,n-1,k=0,...,l-1, if Then mark s i, j, k =-1, otherwise, mark s i, j, k = 0 to indicate that the node has not been visited, and if s i, j, k > 0 to indicate that the node has been visited;
第2步:对于i=0,…,m-1,j=0,…,n-1,k=0,…,l-1,记si,j,k.d,d=0,1,2,3,4,5依次为节点si,j,k的下方、右方、上方、左方、底部和顶部墙,初始化si,j,k.d=-1,d=0,1,2,3,4,5,即将Smaze范围内的所有节点以墙进行分隔,si,j,k.d=-1表示有墙,si,j,k.d=0表示无墙; Step 2: For i=0,...,m-1,j=0,...,n-1,k=0,...,l-1, record s i,j,k .d,d=0,1,2,3, 4,5 are the bottom, right, top, left, bottom and top walls of nodes s i,j,k in turn , initialize s i,j,k .d=-1,d=0,1,2,3 ,4,5, that is, all nodes within the range of S maze are separated by walls, s i,j,k .d=-1 means there is a wall, s i,j,k .d=0 means no wall;
第3步:选择随机数发生器y=RG(x),设定随机数发生器初始值RG.init=seed,初始化Stack=Φ,置节点更新序列Aupdate=Φ; Step 3: Select the random number generator y=RG(x), set the initial value of the random number generator RG.init=seed, initialize Stack=Φ, set the node update sequence A update =Φ;
第4步:随机选取x=x0,y=y0,z=z0,标记sx,y,z=1,将sx,y,z的(x,y,z)加入节点更新序列Aupdate=Aupdate.add((x,y,z)); Step 4: Random Pick x=x 0 , y=y 0 , z=z 0 , mark s x, y, z = 1, add ( x, y, z ) of s x, y, z to the node update sequence A update = A update . add((x,y,z));
第5步:若sx,y,z的周围相邻节点sx+1,y,z,sx,y+1,z,sx-1,y,z,sx,y-1,z,sx,y,z-1,sx,y,z+1存在Smaze范围内未访问的节点,则随机选择1个未访问的节点,记为sx′,y′,z′,将sx,y,z和sx′,y′,z′之间的分割墙标记为0,将sx,y,z入栈push(Stack,sx,y,z),更新x=x′,y=y′,z=z′,标记sx,y,z=1,将(x,y,z)加入节点更新序列Aupdate=Aupdate.add((x,y,z)); Step 5: If the adjacent nodes around s x,y,z are s x+1,y,z , s x,y+1,z ,s x-1,y,z , s x,y-1, z , s x, y, z-1 , s x, y, z+1 have unvisited nodes within the range of S maze , then randomly select 1 unvisited node, recorded as s x′, y′, z′ , mark the dividing wall between s x, y, z and s x', y', z' as 0, put s x, y, z into the stack push(Stack, s x, y, z ), update x =x', y=y', z=z', mark s x, y, z =1, add (x, y, z) to the node update sequence A update = A update .add((x, y, z ));
第6步:若sx,y,z的周围相邻节点sx+1,y,z,sx,y+1,z,sx-1,y,z,sx,y-1,z,sx,y,z-1,sx,y,z+1不存在Smaze范围内未访问的节点,则将栈顶元素出栈作为当前节点,即sx,y,z=pop(Stack); Step 6: If s x, y, z surrounding adjacent nodes s x+1,y,z , s x,y+1,z ,s x-1,y,z ,s x,y-1, z , s x, y, z-1 , s x, y, z+1 do not have unvisited nodes within the scope of S maze , then pop the top element of the stack as the current node, that is, s x, y, z = pop (Stack);
第7步,反复执行第5~6步,直至Stack=Φ; Step 7, repeat steps 5-6 until Stack=Φ;
第8步:利用Aupdate构造Smaze=(si,j,k)m×n×l范围内所有节点间的映射关系,从而将Smaze=(si,j,k)m×n×l范围内所有节点置乱。 Step 8: Use A update to construct the mapping relationship between all nodes in the range of S maze =(s i,j,k ) m×n×l , so that S maze =(s i,j,k ) m×n× All nodes in l range are scrambled.
作为本发明进一步优选方案,第8步中映射方法具体包括以下步骤: As a further preferred solution of the present invention, the mapping method specifically includes the following steps in the 8th step:
第8.1步:选取整数作为映射偏移量ll,llmodAupdate.length≠0,将其按式(1) 规范到(-Aupdate.length,Aupdate.length)范围内的整数,按式(2)计算index; Step 8.1: Select an integer as the mapping offset ll, llmodA update.length ≠0, standardize it to an integer within the range of (-A update.length , A update.length ) according to formula (1), and press formula (2 ) to calculate the index;
ll=llmodAupdate.length (1) ll = llmodA update.length (1)
第8.2步:将Sinit复制为T=(ti,j,k)m×n×l; Step 8.2: Copy S init as T=(t i,j,k ) m×n×l ;
第8.3步:对于按式(3)将si,j,k赋值给tx,y,z; Step 8.3: For Assign s i, j, k to t x, y, z according to formula (3);
(i,j,k)=Aupdate(ii),ii=0,…,Aupdate.length-1 (i,j,k)=A update (ii),ii=0,...,A update .length-1
(x,y,z)=Aupdate(kk),kk=0,…,Aupdate.length-1 (3) (x,y,z)=A update (kk),kk=0,...,A update.length -1 (3)
kk=(ii+index)modAupdate.length kk=(ii+index)modA update.length
第8.4步:输出T=(ti,j,k)m×n×l。 Step 8.4: Output T=(t i,j,k ) m×n×l .
作为本发明进一步优选方案,选取两个随机数发生器y=RG0(x),y=RG1(x),设定随机初始值RG0.init=seed0,RG1.init=seed1分别生成迷宫节点更新序列 As a further preferred solution of the present invention, select two random number generators y=RG 0 (x), y=RG 1 (x), and set random initial values RG 0 .init=seed 0 , RG 1 .init=seed 1 Generating maze node update sequences separately
第8步中映射方法具体包括以下步骤: The mapping method in step 8 specifically includes the following steps:
第8.1步:输入任意整数作为映射偏移量ll,并将其按式(4)规范到 范围内的整数,按式(5)计算index; Step 8.1: Input any integer as the mapping offset ll, and standardize it according to formula (4) to Integer within the range, calculate index according to formula (5);
第8.2步:将Sinit复制为T=(ti,j,k)m×n×l; Step 8.2: Copy S init as T=(t i,j,k ) m×n×l ;
第8.3步:对于
第8.4步:输出T=(ti,j,k)m×n×l。 Step 8.4: Output T=(t i,j,k ) m×n×l .
作为本发明进一步优选方案,在进行图像置乱时,具体包括以下步骤: As a further preferred solution of the present invention, when performing image scrambling, specifically include the following steps:
第(1)步:读取待置乱图像的位面立方体,对于8位图像P8,将P8.W=(wi,j,k)m×n×8作为Sinit,对于24位图像P24,将P24.W=(wi,j,k)m×n×24作为Sinit,在Sinit上选取特定区域作为Smaze; Step (1): Read the bit plane cube of the image to be scrambled. For an 8-bit image P 8 , take P 8 .W=(w i,j,k ) m×n×8 as S init , for a 24-bit image Image P 24 , take P 24 .W=(w i,j,k ) m×n×24 as S init , select a specific area on S init as S maze ;
第(2)步:选取作为迷宫的初始节点,选取随机数发生器y=RG(x),设定初始值RG.init=seed和映射偏移量ll; Step (2): Select As the initial node of the maze, select the random number generator y=RG(x), set the initial value RG.init=seed and the mapping offset ll;
第(3)步:输出置乱后的位面立方体,对于8位图像,将(w′i,j,k)m×n×8写为置乱后的图像,对于24位图像,将(w′i,j,k)m×n×24写为置乱后的图像。 Step (3): Output the scrambled bit-plane cube. For an 8-bit image, write (w′ i,j,k ) m×n×8 as the scrambled image. For a 24-bit image, write ( w′ i,j,k ) m×n×24 is written as the scrambled image.
作为本发明进一步优选方案,在进行图像置乱时,具体包括以下步骤: As a further preferred solution of the present invention, when performing image scrambling, specifically include the following steps:
第(1)步:读取待置乱图像的位面立方体,对于8位图像P8,将P8.W=(wi,j,k)m×n×8作为Sinit,对于24位图像P24,将P24.W=(wi,j,k)m×n×24作为Sinit,在Sinit上选取特定区域作为Smaze; Step (1): Read the bit plane cube of the image to be scrambled. For an 8-bit image P 8 , take P 8 .W=(w i,j,k ) m×n×8 as S init , for a 24-bit image Image P 24 , take P 24 .W=(w i,j,k ) m×n×24 as S init , select a specific area on S init as S maze ;
第(2)步:选取作为迷宫的初始节点,选取随机数发生器y=RG0(x),y=RG1(x),设定初始值RG0.init=seed0,RG1.init=seed1和映射偏移量ll; Step (2): Select As the initial node of the maze, select the random number generator y=RG 0 (x), y=RG 1 (x), set the initial value RG 0 .init=seed 0 , RG 1 .init=seed 1 and mapping offset volume ll;
第(3)步:输出置乱后的位面立方体,对于8位图像,将(w′i,j,k)m×n×8写为置乱后的图像,对于24位图像,将(w′i,j,k)m×n×24写为置乱后的图像。 Step (3): Output the scrambled bit-plane cube. For an 8-bit image, write (w′ i,j,k ) m×n×8 as the scrambled image. For a 24-bit image, write ( w′ i,j,k ) m×n×24 is written as the scrambled image.
作为本发明进一步优选方案,在进行图像置乱时,具体包括以下步骤: As a further preferred solution of the present invention, when performing image scrambling, specifically include the following steps:
第(1)步:读取待置乱24位图像P24的RGB立方体P24.C=(ci,j,k)m×n×3作为Sinit,在Sinit上选取特定区域作为Smaze; Step (1): Read the RGB cube P 24 of the 24-bit image P 24 to be scrambled .C=(ci ,j,k ) m×n×3 as S init , select a specific area on S init as S maze ;
第(2)步:选取作为迷宫的初始节点,选取随机数发生器 y=RG(x),设定初始值RG.init=seed和映射偏移量ll; Step (2): Select As the initial node of the maze, select the random number generator y=RG(x), set the initial value RG.init=seed and the mapping offset ll;
第(3)步:输出置乱后的RGB立方体(c′i,j,k)m×n×3,将其写为置乱后的图像。 Step (3): Output the scrambled RGB cube (c′ i,j,k ) m×n×3 and write it as a scrambled image.
作为本发明进一步优选方案,在进行图像置乱时,具体包括以下步骤: As a further preferred solution of the present invention, when performing image scrambling, specifically include the following steps:
第(1)步:读取待置乱24位图像P24的RGB立方体P24.C=(ci,j,k)m×n×3作为Sinit,在Sinit上选取特定区域作为Smaze; Step (1): Read the RGB cube P 24 of the 24-bit image P 24 to be scrambled .C=(ci ,j,k ) m×n×3 as S init , select a specific area on S init as S maze ;
第(2)步:选取作为迷宫的初始节点,选取随机数发生器y=RG0(x),y=RG1(x),设定初始值RG0.init=seed0,RG1.init=seed1和映射偏移量ll; Step (2): Select As the initial node of the maze, select the random number generator y=RG 0 (x), y=RG 1 (x), set the initial value RG 0 .init=seed 0 , RG 1 .init=seed 1 and mapping offset volume ll;
第(3)步:输出置乱后的RGB立方体(c′i,j,k)m×n×3,将其写为置乱后的图像。 Step (3): Output the scrambled RGB cube (c′ i,j,k ) m×n×3 and write it as a scrambled image.
作为本发明进一步优选方案,在进行图像置乱时,具体包括以下步骤: As a further preferred solution of the present invention, when performing image scrambling, specifically include the following steps:
第(1)步:读取待置乱24位图像P24的RGB通道立方体
第(2)步:选取
第(3)步:输出置乱后的R、G、B通道立方体和将其写为置乱后的图像。 Step (3): output scrambled R, G, B channel cubes and Write it as a scrambled image.
作为本发明进一步优选方案,在进行图像置乱时,具体包括以下步骤: As a further preferred solution of the present invention, when performing image scrambling, specifically include the following steps:
第(1)步:读取待置乱24位图像P24的RGB通道立方体
第(2)步:选取
第(3)步:输出置乱后的R、G、B通道立方体和将其写为置乱后的图像。 Step (3): output scrambled R, G, B channel cubes and Write it as a scrambled image.
本发明同现有技术优点分析: The present invention is analyzed with prior art advantage:
(1)传统的迷宫生成方法在人工智能和优化计算领域应用较广,一般用于动态复杂场景的模拟和仿真,但在信息安全领域涉及较少,而传统的置乱方法一般将置乱空间局限在特定的尺度上,用于图像规则区域置乱,例如正方形图像和矩形图像以及仅适用于特定尺度图像的规则区域加密,方法不具有普适性,在实施过程中存在使用限制。本发明则将传统的迷宫生成方法引入到信息安全中的置乱处理方法中,在DFS迷宫生成方法中添加了迷宫有效区域Smaze约束限制,使其仅在事先选定的3D任意封闭连通区域Smaze上产生迷宫,同时将DFS迷宫节点更新顺序以节点更新序列Aupdate输出用于生成排列,利用该排列构造所有节点之间的映射关系,从而将所有节点置乱。 (1) The traditional maze generation method is widely used in the field of artificial intelligence and optimization computing. It is generally used for the simulation and simulation of dynamic and complex scenes, but it is less involved in the field of information security. The traditional scrambling method generally scrambles the space It is limited to a specific scale and is used for scrambling regular areas of images, such as square images and rectangular images, and regular area encryption that is only applicable to images of specific scales. The method is not universal, and there are limitations in the implementation process. In the present invention, the traditional maze generation method is introduced into the scrambling processing method in information security, and the maze effective area S maze constraint is added in the DFS maze generation method, so that it is only in the previously selected 3D closed connected area A maze is generated on the S maze , and the node update order of the DFS maze is output as the node update sequence A update to generate an arrangement, and the arrangement is used to construct the mapping relationship between all nodes, thereby scrambling all nodes.
在此基础上本发明还给出了结合节点更新序列和节点更新序列复合的数字置乱方法。同现有方法相比,本发明所给出的置乱方法具有普适性和灵活性,在使用过程中不存在使用限制,不仅可以用于置乱传统置乱方法的规则区域,例如正方形和矩形区域,也可以用于任意选定的3D任意封闭连通的选择性区域。 On this basis, the present invention also provides a digital scrambling method combining node update sequence and node update sequence composite. Compared with the existing methods, the scrambling method provided by the present invention has universality and flexibility, and there is no use restriction in the use process, and it can not only be used to scramble the regular area of the traditional scrambling method, such as square and Rectangular regions can also be used for arbitrarily selected 3D arbitrarily closed connected selective regions. the
(2)本发明所给出的置乱方法可单独使用,也可多次迭代,还可将不同方法联合使用,也可和现有的信息隐藏、数字水印、秘密共享和加密策略相结合,结合任意设定的随机数发生器对任意选定的3D连通封闭区域数据提供不同安全级别的多重保护,具备较高的实际应用价值。 (2) The scrambling method provided by the present invention can be used alone, or iterated multiple times, and different methods can also be used in combination, and can also be combined with existing information hiding, digital watermarking, secret sharing and encryption strategies, Combining with an arbitrarily set random number generator, it provides multiple protections of different security levels for any selected 3D connected closed area data, which has high practical application value. the
(3)同时本发明所针对的对象也不仅仅是图像,可以用于任意封闭连通区域数据的置乱和恢复。 (3) At the same time, the objects targeted by the present invention are not only images, but can be used for scrambling and restoring data in any closed connected region. the
附图说明 Description of drawings
图1是本发明具体实施例:方法1一种基于3D DFS迷宫的数字置乱方法流程图; Fig. 1 is a specific embodiment of the present invention: method 1 a kind of flow chart of digital scrambling method based on 3D DFS maze;
图2是本发明具体实施例:方法2结合具体映射方法的数字置乱方法流程图; Fig. 2 is a specific embodiment of the present invention: method 2 in conjunction with the digital scrambling method flowchart of specific mapping method;
图3是本发明具体实施例:方法3结合另一种映射方法的数字置乱方法流程图; Fig. 3 is a specific embodiment of the present invention: method 3 combines the digital scrambling method flowchart of another kind of mapping method;
图4本发明实施例:测试图像(含24位真彩色人像照片和迷宫有效区域设定图像包括五边形、六边形、五角星、心形、闪电形、空心云状图和人像前景等单色图像,其中黑色为迷宫有效区域,所有图像分辨率均为80×60); Fig. 4 embodiment of the present invention: test image (contains 24 true-color portrait photographs and labyrinth effective area setting image and comprises pentagon, hexagon, pentagram, heart shape, lightning shape, hollow cloud figure and portrait foreground etc. Monochrome images, where black is the effective area of the maze, and the resolution of all images is 80×60);
图5是传统的DFS迷宫方法生成80×60迷宫; Figure 5 is a traditional DFS maze method to generate an 80×60 maze;
图6是本发明对传统的DFS迷宫方法添加有效区域限制的DFS迷宫方法生成的迷宫(以图4中的人像前景区域为设定区域,3D迷宫的第3维设定为2); Fig. 6 is that the present invention adds the maze that the DFS maze method of effective area restriction to traditional DFS maze method generates (with the portrait foreground area in Fig. 4 as setting area, the 3rd dimension of 3D maze is set as 2);
图7本发明实施例:由图4五边形设定区域产生的排列按方法1中DFS迷宫法产生的前30个元素排列; Fig. 7 Embodiment of the present invention: the arrangement produced by the pentagon setting area in Fig. 4 is arranged by the first 30 elements produced by the DFS maze method in method 1;
图8本发明实施例:以5×2×3迷宫为例验证方法2(原始矩阵、迷宫生成排 列、正映射、逆映射、置乱矩阵和恢复矩阵); Fig. 8 embodiment of the present invention: taking 5 * 2 * 3 mazes as an example verification method 2 (original matrix, maze generation arrangement, positive mapping, inverse mapping, scrambling matrix and recovery matrix);
图9本发明实施例:以5×2×3迷宫为例验证方法3(原始矩阵、迷宫生成排列1、迷宫生成排列2、正映射、逆映射、置乱矩阵和恢复矩阵); Fig. 9 embodiment of the present invention: taking 5 × 2 × 3 maze as an example verification method 3 (original matrix, maze generation arrangement 1, maze generation arrangement 2, forward mapping, inverse mapping, scrambling matrix and recovery matrix);
图10本方法实施例:以图4测试例为基础对方法4的验证图样; Fig. 10 this method embodiment: based on the test example in Fig. 4 to the verification pattern of method 4;
图11本方法实施例:以图4测试例为基础对方法5的验证图样; Fig. 11 Embodiment of this method: the verification pattern of method 5 based on the test example in Fig. 4;
图12本方法实施例:以图4测试例为基础对方法6的验证图样; Fig. 12 Embodiment of this method: the verification pattern of method 6 based on the test example in Fig. 4;
图13本方法实施例:以图4测试例为基础对方法7的验证图样; Fig. 13 embodiment of this method: the verification pattern of method 7 based on the test example in Fig. 4;
图14本方法实施例:以图4测试例为基础对方法8的验证图样; Figure 14 Embodiment of this method: the verification pattern of method 8 based on the test example in Figure 4;
图15本方法实施例:以图4测试例为基础对方法9的验证图样。 Fig. 15 Embodiment of this method: a verification pattern for method 9 based on the test example in Fig. 4 . the
具体实施方式 Detailed ways
以下结合附图具体实施例对本发明方法进行详细描述: The method of the present invention is described in detail below in conjunction with the specific embodiment of accompanying drawing:
DFS迷宫生成策略是一种典型的迷宫生成策略,传统的DFS迷宫是在m×n规模网格上的任意节点出发,产生一条连接所有网络节点且具有复杂迂回通道的迷宫。 The DFS maze generation strategy is a typical maze generation strategy. The traditional DFS maze starts from any node on the m×n scale grid to generate a maze that connects all network nodes and has complex circuitous passages. the
经典DFS迷宫生成方法在人工智能和优化计算领域应用较广,一般用于动态复杂场景的模拟和仿真,但在信息安全领域涉及较少。 The classic DFS maze generation method is widely used in the field of artificial intelligence and optimization computing, and is generally used for simulation and simulation of dynamic and complex scenes, but it is less involved in the field of information security. the
本发明预先对DFS迷宫生成区域进行人为限定,则DFS生成迷宫不光可以应用于规则区域,例如正方形区域和矩形区域等,同时也可应用于人为指定的任意区域,例如3D封闭连通区域,同时可按迷宫节点更新顺序对迷宫限定区域的每个节点赋予一个唯一的编号,由此可产生一个排列,利用该排列构造所有节点之间的映射关系,从而将所有节点置乱。 The present invention artificially limits the DFS maze generation area in advance, and the DFS generation maze can not only be applied to regular areas, such as square areas and rectangular areas, but also can be applied to any artificially designated areas, such as 3D closed connected areas. Each node in the limited area of the maze is assigned a unique number according to the update sequence of the maze nodes, thus an arrangement can be generated, and the mapping relationship between all nodes is constructed by using the arrangement, so that all nodes are scrambled. the
本发明一种基于3D DFS迷宫数字置乱方法(记为方法1)具体步骤如下: A kind of digital scrambling method based on 3D DFS maze of the present invention (recorded as method 1) specific steps are as follows:
第1步:设定迷宫的初始范围为Sinit=()m×n×l和迷宫的有效区域Smaze=(si,j,k)m×n×l,对于i=0,…,m-1,j=0,…,n-1,k=0,…,l-1,若则标记si,j,k=-1,反之则标记si,j,k=0表示该节点未访问,若si,j,k>0表示该节点已访问; Step 1: Set the initial range of the maze as S init = () m×n×l and the effective area of the maze S maze =(si ,j,k ) m×n×l , for i=0,...,m-1,j=0,...,n-1,k=0,...,l-1, if Then mark s i, j, k =-1, otherwise, mark s i, j, k = 0 to indicate that the node has not been visited, and if s i, j, k > 0 to indicate that the node has been visited;
第2步:对于i=0,…,m-1,j=0,…,n-1,k=0,…,l-1,记si,j,k.d,d=0,1,2,3,4,5依次为节点si,j,k的下方、右方、上方、左方、底部和顶部墙,初始化si,j,k.d=-1,d=0,1,2,3,4,5,即将Smaze范围内的所有节点以墙进行分隔,-1表示有墙,0表示无墙; Step 2: For i=0,...,m-1,j=0,...,n-1,k=0,...,l-1, record s i,j,k .d,d=0,1,2,3, 4,5 are the bottom, right, top, left, bottom and top walls of nodes s i,j,k in turn , initialize s i,j,k .d=-1,d=0,1,2,3 ,4,5, that is, all nodes within the range of S maze are separated by walls, -1 means that there is a wall, and 0 means that there is no wall;
第3步:选择特定的随机数发生器y=RG(x),设定随机数发生器初始值RG.init=seed,初始化堆栈Stack=Φ,置节点更新序列Aupdate=Φ; Step 3: Select a specific random number generator y=RG(x), set the initial value of the random number generator RG.init=seed, initialize the stack Stack=Φ, set the node update sequence A update =Φ;
第4步:随机选取x=x0,y=y0,z=z0,标记sx,y,z=1,将(x,y,z)加入节点更新序列Aupdate=Aupdate.add((x,y,z)); Step 4: Random Pick x=x 0 , y=y 0 , z=z 0 , mark s x, y, z =1, add (x, y, z) to the node update sequence A update =A update .add((x, y, z));
第5步:若sx,y,z的周围相邻节点sx+1,y,z,sx,y+1,z,sx-1,y,z,sx,y-1,z,sx,y,z-1,sx,y,z+1存在Smaze范围内未访问的节点,则随机选择1个未访问的节点,记为sx′,y′,z′,将sx,y,z和sx′,y′,z′之间的分割墙标记为0,将sx,y,z入栈push(Stack,sx,y,z),更新x=x′,y=y′,z=z′,标记sx,y,z=1,将(x,y,z)加入节点更新序列Aupdate=Aupdate.add((x,y,z)); Step 5: If the adjacent nodes around s x,y,z are s x+1,y,z , s x,y+1,z ,s x-1,y,z , s x,y-1, z , s x, y, z-1 , s x, y, z+1 have unvisited nodes within the range of S maze , then randomly select 1 unvisited node, recorded as s x′, y′, z′ , mark the dividing wall between s x, y, z and s x', y', z' as 0, put s x, y, z into the stack push(Stack, s x, y, z ), update x =x', y=y', z=z', mark s x, y, z =1, add (x, y, z) to the node update sequence A update = A update .add((x, y, z ));
第6步:若sx,y,z的周围相邻节点sx+1,y,z,sx,y+1,z,sx-1,y,z,sx,y-1,z,sx,y,z-1,sx,y,z+1不存在Smaze范围内未访问的节点,则将栈顶元素出栈作为当前节点,即sx,y,z=pop(Stack) Step 6: If s x, y, z surrounding adjacent nodes s x+1,y,z , s x,y+1,z ,s x-1,y,z ,s x,y-1, z , s x, y, z-1 , s x, y, z+1 do not have unvisited nodes within the scope of S maze , then pop the top element of the stack as the current node, that is, s x, y, z = pop (Stack)
第7步,反复执行第5~6步,直至Stack=Φ,输出Aupdate; Step 7, repeatedly execute steps 5-6 until Stack=Φ, and output A update ;
第8步,利用Aupdate构造Smaze=(si,j,k)m×n×l范围内的所有节点间的映射关系,从而将Smaze=(si,j,k)m×n×l范围内的所有节点置乱。 Step 8: Use A update to construct the mapping relationship between all nodes in the range of S maze =(s i,j,k ) m×n×l , so that S maze =(s i,j,k ) m×n All nodes within the range of ×l are scrambled.
本发明方法1中的Aupdate(0)为序列中的第1个元素,为迷宫的初始节点, Aupdate.length等价为迷宫有效区域内的所有节点数量。对于同样的Smaze,输入不同的选定不同的y=RG(x)和RG.init,将产生不同的Aupdate。 A update (0) in method 1 of the present invention is the first element in the sequence, which is the initial node of the maze, and A update .length is equivalent to the number of all nodes in the effective area of the maze. For the same S maze , input different Different selections of y=RG(x) and RG.init will produce different A update .
结合上述方法和不同映射方法得到用于任意封闭连通区域的置乱方法,如方法2和方法3。 Combining the above methods and different mapping methods to obtain scrambling methods for arbitrary closed connected regions, such as method 2 and method 3. the
方法2基于3D DFS迷宫节点更新序列的置乱方法,包括以下步骤: Method 2 is based on the scrambling method of 3D DFS maze node update sequence, including the following steps:
第1步:设定Sinit=()m×n×l和Smaze=(si,j,k)m×n×l,对于 …,m-1,j=0,…,n-1,k=0,…,l-1,若si,j,k∈Smaze,则初始si,j,k=0,反之则标记si,j,k=-1,将Sinit复制为T=(ti,j,k)m×n×l; Step 1: Set S init = () m×n×l and S maze =(si ,j,k ) m×n×l , for …,m-1,j=0,…,n-1,k=0,…,l-1, if s i,j,k ∈S maze , then the initial s i,j,k =0, otherwise Mark s i, j, k =-1, copy S init as T=(t i, j, k ) m×n×l ;
第2步:随机选取作为迷宫的初始节点,选取随机数发生器y=RG(x),设定初始值RG.init=seed按方法1生成Aupdate; Step 2: Pick at random As the initial node of the maze, select the random number generator y=RG(x), set the initial value RG.init=seed to generate A update by method 1;
第3步:输入整数作为映射偏移量ll,llmodAupdate.length≠0,将其按式(1)规范到(-Aupdate.length,Aupdate.length)范围内的整数,按式(2)计算index; Step 3: Input an integer as the mapping offset ll, llmodA update.length ≠0, standardize it to an integer within the range of (-A update.length , A update.length ) according to formula (1), and press formula (2 ) to calculate the index;
ll=llmodAupdate.length (1) ll = llmodA update.length (1)
第4步:对于按式(3)将tx,y,z=si,j,k(若将tx,y,z=si,j,k修改为si,j,k=tx,y,z,则对应为方法2的逆变换); Step 4: For According to formula (3), t x, y, z = s i, j, k (if t x, y, z = s i, j, k is changed to s i, j, k = t x, y, z , it corresponds to the inverse transformation of method 2);
(i,j,k)=Aupdate(ii),ii=0,…,Aupdate.length-1 (i,j,k)=A update (ii),ii=0,...,A update .length-1
(x,y,z)=Aupdate(kk),kk=0,…,Aupdate.length-1 (3) (x,y,z)=A update (kk),kk=0,...,A update.length -1 (3)
kk=(ii+index)modAupdate.length kk=(ii+index)modA update.length
第5步:输出T=(ti,j,k)m×n×l。 Step 5: Output T=(t i,j,k ) m×n×l .
方法2第3步若llmodAupdate.length=0,则对应为si,j,k=ti,j,k,为自身到自身的映射,不能用于置乱。 In the third step of method 2, if llmodA update.length =0, it corresponds to s i,j,k =t i,j,k , which is a mapping from itself to itself and cannot be used for scrambling.
方法3基于3D DFS迷宫节点更新序列复合的置乱方法,包括以下步骤: Method 3 is a scrambling method based on 3D DFS maze node update sequence compound, including the following steps:
第1步:设定Sinit=()m×n×l和Smaze=(si,j,k)m×n×l,对于 i=0,…,m-1,j=0,…,n-1,k=0,…,l-1,若si,j,k∈Smaze,则初始si,j,k=0,反之则标记si,j,k=-1,将Sinit复制为T=(ti,j,k)m×n×l; Step 1: Set S init = () m×n×l and S maze =(si ,j,k ) m×n×l , for i=0,...,m-1,j=0,...,n-1,k=0,...,l-1, if s i,j,k ∈S maze , then initial s i,j,k = 0, otherwise mark s i, j, k =-1, copy S init as T=(t i, j, k ) m×n×l ;
第2步:随机选取作为迷宫的初始节点,选取随机数发生器y=RG0(x),y=RG1(x),设定随机初始值RG0.init=seed0,RG1.init=seed1按方法1分别生成迷宫节点更新序列 Step 2: Pick at random As the initial node of the maze, select random number generator y=RG 0 (x), y=RG 1 (x), set random initial value RG 0 .init=seed 0 , RG 1 .init=seed 1 according to method 1 Generating maze node update sequences separately
第3步:输入任意整数作为映射偏移量ll,并将其按式(4)规范到 范围内的整数,按式(5)计算index; Step 3: Input any integer as the mapping offset ll, and standardize it according to formula (4) to Integer within the range, calculate index according to formula (5);
第4步:对于按式(6)将tx,y,z=si,j,k(若将tx,y,z=si,j,k修改为si,j,k=tx,y,z,则对应为方法3的逆变换); Step 4: For According to formula (6), t x, y, z = si, j, k (if t x, y, z = si , j, k is changed to si , j, k = t x, y, z , it corresponds to the inverse transformation of method 3);
第5步:输出T=(ti,j,k)m×n×l。 Step 5: Output T=(t i,j,k ) m×n×l .
若方法3第2步中输入相同的迷宫初始节点,选取同1个随机发生器,设定相同的初始值,则方法3退化为方法2。 If the same initial node of the maze is input in the second step of method 3, the same random generator is selected, and the same initial value is set, then method 3 degenerates into method 2. the
传统的置乱研究,针对的对象一般为数字图像。数字图像是自然图像的离散采样化。记图像P的像素矩阵为P=(pi,j)m×n,记24位图像P24的R、G、B通道矩阵分别为P24.R=(ri,j)m×n、P24.G=(gi,j)m×n和P24.B=(bi,j)m×n;记8位和24位图像P8,P24的位面立方体分别为P8.W=(wi,j,k)m×n×8和P24.W=(wi,j,k)m×n×24;对于8位图像P8,其对应的位面可依次记为对于24位图像 P24,其对应的位面可依次记为其中每个位面等价为单色图像的像素矩阵;记24位图像P24对应的RGB立方体为P24.C=(ci,j,k)m×n×3;记24位图像P24对应的RGB通道立方体分别为和
本发明结合方法2、方法3基于3D DFS迷宫更新序列和复合更新序列的数字置乱方法,提出6种图像置乱方法,如方法4~方法9所示。 The present invention combines method 2 and method 3 with digital scrambling methods based on 3D DFS maze update sequence and composite update sequence, and proposes six image scrambling methods, as shown in method 4 to method 9. the
方法4基于3D DFS迷宫更新序列的图像位面立方体置乱方法: Method 4. Image plane cube scrambling method based on 3D DFS maze update sequence:
第1步:读取待置乱图像的位面立方体,对于8位图像P8,将P8.W=(wi,j,k)m×n×8作为Sinit,对于24位图像P24,将P24.W=(wi,j,k)m×n×24作为Sinit,在Sinit上选取特定区域作为Smaze; Step 1: Read the bit plane cube of the image to be scrambled. For an 8-bit image P 8 , set P 8 .W=(w i,j,k ) m×n×8 as S init , for a 24-bit image P 24 , take P 24 .W=(w i,j,k ) m×n×24 as S init , select a specific area on S init as S maze ;
第2步:选取作为迷宫的初始节点,选取随机数发生器y=RG(x),设定初始值RG.init=seed和映射偏移量ll; Step 2: Select As the initial node of the maze, select the random number generator y=RG(x), set the initial value RG.init=seed and the mapping offset ll;
第3步:利用方法2输出置乱后的位面立方体,对于8位图像,将(w′i,j,k)m×n×8写为置乱后的图像,对于24位图像,将(w′i,j,k)m×n×24写为置乱后的图像(若将步骤3方法2修改为方法2逆变换,则对应为方法4的逆变换)。 Step 3: Use method 2 to output the scrambled bit plane cube. For an 8-bit image, write (w′ i,j,k ) m×n×8 as the scrambled image. For a 24-bit image, write (w′ i,j,k ) m×n×24 is written as the scrambled image (if the method 2 in step 3 is changed to the inverse transformation of method 2, it corresponds to the inverse transformation of method 4).
方法5基于3D DFS迷宫更新序列复合的图像位面立方体置乱方法: Method 5 Based on the 3D DFS maze update sequence compound image plane cube scrambling method:
第1步:读取待置乱图像的位面立方体,对于8位图像P8,将P8.W=(wi,j,k)m×n×8作为Sinit,对于24位图像P24,将P24.W=(wi,j,k)m×n×24作为Sinit,在Sinit上选取特定区域作为Smaze; Step 1: Read the bit plane cube of the image to be scrambled. For an 8-bit image P 8 , set P 8 .W=(w i,j,k ) m×n×8 as S init , for a 24-bit image P 24 , take P 24 .W=(w i,j,k ) m×n×24 as S init , select a specific area on S init as S maze ;
第2步:选取作为迷宫的初始节点,选取随机数发生器y=RG0(x),y=RG1(x),设定初始值RG0.init=seed0,RG1.init=seed1和映射偏移量ll; Step 2: Select As the initial node of the maze, select the random number generator y=RG 0 (x), y=RG 1 (x), set the initial value RG 0 .init=seed 0 , RG 1 .init=seed 1 and mapping offset volume ll;
第3步:利用方法3输出置乱后的位面立方体,对于8位图像,将(w′i,j,k)m×n×8写为置乱后的图像,对于24位图像,将(w′i,j,k)m×n×24写为置乱后的图像(若将步 骤3方法3修改为方法3逆变换,则对应为方法5的逆变换)。 Step 3: Use method 3 to output the scrambled bit plane cube. For an 8-bit image, write (w′ i,j,k ) m×n×8 as the scrambled image. For a 24-bit image, write (w′ i,j,k ) m×n×24 is written as the scrambled image (if the method 3 in step 3 is changed to the inverse transformation of method 3, it corresponds to the inverse transformation of method 5).
方法6基于3D DFS迷宫更新序列的图像RGB立方体置乱方法: Method 6 Image RGB cube scrambling method based on 3D DFS maze update sequence:
第1步:读取待置乱24位图像P24的RGB立方体P24.C=(ci,j,k)m×n×3作为Sinit,在Sinit上选取特定区域作为Smaze; Step 1: Read the RGB cube P 24 of the 24-bit image P 24 to be scrambled. C=(c i,j,k ) m×n×3 as S init , select a specific area on S init as S maze ;
第2步:选取作为迷宫的初始节点,选取随机数发生器y=RG(x),设定初始值RG.init=seed和映射偏移量ll; Step 2: Select As the initial node of the maze, select the random number generator y=RG(x), set the initial value RG.init=seed and the mapping offset ll;
第3步:利用方法2输出置乱后的RGB立方体(c′i,j,k)m×n×3,将其写为置乱后的图像(若将步骤3方法2修改为方法2逆变换,则对应为方法6的逆变换)。 Step 3: Use method 2 to output the scrambled RGB cube (c′ i,j,k ) m×n×3 , and write it as a scrambled image (if method 2 in step 3 is changed to method 2 inverse transformation, it corresponds to the inverse transformation of method 6).
方法7基于3D DFS迷宫更新序列复合的图像RGB立方体置乱方法,包括以下步骤: Method 7 is based on the image RGB cube scrambling method based on the 3D DFS maze update sequence, comprising the following steps:
第1步:读取待置乱24位图像P24的RGB立方体P24.C=(ci,j,k)m×n×3作为Sinit,在Sinit上选取特定区域作为Smaze; Step 1: Read the RGB cube P 24 of the 24-bit image P 24 to be scrambled. C=(c i,j,k ) m×n×3 as S init , select a specific area on S init as S maze ;
第2步:选取作为迷宫的初始节点,选取随机数发生器y=RG0(x),y=RG1(x),设定初始值RG0.init=seed0,RG1.init=seed1和映射偏移量ll; Step 2: Select As the initial node of the maze, select the random number generator y=RG 0 (x), y=RG 1 (x), set the initial value RG 0 .init=seed 0 , RG 1 .init=seed 1 and mapping offset volume ll;
第3步:利用方法3输出置乱后的RGB立方体(c′i,j,k)m×n×3,将其写为置乱后的图像(若将步骤3方法3修改为方法3逆变换,则对应为方法7的逆变换)。 Step 3: Use method 3 to output the scrambled RGB cube (c′ i,j,k ) m×n×3 , and write it as a scrambled image (if the method 3 in step 3 is changed to method 3 inverse transformation, it corresponds to the inverse transformation of method 7).
方法8基于3D DFS迷宫更新序列的图像R、G、B通道立方体置乱方法: Method 8. Image R, G, B channel cube scrambling method based on 3D DFS maze update sequence:
第1步:读取待置乱24位图像P24的RGB通道立方体
第2步:选取
第3步:利用方法2输出置乱后的R、G、B通道立方体 和将其写为置乱后的图像(若将步骤3方法2修改为方法2逆变换,则对应为方法8的逆变换)。 Step 3: Use method 2 to output scrambled R, G, B channel cubes and Write it as a scrambled image (if the method 2 in step 3 is modified to the inverse transformation of method 2, it corresponds to the inverse transformation of method 8).
方法9基于3D DFS迷宫更新序列复合的图像R、G、B通道立方体置乱方法: Method 9 Based on the 3D DFS maze update sequence compound image R, G, B channel cube scrambling method:
第1步:读取待置乱24位图像P24的RGB通道立方体
第2步:选取
第3步:利用方法3输出置乱后的R、G、B通道立方体 将其写为置乱后的图像(若将步骤3方法3修改为方法3逆变换,则对应为方法9的逆变换)。 Step 3: Use method 3 to output scrambled R, G, B channel cubes Write it as a scrambled image (if the method 3 in step 3 is modified to the inverse transformation of method 3, it corresponds to the inverse transformation of method 9).
以下结合附图具体实施例对本发明方法进行详细说明: The method of the present invention is described in detail below in conjunction with the specific embodiment of accompanying drawing:
以Delphi XE5为案例实施环境,结合附图对本发明实施方式进行详细说明,但不局限于本实施案例,其中图1是方法1流程图,图2是方法2流程图,图3是方法3流程图。 Taking Delphi XE5 as a case implementation environment, the embodiment of the present invention is described in detail in conjunction with the accompanying drawings, but not limited to this implementation case, wherein Fig. 1 is a flow chart of method 1, Fig. 2 is a flow chart of method 2, and Fig. 3 is a flow chart of method 3 picture. the
参考图1的过程如下: Referring to Figure 1, the process is as follows:
第1步:假定迷宫的初始范围设置为Sinit=()3×3×2,迷宫的有效区域Smaze=(si,j,k)m×n×l设置为Sinit左上角2×2×2网格区域内,则: Step 1: Assume that the initial range of the maze is set to S init = () 3×3×2 , and the effective area of the maze S maze =( si,j,k ) m×n×l is set to the upper left corner of S init 2× In the 2×2 grid area, then:
其中,Smaze(k=0)代表k=0时迷宫设定区域,Smaze(k=1)代表k=1时的迷宫设定区域; Wherein, S maze (k=0) represents the maze setting area when k=0, and S maze (k=1) represents the maze setting area when k=1;
第2步:对于i=0,…,2,j=0,…,2,k=0,1,初始化si,j,k.d=-1,d=0,1,2,3,4,5且由于s0,0,0,s0,1,0,s1,0,0,s1,1,0,s0,0,1,s0,1,1,s1,0,1,s1,1,1∈Smaze,所以(i,j,k)={(0,0,0),(0,1,0),(1,0,0),(1,1,0),(0,0,1),(0,1,1),(1,0,1),(1,1,1)},经过以上处理初始迷宫等价为表1(主对角线方向虚线代表4方向墙,斜对角线方向虚线代表5方向墙): Step 2: For i=0,...,2,j=0,...,2,k=0,1, initialize s i,j,k .d=-1,d=0,1,2,3,4,5 and since s 0,0,0 ,s 0,1,0 ,s 1,0,0 , s 1,1,0 ,s 0,0,1 ,s 0,1,1 ,s 1,0,1 ,s 1,1,1 ∈ S maze , so (i,j,k)={(0,0,0),(0,1,0),(1,0,0),(1,1,0) ,(0,0,1),(0,1,1),(1,0,1),(1,1,1)}, after the above processing, the initial maze is equivalent to Table 1 (main diagonal direction Dashed lines represent 4-direction walls, diagonal dotted lines represent 5-direction walls):
表1 Table 1
第3步:选择y=RG(x),设定初始值RG.init=seed,这里以Delphi XE5线性同余发生器为例,线性同余发生器的随机初始值为randseed,可将其设置为不同的整数,不同的随机数发生器将导致生成不同的伪随机数,从而产生不同的迷宫,对应不同的迷宫排列; Step 3: Select y=RG(x), set the initial value RG.init=seed, here take the Delphi XE5 linear congruential generator as an example, the random initial value of the linear congruential generator is randseed, which can be set For different integers, different random number generators will generate different pseudo-random numbers, thus generating different mazes, corresponding to different maze arrangements;
第4步:选取x=x0,y=y0,z=z0,初始化Stack=Φ和节点更新序列Aupdate=Φ,这里以s0,0,0为迷宫初始节点,则x=0,y=0,z=0,标记s0,0,0=1,即s0,0,0已访问,则当前迷宫等价为表2; Step 4: Select x=x 0 , y=y 0 , z=z 0 , initialize Stack=Φ and node update sequence A update =Φ, where s 0,0,0 is the initial node of the maze, then x=0,y=0, z=0, mark s 0,0,0 =1, that is, s 0,0,0 has been visited, then the current maze is equivalent to Table 2;
表2 Table 2
第5步:若sx,y,z的周围相邻节点sx+1,y,z,sx,y+1,z,sx-1,y,z,sx,y-1,z,sx,y,z-1,sx,y,z+1存在Smaze范围内未访问的节点,则从按随机数发生器随机选择1个未访问的节点sx′,y′,z′,这里s0,0,0的邻近节点为s1,0,0,s0,1,0,s0,0,1且s1,0,0=0,s0,1,0=0和s0,0,1=0,若选择s1,0,0,则x′=1,y′=0,z′=0,将sx,y,z和sx′,y′,z′之间的分割墙标记为0,将sx,y,z入栈push(Stack,sx,y,z),更新x=x′,y=y′,z=z′,标记sx,y,z=1,将(x,y,z)加入节点更新序列Aupdate=Aupdate.add((x,y,z)),这里删除s0,0,0和s1,0,0之间的分隔墙,标记s1,0,0=1,将s0,0,0入栈,则Stack=[s0,0,0,Aupdate=〈(0,0,0)〉,则当前迷宫等价为表3: Step 5: If the adjacent nodes around s x,y,z are s x+1,y,z , s x,y+1,z ,s x-1,y,z , s x,y-1, z , s x, y, z-1 , s x, y, z+1 have unvisited nodes within the range of S maze , then randomly select 1 unvisited node s x′, y′ from the random number generator ,z′ , where the adjacent nodes of s 0,0,0 are s 1,0,0 ,s 0,1,0 ,s 0,0,1 and s 1,0,0 =0,s 0,1, 0 =0 and s 0,0,1 =0, if s 1,0,0 is selected, then x′=1, y′=0, z′=0, s x, y, z and s x′, The dividing wall between y', z' is marked as 0, push s x, y, z into the stack (Stack, s x, y, z ), update x=x', y=y', z=z' , mark s x, y, z = 1, add (x, y, z) to the node update sequence A update = A update .add((x, y, z)), here delete s 0, 0, 0 and s The partition wall between 1,0,0 , mark s 1,0,0 =1, put s 0,0,0 into the stack, then Stack=[s 0,0,0 , A update =<(0,0 ,0)>, the current maze is equivalent to Table 3:
表3 table 3
第6步,若sx,y,z的周围相邻节点sx+1,y,z,sx,y+1,z,sx-1,y,z,sx,y-1,z不存在Smaze范围内未访问的节点,则将栈顶元素出栈作为当前节点,假设Stack=[s0,0,0,s1,0,0,此时s1,0,0为栈顶元素,则将s1,0,0出栈作为sx,y,z,此时Stack=[s0,0,0; Step 6, if the adjacent nodes around s x,y,z s x+1,y,z , s x,y+1,z ,s x-1,y,z , s x,y-1, If there is no unvisited node within the scope of S maze , the top element of the stack is taken out of the stack as the current node, assuming Stack=[s 0,0,0 ,s 1,0,0 , at this time s 1,0,0 is The top element of the stack, then s 1,0,0 is popped out of the stack as s x,y,z , at this time Stack=[s 0,0,0 ;
第7步,反复执行第5~6步,直至Stack=Φ,输出Aupdate,由此可将Smaze=(si,j,k)m×n×l所有节点按更新顺序产生排列。 Step 7: Repeat Steps 5-6 until Stack=Φ, and output A update , so that all nodes S maze =(si ,j,k ) m×n×l can be arranged in update order.
由于传统的DFS迷宫生成方法往往不限制迷宫生成区域,产生的迷宫往往是规则区域迷宫如图5所示;图6是对传统的DFS迷宫生成方法以图4的人像前景为设定区域产生的3D连通封闭区域迷宫,第3维l取2(由于图像本身是2D图像,因此在本发明中没有用复杂的3D验证实例,仅简单将第3维l设置为2,其中灰色方块表明顶部或底部只有一面墙,黑色方块表明底部和顶部都有墙,白色表明无墙,黑色线段表明有墙);图7则是以图4五边形设定区域(l取8)按方法1产生的排列对应的前30个元素。 Since the traditional DFS maze generation method often does not limit the maze generation area, the generated maze is often a regular area maze, as shown in Figure 5; Figure 6 is the generation of the traditional DFS maze generation method with the portrait foreground in Figure 4 as the set area. 3D connected closed area maze, the third dimension l takes 2 (because the image itself is a 2D image, so in the present invention there is no complicated 3D verification example, only the third dimension l is simply set to 2, wherein the gray square indicates the top or There is only one wall at the bottom, the black square indicates that there are walls at the bottom and the top, the white indicates that there is no wall, and the black line indicates that there is a wall); Fig. 7 is generated according to method 1 by setting the area with the pentagon in Fig. 4 (1 is taken as 8) Arrange the corresponding first 30 elements. the
参考图2的过程如下: Referring to Figure 2, the process is as follows:
第1步:假设将Sinit设定为图8a对应的5×2×3矩阵(第0行为x坐标,第1行为y坐标,第2行为z坐标,第3行为矩阵元素值),将Smaze设置为Sinit整个区域,则Smaze=(0)5×2×3,将Sinit复制为T=(ti,j,k)5×2×3,则T=(ti,j,k)5×2×3对应为图8a矩阵; Step 1: Assuming that S init is set as the 5×2×3 matrix corresponding to Figure 8a (the 0th row is the x coordinate, the 1st row is the y coordinate, the 2nd row is the z coordinate, and the 3rd row is the matrix element value), set S maze is set to the entire area of S init , then S maze =(0) 5×2×3 , copy S init as T=(t i,j,k ) 5×2×3 , then T=(t i,j , k ) 5×2×3 corresponds to the matrix in Figure 8a;
第2步:假定按方法1生成的Aupdate如图8b所示,图8b第0行是x坐标,第1行是y坐标,第2行是z坐标,第3行是Aupdate中的节点序号; Step 2: Assume that the A update generated by method 1 is as shown in Figure 8b, the 0th line in Figure 8b is the x coordinate, the 1st line is the y coordinate, the 2nd line is the z coordinate, and the 3rd line is the node in A update serial number;
第3步:假定输入ll=3,则按式(1)和式(2)得ll=3mod 30=3,由于ll>0,故index=3; The 3rd step: suppose input ll=3, then get ll=3mod 30=3 by formula (1) and formula (2), because ll>0, so index=3;
第4步:由Aupdate和index=3,则式(3)构造的映射规则可描述为图8c,前3行对应为(x,y,z),后3行对应为(i,j,k),与之等价的逆映射可描述为图8d,前3行对应为(i,j,k),后3行对应为(x,y,z),则按式(3)可将图8a置乱为图8e,则按式(3)对应的逆映射可将图8e置乱为图8f,图8a和图8f等价,即置乱后的矩阵可完整恢复; Step 4: By A update and index=3, the mapping rule constructed by formula (3) can be described as Figure 8c, the first 3 lines correspond to (x, y, z), and the last 3 lines correspond to (i, j, k), the equivalent inverse mapping can be described as Figure 8d, the first 3 lines correspond to (i, j, k), and the last 3 lines correspond to (x, y, z), then according to formula (3) can be Fig. 8a is scrambled into Fig. 8e, then Fig. 8e can be scrambled into Fig. 8f according to the inverse mapping corresponding to formula (3), and Fig. 8a and Fig. 8f are equivalent, that is, the matrix after scrambling can be completely recovered;
第5步:将映射后的结果T=(ti,j,k)5×2×3输出。 Step 5: Output the mapped result T=(t i,j,k ) 5×2×3 .
参考图3的过程如下: Referring to Figure 3, the process is as follows:
第1步:假设将Sinit设定为图9a对应的5×2×3矩阵,将Smaze设置为Sinit整个区域,则Smaze=(0)5×2×3,将Sinit复制为T=(ti,j,k)5×2×3,则T=(ti,j,k)5×2×3对应为图9a矩阵; Step 1: Assuming that S init is set to the corresponding 5×2×3 matrix in Figure 9a, and S maze is set to the entire area of S init , then S maze =(0) 5×2×3 , and S init is copied as T=(t i,j,k ) 5×2×3 , then T=(t i,j,k ) 5×2×3 corresponds to the matrix in Figure 9a;
第2步:假定按方法1生成的如图9b和9c所示,图9b和9c第0行是x坐标,第1行是y坐标,第2行是z坐标,第3行分别是中的节点序号; Step 2: Assume the generated by method 1 As shown in Figures 9b and 9c, the 0th row of Figure 9b and 9c is the x coordinate, the 1st row is the y coordinate, the 2nd row is the z coordinate, and the 3rd row is respectively The node number in ;
第3步:假定输入ll=3,则按式(4)和式(5)得ll=3mod 30=3,由于ll>0,故 index=3; The 3rd step: suppose input ll=3, then get ll=3mod 30=3 by formula (4) and formula (5), because ll>0, so index=3;
第4步:由和index=3,则式(6)构造的映射规则可描述为图9d,前3行对应为(x,y,z),后3行对应为(i,j,k),与之等价的逆映射可描述为图9e,前3行对应为(i,j,k),后3行对应为(x,y,z),则按式(6)可将图9a置乱为图9f,则按式(6)对应的逆映射可将图9f置乱为图9g,图9a和图9g等价,即置乱后的矩阵可完整恢复; Step 4: by and index=3, the mapping rule constructed by formula (6) can be described as Figure 9d, the first 3 lines correspond to (x, y, z), and the last 3 lines correspond to (i, j, k), which is equivalent to The inverse mapping of can be described as Figure 9e, the first 3 lines correspond to (i, j, k), and the last 3 lines correspond to (x, y, z), then according to formula (6), Figure 9a can be scrambled into Figure 9f , then according to the inverse mapping corresponding to formula (6), Figure 9f can be scrambled into Figure 9g, and Figure 9a and Figure 9g are equivalent, that is, the matrix after the scrambling can be completely restored;
第5步:将映射后的结果T=(ti,j,k)5×2×3输出。 Step 5: Output the mapped result T=(t i,j,k ) 5×2×3 .
方法4是将待置乱图像的位面立方体作为Sinit,在Sinit上选取特定区域作为Smaze,在此基础上应用方法2置乱的结果,图10a~10g是以图4b~4h为测试例对方法4验证的结果,图10h对应的是恢复结果。 Method 4 is to use the plane cube of the image to be scrambled as S init , select a specific area on S init as S maze , and apply method 2 on this basis to scramble the results. Figures 10a-10g are based on Figures 4b-4h The test case verifies the result of method 4, and Figure 10h corresponds to the recovery result.
方法5是将待置乱图像的位面立方体作为Sinit,在Sinit上选取特定区域作为Smaze,在此基础上应用方法3置乱的结果,图11a~11g是以图4b~4h为测试例对方法5验证的结果,图11h对应的是恢复结果。 Method 5 is to use the plane cube of the image to be scrambled as S init , select a specific area on S init as S maze , and apply method 3 on this basis to scramble the results. Figures 11a-11g are based on Figures 4b-4h The test case verifies the result of method 5, and Figure 11h corresponds to the recovery result.
方法6是将待置乱24位图像P24的RGB立方体P24.C=(ci,j,k)m×n×3作为Sinit,在Sinit上选取特定区域作为Smaze,在此基础上应用方法2置乱的结果,图12a~12g是以图4b~4h为测试例对方法6验证的结果,图12h对应的是恢复结果。 Method 6 is to use the RGB cube P 24 .C=( ci,j,k ) m×n×3 of the 24-bit image P 24 to be scrambled as S init , select a specific area on S init as S maze , where Based on the scrambling results of method 2, Figures 12a to 12g are the results of verifying method 6 using Figures 4b to 4h as test cases, and Figure 12h corresponds to the recovery results.
方法7是将待置乱24位图像P24的RGB立方体P24.C=(ci,j,k)m×n×3作为Sinit,在Sinit上选取特定区域作为Smaze,在此基础上应用方法3置乱的结果,图13a~13g是以图4b~4h为测试例对方法7验证的结果,图13h对应的是恢复结果。 Method 7 is to use the RGB cube P 24 .C=( ci,j,k ) m×n×3 of the 24-bit image P 24 to be scrambled as S init , select a specific area on S init as S maze , where Based on the results of method 3 scrambling, Figures 13a to 13g are the results of verifying method 7 with Figures 4b to 4h as test cases, and Figure 13h corresponds to the recovery results.
方法8是将待置乱24位图像P24的RGB通道立方体 和分别作为在选取特定区域作为在此基础上应用方法2置乱的结果,图14a~14g是以图4b~4h为测试例对方法8验证的结果,图14h对应的是恢复结果。 Method 8 is to scramble the RGB channel cube of the 24-bit image P 24 and respectively as exist Select a specific area as On this basis, the scrambling results of method 2 are applied. Figures 14a-14g are the results of verifying method 8 using Figures 4b-4h as test cases, and Figure 14h corresponds to the recovery results.
方法9是将待置乱24位图像P24的RGB通道立方体
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410749012.4A CN104463769B (en) | 2014-12-08 | 2014-12-08 | A kind of digital disorder method based on the labyrinths 3D DFS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410749012.4A CN104463769B (en) | 2014-12-08 | 2014-12-08 | A kind of digital disorder method based on the labyrinths 3D DFS |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104463769A true CN104463769A (en) | 2015-03-25 |
CN104463769B CN104463769B (en) | 2018-10-26 |
Family
ID=52909757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410749012.4A Active CN104463769B (en) | 2014-12-08 | 2014-12-08 | A kind of digital disorder method based on the labyrinths 3D DFS |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104463769B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103606126A (en) * | 2013-11-28 | 2014-02-26 | 辽宁大学 | Image duel scrambling method based on three-dimensional Logistic mapping |
-
2014
- 2014-12-08 CN CN201410749012.4A patent/CN104463769B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103606126A (en) * | 2013-11-28 | 2014-02-26 | 辽宁大学 | Image duel scrambling method based on three-dimensional Logistic mapping |
Non-Patent Citations (7)
Title |
---|
JIE XU等: "Image-Guided Maze Construction", 《ACM TRANSACTIONS ON GRAPHICS (TOG) - PROCEEDINGS OF ACM SIGGRAPH 2007》 * |
SHAO LIPING等: "scrambling matrix generation algorithm for high dimensional image scrambling transformation", 《2008 3RD IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS》 * |
WIKIMEDIA: "《Prim Maze 3D》", 《HTTPS://COMMONS.WIKIMEDIA.ORG/WIKI/FILE:PRIM_MAZE_3D.SVG》 * |
刘晓锋: "M-DFS求解迷宫问题的DFS算法", 《通化师范学院学报》 * |
杨璐等: "基于迷宫置换和Logistic混沌映射的图像加密算法", 《计算机应用》 * |
王泽辉: "三维随机矩阵置乱变换的周期及其应用", 《中山大学学报(自然科学版)》 * |
白蓝紫: "三大迷宫生成算法", 《HTTP://BBS.9RIA.COM/THREAD-156150-1-1.HTML》 * |
Also Published As
Publication number | Publication date |
---|---|
CN104463769B (en) | 2018-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tang et al. | Image encryption with double spiral scans and chaotic maps | |
Li et al. | Chaotic image encryption using pseudo-random masks and pixel mapping | |
CN106301760B (en) | A kind of 3D point cloud model encryption method based on chaotic maps | |
CN105404817A (en) | (k,n) threshold based user-friendly visual secret sharing method | |
Qadir et al. | Digital image scrambling based on two dimensional cellular automata | |
Alhassan et al. | Enhancement of the Security of a Digital Image using the Moduli Set | |
CN110572252A (en) | An image encryption and decryption method based on fractional translation chaotic system | |
CN113099069B (en) | Multi-image encryption method based on three-dimensional spiral model | |
Gao et al. | An authenticatable (2, 3) secret sharing scheme using meaningful share images based on hybrid fractal matrix | |
CN114978466A (en) | Fractal-like model and Hilbert synchronous scrambling diffusion encryption method | |
Li et al. | High security and robust optical image encryption approach based on computer-generated integral imaging pickup and iterative back-projection techniques | |
Song et al. | A secure image encryption algorithm based on multiple one-dimensional chaotic systems | |
CN105118017A (en) | Gray image encryption method based on two-dimension Henon mapping | |
CN104376527B (en) | A kind of digital disorder method based on the random labyrinths Prim 3D | |
CN104463771B (en) | A kind of digital disorder method based on the labyrinths 3D Wilson | |
CN104361550B (en) | A digital scrambling method based on 2D BacterialGrowth maze | |
CN105005961B (en) | Suitable for the information disguising and restoring method of TIN digital elevation model | |
CN104463769B (en) | A kind of digital disorder method based on the labyrinths 3D DFS | |
CN104361549A (en) | 3D BackterialGrowth labyrinth based digital scrambling method | |
CN104394298A (en) | Digital scrambling method based on 3D HuntKill labyrinth | |
CN104361552B (en) | Digital scrambling method based on 2D DFS labyrinth | |
CN104376528B (en) | A kind of digital disorder method based on the labyrinths 2D Growing Tree | |
CN104408683B (en) | A kind of digital disorder method based on the labyrinth 3D Growing Tree | |
Wang et al. | A novel (n, n) secret image sharing scheme based on Sudoku | |
CN104469079B (en) | A kind of digital disorder method based on the random labyrinth Prim 2D |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240428 Address after: 545000, Unit 5-4, Building 11, Zone 2, Jinglan Duxiu Garden, No.15 Dengshan Road, Liuzhou City, Guangxi Zhuang Autonomous Region Patentee after: Liuzhou Junyao Technology Co.,Ltd. Country or region after: China Address before: 710062 Shaanxi Normal University, Chang'an District, Xi'an City, Shaanxi Province Patentee before: Shaanxi Normal University Country or region before: China |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 712000, Building 4, Yuexin Park, Chongwen Town, Jinghe New City, Xixian New District, Xianyang City, Shaanxi Province 2025 Patentee after: Shaanxi Junyao Technology Co.,Ltd. Country or region after: China Address before: 545000, Unit 5-4, Building 11, Zone 2, Jinglan Duxiu Garden, No.15 Dengshan Road, Liuzhou City, Guangxi Zhuang Autonomous Region Patentee before: Liuzhou Junyao Technology Co.,Ltd. Country or region before: China |