CN104401932A - AlN piezoelectric film device with duplexer function and preparation method thereof - Google Patents
AlN piezoelectric film device with duplexer function and preparation method thereof Download PDFInfo
- Publication number
- CN104401932A CN104401932A CN201410794021.5A CN201410794021A CN104401932A CN 104401932 A CN104401932 A CN 104401932A CN 201410794021 A CN201410794021 A CN 201410794021A CN 104401932 A CN104401932 A CN 104401932A
- Authority
- CN
- China
- Prior art keywords
- layer
- aluminum nitride
- thickness
- electrode
- film layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
- Micromachines (AREA)
Abstract
Description
技术领域technical field
本发明属于微光机电系统领域,涉及具有双工器功能的氮化铝压电薄膜器件,特别涉及一种适用于液相环境,具有双工器功能的双层C轴倾斜的氮化铝(AlN)压电薄膜器件及其制备方法。The invention belongs to the field of micro-opto-electromechanical systems, relates to an aluminum nitride piezoelectric film device with a duplexer function, in particular to a double-layer C-axis tilted aluminum nitride ( AlN) piezoelectric thin film device and its preparation method.
背景技术Background technique
氮化铝压电薄膜具有高声速、耐高温、性能稳定的优点,而且与CMOS工艺兼容,受到国内外广泛关注。以AlN压电薄膜制备为核心技术的MEMS器件已被广泛应用于传感器、谐振器及能量收集器等领域。Aluminum nitride piezoelectric film has the advantages of high sound velocity, high temperature resistance, stable performance, and is compatible with CMOS technology, and has attracted widespread attention at home and abroad. MEMS devices based on the preparation of AlN piezoelectric thin films have been widely used in the fields of sensors, resonators and energy harvesters.
以硅基AlN薄膜制备为核心技术的薄膜体声波谐振器应用于液体检测时,若体声波以长度伸缩模式工作,则声波能量将大量损失在液体中而降低传感器的检测灵敏度;而体声波以厚度剪切模式工作时,声波在液体中的能量损耗小,有利于提高传感器的灵敏度和品质因数;另外,以单一模式通讯的薄膜体声波器件所构成的检测系统不仅体积庞大,还会为后续信号的处理带来诸多不便。When the thin-film bulk acoustic resonator with silicon-based AlN film preparation as the core technology is applied to liquid detection, if the bulk acoustic wave works in the length stretching mode, a large amount of acoustic wave energy will be lost in the liquid and the detection sensitivity of the sensor will be reduced; When working in the thickness-shear mode, the energy loss of the acoustic wave in the liquid is small, which is conducive to improving the sensitivity and quality factor of the sensor; in addition, the detection system composed of thin-film bulk acoustic wave devices that communicate in a single mode is not only bulky, but also for subsequent Signal processing brings a lot of inconvenience.
因此,制备可激发厚度剪切模式、具有双工器功能的双层C轴倾斜的压电薄膜十分必要。Therefore, it is necessary to prepare double-layer C-axis tilted piezoelectric films that can excite the thickness-shear mode and have the function of a duplexer.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种具有双工器功能的氮化铝压电薄膜器件。In view of this, the object of the present invention is to provide an aluminum nitride piezoelectric thin film device with a duplexer function.
为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种具有双工器功能的氮化铝压电薄膜器件,由下至上依次包括硅衬底、绝缘层、下电极、第I氮化铝薄膜层、中间电极、第II氮化铝薄膜层和上电极,所述第I氮化铝薄膜层和第II氮化铝薄膜层的C轴与硅衬底倾斜且两者倾斜方向相反。An aluminum nitride piezoelectric thin film device with a duplexer function, comprising a silicon substrate, an insulating layer, a lower electrode, a first aluminum nitride thin film layer, an intermediate electrode, a second aluminum nitride thin film layer and For the upper electrode, the C axes of the first aluminum nitride thin film layer and the second aluminum nitride thin film layer are inclined to the silicon substrate, and the inclination directions of the two are opposite.
作为本发明氮化铝压电薄膜器件的优选,所述下电极上表面的引线键合区域还复合有用于引线键合的金属铝层。As a preference of the aluminum nitride piezoelectric thin film device of the present invention, the wire bonding area on the upper surface of the lower electrode is also compounded with a metal aluminum layer for wire bonding.
作为本发明氮化铝压电薄膜器件的另一种优选,所述硅衬底厚度为300~700um,所述绝缘层为二氧化硅层,其厚度为250~350nm。As another preference of the aluminum nitride piezoelectric thin film device of the present invention, the thickness of the silicon substrate is 300-700 um, and the insulating layer is a silicon dioxide layer with a thickness of 250-350 nm.
作为本发明氮化铝压电薄膜器件的另一种优选,所述下电极材质为Mo或Ti/Pt,其厚度为120~160nm。As another preference of the aluminum nitride piezoelectric thin film device of the present invention, the material of the lower electrode is Mo or Ti/Pt, and its thickness is 120-160 nm.
作为本发明氮化铝压电薄膜器件的进一步优选,所述中间电极材质为Ir或Mo,其厚度为120~160nm。As a further preference of the aluminum nitride piezoelectric thin film device of the present invention, the material of the intermediate electrode is Ir or Mo, and its thickness is 120-160 nm.
作为本发明氮化铝压电薄膜器件的进一步优选,所述上电极材质为Al,其厚度为1000~1200nm。As a further preference of the aluminum nitride piezoelectric thin film device of the present invention, the material of the upper electrode is Al, and its thickness is 1000-1200 nm.
作为本发明氮化铝压电薄膜器件的进一步优选,所述第I氮化铝薄膜层和第II氮化铝薄膜层的厚度均为0.8~1.2μm。本发明还公开了制备所述具有双工器功能的氮化铝压电薄膜器件的方法,包括以下步骤:As a further preference of the aluminum nitride piezoelectric thin film device of the present invention, the thicknesses of the first aluminum nitride thin film layer and the second aluminum nitride thin film layer are both 0.8-1.2 μm. The invention also discloses a method for preparing the aluminum nitride piezoelectric thin film device with a duplexer function, comprising the following steps:
1)取厚度为300~700um的硅片为衬底;1) Take a silicon wafer with a thickness of 300-700um as the substrate;
2)双面热氧化1)所选衬底,使其上下表面分别形成厚度为250~350nm的SiO2层;2) double-sided thermal oxidation 1) the selected substrate, so that SiO2 layers with a thickness of 250-350nm are formed on the upper and lower surfaces;
3)在上部SiO2层表面生长Mo或Ti/Pt下电极层并图形化,控制其厚度为200~250nm;3) growing a Mo or Ti/Pt lower electrode layer on the surface of the upper SiO 2 layer and patterning it, controlling its thickness to be 200-250nm;
4)采用磁控溅射技术在Mo或Ti/Pt电极上依次生长第I氮化铝薄膜层、Ir或Mo中间电极层和第II氮化铝薄膜层并分别图形化;4) Using magnetron sputtering technology to sequentially grow the first aluminum nitride thin film layer, Ir or Mo intermediate electrode layer and the second aluminum nitride thin film layer on the Mo or Ti/Pt electrode and pattern them respectively;
5)在第II氮化铝薄膜层上生长Al上电极层并图形化;5) growing and patterning an Al upper electrode layer on the II aluminum nitride film layer;
6)首先刻蚀去除硅衬底下部SiO2层,然后在硅衬底下部生长厚度为80~100nm的铝层并图形化;6) Etching and removing the SiO2 layer at the lower part of the silicon substrate first, and then growing and patterning an aluminum layer with a thickness of 80-100 nm on the lower part of the silicon substrate;
7)以Al层为掩蔽层,等离子刻蚀硅衬底至上部SiO2层,形成贯穿硅衬底的孔洞。7) Using the Al layer as a mask layer, plasma etch the silicon substrate to the upper SiO 2 layer to form holes through the silicon substrate.
特别的,步骤4)控制第I氮化铝薄膜层和第II氮化铝薄膜层厚度为0.8~1.2μm、Ir或Mo中间电极层厚度为120~160nm。In particular, step 4) controls the thickness of the first aluminum nitride thin film layer and the second aluminum nitride thin film layer to be 0.8-1.2 μm, and the thickness of the Ir or Mo intermediate electrode layer to be 120-160 nm.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明创造性的提出了具有双层C轴倾斜AlN压电薄膜层结构,在液相工作环境下,该结构可以大幅提高传感器的灵敏度,实现薄膜体声波器件的双向通信并缩小其体积;本发明进一步优选了该压电薄膜层各层厚度及原材料,这对于获得高性能压电薄膜层结构同样重要;本发明制备压电薄膜层结构时,通过在第I氮化铝薄膜层和第II氮化铝薄膜层之间设置中间电极层,调整第I、第II氮化铝薄膜层的倾斜方式,使得该器件具有双向通信功能;本发明考虑到器件引线键合的需要,使用铝金属作为引线键合的直接接触材料。The present invention creatively proposes a double-layer C-axis inclined AlN piezoelectric film layer structure, which can greatly improve the sensitivity of the sensor in a liquid-phase working environment, realize two-way communication of the film bulk acoustic wave device and reduce its volume; the present invention Further optimized each layer thickness and raw material of this piezoelectric film layer, this is equally important for obtaining high-performance piezoelectric film layer structure; An intermediate electrode layer is arranged between the aluminum nitride film layers, and the inclination mode of the first and second aluminum nitride film layers is adjusted, so that the device has a two-way communication function; the present invention considers the needs of device wire bonding, and uses aluminum metal as the lead wire Bonded direct contact material.
附图说明Description of drawings
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:In order to make the purpose, technical scheme and beneficial effect of the present invention clearer, the present invention provides the following drawings for illustration:
图1为本发明具有双层C轴倾斜AlN压电薄膜层结构示意图;Fig. 1 is a schematic diagram of the structure of the present invention having a double-layer C-axis tilted AlN piezoelectric film layer;
图2为实施例1制备具有双工器功能的氮化铝压电薄膜器件步骤1)示意图;Fig. 2 is the schematic diagram of step 1) of preparing an aluminum nitride piezoelectric thin film device with duplexer function in embodiment 1;
图3为实施例1制备具有双工器功能的氮化铝压电薄膜器件步骤2)示意图;Fig. 3 is the schematic diagram of step 2) of preparing an aluminum nitride piezoelectric thin film device with duplexer function in embodiment 1;
图4为实施例1制备具有双工器功能的氮化铝压电薄膜器件步骤3)示意图;4 is a schematic diagram of step 3) of preparing an aluminum nitride piezoelectric thin film device with a duplexer function in Example 1;
图5为实施例1制备具有双工器功能的氮化铝压电薄膜器件步骤4)示意图;Fig. 5 is the schematic diagram of step 4) of preparing an aluminum nitride piezoelectric thin film device with a duplexer function in embodiment 1;
图6为实施例1制备具有双工器功能的氮化铝压电薄膜器件步骤5)示意图;6 is a schematic diagram of step 5) of preparing an aluminum nitride piezoelectric thin film device with a duplexer function in Example 1;
图7为实施例1制备具有双工器功能的氮化铝压电薄膜器件步骤6)示意图。FIG. 7 is a schematic diagram of Step 6) of preparing an aluminum nitride piezoelectric thin film device with a duplexer function in Example 1. FIG.
具体实施方式Detailed ways
下面将结合附图,对本发明的优选实施例进行详细的描述。The preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
以下实施例将公开一种具有双工器功能的氮化铝压电薄膜器件,如图1所示:由下至上依次包括硅衬底1、绝缘层2、下电极3、第I氮化铝薄膜层4、中间电极5、第II氮化铝薄膜层6和上电极7,所述第I氮化铝薄膜层4和第II氮化铝薄膜层6的C轴与硅衬底1倾斜且两者倾斜方向相反。(C轴倾斜是指氮化铝薄膜的柱状晶与衬底夹角非直角)The following embodiments will disclose a kind of aluminum nitride piezoelectric film device with duplexer function, as shown in Figure 1: comprise silicon substrate 1, insulating layer 2, lower electrode 3, the 1st aluminum nitride successively from bottom to top Thin film layer 4, intermediate electrode 5, the second aluminum nitride thin film layer 6 and upper electrode 7, the C axis of the first aluminum nitride thin film layer 4 and the second aluminum nitride thin film layer 6 is inclined to the silicon substrate 1 and Both tilt in opposite directions. (C-axis tilt means that the angle between the columnar crystal of the aluminum nitride film and the substrate is not at right angles)
其中:所述硅衬底1下表面还复合有用于引线键合的金属铝层;Wherein: the lower surface of the silicon substrate 1 is compounded with a metal aluminum layer for wire bonding;
硅衬底1厚度为300~700um,绝缘层2为二氧化硅层,其厚度为250~350nm;The silicon substrate 1 has a thickness of 300-700um, and the insulating layer 2 is a silicon dioxide layer with a thickness of 250-350nm;
下电极3材质为Mo或Ti/Pt(Ti、Pt复合层),其厚度为120~160nm;The material of the lower electrode 3 is Mo or Ti/Pt (Ti, Pt composite layer), and its thickness is 120-160nm;
中间电极5材质为Ir或Mo,其厚度为120~160nm;The material of the intermediate electrode 5 is Ir or Mo, and its thickness is 120-160 nm;
上电极7材质为Al,其厚度为1000~12000nm;The upper electrode 7 is made of Al, and its thickness is 1000-12000nm;
所述第I氮化铝薄膜层4和第II氮化铝薄膜层6的厚度均为0.8~1.2μm。The thicknesses of the first aluminum nitride thin film layer 4 and the second aluminum nitride thin film layer 6 are both 0.8-1.2 μm.
实施例1:Example 1:
本实施例制备具有双工器功能的氮化铝压电薄膜器件的方法,具体包括以下步骤:The method for preparing an aluminum nitride piezoelectric thin film device with a duplexer function in this embodiment specifically includes the following steps:
a如图1所示,首先取4英寸N型硅片(100面)为衬底1,其厚度为500um,然后双面热氧化1)所选衬底,使其上下表面分别形成厚度为300nm的SiO2层2;a As shown in Figure 1, first take a 4-inch N-type silicon wafer (100 sides) as the substrate 1 with a thickness of 500um, and then double-sided thermal oxidation 1) The selected substrate is formed so that the upper and lower surfaces are respectively formed with a thickness of 300nm SiO 2 layer 2;
b如图2所示,在上部SiO2层2表面生长Mo下电极层3并图形化,控制其厚度为120~160nm;b As shown in Figure 2, grow and pattern the Mo lower electrode layer 3 on the surface of the upper SiO 2 layer 2, and control its thickness to 120-160 nm;
c如图3所示,采用磁控溅射技术在Mo电极上依次生长第I氮化铝薄膜层4、Ir中间电极层5和第II氮化铝薄膜层6并分别图形化;控制磁控溅射过程,使得第I氮化铝薄膜层4和第II氮化铝薄膜层厚度6分别为1um,Ir中间电极层5厚度为120nm;c As shown in Figure 3, the first aluminum nitride film layer 4, the Ir intermediate electrode layer 5 and the second aluminum nitride film layer 6 are sequentially grown on the Mo electrode by magnetron sputtering technology and patterned respectively; The sputtering process makes the thickness of the first aluminum nitride thin film layer 4 and the second aluminum nitride thin film layer 6 be 1um respectively, and the thickness of the Ir intermediate electrode layer 5 is 120nm;
d如图4所示,在第II氮化铝薄膜层6上生长Al上电极层7并图形化;控制Al上电极层7厚度为1000nm;(这时在下电极3的上表面引线键合区域还复合有用于引线键合的金属铝层)d As shown in Figure 4, grow Al upper electrode layer 7 and patterning on the II aluminum nitride film layer 6; Control Al upper electrode layer 7 thickness to be 1000nm; Also compounded with metal aluminum layer for wire bonding)
e如图5所示,首先反应离子刻蚀去除硅衬底下部SiO2层2,然后在硅衬底下部生长厚度为100nm的铝层8并图形化;e as shown in Figure 5, first reactive ion etching removes SiO 2 layer 2 at the lower part of the silicon substrate, then grows an aluminum layer 8 with a thickness of 100 nm and patterning at the lower part of the silicon substrate;
f如图6所示,以Al层8为掩蔽层,感应耦合等离子刻蚀硅衬底1至上部SiO2层3,f As shown in Figure 6, using the Al layer 8 as a mask layer, inductively coupled plasma etching the silicon substrate 1 to the upper SiO 2 layer 3,
形成贯穿硅衬底的孔洞9。A hole 9 is formed through the silicon substrate.
本发明创造性的提出了具有双层C轴倾斜AlN压电薄膜层结构,在液相工作环境下,该结构可以大幅提高传感器的灵敏度,实现薄膜体声波器件的双向通信并缩小其体积;本发明进一步优选了该压电薄膜层各层厚度及原材料,这对于获得高性能压电薄膜层结构同样重要;本发明制备压电薄膜层结构时,通过在第I氮化铝薄膜层和第II氮化铝薄膜层之间设置中间电极层,合理的调整了第I、第II氮化铝薄膜层的倾斜方式;本发明考虑到器件引线键合的需要,使用铝金属作为引线键合的直接接触材料。The present invention creatively proposes a double-layer C-axis inclined AlN piezoelectric film layer structure, which can greatly improve the sensitivity of the sensor in a liquid-phase working environment, realize two-way communication of the film bulk acoustic wave device and reduce its volume; the present invention Further optimized each layer thickness and raw material of this piezoelectric film layer, this is equally important for obtaining high-performance piezoelectric film layer structure; The intermediate electrode layer is arranged between the aluminum nitride thin film layers, and the inclination mode of the first and second aluminum nitride thin film layers is reasonably adjusted; the present invention considers the needs of device wire bonding, and uses aluminum metal as the direct contact of wire bonding Material.
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。Finally, it should be noted that the above preferred embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail through the above preferred embodiments, those skilled in the art should understand that it can be described in terms of form and Various changes may be made in the details without departing from the scope of the invention defined by the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410794021.5A CN104401932B (en) | 2014-12-19 | 2014-12-19 | A kind of preparation method with the aluminum nitride piezoelectric film device of duplexer functionality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410794021.5A CN104401932B (en) | 2014-12-19 | 2014-12-19 | A kind of preparation method with the aluminum nitride piezoelectric film device of duplexer functionality |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104401932A true CN104401932A (en) | 2015-03-11 |
CN104401932B CN104401932B (en) | 2016-02-10 |
Family
ID=52639621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410794021.5A Active CN104401932B (en) | 2014-12-19 | 2014-12-19 | A kind of preparation method with the aluminum nitride piezoelectric film device of duplexer functionality |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104401932B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114050395A (en) * | 2021-10-16 | 2022-02-15 | 西北工业大学 | Very-low-frequency MEMS antenna chip and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5589084A (en) * | 1994-02-23 | 1996-12-31 | Daewoo Electronics Co. Ltd. | Thin film actuated mirror array |
CN1655373A (en) * | 2004-02-12 | 2005-08-17 | 株式会社东芝 | Thin film piezoelectric actuator |
US20080247264A1 (en) * | 2005-09-09 | 2008-10-09 | Siemens Aktiengesellschaft | Apparatus and Method For Moving a Liquid by Means of a Piezoelectric Transducer |
CN101775584A (en) * | 2010-01-08 | 2010-07-14 | 湖北大学 | Preparation method of c-axis inclined AlN thin film with homogeneous buffer layer |
CN103344328A (en) * | 2013-07-15 | 2013-10-09 | 河北大学 | Horizontal thermoelectric optical detector of multilayer structure |
-
2014
- 2014-12-19 CN CN201410794021.5A patent/CN104401932B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5589084A (en) * | 1994-02-23 | 1996-12-31 | Daewoo Electronics Co. Ltd. | Thin film actuated mirror array |
CN1655373A (en) * | 2004-02-12 | 2005-08-17 | 株式会社东芝 | Thin film piezoelectric actuator |
US20080247264A1 (en) * | 2005-09-09 | 2008-10-09 | Siemens Aktiengesellschaft | Apparatus and Method For Moving a Liquid by Means of a Piezoelectric Transducer |
CN101775584A (en) * | 2010-01-08 | 2010-07-14 | 湖北大学 | Preparation method of c-axis inclined AlN thin film with homogeneous buffer layer |
CN103344328A (en) * | 2013-07-15 | 2013-10-09 | 河北大学 | Horizontal thermoelectric optical detector of multilayer structure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114050395A (en) * | 2021-10-16 | 2022-02-15 | 西北工业大学 | Very-low-frequency MEMS antenna chip and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104401932B (en) | 2016-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4624005B2 (en) | Device manufactured with controlled piezoelectric coupling coefficient in thin film bulk acoustic resonator | |
US20070247260A1 (en) | Electronic device | |
CN103929149B (en) | Flexible piezoelectric film bulk acoustic wave resonator and manufacturing method thereof | |
CN102904546B (en) | The adjustable piezoelectric acoustic wave resonator of a kind of temperature compensation capability | |
CN110417373A (en) | A frequency-tunable transverse field-excited film bulk acoustic resonator and its preparation method | |
CN111262543A (en) | Scandium-doped aluminum nitride lamb wave resonator and preparation method thereof | |
CN102946236B (en) | A kind of adjustable film bulk acoustic wave resonator and preparation method thereof | |
CN110931629A (en) | Structure for growth of aluminum nitride with high scandium-doped concentration | |
CN108092639A (en) | A kind of micro-nano column flexible array film bulk acoustic resonator subfilter and its preparation | |
WO2021135022A1 (en) | Bulk acoustic wave resonator having electrical isolation layer and manufacturing method therefor, filter, and electronic device | |
CN113193846B (en) | A Thin Film Bulk Acoustic Resonator with Hybrid Transverse Structural Features | |
CN111600569A (en) | Bulk acoustic wave resonator, method of manufacturing the same, filter, and electronic apparatus | |
CN105765751A (en) | Piezoelectric thin film, manufacturing method thereof, and piezoelectric element | |
CN106130498A (en) | FBAR resonator and preparation method thereof | |
CN107244645A (en) | Silicon substrate ScAlN film GHz resonators and preparation method thereof | |
JP2001211053A (en) | Piezoelectric resonator, electronic component and electronic apparatus | |
WO2020062364A1 (en) | Thin-film bulk acoustic resonator and manufacturing method therefor | |
CN102664602A (en) | Embedded electrode lateral field excitation-based film bulk acoustic resonator (FBAR) and manufacturing method thereof | |
WO2024108750A1 (en) | Solid bulk acoustic resonator and fabrication method therefor | |
JP4016583B2 (en) | Piezoelectric thin film resonator, filter and electronic device | |
CN104401932B (en) | A kind of preparation method with the aluminum nitride piezoelectric film device of duplexer functionality | |
JP2005303573A (en) | Thin film piezoelectric resonator and manufacturing method thereof | |
WO2022048382A1 (en) | Mems structure | |
CN212163290U (en) | Scandium-doped aluminum nitride lamb wave resonator | |
CN208537066U (en) | Differential Dual Resonator Type Acoustic Pressure Sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |