CN104425241A - Method for removing natural oxide layer - Google Patents
Method for removing natural oxide layer Download PDFInfo
- Publication number
- CN104425241A CN104425241A CN201310409612.1A CN201310409612A CN104425241A CN 104425241 A CN104425241 A CN 104425241A CN 201310409612 A CN201310409612 A CN 201310409612A CN 104425241 A CN104425241 A CN 104425241A
- Authority
- CN
- China
- Prior art keywords
- oxidizing layer
- natural oxidizing
- oxide layer
- minimizing technology
- natural oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000004065 semiconductor Substances 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 239000007789 gas Substances 0.000 claims description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 229910052732 germanium Inorganic materials 0.000 claims description 10
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 150000004678 hydrides Chemical class 0.000 claims description 8
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 8
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 8
- 150000002431 hydrogen Chemical class 0.000 claims description 5
- 238000009423 ventilation Methods 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims 15
- 239000008246 gaseous mixture Substances 0.000 claims 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims 2
- 239000000460 chlorine Substances 0.000 claims 2
- 229910052801 chlorine Inorganic materials 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 17
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052986 germanium hydride Inorganic materials 0.000 abstract description 6
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 239000010703 silicon Substances 0.000 abstract description 3
- 230000004048 modification Effects 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 229910000078 germane Inorganic materials 0.000 description 6
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 4
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 3
- PVADDRMAFCOOPC-UHFFFAOYSA-N germanium monoxide Inorganic materials [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 3
- 238000002017 high-resolution X-ray diffraction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910005898 GeSn Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- VXGHASBVNMHGDI-UHFFFAOYSA-N digermane Chemical compound [Ge][Ge] VXGHASBVNMHGDI-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Abstract
本发明提供了一种自然氧化层的去除方法,在400℃~600℃的温度条件下,使用锗的氢化物去除半导体衬底表面上的自然氧化层。本发明提供的自然氧化层的去除方法的处理温度低,可有效避免半导体器件衬底硅的损失,并且整个去除过程可在外延反应设备中进行,不需要对外延反应设备的腔室进行任何改造,因此处理成本也大大降低。
The invention provides a method for removing the natural oxide layer, which uses germanium hydride to remove the natural oxide layer on the surface of the semiconductor substrate under the temperature condition of 400°C to 600°C. The method for removing the natural oxide layer provided by the present invention has a low treatment temperature, can effectively avoid the loss of silicon on the semiconductor device substrate, and the entire removal process can be carried out in the epitaxial reaction equipment without any modification of the chamber of the epitaxial reaction equipment , so the processing cost is also greatly reduced.
Description
技术领域technical field
本发明涉及半导体器件制备领域,特别涉及一种去除外延前自然氧化层的方法。The invention relates to the field of semiconductor device preparation, in particular to a method for removing a natural oxide layer before epitaxy.
背景技术Background technique
外延工艺是常用的一种生长SiGe,Ge,SiC,GeSn等应变材料的方法,为了在半导体衬底的表面生长出应变(strain)材料,在外延工艺前先需要去除半导体衬底表面的二氧化硅自然氧化层(native oxide)。目前常用的去除自然氧化层的方法是氢氟酸后处理工艺(HF-last),即使用氢氟酸腐蚀掉半导体衬底表面的自然氧化层,但通常使用氢氟酸处理完后的半导体衬底表面还是有约1nm厚的自然氧化层的残留,并且如果没有及时进入真空反应腔体,自然氧化层的厚度还会因氧化而变厚,因此还需要在外延反应腔室里通过前烘烤工艺(Pre Baking)或低温等离子体轰击腐蚀工艺去除残留的自然氧化层。The epitaxial process is a commonly used method for growing strained materials such as SiGe, Ge, SiC, GeSn, etc. In order to grow strained (strain) materials on the surface of the semiconductor substrate, it is necessary to remove the oxide on the surface of the semiconductor substrate before the epitaxial process. Silicon native oxide (native oxide). At present, the commonly used method to remove the natural oxide layer is the hydrofluoric acid post-treatment process (HF-last), which uses hydrofluoric acid to etch away the natural oxide layer on the surface of the semiconductor substrate, but the semiconductor substrate after hydrofluoric acid treatment is usually used There is still a natural oxide layer about 1nm thick on the bottom surface, and if it does not enter the vacuum reaction chamber in time, the thickness of the natural oxide layer will become thicker due to oxidation, so it needs to be pre-baked in the epitaxial reaction chamber Process (Pre Baking) or low temperature plasma bombardment etching process to remove the remaining natural oxide layer.
前烘烤工艺的处理温度一般大于750℃,对于高K栅介质和金属栅(HKMG,High k metal gate)集成以及三维鳍式晶体管(Finfet3D)的外延而言,容易造成露出的衬底硅材料的损失,进而影响半导体器件的性能,并且对于先进制程器件而言,高温的前烘烤工艺需要更低的热预算(thermbudget);低温等离子轰击腐蚀工艺容易带来等离子体引起的损伤(PID,Plasma Induce damage)问题,并且因需要增设一个腔体而需要增大外延设备的体积,导致设备的运行成本也较高。The processing temperature of the pre-bake process is generally higher than 750°C. For the integration of high K gate dielectric and metal gate (HKMG, High k metal gate) and the epitaxy of three-dimensional fin transistor (Finfet3D), it is easy to cause the exposed substrate silicon material loss, which in turn affects the performance of semiconductor devices, and for advanced process devices, the high-temperature pre-baking process requires a lower thermal budget (thermbudget); the low-temperature plasma bombardment etching process is prone to plasma-induced damage (PID, Plasma Induce damage), and the volume of the epitaxial equipment needs to be increased due to the need to add a cavity, resulting in higher operating costs of the equipment.
发明内容Contents of the invention
有鉴于此,本发明提供了一种处理温度低,成本低的自然氧化层的去除方法。In view of this, the invention provides a method for removing the natural oxide layer with low processing temperature and low cost.
为实现上述目的,本发明提供的自然氧化层的去除方法是在400℃~600℃的温度条件下,使用锗的氢化物去除半导体衬底表面上的自然氧化层。To achieve the above object, the method for removing the natural oxide layer provided by the present invention is to use germanium hydride to remove the natural oxide layer on the surface of the semiconductor substrate at a temperature of 400°C to 600°C.
本发明提供的方法中的锗的氢化物容易在一定的温度下分解,分解出的锗和自然氧化层(成份为二氧化硅)反应生成易挥发的一氧化锗及一氧化硅,从而将自然氧化层有效去除。The hydride of germanium in the method provided by the invention is easy to decompose at a certain temperature, and the decomposed germanium reacts with the natural oxide layer (the composition is silicon dioxide) to generate volatile germanium monoxide and silicon monoxide, thereby dissolving the natural The oxide layer is effectively removed.
在本发明的一个优选实施例中,所述锗的氢化物的通式为GenH2n+2,其中n为1、2或3,上述通式中包括了甲锗烷(GeH4)、乙锗烷(Ge2H6)和三锗烷(Ge3H8),以甲锗烷为例,在去除自然氧化层的过程中发生如下反应:In a preferred embodiment of the present invention, the general formula of the germanium hydride is Gen H 2n+2 , wherein n is 1, 2 or 3, and the above general formula includes germane (GeH 4 ), Digermane (Ge 2 H 6 ) and trigermane (Ge 3 H 8 ), taking germane as an example, the following reactions occur in the process of removing the natural oxide layer:
GeH4→Ge+2H2↑;GeH 4 →Ge+2H 2 ↑;
Ge+SiO2→GeO↑+SiO↑。Ge+SiO 2 →GeO↑+SiO↑.
在本发明的一个优选实施例中,使用混合气去除半导体衬底表面上的自然氧化层,所述混合气包含锗的氢化物和氢气,在氢气的携带下锗的氢化物更易进入反应设备,而且还能带走反应副产物,此外,氢气具备很强的还原性,可以抑制半导体衬底表面氧化层的形成。In a preferred embodiment of the present invention, a mixed gas is used to remove the natural oxide layer on the surface of the semiconductor substrate, the mixed gas includes germanium hydride and hydrogen, and the germanium hydride is more likely to enter the reaction device under the hydrogen, Moreover, it can also take away the by-products of the reaction. In addition, hydrogen has a strong reducing property, which can inhibit the formation of an oxide layer on the surface of the semiconductor substrate.
更优选地,所述混合气中锗的氢化物和氢气的体积比为(1~10):100。More preferably, the volume ratio of germanium hydride to hydrogen in the mixed gas is (1-10):100.
更优选地,所述混合气的流量为20SCCM~500SCCM。More preferably, the flow rate of the mixed gas is 20SCCM-500SCCM.
更优选地,所述混合气的通气时间为10s~300s。More preferably, the ventilation time of the mixed gas is 10s-300s.
在本发明的一个优选实施例中,在去除自然氧化层的过程中还通入氢气,其流量为20SLM~180SLM。通氢气有利于带走反应副产物,而且氢气具备很强的还原性,可以进一步抑制半导体衬底表面氧化层的形成。In a preferred embodiment of the present invention, hydrogen gas is also introduced during the process of removing the natural oxide layer, and its flow rate is 20SLM-180SLM. The hydrogen gas is beneficial to take away the reaction by-products, and the hydrogen gas has a strong reducing property, which can further inhibit the formation of the oxide layer on the surface of the semiconductor substrate.
在本发明的一个优选实施例中,去除自然氧化层的过程在20Torr~760Torr的条件下进行。In a preferred embodiment of the present invention, the process of removing the natural oxide layer is carried out under the condition of 20 Torr-760 Torr.
在本发明的另一个优选实施例中,去除自然氧化层的过程中还可通入氯气或氯化氢气体,其可和锗的氢化物一起通入反应设备,也可在锗的氢化物通入结束后再通入氯气或氯化氢气体,这样做的目的是为了防止锗的氢化物过量时,有过量的锗淀积在半导体衬底的表面上,其具体反应的过程如下:In another preferred embodiment of the present invention, chlorine gas or hydrogen chloride gas can also be fed in the process of removing the natural oxide layer, which can be fed into the reaction equipment together with the hydride of germanium, and can also be passed into the reaction device after the hydride of germanium is fed. Pass into chlorine gas or hydrogen chloride gas again, the purpose of doing like this is to prevent excessive germanium from being deposited on the surface of the semiconductor substrate when the hydride of germanium is excessive, and the process of its specific reaction is as follows:
Ge+4HCl→GeCl4↑+H2↑。Ge+4HCl→GeCl 4 ↑+H 2 ↑.
更优选地,所述氯气或氯化氢气体的流量为20SCCM~1000SCCM。More preferably, the flow rate of the chlorine gas or hydrogen chloride gas is 20SCCM˜1000SCCM.
本发明提供的自然氧化层的去除方法的处理温度低,可有效避免半导体器件衬底硅的损失,并且整个去除过程可在外延反应设备中进行,不需要对外延反应设备的腔室进行任何改造,因此处理成本也大大降低。The method for removing the natural oxide layer provided by the present invention has a low treatment temperature, can effectively avoid the loss of silicon on the semiconductor device substrate, and the entire removal process can be carried out in the epitaxial reaction equipment without any modification of the chamber of the epitaxial reaction equipment , so the processing cost is also greatly reduced.
附图说明Description of drawings
图1为经本发明所公开的方法去除自然氧化层后的半导体衬底表面外延层的高分辨率X射线衍射(HR-XRD)图谱。Fig. 1 is a high-resolution X-ray diffraction (HR-XRD) spectrum of the epitaxial layer on the surface of a semiconductor substrate after the natural oxide layer is removed by the method disclosed in the present invention.
具体实施方式Detailed ways
为使发明的上述目的、特征和优点能够更加明显易懂,下面对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the invention more obvious and comprehensible, specific implementations of the invention will be described in detail below.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。In the following description, a lot of specific details are set forth in order to fully understand the present invention, but the present invention can also be implemented in other ways different from those described here, and those skilled in the art can do it without departing from the meaning of the present invention. By analogy, the present invention is therefore not limited to the specific examples disclosed below.
本发明的实施例中所用的原料如下:The raw materials used in the embodiments of the present invention are as follows:
甲锗烷混合气:甲锗烷的体积百分比为10%,其余为氢气,Air Product空气化工公司Germane mixed gas: the volume percentage of germane is 10%, the rest is hydrogen, Air Product air chemical company
氢气:高纯氢,Air Product空气化工公司Hydrogen: High Purity Hydrogen, Air Product Air Chemicals
氯化氢气体:林德特种气体公司Hydrogen Chloride Gas: Linde Special Gases
本发明所用的反应器如下:The reactor used in the present invention is as follows:
美国先晶半导体有限公司生产的型号为ASM E2000的减压化学气相沉积设备(RPCVD)The reduced-pressure chemical vapor deposition equipment (RPCVD) of the model ASM E2000 produced by American First Semiconductor Co., Ltd.
本发明所用的测试仪器如下:The used test instrument of the present invention is as follows:
英国Jodran valley公司生产的型号为Q3的高分辨率X射线衍射仪(HR-XRD);Q3 high-resolution X-ray diffractometer (HR-XRD) produced by Jodran valley company in the UK;
ATOMIKA公司生产的型号为SIMS4500的二次离子质谱仪(SIMS)。The secondary ion mass spectrometer (SIMS) produced by ATOMIKA company is SIMS4500.
实施例1Example 1
对减压化学气相沉积设备的反应腔进行预清洗后,将经过HF-last处理的半导体衬底放入反应腔中,在600℃、125Torr的条件下,同时往反应腔内通入流量为200SCCM的甲锗烷混合气、120SLM的氢气及200SCCM的氯化氢气体,在125s后停止通入甲锗烷混合气和氯化氢气体,并保持氢气的流量不变,此时即获得高质量的不含自然氧化层的半导体衬底;接着根据需求可在同一个反应腔中对半导体衬底进行外延生长处理,即可以获得带应变薄膜的半导体器件。After pre-cleaning the reaction chamber of the decompression chemical vapor deposition equipment, put the HF-last-treated semiconductor substrate into the reaction chamber, and at the same time, flow 200 SCCM into the reaction chamber under the conditions of 600 ° C and 125 Torr. Germane mixed gas, 120SLM hydrogen and 200SCCM hydrogen chloride gas, stop feeding germane mixed gas and hydrogen chloride gas after 125s, and keep the flow of hydrogen constant, then you can get high quality free of natural oxidation layer semiconductor substrate; then according to requirements, the semiconductor substrate can be subjected to epitaxial growth treatment in the same reaction chamber to obtain a semiconductor device with a strained thin film.
如图1所示,外延层为SiGe应变材料,在SiGe峰的两侧出现明显的干涉条纹,表明SiGe和Si的界面结合较好,没有自然氧化层的残留。As shown in Figure 1, the epitaxial layer is a SiGe strained material, and obvious interference fringes appear on both sides of the SiGe peak, indicating that the interface between SiGe and Si is well bonded, and there is no residual natural oxide layer.
通过SIMS分析半导体衬底和外延层的界面处的C,O含量在1E18at/cm3以下,表明半导体衬底上的自然氧化层去除干净。The C and O content at the interface between the semiconductor substrate and the epitaxial layer was analyzed by SIMS below 1E18at/cm 3 , indicating that the natural oxide layer on the semiconductor substrate was removed completely.
虽然本发明是结合以上实施例进行描述的,但本发明并不被限定于上述实施例,而只受所附权利要求的限定,本领域普通技术人员能够容易地对其进行修改和变化,但并不离开本发明的实质构思和范围。Although the present invention is described in conjunction with the above embodiments, the present invention is not limited to the above embodiments, but is only limited by the appended claims, and those skilled in the art can easily modify and change it, but without departing from the spirit and scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310409612.1A CN104425241A (en) | 2013-09-10 | 2013-09-10 | Method for removing natural oxide layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310409612.1A CN104425241A (en) | 2013-09-10 | 2013-09-10 | Method for removing natural oxide layer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104425241A true CN104425241A (en) | 2015-03-18 |
Family
ID=52973923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310409612.1A Pending CN104425241A (en) | 2013-09-10 | 2013-09-10 | Method for removing natural oxide layer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104425241A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106257631A (en) * | 2015-06-18 | 2016-12-28 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor device and manufacture method, electronic installation |
CN109119331A (en) * | 2017-06-23 | 2019-01-01 | 上海新昇半导体科技有限公司 | A kind of semiconductor devices and its manufacturing method, electronic device |
CN115132570A (en) * | 2022-09-01 | 2022-09-30 | 睿力集成电路有限公司 | Processing method and device for semiconductor structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101191251A (en) * | 2006-11-20 | 2008-06-04 | 上海华虹Nec电子有限公司 | Method for removing natural oxidizing layer before silicon chip low-temperature epitaxy growth |
CN101355016A (en) * | 2007-07-23 | 2009-01-28 | 东部高科股份有限公司 | Method for cleaning semiconductor device |
CN102206799A (en) * | 2011-04-20 | 2011-10-05 | 北京大学 | Surface passivation method for germanium-based MOS (Metal Oxide Semiconductor) device substrate |
US20120241815A1 (en) * | 2011-03-23 | 2012-09-27 | Samsung Electronics Co., Ltd | Semiconductor devices and methods of fabricating the same |
-
2013
- 2013-09-10 CN CN201310409612.1A patent/CN104425241A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101191251A (en) * | 2006-11-20 | 2008-06-04 | 上海华虹Nec电子有限公司 | Method for removing natural oxidizing layer before silicon chip low-temperature epitaxy growth |
CN101355016A (en) * | 2007-07-23 | 2009-01-28 | 东部高科股份有限公司 | Method for cleaning semiconductor device |
US20120241815A1 (en) * | 2011-03-23 | 2012-09-27 | Samsung Electronics Co., Ltd | Semiconductor devices and methods of fabricating the same |
CN102206799A (en) * | 2011-04-20 | 2011-10-05 | 北京大学 | Surface passivation method for germanium-based MOS (Metal Oxide Semiconductor) device substrate |
Non-Patent Citations (1)
Title |
---|
王吉坤等: "《现代锗冶金》", 31 January 2005 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106257631A (en) * | 2015-06-18 | 2016-12-28 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor device and manufacture method, electronic installation |
CN109119331A (en) * | 2017-06-23 | 2019-01-01 | 上海新昇半导体科技有限公司 | A kind of semiconductor devices and its manufacturing method, electronic device |
TWI658178B (en) * | 2017-06-23 | 2019-05-01 | 上海新昇半導體科技有限公司 | A semiconductor device, the method of making the same and an electronic device |
CN109119331B (en) * | 2017-06-23 | 2021-02-02 | 上海新昇半导体科技有限公司 | Semiconductor device, manufacturing method thereof and electronic device |
CN115132570A (en) * | 2022-09-01 | 2022-09-30 | 睿力集成电路有限公司 | Processing method and device for semiconductor structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101866834B (en) | Method for preparing SiGe material of high-Ge content | |
US8642454B2 (en) | Low temperature selective epitaxy of silicon germanium alloys employing cyclic deposit and etch | |
US8680511B2 (en) | Bilayer gate dielectric with low equivalent oxide thickness for graphene devices | |
US20070286956A1 (en) | Cluster tool for epitaxial film formation | |
JP2006186240A5 (en) | ||
KR20120108337A (en) | Methods for fabricating semiconducor devices | |
CN102583329A (en) | Large-area graphene preparation method based on Cu film-assisted annealing and Cl2 reaction | |
US20250157814A1 (en) | Method for depositing boron containing silicon germaniuim layers | |
KR20200074898A (en) | Method for fabricating a monocrystalline structure | |
CN104425241A (en) | Method for removing natural oxide layer | |
CN111834300B (en) | Semiconductor device and method of forming the same | |
JP6019938B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
CN105097520B (en) | The forming method of semiconductor structure | |
CN102487006B (en) | Semiconductor device and forming method thereof | |
CN102718207A (en) | Fabrication method of structured graphene based on Cu film annealing and Cl2 reaction | |
TWI812984B (en) | Method of forming strained channel layer | |
CN112136203A (en) | Method for manufacturing SiC epitaxial substrate | |
CN104157578A (en) | Method for forming semiconductor device | |
CN104392919B (en) | The processing method of the surface of silicon of nmos device and the preparation method of nmos device | |
KR102372135B1 (en) | Method and apparatus for forming silicon film, germanium film, or silicon germanium film | |
Machkaoutsan et al. | High efficiency low temperature pre-epi clean method for advanced group IV epi processing | |
CN102468124A (en) | Method for epitaxially growing NiSiGe material by using Al insertion layer | |
CN113725066A (en) | Method for depositing a silicon germanium layer containing boron and gallium | |
CN105206523A (en) | Method for manufacturing high-K dielectric layer | |
CN102479717B (en) | Method for forming silicon-germanium epitaxial layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150318 |
|
RJ01 | Rejection of invention patent application after publication |