CN104402425A - Preparation method of low-loss ferrite bismuth-barium titanate-based piezoelectric ceramic - Google Patents
Preparation method of low-loss ferrite bismuth-barium titanate-based piezoelectric ceramic Download PDFInfo
- Publication number
- CN104402425A CN104402425A CN201410691071.0A CN201410691071A CN104402425A CN 104402425 A CN104402425 A CN 104402425A CN 201410691071 A CN201410691071 A CN 201410691071A CN 104402425 A CN104402425 A CN 104402425A
- Authority
- CN
- China
- Prior art keywords
- hours
- temperature
- piezoelectric ceramic
- oxygen
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 229910002113 barium titanate Inorganic materials 0.000 title claims description 8
- ZUJVZHIDQJPCHU-UHFFFAOYSA-N [Ba].[Bi] Chemical compound [Ba].[Bi] ZUJVZHIDQJPCHU-UHFFFAOYSA-N 0.000 title 1
- 229910000859 α-Fe Inorganic materials 0.000 title 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 9
- 238000000498 ball milling Methods 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 229910052797 bismuth Inorganic materials 0.000 claims description 7
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- 230000005684 electric field Effects 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 230000010287 polarization Effects 0.000 claims description 4
- -1 BaCO 3 Inorganic materials 0.000 claims description 3
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 3
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 claims description 3
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000003292 glue Substances 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- 229920002545 silicone oil Polymers 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 238000007873 sieving Methods 0.000 claims description 2
- 238000005245 sintering Methods 0.000 abstract description 15
- 238000005516 engineering process Methods 0.000 abstract description 6
- 150000002500 ions Chemical class 0.000 abstract description 6
- 229910052788 barium Inorganic materials 0.000 description 12
- 238000005259 measurement Methods 0.000 description 5
- 230000028161 membrane depolarization Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种低损耗BiFeO3-BaTiO3基无铅压电陶瓷及其制备方法,其组成通式为:(1- x )(Bi1- t La t )FeO3- x Ba(Ti1- u Sn u )O3+0.5%BiMnO3+ y Ba(Cu1/3Nb2/3)O3+ z LiBiO3+ m Ba(W1/2Cu1/2)O3,其中 t 、 x 、 u 、 y 、 z 、 m 表示摩尔分数,且0< t ≤0.02,0.15≤ x ≤0.30,0< u <0.05,0< y <0.05,0< z <0.05,0< m <0.05。其制备方法包括按组成通式配料,球磨,成型素片,排胶,烧结等工序,采用降低烧结温度、快速升降温,高压氧等技术,降低Bi元素挥发,抑制氧空位产生,防止降温过程中Fe3+离子变价,从而达到降低介电损耗的目的,制备出了介电损耗低于0.5%的高温无铅压电陶瓷,使该体系能实际应用于高温压电领域。The invention discloses a low-loss BiFeO 3 -BaTiO 3 based lead-free piezoelectric ceramic and a preparation method thereof. The general composition formula is: (1- x )(Bi 1- t La t )FeO 3 - x Ba(Ti 1- u Sn u )O 3 +0.5%BiMnO 3 + y Ba(Cu 1/3 Nb 2/3 )O 3 + z LiBiO 3 + m Ba(W 1/2 Cu 1/2 )O 3 , where t , x , u , y , z , m represent mole fractions, and 0< t ≤ 0.02, 0.15 ≤ x ≤ 0.30, 0< u <0.05, 0< y <0.05, 0< z <0.05, 0< m <0.05 . Its preparation method includes batching according to the general formula, ball milling, forming plain sheets, debinding, sintering and other processes, using technologies such as lowering the sintering temperature, rapid heating and cooling, and high-pressure oxygen to reduce the volatilization of Bi elements, inhibit the generation of oxygen vacancies, and prevent the cooling process The price of Fe 3+ ions in the medium is changed, so as to achieve the purpose of reducing the dielectric loss, and a high-temperature lead-free piezoelectric ceramic with a dielectric loss of less than 0.5% is prepared, so that the system can be practically applied in the field of high-temperature piezoelectricity.
Description
技术领域 technical field
本发明涉及一种无铅压电陶瓷的制备方法,具体是在高压氧条件下采用低温液相快速烧结制备的低损耗高性能铁酸铋-钛酸钡基高温无铅压电陶瓷的制备方法。 The invention relates to a preparation method of lead-free piezoelectric ceramics, in particular to a preparation method of low-loss high-performance bismuth ferrite-barium titanate-based high-temperature lead-free piezoelectric ceramics prepared by low-temperature liquid phase rapid sintering under high-pressure oxygen conditions . the
背景技术 Background technique
压电陶瓷在信息、激光、导航、电子技术、通讯、计量检测、精密加工和传感技术等高技术领域应用广泛。铁酸铋-钛酸钡体系压电陶瓷因其无铅、烧结温度低、高居里温度、高退极化温度以及良好的压电性能收受到极大关注,2009年,Serhiy O. Leontsev and Richard E. Eitel等报道该体系在氧气氛中烧结条件下可获得的压电常数d 33=116pC/N、退极化温度T d=469oC的压电陶瓷,但由于该体系的介电损耗一直较高,在1KHZ下的介电损耗为4.6%,严重限制了其实际开发应用,因此如何降低该体系的介电损耗,是该体系得以在高温领域应用的关键技术。 Piezoelectric ceramics are widely used in high-tech fields such as information, laser, navigation, electronic technology, communication, measurement and detection, precision processing and sensing technology. Bismuth ferrite-barium titanate piezoelectric ceramics have received great attention because of their lead-free, low sintering temperature, high Curie temperature, high depolarization temperature and good piezoelectric properties. In 2009, Serhiy O. Leontsev and Richard E. Eitel et al. reported that the piezoelectric ceramics with piezoelectric constant d 33 =116 pC/N and depolarization temperature T d =469 o C could be obtained under sintering conditions in an oxygen atmosphere, but due to the dielectric properties of the system The loss has always been high, and the dielectric loss at 1KHZ is 4.6%, which seriously limits its practical development and application. Therefore, how to reduce the dielectric loss of the system is the key technology for the system to be applied in the high temperature field.
BiFeO3-BaTiO3体系的介电损耗主要由以下几个方面的因素引起:(1)由于纯BiFeO3的烧结温度为750度左右,而BaTiO3的烧结温度为1450度左右,两者相差达到700oC,因此,为了提高BiFeO3-BaTiO3陶瓷体系的致密度及性能,两相固溶体的烧结温度在1000oC以上,而Bi元素在高温下又极易挥发,因此使得烧结产品偏离设计的化学计量比;(2)Fe3+离子的变价,在降温阶段,Fe3+离子有部分会转变成Fe2+离子。为了维持化合价平衡,这两种因素都会导致大量氧空位的产生,最终使得样品的介电损耗较高,极化困难。因此该体系在高温压电领域得以应用的关键是如何控制该体系的介电损耗。 The dielectric loss of the BiFeO 3 -BaTiO 3 system is mainly caused by the following factors: (1) Since the sintering temperature of pure BiFeO 3 is about 750 degrees, and the sintering temperature of BaTiO 3 is about 1450 degrees, the difference between the two reaches 700 o C, therefore, in order to improve the density and performance of the BiFeO 3 -BaTiO 3 ceramic system, the sintering temperature of the two-phase solid solution is above 1000 o C, and the Bi element is very volatile at high temperature, so the sintered product deviates from the design (2) The price change of Fe 3+ ions. In the cooling stage, some Fe 3+ ions will be transformed into Fe 2+ ions. In order to maintain the valence balance, both of these factors will lead to the generation of a large number of oxygen vacancies, which eventually lead to high dielectric loss and difficult polarization of the sample. Therefore, the key to the application of this system in the high temperature piezoelectric field is how to control the dielectric loss of the system.
发明内容 Contents of the invention
本发明的目的是针对BiFeO3-BaTiO3体系所存在的不足,而所提供一种低损耗铁酸铋-钛酸钡基压电陶瓷的制备方法。这种压电陶瓷能有效的将介电损耗降低到了1.0%以下,使其可以应用在高温领域。 The purpose of the present invention is to provide a low-loss bismuth ferrite-barium titanate-based piezoelectric ceramics preparation method for the shortcomings of the BiFeO 3 -BaTiO 3 system. This piezoelectric ceramic can effectively reduce the dielectric loss to less than 1.0%, making it suitable for high-temperature applications.
实现本发明目的的技术方案是: The technical scheme that realizes the object of the present invention is:
一种低损耗铁酸铋-钛酸钡基压电陶瓷,其组成通式为: (1-x)(Bi1-t La t )FeO3-xBa(Ti1-u Sn u )O3+0.5%BiMnO3+yBa(Cu1/3Nb2/3)O3+zLiBiO3+mBa(W1/2Cu1/2)O3,其中t、x、u、y、z、m表示摩尔分数,且0<t≤0.02,0.15≤x≤0.30,0<u<0.05, 0<y<0.05, 0<z<0.05,0<m<0.05。 A low-loss bismuth ferrite-barium titanate-based piezoelectric ceramic, the general formula of which is: (1- x )(Bi 1- t La t )FeO 3 - x Ba(Ti 1- u Sn u )O 3 +0.5%BiMnO 3 + y Ba(Cu 1/3 Nb 2/3 )O 3 + z LiBiO 3 + m Ba(W 1/2 Cu 1/2 )O 3 , where t , x , u, y, z , m represents mole fraction, and 0< t ≤0.02, 0.15≤ x ≤0.30, 0< u <0.05, 0< y <0.05, 0< z <0.05, 0< m <0.05.
一种低损耗铁酸铋-钛酸钡基压电陶瓷的制备方法,包括如下步骤: A method for preparing low-loss bismuth ferrite-barium titanate-based piezoelectric ceramics, comprising the steps of:
(1)以分析纯Fe2O3、Bi2O3、BaCO3、TiO2、La2O3、SnO2、MnCO3、CuO、WO3、Nb2O5、Li2CO3为原料,按照(1-x)(Bi1-t La t )FeO 3-xBa(Ti1-u Sn u )O3+zLiBiO3 (1) Using analytically pure Fe 2 O 3 , Bi 2 O 3 , BaCO 3 , TiO 2 , La 2 O 3 , SnO 2 , MnCO 3 , CuO, WO 3 , Nb 2 O 5 , Li 2 CO 3 as raw materials, According to (1- x )(Bi 1- t La t )FeO 3 - x Ba(Ti 1- u Sn u )O 3 + z LiBiO 3
+0.5%BiMnO3+yBa(Cu1/3Nb2/3)O3+mBa(W1/2Cu1/2)O3进行配料(其中0<t≤0.02,0.15≤x≤0.30,0<u<0.05, 0<y<0.05, 0<z<0.05,0<m<0.05),以无水乙醇为介质球磨24小时,在100℃/12小时烘干、过筛,放入高铝坩埚中加盖,再放入密闭通氧管式炉中以250℃/h的升温速率到800℃,加高压氧至20MPa,保温4小时合成,并降温冷却至200度以下后取出。 +0.5%BiMnO 3 + y Ba(Cu 1/3 Nb 2/3 )O 3 + m Ba(W 1/2 Cu 1/2 )O 3 for batching (where 0< t ≤0.02, 0.15≤ x ≤0.30 , 0< u <0.05, 0< y <0.05, 0< z <0.05, 0< m <0.05), ball milled with absolute ethanol for 24 hours, dried at 100°C/12 hours, sieved, put into Cover the high-alumina crucible, then put it into a closed oxygen-through tube furnace at a rate of 250°C/h to 800°C, add high-pressure oxygen to 20MPa, keep it warm for 4 hours to synthesize, and cool down to below 200°C before taking it out.
(2)将步骤1合成的(1-x)(Bi1-t La t )FeO3-xBa(Ti1-u Sn u )O3+0.5%BiMnO3+yBa(Cu1/3Nb2/3)O3+zLiBiO3 +mBa(W1/2Cu1/2)O3(其中0<t≤0.02,0.15≤x≤0.30,0<u<0.05, 0<y<0.05, 0<z<0.05,0<m<0.05)进行二次球磨,以无水乙醇为介质球磨24小时,干燥,过筛; (2) The (1- x )(Bi 1- t La t )FeO 3 - x Ba(Ti 1- u Sn u )O 3 +0.5%BiMnO 3 + y Ba(Cu 1/3 Nb 2/3 )O 3 + z LiBiO 3 +mBa (W 1/2 Cu 1/2 )O 3 (where 0< t ≤ 0.02, 0.15 ≤ x ≤ 0.30, 0< u <0.05, 0< y <0.05, 0< z <0.05, 0< m <0.05) for secondary ball milling, using absolute ethanol as medium ball milling for 24 hours, drying, and sieving;
(3)将过筛后的粉末加入5%PVA溶液造粒,在钢模中于100MPa下压制成型,模具内直径约为1cm; (3) Add the sieved powder to 5% PVA solution to granulate, and press it in a steel mold at 100MPa, and the inner diameter of the mold is about 1cm;
(4)成型的素片以30℃/h的升温速率缓慢升温至600℃,保温6h排胶,随炉冷却后取出备用; (4) The formed plain sheet is slowly heated up to 600°C at a heating rate of 30°C/h, kept for 6 hours to remove the glue, and taken out after cooling with the furnace for use;
(5)将已排胶的素片直接推入750度通纯氧的管式炉中,密封,以20℃/min的升温速率到840-860℃,同时加氧高压至20MPa,保温30min,降压,打开管式炉,直接取出样品至空气中冷却; (5) Push the unglued plain sheet directly into a tube furnace with pure oxygen at 750 degrees, seal it, and increase the temperature to 840-860°C at a rate of 20°C/min. At the same time, add oxygen and high pressure to 20MPa, and keep it for 30min. Reduce the pressure, open the tube furnace, and take out the sample directly to cool in the air;
(6)将烧结后的样品加工成两面光滑、厚度约1mm的薄片,披银电极,600oC/30min烧银后备用; (6) Process the sintered sample into thin slices with smooth sides and a thickness of about 1mm, cover with silver electrodes, and burn silver at 600 o C/30min for later use;
(7)将制备的压电陶瓷片在硅油中极化,极化电场6000V/mm,温度150℃,时间30分钟,保持电场冷却至室温。 (7) Polarize the prepared piezoelectric ceramic sheet in silicone oil with a polarization electric field of 6000V/mm, a temperature of 150°C for 30 minutes, and keep the electric field to cool to room temperature.
本发明的积极效果是:The positive effect of the present invention is:
本发明制备方法成功地在保持优异性能的基础上,(1)通过添加烧结助剂降低烧结温度以及采用快速升温,减少Bi元素在烧结过程中的挥发,保证化学计量比的平衡;(2)采用高压氧条件,抑制氧空位的产生;(3)采用急冷的烧结技术,以及采用元素掺杂抑制烧结降温过程中Fe3+离子转变为Fe2+离子,抑制氧空位的产生。通过这三个技术的组合,将介电损耗降至可以在高温领域应用的1.0%以下,这对于BiFeO3-BaTiO3体系压电陶瓷而言,从技术上看,具有重大突破和技术上的创新,并具有实用性。 The preparation method of the present invention successfully maintains excellent performance on the basis of (1) reducing the sintering temperature by adding sintering aids and adopting rapid temperature rise to reduce the volatilization of Bi element in the sintering process and ensure the balance of the stoichiometric ratio; (2) High-pressure oxygen conditions are used to suppress the generation of oxygen vacancies; (3) Rapid cooling sintering technology and element doping are used to suppress the transformation of Fe 3+ ions into Fe 2+ ions during sintering and cooling to suppress the generation of oxygen vacancies. Through the combination of these three technologies, the dielectric loss can be reduced to less than 1.0% which can be applied in the high temperature field. This is a major breakthrough and technical breakthrough for the BiFeO 3 -BaTiO 3 system piezoelectric ceramics. Innovative and practical.
具体实施方式 Detailed ways
实施例1: Example 1:
组成通式:0.75(Bi0.99La0.01)FeO3-0.25Ba(Ti0.98Sn0.02)O3-0.5%BiMnO3+ 0.6%LiBiO3+0.6%Ba(Cu1/3Nb2/3)O3+0.5% Ba(W1/2Cu1/2)O3,制备方法包括如下步骤: General composition formula: 0.75(Bi 0.99 La 0.01 )FeO 3 -0.25Ba(Ti 0.98 Sn 0.02 )O 3 -0.5%BiMnO 3 + 0.6%LiBiO 3 +0.6%Ba(Cu 1/3 Nb 2/3 )O 3 +0.5% Ba(W 1/2 Cu 1/2 )O 3 , the preparation method includes the following steps:
(1)以分析纯Fe2O3、Bi2O3、BaCO3、TiO2、La2O3、SnO2、MnCO3、CuO、WO3、Nb2O5、Li2CO3为原料,按照0.75(Bi0.99La0.01)FeO3-0.25Ba(Ti0.98Sn0.02)O3- (1) Using analytically pure Fe 2 O 3 , Bi 2 O 3 , BaCO 3 , TiO 2 , La 2 O 3 , SnO 2 , MnCO 3 , CuO, WO 3 , Nb 2 O 5 , Li 2 CO 3 as raw materials, According to 0.75(Bi 0.99 La 0.01 )FeO 3 -0.25Ba(Ti 0.98 Sn 0.02 )O 3 -
0.5%BiMnO3+0.8%LiBiO3+0.6%Ba(Cu1/3Nb2/3)O3+0.5% Ba(W1/2Cu1/2)O3,进行配料,以无水乙醇为介质球磨24小时,在100℃/12小时烘干、过筛,放入高铝坩埚中加盖,再放入密闭通氧管式炉中以250℃/h的升温速率到800℃,加高压氧至20MPa,保温4小时合成,并降温冷却至200度以下后取出。 0.5%BiMnO 3 +0.8%LiBiO 3 +0.6%Ba(Cu 1/3 Nb 2/3 )O 3 +0.5%Ba(W 1/2 Cu 1/2 )O 3 Media ball milled for 24 hours, dried at 100°C/12 hours, sieved, put into a high-alumina crucible and covered, and then put into a closed oxygen-through tube furnace with a heating rate of 250°C/h to 800°C, and high pressure Oxygen to 20MPa, keep warm for 4 hours to synthesize, and take it out after cooling down to below 200 degrees.
(2)将步骤1合成的0.75(Bi0.99La0.01)FeO3-0.25Ba(Ti0.98Sn0.02)O3-0.5%BiMnO3+ 0.8%LiBiO3+0.6%Ba(Cu1/3Nb2/3)O3+0.5% Ba(W1/2Cu1/2)O3进行二次球磨,以无水乙醇为介质球磨24小时,干燥; (2) The 0.75(Bi 0.99 La 0.01 )FeO 3 -0.25Ba(Ti 0.98 Sn 0.02 )O 3 -0.5%BiMnO 3 + 0.8%LiBiO 3 +0.6%Ba(Cu 1/3 Nb 2/ 3 ) O 3 +0.5% Ba(W 1/2 Cu 1/2 )O 3 was subjected to secondary ball milling, using absolute ethanol as the medium for ball milling for 24 hours, and dried;
(3)将过筛后的粉末加入5%PVA溶液造粒,在钢模中于100MPa下压制成型,模具内直径约为1cm; (3) Add the sieved powder to 5% PVA solution to granulate, and press it in a steel mold at 100MPa, and the inner diameter of the mold is about 1cm;
(4)成型的素片以30℃/h的升温速率缓慢升温至600℃,保温6h排胶,随炉冷却后取出备用; (4) The formed plain sheet is slowly heated up to 600°C at a heating rate of 30°C/h, kept for 6 hours to remove the glue, and taken out after cooling with the furnace for use;
(5)将已排胶的素片直接推入750度通纯氧的管式炉中,密封,以20℃/min的升温速率快速升温到860℃,同时加氧高压至20MPa,保温30min,降压,打开管式炉,直接取出样品至空气中冷却; (5) Push the unglued plain sheet directly into a tube furnace with pure oxygen at 750°C, seal it, and rapidly heat it up to 860°C at a heating rate of 20°C/min. At the same time, add oxygen and high pressure to 20MPa, and keep it for 30min. Reduce the pressure, open the tube furnace, and take out the sample directly to cool in the air;
(6)将烧结后的样品加工成两面光滑、厚度约1mm的薄片,披银电极,600oC/30min烧银后备用; (6) Process the sintered sample into thin slices with smooth sides and a thickness of about 1mm, cover with silver electrodes, and burn silver at 600 o C/30min for later use;
(7)将制备的压电陶瓷片在硅油中极化,极化电场6000V/mm,温度150℃,时间30分钟,保持电场冷却至室温。 (7) Polarize the prepared piezoelectric ceramic sheet in silicone oil with a polarization electric field of 6000V/mm, a temperature of 150°C for 30 minutes, and keep the electric field to cool to room temperature.
性能测量结果如下: The performance measurements are as follows:
实施例2: Example 2:
成分:0.75(Bi0.99La0.01)FeO3-0.25Ba(Ti0.99Sn0.01)O3-0.5%BiMnO3+0.6%LiBiO3+ Composition: 0.75(Bi 0.99 La 0.01 )FeO 3 -0.25Ba(Ti 0.99 Sn 0.01 )O 3 -0.5%BiMnO 3 +0.6%LiBiO 3 +
0.6%Ba(Cu1/3Nb2/3)O3+0.8% Ba(W1/2Cu1/2)O3 0.6%Ba(Cu 1/3 Nb 2/3 )O 3 +0.8%Ba(W 1/2 Cu 1/2 )O 3
制备方法同实施例1。 The preparation method is the same as in Example 1.
性能测量结果如下: The performance measurements are as follows:
实施例3: Example 3:
成分:0.75(Bi0.99La0.01)FeO3-0.25Ba(Ti0.99Sn0.01)O3-0.5%BiMnO3+ 0.8%LiBiO3+ Composition: 0.75(Bi 0.99 La 0.01 )FeO 3 -0.25Ba(Ti 0.99 Sn 0.01 )O 3 -0.5%BiMnO 3 + 0.8%LiBiO 3 +
0.6%Ba(Cu1/3Nb2/3)O3+1.0% Ba(W1/2Cu1/2)O3制备方法同实施例1,不同的是烧结温度850℃/4h The preparation method of 0.6%Ba(Cu 1/3 Nb 2/3 )O 3 +1.0% Ba(W 1/2 Cu 1/2 )O 3 is the same as in Example 1, except that the sintering temperature is 850°C/4h
性能测量结果如下: The performance measurements are as follows:
实施例4: Example 4:
成分:0.80(Bi0.99La0.01)FeO3-0.20Ba(Ti0.98Sn0.02)O3-0.5%BiMnO3+0.8%LiBiO3+ Composition: 0.80(Bi 0.99 La 0.01 )FeO 3 -0.20Ba(Ti 0.98 Sn 0.02 )O 3 -0.5%BiMnO 3 +0.8%LiBiO 3 +
0.9%Ba(Cu1/3Nb2/3)O3+1.0% Ba(W1/2Cu1/2)O3 0.9%Ba(Cu 1/3 Nb 2/3 )O 3 +1.0%Ba(W 1/2 Cu 1/2 )O 3
制备方法同实施例1,不同的是烧结温度840℃。 The preparation method is the same as in Example 1, except that the sintering temperature is 840°C.
性能测量结果如下: The performance measurements are as follows:
本发明所列举的成分的上下限、区间取值以及工艺参数的上下限、区间取值都能实现本发明,在此不一一列举实施。 The upper and lower limits and interval values of the components listed in the present invention, as well as the upper and lower limits and interval values of the process parameters can all realize the present invention, and are not enumerated and implemented here.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410691071.0A CN104402425B (en) | 2014-11-27 | 2014-11-27 | A kind of preparation method of low-loss bismuth ferrite-barium titanate base piezoelectric ceramic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410691071.0A CN104402425B (en) | 2014-11-27 | 2014-11-27 | A kind of preparation method of low-loss bismuth ferrite-barium titanate base piezoelectric ceramic |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104402425A true CN104402425A (en) | 2015-03-11 |
CN104402425B CN104402425B (en) | 2016-08-17 |
Family
ID=52640109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410691071.0A Expired - Fee Related CN104402425B (en) | 2014-11-27 | 2014-11-27 | A kind of preparation method of low-loss bismuth ferrite-barium titanate base piezoelectric ceramic |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104402425B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109336185A (en) * | 2018-12-03 | 2019-02-15 | 广东先导稀材股份有限公司 | Production method of micron bismuth manganate powder |
CN109503152A (en) * | 2018-12-29 | 2019-03-22 | 内蒙古大学 | Solid solution membrane and preparation method thereof with segregation particle |
CN110272286A (en) * | 2019-07-23 | 2019-09-24 | 中国科学技术大学 | A method of improving ferrous acid bismuth-based ceramics ferromagnetism and magneto-electric coupled coefficient |
WO2020062618A1 (en) * | 2018-09-28 | 2020-04-02 | 东北大学 | Ferroelectric material with good temperature stability, preparation method therefor and use thereof |
CN111138177A (en) * | 2020-01-09 | 2020-05-12 | 桂林电子科技大学 | A kind of bismuth ferrite-zinc bismuth titanate high temperature lead-free piezoelectric ceramic with high temperature stability and preparation method thereof |
CN111454054A (en) * | 2019-01-22 | 2020-07-28 | Tdk株式会社 | Piezoelectric composition and piezoelectric element |
CN114262225A (en) * | 2021-12-29 | 2022-04-01 | 湖南省嘉利信陶瓷科技有限公司 | High-purity nano electronic ceramic and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102249659A (en) * | 2011-06-16 | 2011-11-23 | 桂林电子科技大学 | Bismuth ferrite-based leadless piezoelectric ceramic with high Curie temperature and preparation method thereof |
CN102584194A (en) * | 2012-02-14 | 2012-07-18 | 桂林电子科技大学 | Perovskite leadless piezoelectric ceramic used at high temperature and preparation method thereof |
-
2014
- 2014-11-27 CN CN201410691071.0A patent/CN104402425B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102249659A (en) * | 2011-06-16 | 2011-11-23 | 桂林电子科技大学 | Bismuth ferrite-based leadless piezoelectric ceramic with high Curie temperature and preparation method thereof |
CN102584194A (en) * | 2012-02-14 | 2012-07-18 | 桂林电子科技大学 | Perovskite leadless piezoelectric ceramic used at high temperature and preparation method thereof |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020062618A1 (en) * | 2018-09-28 | 2020-04-02 | 东北大学 | Ferroelectric material with good temperature stability, preparation method therefor and use thereof |
CN109336185A (en) * | 2018-12-03 | 2019-02-15 | 广东先导稀材股份有限公司 | Production method of micron bismuth manganate powder |
CN109503152A (en) * | 2018-12-29 | 2019-03-22 | 内蒙古大学 | Solid solution membrane and preparation method thereof with segregation particle |
CN109503152B (en) * | 2018-12-29 | 2021-06-15 | 内蒙古大学 | Solid solution film with segregated particles and preparation method thereof |
CN111454054A (en) * | 2019-01-22 | 2020-07-28 | Tdk株式会社 | Piezoelectric composition and piezoelectric element |
CN111454054B (en) * | 2019-01-22 | 2022-07-01 | Tdk株式会社 | Piezoelectric composition and piezoelectric element |
CN110272286A (en) * | 2019-07-23 | 2019-09-24 | 中国科学技术大学 | A method of improving ferrous acid bismuth-based ceramics ferromagnetism and magneto-electric coupled coefficient |
CN110272286B (en) * | 2019-07-23 | 2020-10-27 | 中国科学技术大学 | Method for improving ferromagnetic and magnetoelectric coupling coefficient of bismuth ferrite-based ceramic |
CN111138177A (en) * | 2020-01-09 | 2020-05-12 | 桂林电子科技大学 | A kind of bismuth ferrite-zinc bismuth titanate high temperature lead-free piezoelectric ceramic with high temperature stability and preparation method thereof |
CN114262225A (en) * | 2021-12-29 | 2022-04-01 | 湖南省嘉利信陶瓷科技有限公司 | High-purity nano electronic ceramic and preparation method thereof |
CN114262225B (en) * | 2021-12-29 | 2022-10-21 | 湖南省嘉利信陶瓷科技有限公司 | High-purity nano electronic ceramic and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104402425B (en) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104402425B (en) | A kind of preparation method of low-loss bismuth ferrite-barium titanate base piezoelectric ceramic | |
CN110272270B (en) | Bismuth ferrite-barium titanate-based high-temperature lead-free piezoelectric ceramic with low dielectric loss and high-temperature stability and preparation method thereof | |
CN102249659B (en) | Bismuth ferrite-based leadless piezoelectric ceramic with high Curie temperature and preparation method thereof | |
CN102584195B (en) | Bismuth-based perovskite type leadless piezoelectric ceramic and low-temperature preparation method thereof | |
CN101234895A (en) | A bismuth sodium titanate based lead-free piezoelectric ceramic | |
CN110128126B (en) | Bismuth ferrite-barium titanate-zinc bismuth titanate-bismuth aluminate high-temperature lead-free piezoelectric ceramic and preparation method thereof | |
CN101423391B (en) | Potassium sodium niobate-based lead-free piezoelectric ceramic and preparation method thereof | |
CN102850050A (en) | Low temperature sintering piezoelectric ceramic material and preparation method thereof | |
CN104387049B (en) | A kind of leadless piezoelectric ceramics and low-temp liquid-phase sintering preparation method thereof | |
CN110128127A (en) | Bismuth ferrite-barium titanate-based lead-free piezoelectric ceramic with high-voltage electrical properties and high-temperature stability and preparation method thereof | |
CN107903055B (en) | Gradient doped sodium bismuth titanate based multilayer lead-free piezoelectric ceramic | |
CN102285792B (en) | Lead-free piezoelectric ceramic with perovskite structure | |
CN102320828B (en) | Unleaded piezoelectric ceramic consisting of B-site composite Bi-based compound and preparation method thereof | |
CN110128128B (en) | Bismuth ferrite-bismuth aluminate-bismuth zinc titanate high-temperature piezoelectric ceramic with zero temperature coefficient and high-temperature stability and preparation method thereof | |
Bijalwan et al. | Rapid pressureless sintering of barium titanate–based piezoceramics and their electromechanical harvesting performance | |
CN102285794B (en) | Lead-free piezoelectric ceramic composed of B-site complex perovskite-structured compounds | |
Abah et al. | The effect of B-site (W/Nb) co-substituting on the electrical properties of sodium bismuth titanate high temperature piezoceramics | |
CN103880416B (en) | Preparation method for sintering sodium bismuth titanate-based lead-free piezoelectric ceramics at low temperature | |
CN102584194B (en) | Perovskite leadless piezoelectric ceramic used at high temperature and preparation method thereof | |
CN102249678B (en) | Lead-free and bismuth-free piezoelectric ceramics | |
CN103145417A (en) | High-property low-cost potassium-sodium niobate base leadless piezoelectric ceramic and preparation method thereof | |
Yang et al. | Effects of Non‐Stoichiometry on the Microstructure, Oxygen Vacancies, and Piezoelectric Properties of CuTa 2 O 6‐Doped NKN Ceramics | |
CN103159475B (en) | Leadless piezoelectric ceramic composed of B-bit composite Bi-based compound and preparation method thereof | |
CN107032786B (en) | Low-firing lead-free piezoelectric ceramic with high piezoelectric performance and high mechanical quality factor and preparation method thereof | |
CN103803966B (en) | A kind of high-temp leadless piezoelectric ceramics with nearly zero-temperature coefficient and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160817 |
|
CF01 | Termination of patent right due to non-payment of annual fee |