CN104424483A - Face image illumination preprocessing method, face image illumination preprocessing device and terminal - Google Patents
Face image illumination preprocessing method, face image illumination preprocessing device and terminal Download PDFInfo
- Publication number
- CN104424483A CN104424483A CN201310366699.9A CN201310366699A CN104424483A CN 104424483 A CN104424483 A CN 104424483A CN 201310366699 A CN201310366699 A CN 201310366699A CN 104424483 A CN104424483 A CN 104424483A
- Authority
- CN
- China
- Prior art keywords
- illumination
- preprocessing
- face
- face image
- intensities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 206
- 238000007781 pre-processing Methods 0.000 title claims abstract description 142
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000012545 processing Methods 0.000 claims description 20
- 238000012937 correction Methods 0.000 claims description 6
- 230000001815 facial effect Effects 0.000 description 25
- 238000004364 calculation method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000005457 optimization Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/60—Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种人脸图像的光照预处理方法,包括:采集人脸图像时,并获取终端所处环境的光照值;在预存的人脸数据库中查找与所述光照值最接近的人脸图像,并获取所述光照值最接近的人脸图像对应的预处理参数;根据所述预处理参数对采集到的人脸图像进行光照预处理。本发明还同时公开了一种人脸图像的光照预处理装置及终端。采用本发明的技术方案,可以在光照变化的环境中,对人脸图像进行高速且高识别率的光照预处理。
The invention discloses a lighting preprocessing method for a human face image, comprising: when collecting a human face image, obtaining the lighting value of the environment where the terminal is located; searching for the person closest to the lighting value in a pre-stored human face database face image, and obtain the preprocessing parameters corresponding to the face image with the closest illumination value; perform illumination preprocessing on the collected face image according to the preprocessing parameters. The invention also discloses an illumination preprocessing device and a terminal of a face image at the same time. By adopting the technical scheme of the present invention, high-speed and high-recognition-rate illumination preprocessing can be performed on human face images in an environment with changing illumination.
Description
技术领域 technical field
本发明涉及人脸识别中的人脸图像处理技术以及光线传感技术,尤其涉及一种人脸图像的光照预处理方法、装置及终端。 The present invention relates to face image processing technology and light sensing technology in face recognition, and in particular to a method, device and terminal for illumination preprocessing of face images. the
背景技术 Background technique
光照变化对人脸识别性能的影响是终端处于移动环境的关键问题之一。为了解决光照变化对人脸识别性能的影响,现有的光照预处理算法主要是基于人脸图像变换和三维(3D,3 Dimension)建模做光照自适应补偿。人脸图像变换算法在移动环境下识别率较差,3D建模算法虽然有较高的识别率,但需要耗费巨大的计算开销和时间复杂度。 The impact of illumination changes on face recognition performance is one of the key issues for terminals in a mobile environment. In order to solve the impact of illumination changes on face recognition performance, existing illumination preprocessing algorithms are mainly based on face image transformation and three-dimensional (3D, 3 Dimension) modeling for adaptive illumination compensation. The face image transformation algorithm has poor recognition rate in the mobile environment. Although the 3D modeling algorithm has a high recognition rate, it requires huge computational overhead and time complexity. the
终端处于移动环境时,光照变化的随意性大、计算能力有限,现有的光照预处理算法如果运行在处于移动环境下的终端上时,在处理速度和识别率上都不能达到预期的效果。 When the terminal is in a mobile environment, the randomness of illumination changes is large and the computing power is limited. If the existing illumination preprocessing algorithm is run on a terminal in a mobile environment, it cannot achieve the expected results in terms of processing speed and recognition rate. the
随着智能终端的广泛流行及其不断对人们每天生活的影响,智能终端上的人脸识别技术表现出了可观的市场价值和潜力。然而,处理速度和识别率的限制制约了传统人脸识别技术在智能终端上的直接应用。不仅如此,由于智能终端的移动性的特点,移动环境下的人脸识别带来了光照变化,这增加了移动环境下人脸识别应用的难度。 With the widespread popularity of smart terminals and their continuous impact on people's daily lives, face recognition technology on smart terminals has shown considerable market value and potential. However, the limitation of processing speed and recognition rate restricts the direct application of traditional face recognition technology on smart terminals. Not only that, due to the mobility of smart terminals, face recognition in a mobile environment brings changes in illumination, which increases the difficulty of face recognition applications in a mobile environment. the
发明内容 Contents of the invention
有鉴于此,本发明的主要目的在于提供一种人脸图像的光照预处理方法、装置及终端,能够在光照变化的环境中,对人脸图像进行高速且高识别率的光照预处理。 In view of this, the main purpose of the present invention is to provide a method, device, and terminal for illumination preprocessing of human face images, which can perform illumination preprocessing on human face images at high speed and high recognition rate in an environment with changing illumination. the
为达到上述目的,本发明的技术方案是这样实现的: In order to achieve the above object, technical solution of the present invention is achieved in that way:
一种人脸图像的光照预处理方法,所述方法包括: A lighting preprocessing method of a face image, said method comprising:
采集人脸图像时,并获取终端所处环境的光照值; When collecting face images, and obtain the illumination value of the environment where the terminal is located;
在预存的人脸数据库中查找与所述光照值最接近的人脸图像,并获取所述光照值最接近的人脸图像对应的预处理参数; Find the face image closest to the illumination value in the pre-stored face database, and obtain the preprocessing parameters corresponding to the face image closest to the illumination value;
根据所述预处理参数对采集到的人脸图像进行光照预处理。 Perform illumination preprocessing on the collected face images according to the preprocessing parameters. the
所述方法还包括: The method also includes:
分别采集多种光照强度时的人脸图像,而得到多幅不同光照强度的人脸图像; Separately collect face images at various light intensities to obtain multiple face images with different light intensities;
通过所述光线传感器获取所述多幅不同光照强度的人脸图像的光照值,并作为参考光照值; Obtain the illumination value of the face images of the plurality of different illumination intensities through the light sensor, and use it as a reference illumination value;
根据光照预处理算法分别计算所述多幅不同光照强度的人脸图像的预处理参数; Calculate the preprocessing parameters of the face images of the multiple different illumination intensities respectively according to the illumination preprocessing algorithm;
根据所述多幅不同光照强度的人脸图像、所述多幅不同光照强度的人脸图像的光照值、以及所述多幅不同光照强度的人脸图像的预处理参数,建立人脸数据库。 A face database is established according to the multiple facial images with different illumination intensities, the illumination values of the multiple facial images with different illumination intensities, and the preprocessing parameters of the multiple facial images with different illumination intensities. the
所述光照预处理算法为伽马强度矫正GIC算法时,所述预处理参数为伽马参数。 When the illumination preprocessing algorithm is a gamma intensity correction GIC algorithm, the preprocessing parameters are gamma parameters. the
所述在预存的人脸数据库中查找与所述光照值最接近的人脸图像,并获取所述光照值最接近的人脸图像对应的预处理参数,包括: Said searching the face image closest to said illumination value in the pre-stored face database, and obtaining the preprocessing parameters corresponding to the face image closest to said illumination value, including:
建立所述多幅不同光照强度的人脸图像的光照值与所述多幅不同光照强度的人脸图像的预处理参数之间的离散方程; Set up the discrete equation between the illumination value of the facial images of the multiple different illumination intensities and the preprocessing parameters of the facial images of the multiple different illumination intensities;
根据所述离散方程,计算与采集到的人脸图像的光照值最接近的参考光照值,并获取所述参考光照值的预处理参数。 According to the discrete equation, calculate the reference illumination value closest to the illumination value of the collected face image, and obtain the preprocessing parameters of the reference illumination value. the
所述方法还包括: The method also includes:
对光照预处理后的人脸图像进行人脸识别处理。 Perform face recognition processing on the face image after illumination preprocessing. the
种人脸图像的光照预处理装置,所述装置包括:采集单元、获取单元、查找单元以及处理单元;其中, A lighting preprocessing device for a face image, said device comprising: an acquisition unit, an acquisition unit, a search unit and a processing unit; wherein,
所述采集单元,用于采集人脸图像时,触发所述获取单元; The acquisition unit is used to trigger the acquisition unit when acquiring face images;
所述获取单元,用于收到所述采集单元的触发后,获取终端所处环境的光照值; The acquisition unit is used to acquire the illumination value of the environment where the terminal is located after receiving the trigger of the acquisition unit;
所述查找单元,用于在预存的人脸数据库中查找与所述光照值最接近的人脸图像,并获取所述光照值最接近的人脸图像对应的预处理参数; The search unit is used to search the face image closest to the illumination value in the prestored face database, and obtain the preprocessing parameters corresponding to the face image closest to the illumination value;
所述处理单元,用于根据所述预处理参数对采集到的人脸图像进行光照预处理。 The processing unit is configured to perform illumination preprocessing on the collected face images according to the preprocessing parameters. the
所述装置还包括预处理单元以及人脸数据库单元; The device also includes a preprocessing unit and a face database unit;
所述采集单元,还用于分别采集多种光照强度时的人脸图像,而得到多幅不同光照强度的人脸图像; The collection unit is also used to separately collect face images at various light intensities to obtain multiple face images with different light intensities;
所述获取单元,还用于获取所述多幅不同光照强度的人脸图像的光照值,并作为参考光照值; The acquiring unit is also used to acquire the illumination values of the plurality of face images with different illumination intensities, and use them as reference illumination values;
所述预处理单元,用于根据光照预处理算法分别计算所述多幅不同光照强度的人脸图像的预处理参数; The preprocessing unit is used to calculate the preprocessing parameters of the plurality of face images with different illumination intensities according to the illumination preprocessing algorithm;
所述人脸数据库单元,用于根据所述多幅不同光照强度的人脸图像、所述多幅不同光照强度的人脸图像的光照值、以及所述多幅不同光照强度的人脸图像的预处理参数,建立人脸数据库。 The human face database unit is configured to, according to the multiple facial images with different illumination intensities, the illumination values of the multiple facial images with different illumination intensities, and the values of the multiple facial images with different illumination intensities Preprocessing parameters to build a face database. the
所述光照预处理算法为GIC算法时,所述预处理参数为伽马参数。 When the illumination preprocessing algorithm is a GIC algorithm, the preprocessing parameters are gamma parameters. the
所述查找单元包括:建立子单元以及计算子单元;其中, The search unit includes: establishing a subunit and calculating a subunit; wherein,
所述建立子单元,用于建立所述多幅不同光照强度的人脸图像的光照值与所述多幅不同光照强度的人脸图像的预处理参数之间的离散方程; The establishment subunit is used to establish a discrete equation between the illumination values of the multiple facial images with different illumination intensities and the preprocessing parameters of the multiple facial images with different illumination intensities;
所述计算子单元,用于根据所述离散方程,计算与采集到的人脸图像的光照值最接近的参考光照值,并获取所述参考光照值的预处理参数。 The calculation subunit is used to calculate the reference illumination value closest to the illumination value of the collected face image according to the discrete equation, and obtain the preprocessing parameters of the reference illumination value. the
所述装置还包括识别单元,用于对光照预处理后的人脸图像进行人脸识别处理。 The device also includes a recognition unit, configured to perform face recognition processing on the face image after illumination preprocessing. the
一种终端,所述终端包括上述任意人脸图像的光照预处理装置。 A terminal, which includes the above-mentioned illumination preprocessing device for any face image. the
本发明实施例记载的人脸图像的光照预处理方法、装置及终端,采集人脸 图像时,并获取终端所处环境的光照值;在预存的人脸数据库中查找与所述光照值最接近的人脸图像,并获取所述光照值最接近的人脸图像对应的预处理参数;根据所述预处理参数对采集到的人脸图像进行光照预处理。如此,可以在光照变化的环境中,对人脸图像进行高速且高识别率的光照预处理,从而在保证高识别率的同时,提高了处理速度、降低了资源开销。 The illumination preprocessing method, device and terminal of the human face image recorded in the embodiment of the present invention, when collecting the human face image, and obtain the illumination value of the environment where the terminal is located; search the closest to the illumination value in the pre-stored human face database face image, and obtain the preprocessing parameters corresponding to the face image with the closest illumination value; perform illumination preprocessing on the collected face image according to the preprocessing parameters. In this way, high-speed and high-recognition-rate illumination preprocessing can be performed on face images in an environment with changing illumination, thereby improving processing speed and reducing resource overhead while ensuring a high recognition rate. the
附图说明 Description of drawings
图1为本发明实施例人脸图像的光照预处理方法的实现流程示意图; Fig. 1 is the implementation flow schematic diagram of the illumination preprocessing method of face image of the embodiment of the present invention;
图2为本发明实施例人脸图像的光照预处理装置的结构组成示意图; Fig. 2 is the structural composition schematic diagram of the lighting preprocessing device of face image of the embodiment of the present invention;
图3为本发明实施例人脸图像的光照预处理装置中查找单元的结构组成示意图; 3 is a schematic diagram of the structural composition of the search unit in the illumination preprocessing device of the face image of the embodiment of the present invention;
图4为本发明实施例终端的结构组成示意图; FIG. 4 is a schematic diagram of the structural composition of the terminal according to the embodiment of the present invention;
图5为本发明实施例中不同光照条件下的人脸图像示意图; Fig. 5 is the face image schematic diagram under different illumination conditions in the embodiment of the present invention;
图6为本发明实施例中一个样本不同光照条件下的人脸图像示意图。 FIG. 6 is a schematic diagram of a face image of a sample under different lighting conditions in an embodiment of the present invention. the
具体实施方式 Detailed ways
为了能够更加详尽地了解本发明的特点与技术内容,下面结合附图对本发明的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明。 In order to understand the characteristics and technical contents of the present invention in more detail, the implementation of the present invention will be described in detail below in conjunction with the accompanying drawings. The attached drawings are only for reference and description, and are not intended to limit the present invention. the
本发明实施例的基本思想是:通过嵌在手机面板上的光线传感器采集光照强度的数据作为先验参数进行人脸图像的光照预处理,以达到在处理速度和识别率有限的处于移动环境下的终端中,对人脸图像进行高速且高识别率的光照预处理。 The basic idea of the embodiment of the present invention is to use the light sensor embedded on the mobile phone panel to collect the data of light intensity as a priori parameter to perform light preprocessing of the face image, so as to achieve the goal in a mobile environment with limited processing speed and recognition rate. In the terminal, high-speed and high-recognition rate illumination preprocessing is performed on face images. the
本发明实施例记载了一种人脸图像的光照预处理方法,如图1所示,所述方法包括以下步骤: The embodiment of the present invention records a method of illumination preprocessing of a human face image, as shown in Figure 1, the method includes the following steps:
步骤101:采集人脸图像时,并获取终端所处环境的光照值。 Step 101: When collecting a face image, obtain the illumination value of the environment where the terminal is located. the
优选地,所述方法还包括: Preferably, the method also includes:
分别采集多种光照强度时的人脸图像,而得到多幅不同光照强度的人脸图 像; Collect face images at various light intensities respectively to obtain multiple face images with different light intensities;
通过所述光线传感器获取所述多幅不同光照强度的人脸图像的光照值,并作为参考光照值; Obtain the illumination value of the face images of the plurality of different illumination intensities through the light sensor, and use it as a reference illumination value;
根据光照预处理算法分别计算所述多幅不同光照强度的人脸图像的预处理参数; Calculate the preprocessing parameters of the face images of the multiple different illumination intensities respectively according to the illumination preprocessing algorithm;
根据所述多幅不同光照强度的人脸图像、所述多幅不同光照强度的人脸图像的光照值、以及所述多幅不同光照强度的人脸图像的预处理参数,建立人脸数据库。 A face database is established according to the multiple facial images with different illumination intensities, the illumination values of the multiple facial images with different illumination intensities, and the preprocessing parameters of the multiple facial images with different illumination intensities. the
优选地,所述光照预处理算法为伽马强度矫正(GIC,Gamma Intensity Correction)算法时,所述预处理参数为伽马参数。 Preferably, when the illumination preprocessing algorithm is a Gamma Intensity Correction (GIC, Gamma Intensity Correction) algorithm, the preprocessing parameter is a gamma parameter. the
为了能更加清楚地了解本发明实施例,现对GIC算法进行详细说明。 In order to understand the embodiment of the present invention more clearly, the GIC algorithm is now described in detail. the
GIC算法通过修改人脸图像的全局亮度,使该人脸图像与预先定义的标准人脸图像相匹配。标准的人脸图像通常是标准光照情况下所采集到或修正得到的人脸图像。 The GIC algorithm makes the face image match the predefined standard face image by modifying the global brightness of the face image. A standard face image is usually a face image collected or corrected under standard lighting conditions. the
例如,I是输入的人脸图像,I′是I经过GIC算法处理后的人脸图像,则I′可通过公式(1)得到。 For example, I is the input face image, and I' is the face image processed by I through the GIC algorithm, then I' can be obtained by formula (1). the
I'xy=G(Ixy;γ*) (1) I' xy = G(I xy ;γ * ) (1)
其中,Ixy表示输入的人脸图像坐标为(x,y)处的灰度值;I'xy表示经过G()变换而得到的人脸图像坐标为(x,y)处的灰度值;G(Ixy;γ*)表示对Ixy进行伽马变换。 Among them, I xy represents the gray value at (x, y) of the input face image coordinates; I' xy represents the gray value at (x, y) of the face image obtained through G() transformation ; G(I xy ; γ * ) means performing gamma transformation on I xy .
公式(1)中的伽马参数γ*可以通过公式(2)计算得到。公式(2)为在多个伽马参数γ中取最优伽马参数γ*,公式(2)的目的是找到一个和标准人脸图像具有最小差值的伽马参数γ*。 The gamma parameter γ * in formula (1) can be calculated by formula (2). Formula (2) is to select the optimal gamma parameter γ * among multiple gamma parameters γ. The purpose of formula (2) is to find a gamma parameter γ * that has the smallest difference with the standard face image.
其中,
其中,c是灰度伸缩参数。 Among them, c is the grayscale scaling parameter. the
经过上述过程后,多幅不同光照强度的人脸图像都可以得到对应的预处理参数,即伽马参数γ*。 After the above process, multiple face images with different light intensities can obtain corresponding preprocessing parameters, that is, the gamma parameter γ * .
上述GIC算法中对时间复杂度贡献最大的主要是以下两个步骤:1)获得伽马参数γ*的最优化过程;2)用伽马参数γ*生成最后的人脸图像的过程。并且,除了上述两个过程,还有两个参数对时间复杂度具有重要的贡献,即伽马参数γ的范围和搜索伽马参数γ*的步长μ。假定伽马参数γ*的范围为公式(4), In the above GIC algorithm, the biggest contribution to the time complexity is mainly the following two steps: 1) the optimization process of obtaining the gamma parameter γ * ; 2) the process of generating the final face image with the gamma parameter γ * . And, in addition to the above two processes, there are two other parameters that have an important contribution to the time complexity, namely the range of the gamma parameter γ and the step size μ for searching the gamma parameter γ * . Assuming the gamma parameter γ * ranges from Equation (4),
γ*∈[R0,R1],γ*>0 (4) γ * ∈ [R 0 , R 1 ], γ * >0 (4)
其中,γ*∈[R0,R1]表示索伽马参数γ*的取值范围为大于/等于R0且小于等/于R1。 Wherein, γ * ∈ [R 0 , R 1 ] indicates that the value range of the solo gamma parameter γ * is greater than/equal to R 0 and less than/equal to R 1 .
假设获得伽马参数γ*的最优化过程的时间复杂度分别是T1,用伽马参数γ *生成最后的人脸图像的过程的时间复杂度是T2。则由下述公式(5)至公式(9)可得到总的时间复杂度T,在公式(5)至公式(9)中,O()是时间复杂度函数,并且,人脸图像数据库中包含n张人脸图像,每张人脸图像的大小一致,H是人脸图像的高度,W是人脸图像的宽度。以下对总的时间复杂度T的计算过程作详细描述。 Assume that the time complexity of the optimization process for obtaining the gamma parameter γ * is T 1 , and the time complexity of the process of using the gamma parameter γ * to generate the final face image is T 2 . Then the total time complexity T can be obtained from the following formula (5) to formula (9). In formula (5) to formula (9), O() is the time complexity function, and, in the face image database Contains n face images, each face image has the same size, H is the height of the face image, W is the width of the face image. The calculation process of the total time complexity T is described in detail below.
结合公式(4),可将公式(2)的时间复杂度表示为公式(5) Combined with formula (4), the time complexity of formula (2) can be expressed as formula (5)
其中,Ψ的表达式如公式(6)。 Among them, the expression of Ψ is as formula (6). the
Ψ=[G(Ixy;γ)-I0(x,y)]2 (6) Ψ=[G(I xy ;γ)-I 0 (x,y)] 2 (6)
T1的简化形式可以通过公式(7)得到。 The simplified form of T 1 can be obtained by formula (7).
公式(1)是利用计算出的索伽马参数γ*产生最终的人脸图像,其时间复杂度的计算方式如公式(8)所示。 Formula (1) uses the calculated solo gamma parameter γ * to generate the final face image, and its time complexity is calculated as shown in formula (8).
T2=O(H·W) (8) T 2 =O(H·W) (8)
综上所述,GIC算法的全部时间复杂度的计算方式如公式(9)。 To sum up, the calculation method of the total time complexity of the GIC algorithm is shown in formula (9). the
步骤102:在预存的人脸数据库中查找与所述光照值最接近的人脸图像,并获取所述光照值最接近的人脸图像对应的预处理参数。 Step 102: Search for the face image closest to the illumination value in the prestored face database, and obtain the preprocessing parameters corresponding to the face image with the closest illumination value. the
优选地,所述在预存的人脸数据库中查找与所述光照值最接近的人脸图像,并获取所述光照值最接近的人脸图像对应的预处理参数,包括: Preferably, the search for the face image closest to the illumination value in the pre-stored face database, and obtain the preprocessing parameters corresponding to the face image closest to the illumination value, including:
建立所述多幅不同光照强度的人脸图像的光照值与所述多幅不同光照强度的人脸图像的预处理参数之间的离散方程; Set up the discrete equation between the illumination value of the facial images of the multiple different illumination intensities and the preprocessing parameters of the facial images of the multiple different illumination intensities;
根据所述离散方程,计算与采集到的人脸图像的光照值最接近的参考光照值,并获取所述参考光照值的预处理参数。 According to the discrete equation, calculate the reference illumination value closest to the illumination value of the collected face image, and obtain the preprocessing parameters of the reference illumination value. the
具体地,设L是人脸图像数据库中所有人脸图像的光照值的集合,则可以创建一一对应的离散方程F,如公式(10)。 Specifically, assuming that L is the set of illumination values of all face images in the face image database, a one-to-one corresponding discrete equation F can be created, such as formula (10). the
γi=F(li),i=1,...,|L| (10) γ i =F(l i ),i=1,...,|L| (10)
其中,li是L中的第i个人脸图像的光照值,γi是第i个人脸图像预先计算好的伽马参数γ。假设采集到的人脸图像的光照值是l,则可以通过计算伽马参数γ*的过程来计算l*,如公式(11)所示。 Among them, l i is the illumination value of the i-th face image in L, and γ i is the pre-calculated gamma parameter γ of the i-th face image. Assuming that the illumination value of the collected face image is l, l * can be calculated through the process of calculating the gamma parameter γ * , as shown in formula (11).
如此,通过公式(11),伽马参数γ*优化过程的时间复杂度变为光照值l*优化过程的时间复杂度,如公式(12)。 In this way, through the formula (11), the time complexity of the gamma parameter γ * optimization process becomes the time complexity of the illumination value l * optimization process, as shown in the formula (12).
T1’=n·O((li-l)2)+O(n)+O(1)=O(n) (12) T 1 '=n·O((l i -l) 2 )+O(n)+O(1)=O(n) (12)
综上所述,本发明实施例人脸图像的光照预处理方法的全部时间复杂度可通过公式(13)得到。 To sum up, the overall time complexity of the illumination preprocessing method of the face image in the embodiment of the present invention can be obtained by formula (13). the
T'=T1'+T2=O(n)+O(H·W) (13) T'=T 1 '+T 2 =O(n)+O(H·W) (13)
由公式(13)可知,全部时间复杂度是一个固定的值,仅仅取决于人脸图像数据库的大小以及每张人脸图像的大小。相比较之前的GIC算法,本发明实施例人脸图像的光照预处理方法能大大减少时间复杂度和计算所消耗的资源。 It can be seen from formula (13) that the overall time complexity is a fixed value, which only depends on the size of the face image database and the size of each face image. Compared with the previous GIC algorithm, the illumination preprocessing method of the face image in the embodiment of the present invention can greatly reduce the time complexity and the resources consumed by calculation. the
步骤103:根据所述预处理参数对采集到的人脸图像进行光照预处理。 Step 103: Perform illumination preprocessing on the collected face images according to the preprocessing parameters. the
优选地,所述方法还包括:对光照预处理后的人脸图像进行人脸识别处理。 Preferably, the method further includes: performing face recognition processing on the face image after illumination preprocessing. the
本发明实施例还记载了一种人脸图像的光照预处理装置,如图2所示,所述装置包括:采集单元21、获取单元22、查找单元23以及处理单元24;其中, The embodiment of the present invention also records a lighting preprocessing device for a face image, as shown in FIG. 2 , the device includes: an acquisition unit 21, an acquisition unit 22, a search unit 23, and a processing unit 24; wherein,
所述采集单元21,用于采集人脸图像时,触发所述获取单元22; The acquisition unit 21 is used to trigger the acquisition unit 22 when acquiring a face image;
所述获取单元22,用于收到所述采集单元21的触发后,获取终端所处环境的光照值; The acquisition unit 22 is configured to acquire the illumination value of the environment where the terminal is located after receiving the trigger of the acquisition unit 21;
所述查找单元23,用于在预存的人脸数据库中查找与所述光照值最接近的人脸图像,并获取所述光照值最接近的人脸图像对应的预处理参数; The search unit 23 is used to search the face image closest to the illumination value in the prestored face database, and obtain the preprocessing parameters corresponding to the face image closest to the illumination value;
所述处理单元24,用于根据所述预处理参数对采集到的人脸图像进行光照预处理。 The processing unit 24 is configured to perform illumination preprocessing on the collected face images according to the preprocessing parameters. the
优选地,在图2所示的人脸图像的光照预处理装置的基础上,本发明实施例的人脸图像的光照预处理装置还包括:预处理单元(图2中未示出)以及人脸数据库单元(图2中未示出);其中, Preferably, on the basis of the lighting preprocessing device for human face images shown in Figure 2, the lighting preprocessing device for human face images in the embodiment of the present invention further includes: a preprocessing unit (not shown in Figure 2) and human Face database unit (not shown in Fig. 2); Wherein,
所述采集单元21,还用于分别采集多种光照强度时的人脸图像,而得到多幅不同光照强度的人脸图像; The collection unit 21 is also used to separately collect face images of various light intensities to obtain multiple face images with different light intensities;
所述获取单元22,还用于获取所述多幅不同光照强度的人脸图像的光照值,并作为参考光照值; The acquisition unit 22 is also used to acquire the illumination values of the multiple face images with different illumination intensities, and use them as reference illumination values;
所述预处理单元,用于根据光照预处理算法分别计算所述多幅不同光照强度的人脸图像的预处理参数; The preprocessing unit is used to calculate the preprocessing parameters of the plurality of face images with different illumination intensities according to the illumination preprocessing algorithm;
所述人脸数据库单元,用于根据所述多幅不同光照强度的人脸图像、所述多幅不同光照强度的人脸图像的光照值、以及所述多幅不同光照强度的人脸图像的预处理参数,建立人脸数据库。 The human face database unit is configured to, according to the multiple facial images with different illumination intensities, the illumination values of the multiple facial images with different illumination intensities, and the values of the multiple facial images with different illumination intensities Preprocessing parameters to build a face database. the
优选地,所述光照预处理算法为GIC算法时,所述预处理参数为伽马参数。 Preferably, when the illumination preprocessing algorithm is a GIC algorithm, the preprocessing parameters are gamma parameters. the
优选地,如图3所示,所述查找单元23包括:建立子单元231以及计算子单元232;其中, Preferably, as shown in FIG. 3, the search unit 23 includes: an establishment subunit 231 and a calculation subunit 232; wherein,
所述建立子单元231,用于建立所述多幅不同光照强度的人脸图像的光照值与所述多幅不同光照强度的人脸图像的预处理参数之间的离散方程; The establishment subunit 231 is used to establish a discrete equation between the illumination values of the multiple facial images with different illumination intensities and the preprocessing parameters of the multiple facial images with different illumination intensities;
所述计算子单元232,用于根据所述离散方程,计算与采集到的人脸图像的光照值最接近的参考光照值,并获取所述参考光照值的预处理参数。 The calculation subunit 232 is configured to calculate the reference illumination value closest to the illumination value of the collected face image according to the discrete equation, and obtain preprocessing parameters of the reference illumination value. the
优选地,在图2所示的人脸图像的光照预处理装置的基础上,本发明实施例的人脸图像的光照预处理装置还包括识别单元(图2中未示出),用于对光照预处理后的人脸图像进行人脸识别处理。 Preferably, on the basis of the lighting preprocessing device for human face images shown in FIG. 2 , the lighting preprocessing device for human face images in the embodiment of the present invention further includes a recognition unit (not shown in FIG. 2 ) for The face image after illumination preprocessing is processed for face recognition. the
本领域技术人员应当理解,图2、图3所示的人脸图像的光照预处理装置中的各单元及其子单元的实现功能可参照前述人脸图像的光照预处理方法的相关描述而理解。图2、图3所示的人脸图像的光照预处理装置中的各单元及其子单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。 Those skilled in the art should understand that the realization functions of each unit and its subunits in the illumination preprocessing device of the face image shown in Figure 2 and Figure 3 can be understood with reference to the relevant description of the illumination preprocessing method of the aforementioned face image . The functions of each unit and its subunits in the illumination preprocessing device for human face images shown in Fig. 2 and Fig. 3 can be realized by a program running on a processor, or by a specific logic circuit. the
在实际应用中,上述人脸图像的光照预处理装置中的采集单元21可由摄像装置实现;获取单元22可由终端内置的光线传感器实现;查找单元23以及处理单元24可由中央处理器(CPU,Central Processing Unit)、或数字信号处理器(DSP,Digital Signal Processor)、或可编程逻辑阵列(FPGA,Field-Programmable Gate Array)实现。 In practical applications, the acquisition unit 21 in the illumination preprocessing device of the above-mentioned face image can be realized by a camera; the acquisition unit 22 can be realized by a built-in light sensor in the terminal; Processing Unit), or digital signal processor (DSP, Digital Signal Processor), or programmable logic array (FPGA, Field-Programmable Gate Array) implementation. the
本发明实施例还记载了一种终端,如图4所示,所述终端包括图2所示的人脸图像的光照预处理装置,包括:采集单元21、获取单元22、查找单元23以及处理单元24;其中, The embodiment of the present invention also records a terminal. As shown in FIG. 4, the terminal includes the illumination preprocessing device for the face image shown in FIG. Unit 24; where,
所述采集单元21,用于采集人脸图像时,触发所述获取单元; The collection unit 21 is used to trigger the acquisition unit when collecting face images;
所述获取单元22,用于收到所述采集单元的触发后,获取终端所处环境的光照值; The acquisition unit 22 is configured to acquire the illumination value of the environment where the terminal is located after receiving the trigger from the acquisition unit;
所述查找单元23,用于在预存的人脸数据库中查找与所述光照值最接近的人脸图像,并获取所述光照值最接近的人脸图像对应的预处理参数; The search unit 23 is used to search the face image closest to the illumination value in the prestored face database, and obtain the preprocessing parameters corresponding to the face image closest to the illumination value;
所述处理单元24,用于根据所述预处理参数对采集到的人脸图像进行光照预处理。 The processing unit 24 is configured to perform illumination preprocessing on the collected face images according to the preprocessing parameters. the
优选地,在图2所示的人脸图像的光照预处理装置的基础上,本发明实施例的人脸图像的光照预处理装置还包括:预处理单元(图2中未示出)以及人脸数据库单元(图2中未示出);其中, Preferably, on the basis of the lighting preprocessing device for human face images shown in Figure 2, the lighting preprocessing device for human face images in the embodiment of the present invention further includes: a preprocessing unit (not shown in Figure 2) and human Face database unit (not shown in Fig. 2); Wherein,
所述采集单元21,还用于分别采集多种光照强度时的人脸图像,而得到多幅不同光照强度的人脸图像; The collection unit 21 is also used to separately collect face images of various light intensities to obtain multiple face images with different light intensities;
所述获取单元22,还用于获取所述多幅不同光照强度的人脸图像的光照值,并作为参考光照值; The acquisition unit 22 is also used to acquire the illumination values of the multiple face images with different illumination intensities, and use them as reference illumination values;
所述预处理单元,用于根据光照预处理算法分别计算所述多幅不同光照强度的人脸图像的预处理参数; The preprocessing unit is used to calculate the preprocessing parameters of the plurality of face images with different illumination intensities according to the illumination preprocessing algorithm;
所述人脸数据库单元,用于根据所述多幅不同光照强度的人脸图像、所述多幅不同光照强度的人脸图像的光照值、以及所述多幅不同光照强度的人脸图像的预处理参数,建立人脸数据库。 The human face database unit is configured to, according to the multiple facial images with different illumination intensities, the illumination values of the multiple facial images with different illumination intensities, and the values of the multiple facial images with different illumination intensities Preprocessing parameters to build a face database. the
优选地,所述光照预处理算法为GIC算法时,所述预处理参数为伽马参数。 Preferably, when the illumination preprocessing algorithm is a GIC algorithm, the preprocessing parameters are gamma parameters. the
优选地,如图3所示,所述查找单元23包括:建立子单元231以及计算子单元232;其中, Preferably, as shown in FIG. 3, the search unit 23 includes: an establishment subunit 231 and a calculation subunit 232; wherein,
所述建立子单元231,用于建立所述多幅不同光照强度的人脸图像的光照值与所述多幅不同光照强度的人脸图像的预处理参数之间的离散方程; The establishment subunit 231 is used to establish a discrete equation between the illumination values of the multiple facial images with different illumination intensities and the preprocessing parameters of the multiple facial images with different illumination intensities;
所述计算子单元232,用于根据所述离散方程,计算与采集到的人脸图像的光照值最接近的参考光照值,并获取所述参考光照值的预处理参数。 The calculation subunit 232 is configured to calculate the reference illumination value closest to the illumination value of the collected face image according to the discrete equation, and obtain preprocessing parameters of the reference illumination value. the
优选地,在图2所示的人脸图像的光照预处理装置的基础上,本发明实施例的人脸图像的光照预处理装置还包括识别单元(图2中未示出),用于对光照 预处理后的人脸图像进行人脸识别处理。 Preferably, on the basis of the lighting preprocessing device for human face images shown in FIG. 2 , the lighting preprocessing device for human face images in the embodiment of the present invention further includes a recognition unit (not shown in FIG. 2 ) for The face image after illumination preprocessing is processed for face recognition. the
本领域技术人员应当理解,图4所示的终端中的人脸图像的光照预处理装置可参照图2、图3所示的人脸图像的光照预处理装置中的各单元及其子单元的功能进行理解。 Those skilled in the art should understand that the illumination preprocessing device of the human face image in the terminal shown in Figure 4 can refer to each unit and its subunits in the illumination preprocessing device of the human face image shown in Figure 2 and Figure 3 function to understand. the
在实际应用中,图4所示的终端中的人脸图像的光照预处理装置中的采集单元21可由摄像装置实现;获取单元22可由终端内置的光线传感器实现;查找单元23以及处理单元24可由中央处理器(CPU,Central Processing Unit)、或数字信号处理器(DSP,Digital Signal Processor)、或可编程逻辑阵列(FPGA,Field-Programmable Gate Array)实现。 In practical applications, the acquisition unit 21 in the lighting preprocessing device of the face image in the terminal shown in FIG. 4 can be realized by a camera; the acquisition unit 22 can be realized by a light sensor built into the terminal; Central processing unit (CPU, Central Processing Unit), or digital signal processor (DSP, Digital Signal Processor), or programmable logic array (FPGA, Field-Programmable Gate Array) implementation. the
下面结合具体实施例对本发明提供的人脸图像的光照预处理方法的效果作进一步详细描述。 The effect of the illumination preprocessing method for a face image provided by the present invention will be further described in detail below in conjunction with specific embodiments. the
本实施例中选取了HUN-MFD标准移动人脸数据库中的相关人脸图像数据,一共有349张人脸图像,12个样本,包括4名女性和8名男性。每个样本的人脸图像数量从14到55不等,包含了多个场景下的人脸图像。每一个样本的人脸图像均选取正面姿态、不同光照条件下、没有化妆和表情的情况。训练集,即为本发明实施例中的人脸图像数据库,包含了246张人脸图像,剩下的103张人脸图像作为测试集。在训练集和测试集之间没有重复的人脸图像。每一张照片都事先经过裁剪归一化至灰度人脸图像,并且统一采用128×128像素的人脸图像。图5显示了三个样本的不同光照条件下的人脸图像。 In this embodiment, the relevant face image data in the HUN-MFD standard mobile face database is selected. There are 349 face images and 12 samples, including 4 females and 8 males. The number of face images in each sample ranges from 14 to 55, including face images in multiple scenes. The face images of each sample are selected from frontal poses, under different lighting conditions, without makeup and expressions. The training set, which is the face image database in the embodiment of the present invention, contains 246 face images, and the remaining 103 face images are used as a test set. There are no duplicate face images between the training set and the test set. Each photo was cut and normalized to a grayscale face image in advance, and a face image of 128×128 pixels was uniformly used. Figure 5 shows the face images of three samples under different lighting conditions. the
在实施例中采用了三种经典的人脸特征作为对比来评估性能:PCA[11],LDA[12]和LBP[13]。最邻近(NN)法用于计算相似度。这里所有的人脸识别率均指Rank-1。三种人脸特征的参数分别描述如下: In the embodiment, three classic face features are used as comparison to evaluate the performance: PCA[11], LDA[12] and LBP[13]. The nearest neighbor (NN) method is used to calculate the similarity. All face recognition rates here refer to Rank-1. The parameters of the three face features are described as follows:
PCA:采用了人脸特征长度为50的主成分,每个特征保存了原图中92%的信息量; PCA: A principal component with a face feature length of 50 is used, and each feature saves 92% of the information in the original image;
LDA:由于有13个样本,采用默认值,因此特征长度为12; LDA: Since there are 13 samples, the default value is used, so the feature length is 12;
LBP:作为一种局部特征,LBP特征的半径设为1,每个像素周围8个像素会被用来参与计算。默认的将人脸图像分块为8×8。 LBP: As a local feature, the radius of the LBP feature is set to 1, and 8 pixels around each pixel will be used to participate in the calculation. By default, the face image is divided into 8×8 blocks. the
在本性能测试实施例中,建立两个运行环境进行对比,分别是电脑环境和移动环境。在电脑环境上的实施例主要是为了验证移动GIC算法是否在电脑和移动两个环境下都能达到预期效果,并且比较哪个环境更适合。在两个环境中的实施例均将程序的优先级设置为最高优先级以最大程度防止其他并行运行的程序对实施例的影响。两个实施例环境的具体参数如下: In this performance test embodiment, two operating environments are established for comparison, namely the computer environment and the mobile environment. The embodiment in the computer environment is mainly to verify whether the mobile GIC algorithm can achieve the expected effect in both computer and mobile environments, and to compare which environment is more suitable. The embodiments in both environments set the priority of the program to the highest priority to prevent other programs running in parallel from affecting the embodiment to the greatest extent. The specific parameters of the environment of the two embodiments are as follows:
计算机运行环境:本发明实施例的应用程序运行在Windows个人电脑上,其CPU为Dual-Core E52002.50GHz,内存2G,操作系统是Windows 7 Ultimate Service Pack 1。程序开发时用到的依赖库包括了Visual Studio 2010中的库函数和OpenCV 2.4.2; Computer operating environment: the application program of the embodiment of the present invention runs on the Windows personal computer, and its CPU is Dual-Core E52002.50GHz, memory 2G, operating system is Windows 7 Ultimate Service Pack 1. The dependent libraries used in program development include library functions in Visual Studio 2010 and OpenCV 2.4.2;
移动运行环境:实施例程序运行在Android移动手机上,其型号为Samsungi9250 (Google Galaxy Nexus),CPU为OMAP4460 Dual-Core 1228 MHz,内存1G,操作系统是Android 4.1.2(Jelly Bean),操作系统内核版本是Linux3.0.31-g4f6d371。程序开发时用到的依赖库包括了android-ndk-r8b和OpenCV2.4.2。为了保持和计算机环境的程序之间的一致性,相同的C++代码被移植到移动环境下,而没有另外编写从C++改写成Java版本的程序。因此为了满足这样的需求,应用程序是采用了基于Java本地接口(JNI,Java Native Interface)技术而开发的。 Mobile operating environment: the embodiment program runs on an Android mobile phone, the model is Samsungi9250 (Google Galaxy Nexus), the CPU is OMAP4460 Dual-Core 1228 MHz, the memory is 1G, the operating system is Android 4.1.2 (Jelly Bean), the operating system The kernel version is Linux3.0.31-g4f6d371. The dependent libraries used in program development include android-ndk-r8b and OpenCV2.4.2. In order to maintain consistency with programs in the computer environment, the same C++ code is transplanted to the mobile environment without additionally writing a program rewritten from C++ to Java version. Therefore, in order to meet such requirements, the application program is developed based on Java Native Interface (JNI, Java Native Interface) technology. the
在运行GIC算法时,通常按照经验将γ的范围设置成(0,5]。图6分别显示了针对一个样本不同光照条件下的原始人脸图像、GIC和移动GIC后的人脸图像。 When running the GIC algorithm, the range of γ is usually set to (0, 5] according to experience. Figure 6 shows the original face image, GIC and the face image after moving GIC under different lighting conditions for a sample.
表1显示了移动GIC算法(为本发明实施例中的人脸图像的光照预处理方法)和GIC算法相比,在计算机环境和移动环境下分别用不同步长时的预处理部分的加速比。 Table 1 shows the speedup ratio of the preprocessing part when the mobile GIC algorithm (which is the illumination preprocessing method of the face image in the embodiment of the present invention) is compared with the GIC algorithm and uses different step lengths in the computer environment and the mobile environment . the
表1 Table 1
表2显示了在手机上分别用PCA、LDA和LBP人脸特征和不同预处理方法下的Rank-1人脸识别率。 Table 2 shows the Rank-1 face recognition rate on mobile phones using PCA, LDA and LBP face features and different preprocessing methods. the
表2 Table 2
表3显示了移动环境下,包括预处理部分的完整人脸识别过程的移动Gamma强度矫正和Gamma强度矫正之间的加速比。 Table 3 shows the speedup ratio between the mobile gamma intensity correction and the gamma intensity correction of the complete face recognition process including the preprocessing part in the mobile environment. the
表3 table 3
通过上表1至表3中统计的数据可以得出: From the statistical data in Table 1 to Table 3 above, it can be concluded that:
移动GIC算法的加速效果在移动环境下比在计算机环境下好; The acceleration effect of the mobile GIC algorithm is better in the mobile environment than in the computer environment;
与没有做补偿相比,移动GIC算法极大地提升了人脸识别率,但与GIC算法相比,在PCA和LDA的算法情况下,移动GIC算法的识别率略低,但用局部特征算法LBP时,移动GIC算法有更高的识别率; Compared with no compensation, the mobile GIC algorithm greatly improves the face recognition rate, but compared with the GIC algorithm, in the case of PCA and LDA algorithms, the recognition rate of the mobile GIC algorithm is slightly lower, but with the local feature algorithm LBP , the mobile GIC algorithm has a higher recognition rate;
由于在移动环境下极低的计算开销和电能消耗,移动GIC算法特别适合在移动设备上运行,尤其是在使用LDA时,既提升了识别率,又极大地降低了时间复杂度。 Due to the extremely low computational overhead and power consumption in the mobile environment, the mobile GIC algorithm is particularly suitable for running on mobile devices, especially when using LDA, which not only improves the recognition rate, but also greatly reduces the time complexity. the
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。 The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. the
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310366699.9A CN104424483A (en) | 2013-08-21 | 2013-08-21 | Face image illumination preprocessing method, face image illumination preprocessing device and terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310366699.9A CN104424483A (en) | 2013-08-21 | 2013-08-21 | Face image illumination preprocessing method, face image illumination preprocessing device and terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104424483A true CN104424483A (en) | 2015-03-18 |
Family
ID=52973396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310366699.9A Pending CN104424483A (en) | 2013-08-21 | 2013-08-21 | Face image illumination preprocessing method, face image illumination preprocessing device and terminal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104424483A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106295596A (en) * | 2016-08-17 | 2017-01-04 | 深圳市金立通信设备有限公司 | A kind of unlocking method based on recognition of face and terminal |
CN106295571A (en) * | 2016-08-11 | 2017-01-04 | 深圳市赛为智能股份有限公司 | The face identification method of illumination adaptive and system |
CN106534576A (en) * | 2016-12-07 | 2017-03-22 | 深圳市传奇数码有限公司 | Side face unlocking method applied to mobile phone |
CN107705245A (en) * | 2017-10-13 | 2018-02-16 | 北京小米移动软件有限公司 | Image processing method and device |
CN107944420A (en) * | 2017-12-07 | 2018-04-20 | 北京旷视科技有限公司 | The photo-irradiation treatment method and apparatus of facial image |
CN108537749A (en) * | 2018-03-29 | 2018-09-14 | 广东欧珀移动通信有限公司 | Image processing method, device, mobile terminal and computer readable storage medium |
CN109325448A (en) * | 2018-09-21 | 2019-02-12 | 广州广电卓识智能科技有限公司 | Face identification method, device and computer equipment |
CN110457976A (en) * | 2018-05-08 | 2019-11-15 | 上海箩箕技术有限公司 | Fingerprint imaging method and fingerprint imaging system |
CN112651993A (en) * | 2020-11-18 | 2021-04-13 | 合肥市卓迩无人机科技服务有限责任公司 | Moving target analysis and recognition algorithm for multi-path 4K quasi-real-time spliced video |
WO2021208373A1 (en) * | 2020-04-14 | 2021-10-21 | 北京迈格威科技有限公司 | Image identification method and apparatus, and electronic device and computer-readable storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101046847A (en) * | 2007-04-29 | 2007-10-03 | 中山大学 | Human face light alignment method based on secondary multiple light mould |
CN101201900A (en) * | 2007-11-06 | 2008-06-18 | 重庆大学 | A face image illumination adjustment method based on multilevel wavelet decomposition and spline interpolation |
CN101694691A (en) * | 2009-07-07 | 2010-04-14 | 北京中星微电子有限公司 | Method and device for synthesizing facial images |
US20100195912A1 (en) * | 2009-02-05 | 2010-08-05 | Naohisa Nakada | Imaging device, image composition and display device, and image composition method |
CN101916384A (en) * | 2010-09-01 | 2010-12-15 | 汉王科技股份有限公司 | Facial image reconstruction method and device and face recognition system |
CN102682276A (en) * | 2011-12-20 | 2012-09-19 | 河南科技大学 | Face recognition method and base image synthesis method under illumination change conditions |
-
2013
- 2013-08-21 CN CN201310366699.9A patent/CN104424483A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101046847A (en) * | 2007-04-29 | 2007-10-03 | 中山大学 | Human face light alignment method based on secondary multiple light mould |
CN101201900A (en) * | 2007-11-06 | 2008-06-18 | 重庆大学 | A face image illumination adjustment method based on multilevel wavelet decomposition and spline interpolation |
US20100195912A1 (en) * | 2009-02-05 | 2010-08-05 | Naohisa Nakada | Imaging device, image composition and display device, and image composition method |
CN101694691A (en) * | 2009-07-07 | 2010-04-14 | 北京中星微电子有限公司 | Method and device for synthesizing facial images |
CN101916384A (en) * | 2010-09-01 | 2010-12-15 | 汉王科技股份有限公司 | Facial image reconstruction method and device and face recognition system |
CN102682276A (en) * | 2011-12-20 | 2012-09-19 | 河南科技大学 | Face recognition method and base image synthesis method under illumination change conditions |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106295571A (en) * | 2016-08-11 | 2017-01-04 | 深圳市赛为智能股份有限公司 | The face identification method of illumination adaptive and system |
CN106295596A (en) * | 2016-08-17 | 2017-01-04 | 深圳市金立通信设备有限公司 | A kind of unlocking method based on recognition of face and terminal |
CN106534576A (en) * | 2016-12-07 | 2017-03-22 | 深圳市传奇数码有限公司 | Side face unlocking method applied to mobile phone |
CN107705245A (en) * | 2017-10-13 | 2018-02-16 | 北京小米移动软件有限公司 | Image processing method and device |
CN107944420A (en) * | 2017-12-07 | 2018-04-20 | 北京旷视科技有限公司 | The photo-irradiation treatment method and apparatus of facial image |
CN107944420B (en) * | 2017-12-07 | 2020-10-27 | 北京旷视科技有限公司 | Illumination processing method and device for face image |
CN108537749A (en) * | 2018-03-29 | 2018-09-14 | 广东欧珀移动通信有限公司 | Image processing method, device, mobile terminal and computer readable storage medium |
CN110457976A (en) * | 2018-05-08 | 2019-11-15 | 上海箩箕技术有限公司 | Fingerprint imaging method and fingerprint imaging system |
CN109325448A (en) * | 2018-09-21 | 2019-02-12 | 广州广电卓识智能科技有限公司 | Face identification method, device and computer equipment |
WO2021208373A1 (en) * | 2020-04-14 | 2021-10-21 | 北京迈格威科技有限公司 | Image identification method and apparatus, and electronic device and computer-readable storage medium |
CN112651993A (en) * | 2020-11-18 | 2021-04-13 | 合肥市卓迩无人机科技服务有限责任公司 | Moving target analysis and recognition algorithm for multi-path 4K quasi-real-time spliced video |
CN112651993B (en) * | 2020-11-18 | 2022-12-16 | 合肥市卓迩无人机科技服务有限责任公司 | Moving target analysis and recognition algorithm for multi-path 4K quasi-real-time spliced video |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104424483A (en) | Face image illumination preprocessing method, face image illumination preprocessing device and terminal | |
WO2021114832A1 (en) | Sample image data enhancement method, apparatus, electronic device, and storage medium | |
WO2021073418A1 (en) | Face recognition method and apparatus, device, and storage medium | |
CN109522902B (en) | Extraction of space-time feature representations | |
CN111192292A (en) | Target tracking method based on attention mechanism and twin network and related equipment | |
CN106651877B (en) | Instance partitioning method and device | |
US8958661B2 (en) | Learning concept templates from web images to query personal image databases | |
CN113421189B (en) | Image super-resolution processing method and device and electronic equipment | |
CN112088393B (en) | Image processing method, device and equipment | |
CN111242273B (en) | Neural network model training method and electronic equipment | |
CN107845072A (en) | Image generating method, device, storage medium and terminal device | |
CN114416260B (en) | Image processing method, device, electronic equipment and storage medium | |
CN114332094A (en) | Semantic segmentation method and device based on lightweight multi-scale information fusion network | |
CN113706440B (en) | Image processing method, device, computer equipment and storage medium | |
CN112329752B (en) | Human eye image processing model training method, image processing method and device | |
CN113658065B (en) | Image noise reduction method and device, computer readable medium and electronic equipment | |
WO2023005358A1 (en) | Style migration model training method, and image style migration method and apparatus | |
WO2020125062A1 (en) | Image fusion method and related device | |
JP2023526899A (en) | Methods, devices, media and program products for generating image inpainting models | |
CN114422698A (en) | Video generation method, device, device and storage medium | |
CN108876790A (en) | Image semantic segmentation method and device, neural network training method and device | |
CN117095006A (en) | Image aesthetic evaluation method, device, electronic equipment and storage medium | |
US12346405B2 (en) | Joint perception model training method, joint perception method, device, and storage medium | |
CN111507143B (en) | Expression image effect generation method and device and electronic equipment | |
CN115203375A (en) | Data enhancement method, device, equipment and storage medium of image-text cross-modal model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150318 |