CN104450785A - Genome editing method using attachment carrier for encoding targeted endonuclease and kit - Google Patents
Genome editing method using attachment carrier for encoding targeted endonuclease and kit Download PDFInfo
- Publication number
- CN104450785A CN104450785A CN201410733267.1A CN201410733267A CN104450785A CN 104450785 A CN104450785 A CN 104450785A CN 201410733267 A CN201410733267 A CN 201410733267A CN 104450785 A CN104450785 A CN 104450785A
- Authority
- CN
- China
- Prior art keywords
- ebna1
- cell
- plasmid
- editing
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明属于生物基因工程技术领域,具体为一种使用编码靶向核酸内切酶附着体载体的基因组编辑方法及试剂盒。本发明利用附着体载体表达靶向核酸内切酶,附着体载体可以实现非整合的稳定的基因表达,同时表达筛选基因;通过药物筛选可以除去没有得到质粒的细胞;当编辑完成后撤掉药物,细胞会逐渐丢掉附着体载体,这样就得到了不含外源基因的编辑细胞系。本方法延长了编辑的时间,提高了基因编辑效率。本发明还提供用于编辑细胞中特定染色体序列的试剂盒。本发明适用于各种真核生物细胞的基因组编辑。
The invention belongs to the technical field of biological genetic engineering, and specifically relates to a genome editing method and a kit using an attachment carrier encoding a targeting endonuclease. The present invention uses the attachment carrier to express the targeted endonuclease, the attachment carrier can realize non-integrated stable gene expression, and express the screening gene at the same time; the cells without plasmid can be removed through drug screening; the drug can be removed after the editing is completed , the cells will gradually lose the episomal vector, so that the edited cell line without the foreign gene is obtained. The method prolongs the editing time and improves the gene editing efficiency. The invention also provides kits for editing specific chromosomal sequences in cells. The invention is applicable to genome editing of various eukaryotic cells.
Description
发明领域 field of invention
本发明属于遗传工程技术领域,具体涉及一种基因组编辑方法及试剂盒。 The invention belongs to the technical field of genetic engineering, and in particular relates to a genome editing method and a kit.
背景技术 Background technique
基因组编辑技术(genome editing)是一种可以在基因组水平上对DNA序列进行改造的遗传操作技术。这种技术的原理是构建一个人工内切酶,在预定的基因组位置切断DNA,切断的DNA在被细胞内的DNA修复系统修复过程中会产生突变,从而达到定点改造基因组的目的。DNA修复系统主要通过两种途径修复DNA双链断裂,即非同源末端连接和同源重组。通过这两种修复途径,基因组编辑技术可以实现三种基因组改造的目的,即基因敲除,特异突变的引入和定点转基因。1)基因敲除:如果想使某个基因的功能丧失,可以在这个基因上产生DNA双链断裂,非同源末端连接修复的过程中往往会产生DNA的插入或删除,造成移码突变,从而实现基因敲除;2)特异突变引入:如果想把某个特异的突变引入到基因组上,需要通过同源重组来实现,这时候要提供一个含有特异突变同源模版。正常情况下同源重组效率非常低,而在这个位点产生双链断裂会极大的提高重组效率,从而实现特异突变的引入;3)定点转基因:与特异突变引入的原理一样,在同源模版中间加入一个转基因,这个转基因在双链断裂修复过程中会被拷贝到基因组中,从而实现定点转基因。 Genome editing is a genetic manipulation technology that can modify DNA sequences at the genome level. The principle of this technology is to construct an artificial endonuclease to cut DNA at a predetermined genomic position, and the cut DNA will undergo mutations during repair by the DNA repair system in the cell, thereby achieving the purpose of targeted genome modification. The DNA repair system mainly repairs DNA double-strand breaks through two ways, namely, non-homologous end joining and homologous recombination. Through these two repair pathways, genome editing technology can achieve three genome modification goals, namely, gene knockout, introduction of specific mutations, and site-directed transgenesis. 1) Gene knockout: If you want to lose the function of a certain gene, you can generate a DNA double-strand break on the gene. During the repair of non-homologous end junctions, DNA insertions or deletions often occur, resulting in frameshift mutations. In order to achieve gene knockout; 2) Introduction of specific mutations: If you want to introduce a specific mutation into the genome, you need to achieve it through homologous recombination. At this time, you need to provide a homologous template containing specific mutations. Under normal circumstances, the efficiency of homologous recombination is very low, and the generation of double-strand breaks at this site will greatly improve the recombination efficiency, thereby realizing the introduction of specific mutations; 3) Site-directed transgene: the same principle as the introduction of specific mutations, A transgene is added in the middle of the template, and this transgene will be copied into the genome during the double-strand break repair process, thereby realizing site-specific transgenesis.
目前比较流行的基因组编辑技术包括锌指酶技术(zinc finger nuclease, ZFN) 、转录激活物样效应物核酸酶技术(Transcription activator–like effector nuclease,TALEN)和规律成簇间隔短回文重复技术(Clustered regularly interspaced short palindromic repeats,CRISPR/Cas9)。 Currently popular genome editing technologies include zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and regularly clustered interspaced short palindromic repeat ( Clustered regularly interspaced short palindromic repeats, CRISPR/Cas9).
锌指酶(ZFN)由一个 DNA 识别域和一个非特异性核酸内切酶构成。DNA 识别域是由3-4个 Cys2-His2锌指蛋白串联组成,每个锌指蛋白识别并结合一个特异的三联体碱基。多个锌指蛋白串联起来形成一个锌指蛋白组识别一段特异的碱基序列(9-12 bp),具有很强的特异性。与锌指蛋白组相连的非特异性核酸内切酶来自FokI的C端的DNA剪切域,它在二聚体状态时才有酶切活性。每个FokI单体与一个锌指蛋白组相连构成一个ZFN,识别特定的位点,当两个识别位点相距恰当的距离时(6-8 bp),两个单体ZFN相互作用产生酶切功能。从而达到 DNA 定点剪切的目的。 Zinc finger enzymes (ZFNs) consist of a DNA recognition domain and a nonspecific endonuclease. The DNA recognition domain is composed of 3-4 Cys2-His2 zinc finger proteins in series, and each zinc finger protein recognizes and binds a specific triplet base. Multiple zinc finger proteins are connected in series to form a zinc finger protein group to recognize a specific base sequence (9-12 bp), which has strong specificity. The non-specific endonuclease linked to the zinc finger protein group comes from the C-terminal DNA cleavage domain of FokI, which has enzymatic cleavage activity only in the dimer state. Each FokI monomer is connected with a zinc finger protein group to form a ZFN, which recognizes a specific site. When the two recognition sites are at an appropriate distance (6-8 bp), the two monomer ZFNs interact to produce restriction enzymes Function. In order to achieve the purpose of site-specific shearing of DNA.
TALEN技术是在ZFN技术之后发展起来的一种分子生物学工具。Boch和Moscou等人发现来自植物细菌Xanthomonassp.的TALE蛋白核酸结合域的氨基酸序列与其靶位点的核酸序列有固定的对应关系。TALE的核酸识别单位为重复34个恒定氨基酸序列,其中的12、13位点双连氨基酸与A、G、C、T有恒定的对应关系,即NG识别T,HD识别C,NI识别A,NN识别G。把这4种TAL模块组装起来就可以特异结合任意的DNA序列。Cermak等用TALE模块代替ZFN中的DNA识别域,组装成新的基因组编辑工具即TALEN (Tal effector nuclease),实现了靶向基因组编辑的目的。 TALEN technology is a molecular biology tool developed after ZFN technology. Boch and Moscou et al. found that the amino acid sequence of the nucleic acid binding domain of the TALE protein from the plant bacterium Xanthomonassp. has a fixed correspondence with the nucleic acid sequence of its target site. The nucleic acid recognition unit of TALE is to repeat 34 constant amino acid sequences, and the double-linked amino acids at positions 12 and 13 have a constant corresponding relationship with A, G, C, and T, that is, NG recognizes T, HD recognizes C, NI recognizes A, NN recognizes G. These four TAL modules can be assembled to specifically bind any DNA sequence. Cermak et al. used TALE modules to replace the DNA recognition domains in ZFNs, and assembled them into a new genome editing tool, TALEN (Tal effector nuclease), to achieve the purpose of targeted genome editing.
CRISPR/Cas9是最新出现的一种由RNA指导的Cas9核酸酶对靶向基因进行编辑的技术。CRISPR/Cas9是细菌和古细菌为应对病毒和质粒不断攻击而演化来的获得性免疫防御机制。在这一系统中,crRNA(CRISPR-derived RNA)通过碱基配对与tracrRNA(trans-activating RNA)结合形成双链RNA,此tracrRNA/crRNA二元复合体指导Cas9蛋白在crRNA引导序列靶定位点切断双链DNA。在基因组编辑过程中,tracrRNA和crRNA可以融合成为1条RNA(sgRNA,本发明中称之为向导RNA)表达同样可以起到靶向剪切的作用。CRISPR/Cas9的优点是操作简单,对基因组的效率高。需要对某一个靶位点编辑的时候,只需要表达相应的向导RNA即可,不需要对Cas9核酸酶进行改造。但是最近的研究表明CRISPR/Cas9系统存在一定的脱靶剪切现象,阻碍了这种技术的广泛应用。为了克服脱靶剪切现象,麻省理工学院脑与认知科学助理教授、McGovern 脑研究所和Broad研究所核心成员Feng Zhang等人利用一种突变的只在DNA上面产生单切口的内切酶Cas9n(Cas9-D10A)和两个识别位点较近的向导RNA同时在细胞中表达,Cas9n分别切开DNA的两个链产生DNA断裂,这就提高了特异性。 CRISPR/Cas9 is a newly emerged technology for targeted gene editing by RNA-guided Cas9 nuclease. CRISPR/Cas9 is an adaptive immune defense mechanism evolved by bacteria and archaea in response to constant attacks by viruses and plasmids. In this system, crRNA (CRISPR-derived RNA) combines with tracrRNA (trans-activating RNA) through base pairing to form a double-stranded RNA, and the tracrRNA/crRNA binary complex guides the Cas9 protein to cut at the target site of the crRNA guide sequence double-stranded DNA. During the genome editing process, tracrRNA and crRNA can be fused into one RNA (sgRNA, referred to as guide RNA in the present invention), and the expression can also play the role of targeted cutting. The advantage of CRISPR/Cas9 is that it is easy to operate and has high efficiency on the genome. When it is necessary to edit a certain target site, it only needs to express the corresponding guide RNA, and there is no need to modify the Cas9 nuclease. However, recent studies have shown that there is a certain off-target shearing phenomenon in the CRISPR/Cas9 system, which hinders the widespread application of this technology. In order to overcome the phenomenon of off-target shearing, Feng Zhang, an assistant professor of brain and cognitive science at the Massachusetts Institute of Technology, a core member of the McGovern Brain Institute and the Broad Institute, and others used a mutant endonuclease Cas9n that only produces a single nick on DNA. (Cas9-D10A) and two guide RNAs with closer recognition sites are expressed in cells at the same time, and Cas9n cuts the two strands of DNA respectively to generate DNA breaks, which improves the specificity.
附着体载体是一类游离于染色体外并且可以在真核细胞内复制的DNA质粒。目前比较流行的附着体载体包括Epstein-Barr virus (EBV),BK virus (BKV), bovine papilloma virus 1 (BPV-1),simian virus 40 (SV40)衍生的质粒载体或者是是一类S/MAR(Scaffold/Matrix Attachment Region,S/MAR)介导的非病毒附着型载体。 Episomal vectors are a class of DNA plasmids that are episomal and can replicate in eukaryotic cells. Currently popular episomal vectors include Epstein-Barr virus (EBV), BK virus (BKV), bovine papilloma virus 1 (BPV-1), simian virus 40 (SV40) derived plasmid vectors or a type of S/MAR (Scaffold/Matrix Attachment Region, S/MAR)-mediated non-viral attachment carrier.
EBNA1/oriP是EBV复制和保持病毒基因组游离性有关的重要基因元件。EBNA1为EBV核抗原L的基因,编码一个磷酸化的和蛋白,蛋白的C端为一个二聚化的DNA结合区,EBNA1同源二聚化与DNA上的特意序列结合。OriP含有双对称性(dyad symmetry DS)和成簇的重复序列(the family of repeats, FR)。这些序列包含于EBNA1结合位点。当EBNA1与这些序列结合后,使病毒基因组以稳定的游离体形式存在,并使病毒基因组依赖宿主复制的方式复制。鉴于EBNA1/oriP的特点,Yale在1985年首次将这两个基因元件引入质粒。具有EBNA1/oriP质粒转染入靶细胞后不整合,可以长期稳定存在。 EBNA1/oriP is an important gene element related to the replication of EBV and maintaining the episomality of the viral genome. EBNA1 is the gene of EBV nuclear antigen L, which encodes a phosphorylated and protein. The C-terminus of the protein is a dimerized DNA-binding region, and EBNA1 homologously dimerizes and binds to a specific sequence on DNA. OriP contains double symmetry (dyad symmetry DS) and clustered repeat sequence (the family of repeats, FR). These sequences are included in the EBNA1 binding site. When EBNA1 is combined with these sequences, the viral genome exists in a stable episomal form, and the viral genome replicates in a host-dependent manner. In view of the characteristics of EBNA1/oriP, Yale introduced these two genetic elements into plasmids for the first time in 1985. EBNA1/oriP plasmids are not integrated after transfection into target cells, and can exist stably for a long time.
BKV属于papovaviridae家族,polyomavirinae 亚家族,1971年首次在一位肾脏移植患者的尿液中分离。BKV可以有效的感染哺乳动物细胞,并且保持病毒DNA游离于宿主染色体之外。根据这个特性,将BKV大T抗原和复制起始序列可以制成附着体质粒,用于稳定表达外源基因。如本文所用,术语“外源”指正常情况下不在这个染色体位置存在的任何序列。例如,外源序列可以是来自另一种生物体的“基因”、来自相同生物体的“基因”的另外的拷贝、人工序列、编码报道分子的序列等。papillomaviruses在自然界广泛分布,在高等脊椎动物中常见。研究最深入的是BPV-1,它的基因组是一个小的环状双链DNA,在细胞中可以维持20-300个拷贝数。BPV-1编码的E1和E2蛋白,还有复制起始序列是维持病毒稳定存在必须的。根据这个原理可以制成附着体载体用于稳定表达外源基因。 BKV belongs to the papovaviridae family, polyomavirinae subfamily, and was first isolated in the urine of a kidney transplant patient in 1971. BKV can efficiently infect mammalian cells and keep viral DNA episomal outside the host chromosome. According to this characteristic, the BKV large T antigen and the replication initiation sequence can be made into an attachment plasmid for stably expressing foreign genes. As used herein, the term "foreign" refers to any sequence not normally found at this chromosomal location. For example, an exogenous sequence can be a "gene" from another organism, an additional copy of a "gene" from the same organism, an artificial sequence, a sequence encoding a reporter, and the like. Papillomaviruses are widely distributed in nature and are common in higher vertebrates. The most well-studied is BPV-1, whose genome is a small circular double-stranded DNA that can maintain 20-300 copies in cells. The E1 and E2 proteins encoded by BPV-1, as well as the replication initiation sequence, are necessary to maintain the stable existence of the virus. According to this principle, episomal vectors can be made to stably express foreign genes.
第一个基于病毒制成的附着体载体是polyomavirus simian virus 40 (SV40)衍生来的载体。这个载体含有DNA复制所必须的SV40携带的复制起始序列和它编码的大T抗原。SV40衍生的附着体载体复制不受宿主细胞控制,拷贝数可以达到上千,会导致细胞死亡。 The first virus-based episomal vector was a vector derived from polyomavirus simian virus 40 (SV40). This vector contains the replication initiation sequence carried by SV40 necessary for DNA replication and the large T antigen it encodes. The replication of SV40-derived episomal vectors is not controlled by the host cell, and the copy number can reach thousands, which will lead to cell death.
最近10 年来,研发了一种S/MAR(Scaffold/Matrix Attachment Region,S/MAR)介导的非病毒附着型载体。核基质附着区(matrix attachment region,MAR)又称为核骨架附着区(scaffold attachment region,SAR)序列是限制酶消化后仍附着在核基质上的DNA 序列,长度约为200-2 000 bp ;MAR 富含AT碱基对(> 70%)。MAR 元件在游离表达载体中具有三个功能性的特点,能够介导载体附着于染色体外存在,克服转基因表达的沉默和使载体在有丝分裂中保持稳定。 In the past 10 years, a S/MAR (Scaffold/Matrix Attachment Region, S/MAR)-mediated non-viral attachment carrier has been developed. The matrix attachment region (MAR), also known as the scaffold attachment region (SAR) sequence, is a DNA sequence that remains attached to the nuclear matrix after digestion with restriction enzymes, with a length of about 200-2 000 bp; MAR is enriched in AT base pairs (>70%). MAR elements have three functional features in episomal expression vectors, which can mediate the extrachromosomal attachment of the vector, overcome the silencing of transgene expression and stabilize the vector in mitosis.
基因组编辑技术极大的扩展了改造基因的能力,但是编辑效率低的问题阻碍了该技术的应用。在易于编辑的HEK293细胞中编辑效率可以达到30%左右,但是在一些难于转染的细胞中效率低于10%,这为后面挑选两个基因拷贝删除带来了麻烦。目前基因编辑过程中主要通过编辑基因的瞬时表达完成,表达质粒转染两天后检测编辑效率。随着时间的延长细胞不断增殖而质粒不增殖,质粒会被稀释,因而编辑效率会被降低。另外,一部分细胞没有得到质粒,这也会影响整体的编辑效率。 Genome editing technology has greatly expanded the ability to modify genes, but the problem of low editing efficiency hinders the application of this technology. The editing efficiency can reach about 30% in easy-to-edit HEK293 cells, but the efficiency is lower than 10% in some difficult-to-transfect cells, which brings trouble for the subsequent selection of two gene copies for deletion. At present, the gene editing process is mainly completed by the transient expression of the edited gene, and the editing efficiency is detected two days after the expression plasmid is transfected. As the cells proliferate without the plasmid proliferating over time, the plasmid is diluted and editing efficiency is reduced. In addition, some cells do not get the plasmid, which will also affect the overall editing efficiency.
发明内容 Contents of the invention
本发明的目的在于提供一种高效率的用于修饰细胞的基因组编辑方法及试剂盒,以实现体外培养细胞的高效率编辑。 The purpose of the present invention is to provide a high-efficiency genome editing method and kit for modifying cells, so as to realize high-efficiency editing of cells cultured in vitro.
本发明提供的用于修饰细胞的基因组编辑方法,使用了一种编码靶向核酸内切酶附着体载体,利用附着体载体表达靶向核酸内切酶;附着体载体可以实现非整合的稳定的基因表达,同时表达筛选基因,通过药物筛选可以除去没有得到质粒的细胞;当编辑完成后撤掉药物,细胞会逐渐丢掉附着体载体,这样就得到了不含外源基因的编辑细胞系。具体步骤为: The genome editing method for modifying cells provided by the present invention uses an attachment carrier encoding a targeted endonuclease, and uses the attachment carrier to express a targeted endonuclease; the attachment carrier can realize non-integrated and stable Gene expression and screening genes are expressed at the same time. Cells that have not obtained the plasmid can be removed through drug screening; when the drug is removed after editing, the cells will gradually lose the attachment carrier, thus obtaining an edited cell line that does not contain foreign genes. The specific steps are:
首先,构建一个附着体载体,编码靶向核酸内切酶和筛选基因(亦称抗性基因); First, construct an episomal vector encoding a targeting endonuclease and a selection gene (also known as a resistance gene);
然后,将所述附着体载体导入到细胞中,在药物的筛选下培养细胞若干天,使所有的细胞中都含有附着体载体并稳定表达靶向核酸内切酶。 Then, the attachment carrier is introduced into the cells, and the cells are cultured for several days under drug selection, so that all cells contain the attachment carrier and stably express the targeting endonuclease.
本发明方法提高编辑效率的原理在于:(1)通过药物筛选富集了含有附着体载体的细胞;(2)长期培养增加了基因编辑的时间,从而提高编辑效率。 The principle of improving the editing efficiency of the method of the present invention lies in: (1) the cells containing the episomal carrier are enriched through drug screening; (2) the long-term culture increases the time of gene editing, thereby improving the editing efficiency. the
本发明中,所述附着体载体可以是 Epstein-Barr virus (EBV),BK virus (BKV), bovine papilloma virus 1 (BPV-1)或 simian virus 40 (SV40)等病毒附着型载体,也可以是 S/MAR(Scaffold/Matrix Attachment Region,S/MAR)介导的非病毒附着型载体。这类DNA载体的共同特征是能够在真核细胞中复制扩增。 In the present invention, the attachment carrier can be Epstein-Barr virus (EBV), BK virus (BKV), bovine papilloma virus 1 (BPV-1) or simian virus 40 (SV40) and other viral attachment carriers, and can also be S/MAR (Scaffold/Matrix Attachment Region, S/MAR) mediated non-viral attachment carrier. The common feature of these DNA vectors is that they can replicate and amplify in eukaryotic cells.
本发明中,所述靶向核酸内切酶可以是锌指核酸酶(ZFN)、大范围核酸酶、转录激活物样效应物核酸酶(TALEN)或者规律成簇间隔短回文重复CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats)。 In the present invention, the targeted endonuclease may be zinc finger nuclease (ZFN), meganuclease, transcription activator-like effector nuclease (TALEN) or clustered regularly interspaced short palindromic repeat CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats).
本发明中,所述靶向核酸内切酶在特定位置切断DNA,细胞的DNA修复系统通过非同源末端连接修复法或者同源重组修复法修复DNA断裂。非同源末端连接修复法常常会产生碱基对的增加或者缺失,从而造成基因的移码突变。同源重组修复法需要提供额外的与DNA断裂位点两侧有同源性的单链或者双链供体DNA模版,DNA模版上编码的信息会被拷贝到编辑位点。这种方法可以精确的改变基因序列,包括突变位点的引入或者改正,或者定点插入转基因。 In the present invention, the targeted endonuclease cuts DNA at a specific position, and the cell's DNA repair system repairs the DNA break through a non-homologous end-joining repair method or a homologous recombination repair method. Non-homologous end-joining repair often produces base pair additions or deletions, resulting in frameshift mutations in genes. The homologous recombination repair method needs to provide an additional single-stranded or double-stranded donor DNA template that is homologous to both sides of the DNA break site, and the information encoded on the DNA template will be copied to the editing site. This method can precisely change the gene sequence, including the introduction or correction of mutation sites, or site-specific insertion of transgenes. the
本发明中,所述筛选基因可以是嘌呤霉素,新霉素,博来霉素,潮霉素等。 In the present invention, the screening gene may be puromycin, neomycin, bleomycin, hygromycin and the like.
本发明中,所述细胞可以是培养的细胞、原代细胞、永生细胞、干细胞、诱导的多潜能干细胞(iPS) 或单细胞胚。 In the present invention, the cells may be cultured cells, primary cells, immortal cells, stem cells, induced pluripotent stem cells (iPS) or single-cell embryos. the
本发明中,所述细胞可以是人细胞、哺乳动物细胞、脊椎动物细胞、无脊椎动物细胞或单细胞真核生物。 In the present invention, the cells may be human cells, mammalian cells, vertebrate cells, invertebrate cells or unicellular eukaryotes.
合适的细胞包括:真菌或酵母,如毕赤酵母(Pichia)、酵母(Saccharomyces) 或裂殖酵母(Schizosaccharomyce) ;昆虫细胞,如来自草地夜蛾(Spodoptera frugiperda) 的SF9 细胞或来自黑腹果蝇(Drosophila melanogaster) 的S2细胞;动物细胞,如小鼠、大鼠、仓鼠、非人灵长类或人细胞。 Suitable cells include: fungi or yeast, such as Pichia, Saccharomyces or Schizosaccharomyce; insect cells, such as SF9 cells from Spodoptera frugiperda or from Drosophila melanogaster (Drosophila melanogaster) S2 cells; animal cells such as mouse, rat, hamster, non-human primate or human cells.
示例性细胞是哺乳动物细胞。哺乳动物细胞可以是原代细胞。通常,可以使用对双链断裂敏感的任何原代细胞。这些细胞可以是多种细胞类型的,例如,成纤维细胞、成肌细胞、T 或B 细胞、巨噬细胞、上皮细胞等。细胞系可以是贴壁的或非贴壁,或可以使用本领域技术人员已知的标准技术,在刺激贴壁、非贴壁或器官型生长的条件下培育细胞系。合适的哺乳动物细胞系的非限制性实例包括中国仓鼠卵巢(CHO) 细胞、由SV40 转化的猴肾CVI 系(COS7)、人胚肾系293、幼仓鼠肾细胞(BHK)、小鼠Sertoli 细胞(TM4)、猴肾细胞(CVI-76)、非洲绿猴肾细胞(VERO)、人宫颈癌细胞(HeLa)、犬肾细胞(MDCK)、buffalo 大鼠肝细胞(BRL3A)、人肺细胞(W138)、人肝细胞(Hep G2)、小鼠乳腺瘤细胞(MMT)、大鼠肝瘤细胞(HTC)、HIH/3T3 细胞、人U2-OS 骨肉瘤细胞、人A549 细胞、人K562 细胞、人HEK293 细胞、人HEK293T 细胞、人HCT116 细胞、人MCF-7 细胞和TRI 细胞。 Exemplary cells are mammalian cells. Mammalian cells can be primary cells. In general, any primary cell that is sensitive to double-strand breaks can be used. These cells can be of various cell types, e.g., fibroblasts, myoblasts, T or B cells, macrophages, epithelial cells, etc. Cell lines can be adherent or non-adherent, or can be grown under conditions that stimulate adherent, non-adherent, or organotypic growth using standard techniques known to those skilled in the art. Non-limiting examples of suitable mammalian cell lines include Chinese hamster ovary (CHO) cells, monkey kidney CVI line (COS7) transformed by SV40, human embryonic kidney line 293, baby hamster kidney cells (BHK), mouse Sertoli cells (TM4), monkey kidney cells (CVI-76), African green monkey kidney cells (VERO), human cervical cancer cells (HeLa), canine kidney cells (MDCK), buffalo rat liver cells (BRL3A), human lung cells ( W138), human hepatocytes (Hep G2), mouse mammary tumor cells (MMT), rat hepatoma cells (HTC), HIH/3T3 cells, human U2-OS osteosarcoma cells, human A549 cells, human K562 cells, Human HEK293 cells, human HEK293T cells, human HCT116 cells, human MCF-7 cells and TRI cells.
对于所述附着体载体 Epstein-Barr virus (即EBV系统),本发明具体构建了如下几种质粒:EBNA1 Cas9eGFP、EBNA1 Cas9copGFP、EBNA1 Cas9TK、EBNA1 Cas9nTK;其中: For the attachment carrier Epstein-Barr virus (i.e. the EBV system), the present invention specifically constructs the following plasmids: EBNA1 Cas9eGFP, EBNA1 Cas9copGFP, EBNA1 Cas9TK, EBNA1 Cas9nTK; wherein:
(一)EBNA1 Cas9eGFP 附着体载体,含hSpCas9内切酶、向导RNA表达系统(包括hU6启动子、后面的骨架RNA 和它们之间的gRNA插入位点,即SapI位点)、嘌呤霉素(Puro)、绿色荧光蛋白eGFP、质粒在真核细胞中复制的元件EBNA1和EBV oriP、在大肠杆菌中扩增质粒用的氨苄抗性基因(Amp)和复制起始点pUC origin。 (1) EBNA1 Cas9eGFP attachment vector, containing hSpCas9 endonuclease, guide RNA expression system (including hU6 promoter, backbone RNA behind and gRNA insertion site between them, namely SapI site), puromycin (Puro ), green fluorescent protein eGFP, elements EBNA1 and EBV oriP for plasmid replication in eukaryotic cells, ampicillin resistance gene (Amp) for amplifying plasmids in E. coli and replication origin pUC origin.
(二)EBNA1 Cas9copGFP 附着体载体,含hSpCas9内切酶、向导RNA表达系统(包括hU6启动子、后面的骨架RNA 和它们之间的gRNA插入位点,即SapI位点)、嘌呤霉素(Puro)、荧光蛋白copGFP(copGFP和嘌呤霉素通过P2A序列连接)、质粒在真核细胞中复制的元件EBNA1和EBV oriP、在大肠杆菌中扩增质粒用的氨苄抗性基因(Amp)和复制起始点pUC origin。 (2) EBNA1 Cas9copGFP attachment vector, containing hSpCas9 endonuclease, guide RNA expression system (including hU6 promoter, the following backbone RNA and the gRNA insertion site between them, that is, the SapI site), puromycin (Puro ), fluorescent protein copGFP (copGFP and puromycin are connected by P2A sequence), elements EBNA1 and EBV oriP for plasmid replication in eukaryotic cells, ampicillin resistance gene (Amp) for amplification of plasmid in E. coli and replication promoter The starting point is pUC origin.
(三)本发明提供的EBNA1 Cas9TK 附着体载体,含hSpCas9内切酶、向导RNA表达系统(hU6启动子gRNA插入位点,即SapI位点,后面的骨架RNA)、嘌呤霉素和1型单纯疱疹病毒胸腺嘧啶核苷激酶HSV1-tk的融合蛋白(purotk)、质粒在真核细胞中复制的元件EBNA1和EBV oriP、在大肠杆菌中扩增质粒用的氨苄抗性基因(Amp)和复制起始点pUC origin。 (3) The EBNA1 Cas9TK episomal vector provided by the present invention contains hSpCas9 endonuclease, guide RNA expression system (hU6 promoter gRNA insertion site, that is, SapI site, followed by backbone RNA), puromycin and type 1 simple Fusion protein of herpesvirus thymidine kinase HSV1- tk (purotk), elements EBNA1 and EBV oriP for plasmid replication in eukaryotic cells, ampicillin resistance gene (Amp) for amplification of plasmid in E. coli and replication promoter The starting point is pUC origin.
(四)EBNA1 Cas9nTK 附着体载体,含hSpCas9内切酶的突变体hSpCas9n(产生但缺口切割)、向导RNA表达系统(hU6启动子gRNA插入位点,即SapI位点,后面的骨架RNA)、嘌呤霉素和1型单纯疱疹病毒胸腺嘧啶核苷激酶HSV1-tk的融合蛋白(purotk)、质粒在真核细胞中复制的元件EBNA1和EBV oriP、在大肠杆菌中扩增质粒用的氨苄抗性基因(Amp)和复制起始点pUC origin。 (4) EBNA1 Cas9nTK attachment vector, containing hSpCas9 endonuclease mutant hSpCas9n (produced but nick-cut), guide RNA expression system (hU6 promoter gRNA insertion site, that is, SapI site, followed by backbone RNA), purine Fusion protein of mymycin and herpes simplex virus type 1 thymidine kinase HSV1- tk (purotk), elements EBNA1 and EBV oriP for plasmid replication in eukaryotic cells, ampicillin resistance gene for amplification of plasmids in Escherichia coli (Amp) and the origin of replication pUC origin.
EBNA1 Cas9eGFP 附着体载体构建方法的具体步骤为: The specific steps of the EBNA1 Cas9eGFP attachment vector construction method are:
(1)pREP9质粒用XbaI和KpnI酶切,保留表达EBNA1基因部分。 (1) Digest the pREP9 plasmid with XbaI and KpnI, and retain the part expressing the EBNA1 gene.
(2)SV40pA 序列人工合成并克隆到pREP9质粒的KpnI和XbaI位点,得到质粒pREP9-pA。具体序列为: (2) The SV40pA sequence was artificially synthesized and cloned into the KpnI and XbaI sites of the pREP9 plasmid to obtain the plasmid pREP9-pA. The specific sequence is:
GGTACCTTTCAGAGCGATCGCAAGTAACTTAAGCTTAAGAACCGCTCGAGGCCGGCAAGGCCGGATCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGCTGATTATGATCCGGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGAGGTCGACTCTAGA (SEQ.ID.NO.1)。 GGTACC TTTCAGA GCGATCGC AAGTAA CTTAAG CTTAAGAACCGCTCGAGGCCGGCAAGGCCGGATCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGCTGATTATGATCCGGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGAGGTCGAC TCTAGA (SEQ.ID.NO.1)。
下划线部分分别为酶切位点KpnI、AsiSI、AflII和XbaI。 The underlined parts are restriction enzyme cutting sites KpnI, AsiSI, AflII and XbaI respectively.
(3)plentiCRISPR质粒(来自美国Feng Zhang 实验室)用BsmBI酶切,替换为双SapI酶切位点。双SapI酶切位点用oligo CACCGAGAAGAGCGATGCTCTTCG(SEQ.ID.NO.2)和AAACCGAAGAGCATCGCTCTTCTC(SEQ.ID.NO.3)退火形成,正好可以连接到BsmBI酶切位点,得到质粒plentiCRISPR-SapI。 (3) The plentiCRISPR plasmid (from Feng Zhang's laboratory in the United States) was digested with BsmBI and replaced with double SapI restriction sites. The double SapI restriction site was formed by annealing oligo CACCGAGAAGAGCGATGCTCTTCG (SEQ.ID.NO.2) and AAACCGAAGAGCATCGCTCTTCTC (SEQ.ID.NO.3), which could just connect to the BsmBI restriction site to obtain the plasmid plentiCRISPR-SapI.
(4)用引物TATGGTACCTTTCAGACCCACCTCCCAAC(SEQ.ID.NO.4)和CCTTCGGCGATCGCGGCACCGGGCTTGCGGGTCA(SEQ.ID.NO.5)把Cas9部分从plentiCRISPR-SapI扩增下来,KpnI、AsiSI酶切,连接到pREP9-pA上。 (4) Use primers TATGGTACCTTTCAGACCCACCTCCCAAC (SEQ.ID.NO.4) and CCTTCGGCGATCGCGGCACCGGGCTTGCGGGTCA (SEQ.ID.NO.5) to amplify the Cas9 part from plentiCRISPR-SapI, digest with KpnI and AsiSI, and connect to pREP9-pA.
(5)用引物GGTGCCGCGATCGCCGAAGGATCCGCGGCCGCCA(SEQ.ID.NO.6)和GTTCTTAAGTTACTTGTACAGCTCGTCCA(SEQ.ID.NO.7)把eGFP从peGFP-N1质粒上扩增下来,AsiSI、AflII酶切,连接到上述(4)中得到的质粒,得到EBNA1 Cas9eGFP 附着体载体。 (5) Use primers GGTGCCGCGATCGCCGAAGGATCCGCGGCCGCCA (SEQ.ID.NO.6) and GTTCTTAAGTTACTTGTACAGCTCGTCCA (SEQ.ID.NO.7) to amplify eGFP from the peGFP-N1 plasmid, digest with AsiSI and AflII, and connect to the above (4) The plasmid obtained in the obtained EBNA1 Cas9eGFP episome vector. the
EBNA1 Cas9copGFP 附着体载体构建方法的具体步骤为: The specific steps of the EBNA1 Cas9copGFP attachment vector construction method are:
用引物GCCGCGATCGCCGAAGGATCCGCGGCCGCTG(SEQ.ID.NO.8) 和 GTTCTTAAGTCGACTTAGATTCAGCTCTA(SEQ.ID.NO.9)将P2AcopGFP 部分从pCDH_EF1_MCS_T2A_copGFP (System Biosciences)质粒扩增下来,AsiSI、AflII酶切,连接到EBNA1 Cas9eGFP质粒的AsiSI、AflII酶切位点,得到EBNA1 Cas9copGFP 附着体载体。 Use primers GCCGCGATCGCCGAAGGATCCGCGGCCGCTG (SEQ.ID.NO.8) and GTTCTTAAGTCGACTTAGATTCAGCTCTA (SEQ.ID.NO.9) to amplify the P2AcopGFP part from the pCDH_EF1_MCS_T2A_copGFP (System Biosciences) plasmid, digest with AsiSI and AflII, and connect to the Cas9eGFP plasmid of EBNA1 , AflII restriction site, to obtain the EBNA1 Cas9copGFP attachment vector.
EBNA1 Cas9TK 附着体载体构建方法的具体步骤为: The specific steps of the EBNA1 Cas9TK attachment vector construction method are:
用引物ATCCGGACCGCCACATCGAGCGGGTCACCG(SEQ.ID.NO.10)和GTTCTTAAGGCTGATCAGCGAGCTCTAGA(SEQ.ID.NO.11)将puroTK部分从pT2/RMCE-OSKM-puDTk (PB ITR deleted)质粒扩增下来,RsrII、AflII酶切,连接到EBNA1 Cas9eGFP质粒的RsrII、AflII酶切位点,得到EBNA1 Cas9TK 附着体载体。 Use primers ATCCGGACCGCCACATCGAGCGGGTCACCG (SEQ.ID.NO.10) and GTTCTTAAGGCTGATCAGCGAGCTCTAGA (SEQ.ID.NO.11) to amplify the part of puroTK from the pT2/RMCE-OSKM-puDTk (PB ITR deleted) plasmid, digest with RsrII and AflII, Connect to the RsrII and AflII restriction sites of the EBNA1 Cas9eGFP plasmid to obtain the EBNA1 Cas9TK attachment vector.
EBNA1 Cas9nTK 附着体载体构建方法的具体步骤为: The specific steps of the EBNA1 Cas9nTK attachment vector construction method are:
通过点突变方法把EBNA1 Cas9TK编码hSpCas9的第29个碱基由A到C,得到EBNA1 Cas9nTK 附着体载体。 The 29th base of hSpCas9 encoded by EBNA1 Cas9TK was changed from A to C by the point mutation method to obtain the EBNA1 Cas9nTK attachment vector.
关于其余附着体载体:BKV、 BPV-1、SV40、 S/MAR,可以根据实际需求,用上述类似方法构建。 Regarding other attachment vectors: BKV, BPV-1, SV40, S/MAR, they can be constructed by similar methods as above according to actual needs.
本发明还进一步提供利用EBNA1 Cas9eGFP、EBNA1 Cas9copGFP、EBNA1 Cas9TK 和 EBNA1 Cas9nTK附着体载体系统编辑细胞染色体的方法,这4种附着体载体系统使用方法相同,所以具体用EBNA1 Cas9eGFP 附着体载体说明。根据编辑位点设计向导RNA,合成一对oligo,oligo退火后形成双链DNA,并且末端和SapI酶切EBNA1 Cas9TeGFP附着体载体产生的粘性末端匹配。用T4 DNA连接酶将双链DNA片段连接到EBNA1 Cas9eGFP附着体载体上,得到EBNA1 Cas9eGFP-gRNA。将EBNA1 Cas9eGFP-gRNA导入到要编辑的细胞中,导入方法可以是常规的细胞转染试剂,如Lipofectamin2000,也可以用电转染的方式。转染两天后用适量浓度的抗性基因(亦称筛选基因)筛选细胞,把没有转染的细胞杀死。不同的细胞需要的抗性基因浓度不同,需要实现做浓度滴定,尽量用低剂量的药物筛选。编辑的时间会因为编辑位点和细胞类型而不同。通常情况下需要8-30天。检测编辑效率的方法可以用该领域经常用到的T7 酶或Cel-1酶切法。编辑完成后将抗性基因撤除,细胞用流式细胞仪分出单克隆培养若干天,提取DNA,PCR编辑位点连接到T质粒载体上测序。在没有抗性基因筛选的情况下培养,附着体载体会逐渐从细胞中丢失。当使用EBNA1 Cas9TK和 EBNA1 Cas9nTK附着体载体时,编辑完成后撤除抗性基因培养3天,部分细胞在增殖过程中会丢掉附着体质粒,然后加更昔洛韦筛选5天,杀死含有编辑质粒的细胞,这样可以快速得到不含编辑质粒的细胞系。 The present invention further provides a method for editing cell chromosomes using the EBNA1 Cas9eGFP, EBNA1 Cas9copGFP, EBNA1 Cas9TK and EBNA1 Cas9nTK attachment carrier systems. The use methods of these four attachment carrier systems are the same, so the EBNA1 Cas9eGFP attachment carrier is specifically used for description. Guide RNA was designed according to the editing site, and a pair of oligos were synthesized. The oligos were annealed to form double-stranded DNA, and the ends matched with the cohesive ends generated by SapI digestion of the EBNA1 Cas9TeGFP attachment vector. The double-stranded DNA fragment was ligated to the EBNA1 Cas9eGFP attachment vector with T4 DNA ligase to obtain EBNA1 Cas9eGFP-gRNA. Introduce EBNA1 Cas9eGFP-gRNA into the cells to be edited. The introduction method can be conventional cell transfection reagents, such as Lipofectamin2000, or electrotransfection. Two days after transfection, the cells were screened with an appropriate concentration of resistance gene (also known as selection gene), and the cells that were not transfected were killed. Different cells require different concentrations of resistance genes, so it is necessary to achieve concentration titration and try to use low doses of drugs for screening. The timing of editing will vary depending on the editing site and cell type. Normally it takes 8-30 days. The method for detecting editing efficiency can use the T7 enzyme or Cel-1 enzyme digestion method often used in this field. After the editing is completed, the resistance gene is removed, and the cells are isolated and cultured for several days by flow cytometry, and the DNA is extracted, and the PCR editing site is connected to the T plasmid vector for sequencing. When cultured without resistance gene selection, episomal vectors are gradually lost from the cells. When using EBNA1 Cas9TK and EBNA1 Cas9nTK episomal vectors, remove the resistance gene and culture for 3 days after editing, some cells will lose the episomal plasmid during proliferation, and then add ganciclovir for 5 days to kill cells containing the edited plasmid. cells, so that cell lines free of editing plasmids can be quickly obtained.
附着体载体需要编码在真核细胞中起作用的抗性基因。在转染过程中一部分细胞没有得到质粒,需要通过药物筛选杀死这部分细胞,只允许得到质粒的细胞存活下来。另一方面,一部分细胞在分裂过程中附着体质粒会丢失,因此也需要依靠药物杀死这部分西胞。所述抗性基因可以是嘌呤霉素,新霉素,博来霉素,潮霉素等。 Episomal vectors need to encode resistance genes to function in eukaryotic cells. During the transfection process, some cells did not get the plasmid, and these cells need to be killed by drug screening, and only the cells that got the plasmid were allowed to survive. On the other hand, some cells will lose the attachment plasmid during division, so it is also necessary to rely on drugs to kill these cells. The resistance gene can be puromycin, neomycin, bleomycin, hygromycin and the like.
在同源重组时需要提供与酶切位点有同源性的供体DNA,附着体质粒靶向核酸内切酶分子与供体载体的比率可以并且将变化。通常,附着体质粒与供体质粒的比率范围可以是约1:10 至约10:1。在各个实施方案中,附着体质粒与供体质粒的比率可以是约1:10、1:9、1:8、1:7、1:6、1:5、1:4、1:3、1:2、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1 或10:1。 Where homologous recombination is required to provide donor DNA with homology to the restriction site, the ratio of episomal plasmid targeting endonuclease molecules to donor vector can and will vary. Typically, the ratio of episomal plasmid to donor plasmid can range from about 1:10 to about 10:1. In various embodiments, the ratio of episomal plasmid to donor plasmid can be about 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1 or 10:1. the
靶向编辑染色体序列的频率可以并且将根据多种因素变化。在一些实施方案中,编辑的频率可以是大于约0.1%、0.3%、1%、3%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%。可以使用本领域熟知的技术分离单一细胞克隆,其包含编辑的染色体序列。本领域技术人员熟悉用于产生对所编辑染色体序列纯合的细胞的方法。换而言之,细胞可以对所编辑的染色体序列是杂合或纯合的。 The frequency of targeted editing of chromosomal sequences can and will vary according to a number of factors. In some embodiments, the frequency of editing may be greater than about 0.1%, 0.3%, 1%, 3%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% % or 100%. Single cell clones comprising edited chromosomal sequences can be isolated using techniques well known in the art. Those of skill in the art are familiar with methods for generating cells homozygous for an edited chromosomal sequence. In other words, cells can be heterozygous or homozygous for the edited chromosomal sequence.
本发明还提供构建附着体载体基因编辑的试剂盒,该试剂盒中含有: The present invention also provides a kit for constructing an episomal vector gene editor, which contains:
(1)编码靶向核酸内切酶和筛选基因的附着体载体; (1) Attachment vectors encoding targeting endonucleases and screening genes;
(2)用于检测编辑位点的PCR 的引物; (2) PCR primers for detection of editing sites;
(3)T4连接酶和连接缓冲液。 (3) T4 ligase and ligation buffer.
本发明试剂盒中,所述编码靶向核酸内切酶和筛选基因的附着体载体,可以是上述的 EBV、BKV、BPV-1、SV40、 S/MAR中的一种,这类DNA载体的共同特征是能够在真核细胞中复制扩增。 In the kit of the present invention, the attachment body carrier encoding the targeting endonuclease and the screening gene can be one of the above-mentioned EBV, BKV, BPV-1, SV40, S/MAR, the DNA carrier of this type A common feature is the ability to replicate and amplify in eukaryotic cells.
本发明试剂盒中,所述靶向核酸内切酶可以是上述锌指核酸酶(ZFN)、大范围核酸酶、转录激活物样效应物核酸酶(TALEN)或者规律成簇间隔短回文重复CRISPR/Cas9中的一种。 In the kit of the present invention, the targeted endonuclease may be the above-mentioned zinc finger nuclease (ZFN), meganuclease, transcription activator-like effector nuclease (TALEN) or regularly clustered interspaced short palindromic repeats One of CRISPR/Cas9.
本发明试剂盒中,所述附着体载体 Epstein-Barr virus (即EBV系统),具体可以是上述构建的几种质粒:EBNA1 Cas9eGFP、EBNA1 Cas9TK、EBNA1 Cas9TK、EBNA1 Cas9nTK。 In the kit of the present invention, the attachment carrier Epstein-Barr virus (i.e. EBV system) can specifically be several plasmids constructed above: EBNA1 Cas9eGFP, EBNA1 Cas9TK, EBNA1 Cas9TK, EBNA1 Cas9nTK.
本发明适用于各种真核生物细胞的基因组编辑。 The invention is applicable to genome editing of various eukaryotic cells.
附图说明 Description of drawings
图1为本发明的4种附着体载体结构。其中,图1A 展示了EBNA1 Cas9eGFP附着体载体的结构,它是表达一个向导RNA(gRNA)、一个Cas9蛋白、一个嘌呤霉素抗性基因(Puro)和一个绿色荧光蛋白(eGFP)的附着体DNA (EBV)系统。图1B展示了EBNA1 Cas9copGFP附着体载体的结构,它是表达一个向导RNA(gRNA)、一个Cas9蛋白、一个嘌呤霉素抗性基因(Puro)和一个荧光蛋白(copGFP)的附着体DNA (EBV)系统。图1C展示了EBNA1 Cas9TK附着体载体的结构,它是表达一个向导RNA(gRNA)、一个Cas9蛋白、一个嘌呤霉素和抗性基因和1型单纯疱疹病毒胸腺嘧啶核苷激酶HSV1-tk的融合蛋白(purotk)的附着体载体 (EBV)系统。图1D展示了EBNA1 Cas9nTK附着体载体的结构。与EBNA1 Cas9TK附着体载体相比,它只在Cas9编码区哈有一个D10A突变,其余相同。oriP是质粒在真核生物细胞内的复制起始位点序列,EBNA1编码的蛋白与oriP序列相互作用起始质粒的复制。Ori是在原核生物中起作用的复制起始位点序列;Amp是氨苄抗性基因。 Fig. 1 is four attachment carrier structures of the present invention. Among them, Figure 1A shows the structure of the EBNA1 Cas9eGFP attachment vector, which is an attachment DNA expressing a guide RNA (gRNA), a Cas9 protein, a puromycin resistance gene (Puro) and a green fluorescent protein (eGFP) (EBV) system. Figure 1B shows the structure of the EBNA1 Cas9copGFP episomal vector, which is an episomal DNA (EBV) expressing a guide RNA (gRNA), a Cas9 protein, a puromycin resistance gene (Puro), and a fluorescent protein (copGFP) system. Figure 1C shows the structure of the EBNA1 Cas9TK attachment vector, which is a fusion expressing a guide RNA (gRNA), a Cas9 protein, a puromycin and resistance gene, and herpes simplex virus type 1 thymidine kinase HSV1- tk Protein (purotk) episome vector (EBV) system. Figure 1D shows the structure of the EBNA1 Cas9nTK attachment vector. Compared with the EBNA1 Cas9TK attachment vector, it only has a D10A mutation in the Cas9 coding region, and the rest are the same. oriP is the replication initiation site sequence of the plasmid in eukaryotic cells, and the protein encoded by EBNA1 interacts with the oriP sequence to initiate the replication of the plasmid. Ori is an origin of replication sequence functional in prokaryotes; Amp is an ampicillin resistance gene.
图2为在HEK293细胞中用EBNA1 Cas9eGFP附着体载体编辑AAVS1位点的结果。图2A是PCR检测编辑位点的序列,下划线部分是gRNA识别序列,红色标记是PAM序列,绿色部分是SacI酶切位点。图2B是PCR产物的SacI酶切凝胶电泳图,用于检测编辑效率。如果所述位点被编辑,SacI位点就会被破坏,导致SacI无法切断。图2C是编辑效率的定量图,纵轴是编辑的DNA占总DNA的百分比,横轴是编辑的天数。 Figure 2 shows the results of editing the AAVS1 site with the EBNA1 Cas9eGFP attachment vector in HEK293 cells. Figure 2A is the sequence of the editing site detected by PCR, the underlined part is the gRNA recognition sequence, the red mark is the PAM sequence, and the green part is the SacI restriction site. Figure 2B is a SacI digested gel electrophoresis image of the PCR product, which is used to detect the editing efficiency. If the site is edited, the SacI site will be destroyed, resulting in the inability of SacI to cut. Figure 2C is a quantitative graph of editing efficiency, the vertical axis is the percentage of edited DNA in total DNA, and the horizontal axis is the number of days of editing.
图3为在HEK293细胞中用EBNA1 Cas9copGFP附着体载体编辑EMX1位点的结果。图3A是PCR检测编辑位点的序列,下划线部分是gRNA识别序列,红色标记是PAM序列,绿色与红色部分是AgeI酶切位点。图3B是PCR产物的AgeI酶切凝胶电泳图,用于检测编辑效率。如果所述位点被编辑,AgeI位点就会被破坏,导致AgeI无法切断。图3C是编辑效率的定量图,纵轴是编辑的DNA占总DNA的百分比,横轴是编辑的天数。 Figure 3 shows the results of editing the EMX1 site with the EBNA1 Cas9copGFP attachment vector in HEK293 cells. Figure 3A is the sequence of the editing site detected by PCR. The underlined part is the gRNA recognition sequence, the red mark is the PAM sequence, and the green and red parts are the AgeI restriction site. Figure 3B is an AgeI digested gel electrophoresis image of the PCR product, which is used to detect the editing efficiency. If the site is edited, the AgeI site is destroyed, resulting in failure of AgeI to cut. Figure 3C is a quantitative graph of editing efficiency, the vertical axis is the percentage of edited DNA in total DNA, and the horizontal axis is the number of days of editing.
图4为在HEK293细胞中用EBNA1 Cas9TK附着体载体编辑GRIN2B位点的结果。图4A是PCR检测编辑位点的序列,下划线部分是gRNA识别序列,红色标记是PAM序列,绿色部分是MSCI酶切位点。图4B是PCR产物的MSCI酶切凝胶电泳图,用于检测编辑效率。如果所述位点被编辑,MSCI位点就会被破坏,导致MSCI无法切断。图4C是编辑效率的定量图,纵轴是编辑的DNA占总DNA的百分比,横轴是编辑的天数。 Figure 4 shows the results of editing the GRIN2B site with the EBNA1 Cas9TK attachment vector in HEK293 cells. Figure 4A is the sequence of the editing site detected by PCR, the underlined part is the gRNA recognition sequence, the red mark is the PAM sequence, and the green part is the MSCI restriction site. Figure 4B is an MSCI digested gel electrophoresis image of the PCR product, which is used to detect the editing efficiency. If the site is edited, the MSCI site will be destroyed, resulting in the inability of MSCI to cut. Figure 4C is a quantitative graph of editing efficiency, the vertical axis is the percentage of edited DNA in the total DNA, and the horizontal axis is the number of days of editing.
图5为在HEK293细胞中用EBNA1 Cas9eGFP附着体载体编辑DYRK1A位点的结果。图5A是PCR检测编辑位点的序列,下划线部分是gRNA识别序列,红色标记是PAM序列,绿色与红色部分是BstXI酶切位点。图5B是PCR产物的DYRK1A酶切凝胶电泳图,用于检测编辑效率。如果所述位点被编辑,DYRK1A位点就会被破坏,导致DYRK1A无法切断。图5C是编辑效率的定量图,纵轴是编辑的DNA占总DNA的百分比,横轴是编辑的天数。 Figure 5 shows the results of editing the DYRK1A site with the EBNA1 Cas9eGFP attachment vector in HEK293 cells. Figure 5A is the sequence of the editing site detected by PCR, the underlined part is the gRNA recognition sequence, the red mark is the PAM sequence, and the green and red parts are the BstXI restriction site. Figure 5B is the DYRK1A digested gel electrophoresis image of the PCR product, which is used to detect the editing efficiency. If the site is edited, the DYRK1A site is destroyed, resulting in the inability of DYRK1A to cut. Figure 5C is a quantitative graph of editing efficiency, the vertical axis is the percentage of edited DNA to the total DNA, and the horizontal axis is the number of days of editing.
图6 展示用EBNA1 Cas9eGFP附着体载体同时表达2个向导RNA(gRNA)的系统,用于同时编辑两个基因组位点。oriP是质粒在真核生物细胞内的复制起始位点序列,EBNA1编码的蛋白与oriP序列相互作用起始质粒的复制。Ori是在原核生物中起作用的复制起始位点序列;Amp是氨苄抗性基因。 Figure 6 shows a system for simultaneous expression of two guide RNAs (gRNAs) using the EBNA1 Cas9eGFP episomal vector for simultaneous editing of two genomic loci. oriP is the replication initiation site sequence of the plasmid in eukaryotic cells, and the protein encoded by EBNA1 interacts with the oriP sequence to initiate the replication of the plasmid. Ori is an origin of replication sequence functional in prokaryotes; Amp is an ampicillin resistance gene.
图7为EBNA1 Cas9eGFP附着体载体在HEK293细胞中编辑DYRK1A和EMX1位点的结果。图7A是PCR产物的DYRK1A酶切凝胶电泳图,用于检测编辑效率。如果所述位点被编辑,DYRK1A位点就会被破坏,导致DYRK1A无法切断。图7B是编辑效率的定量图,纵轴是编辑的DNA占总DNA的百分比,横轴是编辑的天数。图7C是PCR产物的EMX1酶切凝胶电泳图,用于检测编辑效率。如果所述位点被编辑,EMX1位点就会被破坏,导致EMX1无法切断。图7D是编辑效率的定量图,纵轴是编辑的DNA占总DNA的百分比,横轴是编辑的天数。 Figure 7 shows the results of EBNA1 Cas9eGFP attachment vector editing DYRK1A and EMX1 sites in HEK293 cells. Figure 7A is the gel electrophoresis image of DYRK1A digestion of PCR products, which is used to detect the editing efficiency. If the site is edited, the DYRK1A site is destroyed, resulting in the inability of DYRK1A to cut. Figure 7B is a quantitative graph of editing efficiency, the vertical axis is the percentage of edited DNA in the total DNA, and the horizontal axis is the number of days of editing. Figure 7C is the EMX1 digested gel electrophoresis image of the PCR product, which is used to detect the editing efficiency. If the site is edited, the EMX1 site is destroyed, making it impossible for EMX1 to cut. Figure 7D is a quantitative graph of editing efficiency, the vertical axis is the percentage of edited DNA in the total DNA, and the horizontal axis is the number of days of editing.
图8 展示了用EBNA1 Cas9nTK附着体载体同时表达2个向导RNA(gRNA)的附着体系统,这两个向导RNA距离很近,通过双切口产生DNA双链断裂。oriP是质粒在真核生物细胞内的复制起始位点序列,EBNA1编码的蛋白与oriP序列相互作用起始质粒的复制。Ori是在原核生物中起作用的复制起始位点序列;Amp是氨苄抗性基因。 Figure 8 shows the episomal system using the EBNA1 Cas9nTK episomal vector to simultaneously express two guide RNAs (gRNAs), which are in close proximity and generate DNA double-strand breaks through double nicks. oriP is the replication initiation site sequence of the plasmid in eukaryotic cells, and the protein encoded by EBNA1 interacts with the oriP sequence to initiate the replication of the plasmid. Ori is an origin of replication sequence functional in prokaryotes; Amp is an ampicillin resistance gene.
图9为在HEK293细胞中用图8质粒编辑EMX1位点的结果。EMX1位点与图3所述位点相同。图9A的下划线部分标明了两个gRNA序列,绿色部分是AgeI酶切位点。图9B是PCR产物的EMX1酶切凝胶电泳图,用于检测编辑效率。如果所述位点被编辑,EMX1位点就会被破坏,导致EMX1无法切断。图9C是编辑效率的定量图,纵轴是编辑的DNA占总DNA的百分比,横轴是编辑的天数。 Figure 9 shows the results of editing the EMX1 site with the plasmid in Figure 8 in HEK293 cells. The EMX1 site is the same as that described in Figure 3. The underlined part in Figure 9A indicates the two gRNA sequences, and the green part is the AgeI restriction site. Figure 9B is the EMX1 digested gel electrophoresis image of the PCR product, which is used to detect the editing efficiency. If the site is edited, the EMX1 site is destroyed, making it impossible for EMX1 to cut. Figure 9C is a quantitative graph of editing efficiency, the vertical axis is the percentage of edited DNA in the total DNA, and the horizontal axis is the number of days of editing.
图10为在HEK293细胞中用图6 EBNA1 Cas9eGFP质粒删除EMX1位点的一个281 碱基对的结果。图10A的下划线部分标明了两个gRNA序列。图10B是检测删除结果的PCR凝胶电泳图。删除片段第三天就可以检测到,并随着时间增加。 Figure 10 is the result of deleting a 281 base pair of the EMX1 site with the EBNA1 Cas9eGFP plasmid in Figure 6 in HEK293 cells. The underlined portion of Figure 10A indicates the two gRNA sequences. Fig. 10B is a PCR gel electrophoresis image of detection deletion results. Deletion fragments were detectable on the third day and increased over time.
具体实施方式 Detailed ways
以下结合具体实施例,对本发明做进一步说明。本实施例仅仅用于对本发明的说 The present invention will be further described below in conjunction with specific embodiments. This embodiment is only used to illustrate the present invention
明,不构成对本发明的限制。 It is not construed as a limitation of the present invention.
实施例1 :利用EBNA1 Cas9eGFP附着体载体编辑AAVS1 基因座 Example 1: Editing of the AAVS1 locus using the EBNA1 Cas9eGFP episome vector
以下实施例详述利用EBNA1 Cas9eGFP附着体载体编辑AAVS1 基因座,靶位点的序列为5'- AAGAAGACTAGCTGAGCTCTCGG -3'(SEQ.ID.NO.12),最后的CGG序列是CRISPR/Cas9编辑所必须的PAM序列。20万个人HEK293 细胞用1μg 图1A所述EBNA1 Cas9eGFP质粒转染。在孵育一日后,用2mg/ml的嘌呤霉素筛选。第1、3、6、9和12天分别提取DNA鉴定酶切效率。CRISPR/Cas9编辑的地方有一个SacI酶切位点(GAGCTC),已经用绿色标记出来(图2A)。编辑发生后这个位点被破坏,PCR产物无法被SacI切开,从而通过酶切可以鉴定效率。由图2B可以看出刚转染第1天编辑没有发生,靶位点完全可以被SacI切开.随着时间的推移越来越多的靶位点被编辑.到了第9天几乎100%的靶位点被编辑完成。 The following example details the use of the EBNA1 Cas9eGFP attachment vector to edit the AAVS1 locus, the sequence of the target site is 5'- AAGAAGACTAGCTGAGCTCTCGG -3' (SEQ.ID.NO.12), and the final CGG sequence is necessary for CRISPR/Cas9 editing The PAM sequence. 200,000 human HEK293 cells were transfected with 1 μg of the EBNA1 Cas9eGFP plasmid described in Figure 1A. After one day of incubation, selection was performed with 2 mg/ml puromycin. On the 1st, 3rd, 6th, 9th and 12th day, DNA was extracted to identify the efficiency of digestion. The site of CRISPR/Cas9 editing has a SacI cleavage site (GAGCTC), which has been marked in green (Fig. 2A). After editing occurs, this site is destroyed, and the PCR product cannot be cut by SacI, so the efficiency can be identified by enzyme digestion. It can be seen from Figure 2B that the editing did not occur on the first day of transfection, and the target site could be completely cut by SacI. As time went by, more and more target sites were edited. By the ninth day, almost 100% The target site is edited.
实施例2 :利用EBNA1 Cas9copGFP附着体载体编辑EMX1 基因座 Example 2: Editing of the EMX1 locus using the EBNA1 Cas9copGFP episome vector
以下实施例详述利用EBNA1 Cas9copGFP附着体载体编辑EMX1位点。用如图1B所示的EBNA1 Cas9copGFP附着体载体表达EMX1的导向RNA。靶位点的序列为5'- AGGGCTCCCATCACATCAACCGG -3'(SEQ.ID.NO.13),最后的CGG序列是CRISPR/Cas9编辑所必须的PAM序列。20万个人HEK293 细胞用1μg 图1A所述质粒转染。在孵育一日后,用2mg/ml的嘌呤霉素筛选。第1、3、6、9、12、18天分别提取DNA鉴定酶切效率。CRISPR/Cas9编辑的地方有一个AgeI酶切位点(ACCGGT),已经用绿色标记出来(图3A)。编辑发生后这个位点被破坏,PCR产物无法被AgeI切开,从而通过酶切可以鉴定效率。由图3B可以看出刚转染第1天编辑没有发生,靶位点完全可以被AgeI切开.随着时间的推移越来越多的靶位点被编辑.到了第18天几乎100%的靶位点被编辑完成。 The following examples detail editing of the EMX1 locus using the EBNA1 Cas9copGFP episomal vector. The guide RNA for EMX1 was expressed with the EBNA1 Cas9copGFP episomal vector as shown in Figure 1B. The sequence of the target site is 5'- AGGGCTCCCATCACATCAACCGG -3' (SEQ.ID.NO.13), and the last CGG sequence is the PAM sequence necessary for CRISPR/Cas9 editing. 200,000 human HEK293 cells were transfected with 1 μg of the plasmid described in Figure 1A. After one day of incubation, selection was performed with 2 mg/ml puromycin. On the 1st, 3rd, 6th, 9th, 12th, and 18th days, DNA was extracted to identify the enzyme digestion efficiency. The site of CRISPR/Cas9 editing has an AgeI restriction site (ACCGGT), which has been marked in green (Fig. 3A). After editing occurs, this site is destroyed, and the PCR product cannot be cut by AgeI, so the efficiency can be identified by enzyme digestion. It can be seen from Figure 3B that the editing did not occur on the first day of transfection, and the target site could be completely cut by AgeI. As time went by, more and more target sites were edited. By the 18th day, almost 100% The target site is edited.
实施例3 :利用EBNA1 Cas9TK附着体载体编辑GRIN2B 基因座 Example 3: Editing of the GRIN2B locus using the EBNA1 Cas9TK episomal vector
以下实施例详述利用EBNA1 Cas9TK附着体载体编辑GRIN2B基因。用如图1C所示的EBNA1 Cas9TK附着体载体表达GRIN2B的导向RNA。靶位点的序列为5'- TTCCGACGAGGTGGCCATCAAGG -3'(SEQ.ID.NO.14),最后的AGG序列是CRISPR/Cas9编辑所必须的PAM序列。20万个人HEK293 细胞用1μg 图1A所述质粒转染。在孵育一日后,用2mg/ml的嘌呤霉素筛选。第1、3、6、9、12、18和22天分别提取DNA鉴定酶切效率。CRISPR/Cas9编辑的地方有一个MSCI酶切位点(TGGCCA),已经用绿色标记出来(图4A)。编辑发生后这个位点被破坏,PCR产物无法被MSCI切开,从而通过酶切可以鉴定效率。由图4B可以看出刚转染第1天编辑没有发生,靶位点完全可以被MSCI切开.随着时间的推移越来越多的靶位点被编辑.到了第22天65%的靶位点被编辑完成。 The following examples detail editing of the GRIN2B gene using the EBNA1 Cas9TK episomal vector. The guide RNA for GRIN2B was expressed with the EBNA1 Cas9TK episome vector as shown in Figure 1C. The sequence of the target site is 5'-TTCCGACGAGGTGGCCATCAAGG -3' (SEQ.ID.NO.14), and the last AGG sequence is the PAM sequence necessary for CRISPR/Cas9 editing. 200,000 human HEK293 cells were transfected with 1 μg of the plasmid described in Figure 1A. After one day of incubation, selection was performed with 2 mg/ml puromycin. On the 1st, 3rd, 6th, 9th, 12th, 18th and 22nd days, DNA was extracted to identify the enzyme digestion efficiency. The site of CRISPR/Cas9 editing has an MSCI restriction site (TGGCCA), which has been marked in green (Fig. 4A). After editing, this site is destroyed, and the PCR product cannot be cut by MSCI, so the efficiency can be identified by enzyme digestion. It can be seen from Figure 4B that editing did not occur on the first day of transfection, and the target site could be completely cut by MSCI. As time went on, more and more target sites were edited. By the 22nd day, 65% of the target sites The site is edited.
实施例4 :利用EBNA1 Cas9eGFP 附着体载体编辑DYRK1A 基因座 Example 4: Editing of the DYRK1A locus using the EBNA1 Cas9eGFP attachment vector
以下实施例详述DYRK1A 位点的编辑。用如图1A所示的EBNA1 Cas9eGFP附着体载体表达DYRK1A的导向RNA。靶位点的序列为5'- CCATCTGAAGGCCAGCAGCATGG -3'(SEQ.ID.NO.15),最后的TGG序列是CRISPR/Cas9编辑所必须的PAM序列。20万个人HEK293 细胞用1μg 图1A所述质粒转染。在孵育一日后,用2mg/ml的嘌呤霉素筛选。第1、3、6、9、12、18和22天分别提取DNA鉴定酶切效率。CRISPR/Cas9编辑的地方有一个BstXI酶切位点(CCAGCAGACTGG),已经用绿色标记出来(图5A)。编辑发生后这个位点被破坏,PCR产物无法被BstXI切开,从而通过酶切可以鉴定效率。由图5B可以看出刚转染第1天编辑没有发生,靶位点完全可以被BstXI切开.随着时间的推移越来越多的靶位点被编辑.到了第12天大约100%的靶位点被编辑完成。 The following examples detail editing of the DYRK1A locus. The guide RNA for DYRK1A was expressed with the EBNA1 Cas9eGFP attachment vector as shown in Figure 1A. The sequence of the target site is 5'- CCATCTGAAGGCCAGCAGCATGG -3' (SEQ.ID.NO.15), and the last TGG sequence is the PAM sequence necessary for CRISPR/Cas9 editing. 200,000 human HEK293 cells were transfected with 1 μg of the plasmid described in Figure 1A. After one day of incubation, selection was performed with 2 mg/ml puromycin. On the 1st, 3rd, 6th, 9th, 12th, 18th and 22nd days, DNA was extracted to identify the enzyme digestion efficiency. The site of CRISPR/Cas9 editing has a BstXI restriction site (CCAGCAGACTGG), which has been marked in green (Fig. 5A). After editing, this site is destroyed, and the PCR product cannot be cut by BstXI, so the efficiency can be identified by enzyme digestion. It can be seen from Figure 5B that the editing did not occur on the first day of transfection, and the target site could be completely cut by BstXI. As time went by, more and more target sites were edited. By the 12th day, about 100% The target site is edited.
实施例5 :利用EBNA1 Cas9eGFP附着体载体同时编辑DYRK1A 和EMX1 基因座 Example 5: Simultaneous editing of the DYRK1A and EMX1 loci using the EBNA1 Cas9eGFP attachment vector
以下实施例详述在一个细胞中同时对DYRK1A和EMX1 位点的编辑。用如图6所示的EBNA1 Cas9eGFP附着体载体同时表达DYRK1A和EMX1 位点的导向RNA。20万个人HEK293 细胞用1μg 图6所述质粒转染。在孵育一日后,用2mg/ml的嘌呤霉素筛选。第1、3、6、9、12、15、18和22天分别提取DNA鉴定酶切效率。由图7A可以看出转染后第18天DYRK1A位点编辑效率接近100%, 转染后第22天EMX1靶位点编辑完成90%。 The following examples detail simultaneous editing of DYRK1A and EMX1 loci in one cell. Use the EBNA1 Cas9eGFP attachment vector shown in Figure 6 to simultaneously express the guide RNAs at the DYRK1A and EMX1 sites. 200,000 human HEK293 cells were transfected with 1 μg of the plasmid described in Figure 6. After one day of incubation, selection was performed with 2 mg/ml puromycin. On the 1st, 3rd, 6th, 9th, 12th, 15th, 18th and 22nd day, DNA was extracted to identify the enzyme digestion efficiency. It can be seen from Figure 7A that the editing efficiency of the DYRK1A site was close to 100% on the 18th day after transfection, and 90% of the EMX1 target site editing was completed on the 22nd day after transfection.
实施例6 :利用EBNA1 Cas9nTK 附着体载体编辑EMX1 基因座 Example 6: Editing of the EMX1 locus using the EBNA1 Cas9nTK episomal vector
以下实施例详述利用双切口技术(double nicking)编辑EMX1 基因座。如图8所示,EBNA1 Cas9nTK附着体载体表达EMX1的两个导向RNA。这个载体表达的Cas9内切酶含有D10A突变,只能在导向RNA引导下定点切割DNA单链,两个距离合适的单链断裂可以形成DNA双链断裂。这种方法需要两个靶位点同时切割才能产生突变,因而增强了切割的特异性。靶位点的序列为5'- TGCGCCACCGGTTGATGTGATGG -3'(SEQ.ID.NO.16)和5'-CACGAAGCAGGCCAATGGGGAGG -3'(SEQ.ID.NO.17)(见图9A)。20万个人HEK293 细胞用1μg 图8所述质粒转染。在孵育一日后,用2mg/ml的嘌呤霉素筛选。第1、3、6、9、12、15、18和22天分别提取DNA鉴定酶切效率。CRISPR/Cas9编辑的地方有一个AgeI酶切位点(ACCGGT),已经用绿色标记出来(图9A)。编辑发生后这个位点被破坏,PCR产物无法被AgeI切开,从而通过酶切可以鉴定效率。由图9B可以看出刚转染第1天编辑没有发生,第22天靶位点编辑完成80%。 The following examples detail editing of the EMX1 locus using double nicking. As shown in Figure 8, the EBNA1 Cas9nTK episome vector expresses two guide RNAs for EMX1. The Cas9 endonuclease expressed by this vector contains a D10A mutation, which can only cut DNA single strands at a specific point under the guidance of the guide RNA, and two single-strand breaks with a suitable distance can form a DNA double-strand break. This approach requires simultaneous cleavage of both target sites to generate mutations, thus enhancing the specificity of cleavage. The sequences of the target sites were 5'-TGCGCCACCGGTTGATGTGATGG-3' (SEQ.ID.NO.16) and 5'-CACGAAGCAGGCCAATGGGGAGG-3' (SEQ.ID.NO.17) (see Figure 9A). 200,000 human HEK293 cells were transfected with 1 μg of the plasmid described in Figure 8. After one day of incubation, selection was performed with 2 mg/ml puromycin. On the 1st, 3rd, 6th, 9th, 12th, 15th, 18th and 22nd day, DNA was extracted to identify the enzyme digestion efficiency. The site of CRISPR/Cas9 editing has an AgeI restriction site (ACCGGT), which has been marked in green (Fig. 9A). After editing occurs, this site is destroyed, and the PCR product cannot be cut by AgeI, so the efficiency can be identified by enzyme digestion. It can be seen from Figure 9B that no editing occurred on the first day of transfection, and 80% of the target site editing was completed on the 22nd day.
实施例7 :利用EBNA1 Cas9eGFP附着体载体在EMX1 基因座删除281碱基片段 Embodiment 7: Utilize EBNA1 Cas9eGFP attachment carrier to delete 281 base fragments at EMX1 locus
以下实施例详述利用EBNA1 Cas9eGFP 附着体载体在EMX1 基因座敲除281碱基片段。如图6所示,EBNA1 Cas9eGFP附着体载体表达EMX1的两个导向RNA,靶位点的序列为5'- AGGCCCCAGTGGCTGCTCTGGGG -3'(SEQ.ID.NO.18)和5'-GGCAGAGTGCTGCTTGCTGCTGG -3'(SEQ.ID.NO.19)(见图10A)。20万个人HEK293 细胞用1μg 图8所述质粒转染。在孵育一日后,用2mg/ml的嘌呤霉素筛选。第1、3、6、9、12、15、18、21、24、27和30天分别提取DNA用PCR初步鉴定酶切效率。由图10B可以看出刚转染第1天编辑没有发生,第3天可以检测到DNA片段删除,第12天后编辑基本上完成,单是仍然有部分没有编辑的DNA条带。 The following examples detail the use of the EBNA1 Cas9eGFP attachment vector to knock out a 281-base fragment at the EMX1 locus. As shown in Figure 6, the EBNA1 Cas9eGFP attachment vector expresses two guide RNAs of EMX1, and the sequence of the target site is 5'-AGGCCCCAGTGGCTGCTCTGGGG-3'(SEQ.ID.NO.18) and 5'-GGCAGAGTGCTGCTTGCTGCTGG-3'( SEQ.ID.NO.19) (see Figure 10A). 200,000 human HEK293 cells were transfected with 1 μg of the plasmid described in Figure 8. After one day of incubation, selection was performed with 2 mg/ml puromycin. On the 1st, 3rd, 6th, 9th, 12th, 15th, 18th, 21st, 24th, 27th and 30th days, DNA was extracted and PCR was used to preliminarily identify the enzyme cutting efficiency. From Figure 10B, it can be seen that the editing did not occur on the first day of transfection, the deletion of DNA fragments could be detected on the third day, and the editing was basically completed after the 12th day, but there were still some unedited DNA bands.
本发明中检测AAVS1位点的引物: Primers for detecting the AAVS1 site in the present invention:
TGCTTTCTTTGCCTGGACAC(SEQ.ID.NO.20) TGCTTTCTTTGCCTGGACAC (SEQ.ID.NO.20)
CTGTCACCAATCCTGTCCCT(SEQ.ID.NO.21); CTGTCACCAATCCTGTCCCT (SEQ.ID.NO.21);
本发明中检测EMX1位点的引物: Primers for detecting the EMX1 site in the present invention:
CCATCCCCTTCTGTGAATGT(SEQ.ID.NO.22) CCATCCCCTTCTGTGAATGT (SEQ.ID.NO.22)
GGAGATTGGAGACACGGAGA(SEQ.ID.NO.23); GGAGATTGGAGACACGGAGA (SEQ. ID. NO. 23);
本发明中检测DYRK1A位点的引物: Primers for detecting the DYRK1A site in the present invention:
GGAGCTGGTCTGTTGGAGAA(SEQ.ID.NO.24) GGAGCTGGTCTGTTGGAGAA (SEQ.ID.NO.24)
TCCCAATCCATAATCCCACGTT(SEQ.ID.NO.25); TCCCAATCCATAATCCCACGTT (SEQ.ID.NO.25);
本发明中检测GRIN2B位点的引物: Primers for detecting the GRIN2B site in the present invention:
CAGGAGGGCCAGGAGATTTG(SEQ.ID.NO.26) CAGGAGGGCCAGGAGATTTG (SEQ.ID.NO.26)
TGAAATCGAGGATCTGGGCG(SEQ.ID.NO.27)。 TGAAATCGAGGATCTGGGCG (SEQ. ID. NO. 27).
<110> 复旦大学 <110> Fudan University
<120> 使用编码靶向核酸内切酶附着体载体的基因组编辑方法及试剂盒 <120> Genome editing methods and kits using vectors encoding targeted endonuclease attachments
<130> 001 <130> 001
<160> 27 <160> 27
<170> PatentIn version 3.3 <170> PatentIn version 3.3
the
<210> 1 <210> 1
<211> 472 <211> 472
<212> DNA <212> DNA
<213> <213>
the
<400> 1 <400> 1
ggtacctttc agagcgatcg caagtaactt aagcttaaga accgctcgag gccggcaagg 60 ggtacctttc agagcgatcg caagtaactt aagcttaaga accgctcgag gccggcaagg 60
the
ccggatccag acatgataag atacattgat gagtttggac aaaccacaac tagaatgcag 120 ccggatccag acatgataag atacattgat gagtttggac aaaccacaac tagaatgcag 120
the
tgaaaaaaat gctttatttg tgaaatttgt gatgctattg ctttatttgt aaccattata 180 tgaaaaaaat gctttatttg tgaaatttgt gatgctattg ctttatttgt aaccattata 180
the
agctgcaata aacaagttaa caacaacaat tgcattcatt ttatgtttca ggttcagggg 240 agctgcaata aacaagttaa caacaacaat tgcattcatt ttatgtttca ggttcagggg 240
the
gaggtgtggg aggtttttta aagcaagtaa aacctctaca aatgtggtat ggctgattat 300 gaggtgtggg aggtttttta aagcaagtaa aacctctaca aatgtggtat ggctgattat 300
the
gatccggctg cctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac atgcagctcc 360 gatccggctg cctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac atgcagctcc 360
the
cggagacggt cacagcttgt ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg 420 cggagacggt cacagcttgt ctgtaagcgg atgccggggag cagacaagcc cgtcagggcg 420
the
cgtcagcggg tgttggcggg tgtcggggcg cagccatgag gtcgactcta ga 472 cgtcagcggg tgttggcggg tgtcggggcg cagccatgag gtcgactcta ga 472
the
the
<210> 2 <210> 2
<211> 24 <211> 24
<212> DNA <212> DNA
<213> <213>
the
<400> 2 <400> 2
caccgagaag agcgatgctc ttcg 24 caccgagaag agcgatgctc ttcg 24
the
the
<210> 3 <210> 3
<211> 24 <211> 24
<212> DNA <212> DNA
<213> <213>
the
<400> 3 <400> 3
aaaccgaaga gcatcgctct tctc 24 aaaccgaaga gcatcgctct tctc 24
the
the
<210> 4 <210> 4
<211> 29 <211> 29
<212> DNA <212> DNA
<213> <213>
the
<400> 4 <400> 4
tatggtacct ttcagaccca cctcccaac 29 tatggtacct ttcagaccca cctcccaac 29
the
the
<210> 5 <210> 5
<211> 34 <211> 34
<212> DNA <212> DNA
<213> <213>
the
<400> 5 <400> 5
ccttcggcga tcgcggcacc gggcttgcgg gtca 34 ccttcggcga tcgcggcacc gggcttgcgg gtca 34
the
the
<210> 6 <210> 6
<211> 34 <211> 34
<212> DNA <212> DNA
<213> <213>
the
<400> 6 <400> 6
ggtgccgcga tcgccgaagg atccgcggcc gcca 34 ggtgccgcga tcgccgaagg atccgcggcc gcca 34
the
the
<210> 7 <210> 7
<211> 29 <211> 29
<212> DNA <212> DNA
<213> <213>
the
<400> 7 <400> 7
gttcttaagt tacttgtaca gctcgtcca 29 gttcttaagt tacttgtaca gctcgtcca 29
the
the
<210> 8 <210> 8
<211> 31 <211> 31
<212> DNA <212> DNA
<213> <213>
the
<400> 8 <400> 8
gccgcgatcg ccgaaggatc cgcggccgct g 31 gccgcgatcg ccgaaggatc cgcggccgct g 31
the
the
<210> 9 <210> 9
<211> 29 <211> 29
<212> DNA <212> DNA
<213> <213>
the
<400> 9 <400> 9
gttcttaagt cgacttagat tcagctcta 29 gttcttaagt cgacttagat tcagctcta 29
the
the
<210> 10 <210> 10
<211> 30 <211> 30
<212> DNA <212> DNA
<213> <213>
the
<400> 10 <400> 10
atccggaccg ccacatcgag cgggtcaccg 30 atccggaccg ccacatcgag cgggtcaccg 30
the
the
<210> 11 <210> 11
<211> 29 <211> 29
<212> DNA <212> DNA
<213> <213>
the
<400> 11 <400> 11
gttcttaagg ctgatcagcg agctctaga 29 gttcttaagg ctgatcagcg agctctaga 29
the
the
<210> 12 <210> 12
<211> 23 <211> 23
<212> DNA <212> DNA
<213> <213>
the
<400> 12 <400> 12
aagaagacta gctgagctct cgg 23 aagaagacta gctgagctct cgg 23
the
the
<210> 13 <210> 13
<211> 23 <211> 23
<212> DNA <212> DNA
<213> <213>
the
<400> 13 <400> 13
agggctccca tcacatcaac cgg 23 agggctccca tcacatcaac cgg 23
the
the
<210> 14 <210> 14
<211> 23 <211> 23
<212> DNA <212> DNA
<213> <213>
the
<400> 14 <400> 14
ttccgacgag gtggccatca agg 23 ttccgacgag gtggccatca agg 23
the
the
<210> 15 <210> 15
<211> 23 <211> 23
<212> DNA <212> DNA
<213> <213>
the
<400> 15 <400> 15
ccatctgaag gccagcagca tgg 23 ccatctgaag gccagcagca tgg 23
the
the
<210> 16 <210> 16
<211> 23 <211> 23
<212> DNA <212> DNA
<213> <213>
the
<400> 16 <400> 16
tgcgccaccg gttgatgtga tgg 23 tgcgccaccg gttgatgtga tgg 23
the
the
<210> 17 <210> 17
<211> 23 <211> 23
<212> DNA <212> DNA
<213> <213>
the
<400> 17 <400> 17
cacgaagcag gccaatgggg agg 23 cacgaagcag gccaatgggg agg 23
the
the
<210> 18 <210> 18
<211> 23 <211> 23
<212> DNA <212> DNA
<213> <213>
the
<400> 18 <400> 18
aggccccagt ggctgctctg ggg 23 aggccccagt ggctgctctg ggg 23
the
the
<210> 19 <210> 19
<211> 23 <211> 23
<212> DNA <212> DNA
<213> <213>
the
<400> 19 <400> 19
ggcagagtgc tgcttgctgc tgg 23 ggcagagtgc tgcttgctgc tgg 23
the
the
<210> 20 <210> 20
<211> 20 <211> 20
<212> DNA <212> DNA
<213> <213>
the
<400> 20 <400> 20
tgctttcttt gcctggacac 20 tgctttcttt gcctggacac 20
the
the
<210> 21 <210> 21
<211> 20 <211> 20
<212> DNA <212> DNA
<213> <213>
the
<400> 21 <400> 21
ctgtcaccaa tcctgtccct 20 ctgtcaccaa tcctgtccct 20
the
the
<210> 22 <210> 22
<211> 20 <211> 20
<212> DNA <212> DNA
<213> <213>
the
<400> 22 <400> 22
ccatcccctt ctgtgaatgt 20 ccatcccctt ctgtgaatgt 20
the
the
<210> 23 <210> 23
<211> 20 <211> 20
<212> DNA <212> DNA
<213> <213>
the
<400> 23 <400> 23
ggagattgga gacacggaga 20 ggagattgga gacacggaga 20
the
the
<210> 24 <210> 24
<211> 20 <211> 20
<212> DNA <212> DNA
<213> <213>
the
<400> 24 <400> 24
ggagctggtc tgttggagaa 20 ggagctggtc tgttggagaa 20
the
the
<210> 25 <210> 25
<211> 22 <211> 22
<212> DNA <212> DNA
<213> <213>
the
<400> 25 <400> 25
tcccaatcca taatcccacg tt 22 tcccaatcca taatcccacg tt 22
the
the
<210> 26 <210> 26
<211> 20 <211> 20
<212> DNA <212> DNA
<213> <213>
the
<400> 26 <400> 26
caggagggcc aggagatttg 20 caggagggcc aggagatttg 20
the
the
<210> 27 <210> 27
<211> 20 <211> 20
<212> DNA <212> DNA
<213> <213>
the
<400> 27 <400> 27
tgaaatcgag gatctgggcg 20 tgaaatcgag gatctgggcg 20
the
the
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410733267.1A CN104450785A (en) | 2014-12-08 | 2014-12-08 | Genome editing method using attachment carrier for encoding targeted endonuclease and kit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410733267.1A CN104450785A (en) | 2014-12-08 | 2014-12-08 | Genome editing method using attachment carrier for encoding targeted endonuclease and kit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104450785A true CN104450785A (en) | 2015-03-25 |
Family
ID=52897533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410733267.1A Pending CN104450785A (en) | 2014-12-08 | 2014-12-08 | Genome editing method using attachment carrier for encoding targeted endonuclease and kit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104450785A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104894071A (en) * | 2015-06-08 | 2015-09-09 | 东华大学 | Method for carrying out gene edition on GT1-7 cells |
CN104928292A (en) * | 2015-05-26 | 2015-09-23 | 中国医学科学院血液病医院(血液学研究所) | Design method of sgRNA and lentivirus carrier formed by sgRNA and plasmids |
CN105238806A (en) * | 2015-11-02 | 2016-01-13 | 中国科学院天津工业生物技术研究所 | Construction and application of CRISPR/Cas9 gene editing vector for microorganisms |
CN106086031A (en) * | 2016-06-17 | 2016-11-09 | 湖北省农业科学院畜牧兽医研究所 | Pig flesh chalone gene editing site and application thereof |
CN107794272A (en) * | 2016-09-06 | 2018-03-13 | 中国科学院上海生命科学研究院 | A kind of CRISPR genome editor's systems of high specific |
CN108026519A (en) * | 2015-06-17 | 2018-05-11 | 波赛达治疗公司 | The composition and method for particular locus protein being directed in genome |
CN109679989A (en) * | 2018-12-29 | 2019-04-26 | 北京市农林科学院 | A method of improving base editing system editorial efficiency |
CN110004181A (en) * | 2019-03-20 | 2019-07-12 | 东北农业大学 | An episomal CRISPR/Cas9 expression vector and its construction method and application |
WO2019205919A1 (en) * | 2018-04-28 | 2019-10-31 | 青岛清原化合物有限公司 | Construction method for biological mutant library |
WO2019237372A1 (en) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | Method for constructing cho cell strain with act35 gene inserted at fixed point and use thereof |
CN113789317A (en) * | 2014-08-06 | 2021-12-14 | 基因工具股份有限公司 | Gene editing using RNA-guided engineered nucleases derived from the Campylobacter jejuni CRISPR/CAS system |
CN116004716A (en) * | 2022-09-09 | 2023-04-25 | 华中农业大学 | A method for high-efficiency gene editing by a replicative dCas9-FokI system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003087341A2 (en) * | 2002-01-23 | 2003-10-23 | The University Of Utah Research Foundation | Targeted chromosomal mutagenesis using zinc finger nucleases |
CN101955977A (en) * | 2009-03-25 | 2011-01-26 | 中国科学院生物物理研究所 | Expression system for nonintegrated, long-time and erasable expression vector |
CN102625655A (en) * | 2008-12-04 | 2012-08-01 | 桑格摩生物科学股份有限公司 | Genome editing in rats using zinc finger nucleases |
CN102803476A (en) * | 2009-09-14 | 2012-11-28 | 程临钊 | Reprogramming blood cells to pluripotent and multipotent stem cells |
CN103168101A (en) * | 2010-07-23 | 2013-06-19 | 西格马-奥尔德里奇有限责任公司 | Genome editing using targeting endonucleases and single-stranded nucleic acids |
CN104152414A (en) * | 2014-07-18 | 2014-11-19 | 中国科学院广州生物医药与健康研究院 | Gene modifying method for reserved locus of cell genome |
-
2014
- 2014-12-08 CN CN201410733267.1A patent/CN104450785A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003087341A2 (en) * | 2002-01-23 | 2003-10-23 | The University Of Utah Research Foundation | Targeted chromosomal mutagenesis using zinc finger nucleases |
CN102625655A (en) * | 2008-12-04 | 2012-08-01 | 桑格摩生物科学股份有限公司 | Genome editing in rats using zinc finger nucleases |
CN101955977A (en) * | 2009-03-25 | 2011-01-26 | 中国科学院生物物理研究所 | Expression system for nonintegrated, long-time and erasable expression vector |
CN102803476A (en) * | 2009-09-14 | 2012-11-28 | 程临钊 | Reprogramming blood cells to pluripotent and multipotent stem cells |
CN103168101A (en) * | 2010-07-23 | 2013-06-19 | 西格马-奥尔德里奇有限责任公司 | Genome editing using targeting endonucleases and single-stranded nucleic acids |
CN104152414A (en) * | 2014-07-18 | 2014-11-19 | 中国科学院广州生物医药与健康研究院 | Gene modifying method for reserved locus of cell genome |
Non-Patent Citations (9)
Title |
---|
CHO SW 等: "Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease", 《NATURE BIOTECHNOLOGY》 * |
JUNYING YU 等: "Human induced pluripotent stem cells free of vector and transgene sequences", 《SCIENCE》 * |
LE CONG 等: "Multiplex genome engineering using CRISPR/Cas systems", 《SCIENCE》 * |
MALI P 等: "RNA-guided human genome engineering via Cas9", 《SCIENCE》 * |
OKITA K 等: "A more efficient method to generate integration-free human iPS cells", 《NATURE METHODS》 * |
YONGMING WANG 等: "Genome Editing of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells With Zinc Finger Nuclease for Cellular Imaging", 《CIRCULATION RESEARCH》 * |
何婕 等: "基于EBNA1和oriP的载体在基因治疗中的应用研究进展", 《生物工程学报》 * |
刘志国: "CRISPR/Cas9系统介导基因组编辑的研究进展", 《畜牧兽医学报》 * |
林艳 等: "MAR介导的非病毒附着体载体的研究进展", 《生物技术通报》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113789317A (en) * | 2014-08-06 | 2021-12-14 | 基因工具股份有限公司 | Gene editing using RNA-guided engineered nucleases derived from the Campylobacter jejuni CRISPR/CAS system |
CN113789317B (en) * | 2014-08-06 | 2024-02-23 | 基因工具股份有限公司 | Gene editing using campylobacter jejuni CRISPR/CAS system-derived RNA-guided engineered nucleases |
CN104928292A (en) * | 2015-05-26 | 2015-09-23 | 中国医学科学院血液病医院(血液学研究所) | Design method of sgRNA and lentivirus carrier formed by sgRNA and plasmids |
CN104928292B (en) * | 2015-05-26 | 2019-06-14 | 中国医学科学院血液病医院(血液学研究所) | A kind of sgRNA design method and constructed lentiviral vector and plasmid |
CN104894071A (en) * | 2015-06-08 | 2015-09-09 | 东华大学 | Method for carrying out gene edition on GT1-7 cells |
CN108026519A (en) * | 2015-06-17 | 2018-05-11 | 波赛达治疗公司 | The composition and method for particular locus protein being directed in genome |
US11473082B2 (en) | 2015-06-17 | 2022-10-18 | Poseida Therapeutics, Inc. | Compositions and methods for directing proteins to specific loci in the genome |
CN105238806A (en) * | 2015-11-02 | 2016-01-13 | 中国科学院天津工业生物技术研究所 | Construction and application of CRISPR/Cas9 gene editing vector for microorganisms |
CN105238806B (en) * | 2015-11-02 | 2018-11-27 | 中国科学院天津工业生物技术研究所 | A kind of building and its application of the CRISPR/Cas9 gene editing carrier for microorganism |
CN106086031A (en) * | 2016-06-17 | 2016-11-09 | 湖北省农业科学院畜牧兽医研究所 | Pig flesh chalone gene editing site and application thereof |
CN106086031B (en) * | 2016-06-17 | 2019-08-06 | 湖北省农业科学院畜牧兽医研究所 | Pig flesh chalone gene editing site and its application |
CN107794272A (en) * | 2016-09-06 | 2018-03-13 | 中国科学院上海生命科学研究院 | A kind of CRISPR genome editor's systems of high specific |
WO2019205919A1 (en) * | 2018-04-28 | 2019-10-31 | 青岛清原化合物有限公司 | Construction method for biological mutant library |
WO2019237372A1 (en) * | 2018-06-16 | 2019-12-19 | 深圳市博奥康生物科技有限公司 | Method for constructing cho cell strain with act35 gene inserted at fixed point and use thereof |
CN109679989A (en) * | 2018-12-29 | 2019-04-26 | 北京市农林科学院 | A method of improving base editing system editorial efficiency |
CN110004181A (en) * | 2019-03-20 | 2019-07-12 | 东北农业大学 | An episomal CRISPR/Cas9 expression vector and its construction method and application |
CN116004716A (en) * | 2022-09-09 | 2023-04-25 | 华中农业大学 | A method for high-efficiency gene editing by a replicative dCas9-FokI system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104450785A (en) | Genome editing method using attachment carrier for encoding targeted endonuclease and kit | |
US11268109B2 (en) | CHO integration sites and uses thereof | |
CN106661569B (en) | Antiviral cells and uses thereof | |
US10858662B2 (en) | Genome editing with split Cas9 expressed from two vectors | |
JP2016523084A (en) | Target integration | |
CN109136248B (en) | Multi-target editing vector and construction method and application thereof | |
CN109306361B (en) | A new gene editing system for site-directed conversion of A/T to G/C bases | |
US20210309988A1 (en) | Stable targeted integration | |
JP7576806B2 (en) | Tetracycline and Cumate-based coregulatory sequence | |
WO2019120193A1 (en) | Split single-base gene editing systems and application thereof | |
WO2024230183A1 (en) | Fusion protein and use thereof in gene editing | |
CN103740756B (en) | The non-viral free carrier that a kind of controllable is deleted and construction process thereof | |
CN102286514A (en) | Transposition carrier and construction method thereof | |
JP2024099583A (en) | Stable targeted integration | |
ES2849728T3 (en) | Efficient selectivity of recombinant proteins | |
CN116004716A (en) | A method for high-efficiency gene editing by a replicative dCas9-FokI system | |
GB2507030A (en) | Algal genome modification | |
WO2023205656A2 (en) | Immortalized cells for production of bioproducts, methods of producing bioproducts with an immortalized cell, and methods of making immortalized cells for production of bioproducts | |
AU2023246279A1 (en) | Cell suitable for gene engineering, cell engineering and cellular medicine, and method for producing same | |
Fernandes | Establishment and evaluation of flexible insect cell lines for rapid production of recombinant proteins | |
HK1235432B (en) | Novel cho integration sites and uses thereof | |
HK1235432A1 (en) | Novel cho integration sites and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150325 |
|
RJ01 | Rejection of invention patent application after publication |