CN104399874A - Hexagonal boron nitride type mold shell investment precoat for precision casting of magnesium alloy investment - Google Patents
Hexagonal boron nitride type mold shell investment precoat for precision casting of magnesium alloy investment Download PDFInfo
- Publication number
- CN104399874A CN104399874A CN201410714450.7A CN201410714450A CN104399874A CN 104399874 A CN104399874 A CN 104399874A CN 201410714450 A CN201410714450 A CN 201410714450A CN 104399874 A CN104399874 A CN 104399874A
- Authority
- CN
- China
- Prior art keywords
- boron nitride
- hexagonal boron
- coating
- parts
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 29
- 229910000861 Mg alloy Inorganic materials 0.000 title abstract description 40
- 238000005495 investment casting Methods 0.000 title abstract description 19
- 238000000576 coating method Methods 0.000 claims abstract description 52
- 239000011248 coating agent Substances 0.000 claims abstract description 51
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000839 emulsion Substances 0.000 claims abstract description 19
- 239000011118 polyvinyl acetate Substances 0.000 claims abstract description 19
- 229920002689 polyvinyl acetate Polymers 0.000 claims abstract description 19
- 238000009736 wetting Methods 0.000 claims abstract description 19
- 239000002270 dispersing agent Substances 0.000 claims abstract description 18
- 239000000080 wetting agent Substances 0.000 claims abstract description 18
- 239000003899 bactericide agent Substances 0.000 claims abstract description 12
- 230000000844 anti-bacterial effect Effects 0.000 claims abstract description 11
- 239000008367 deionised water Substances 0.000 claims abstract description 10
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 239000002518 antifoaming agent Substances 0.000 claims abstract description 7
- 239000011230 binding agent Substances 0.000 claims abstract description 7
- 239000002994 raw material Substances 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims description 28
- 239000003973 paint Substances 0.000 claims description 20
- 238000003756 stirring Methods 0.000 claims description 20
- 239000002002 slurry Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 15
- 238000002360 preparation method Methods 0.000 claims description 13
- 239000013530 defoamer Substances 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 4
- 230000000855 fungicidal effect Effects 0.000 claims description 3
- 239000000417 fungicide Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 2
- 238000012423 maintenance Methods 0.000 claims description 2
- 229940051841 polyoxyethylene ether Drugs 0.000 claims description 2
- 229920000056 polyoxyethylene ether Polymers 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 1
- 150000002191 fatty alcohols Chemical class 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 238000005266 casting Methods 0.000 abstract description 27
- 239000002344 surface layer Substances 0.000 abstract description 7
- 238000011049 filling Methods 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 230000009257 reactivity Effects 0.000 abstract description 4
- 229940075065 polyvinyl acetate Drugs 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 9
- 239000010410 layer Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 238000006557 surface reaction Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000000373 fatty alcohol group Chemical group 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000010114 lost-foam casting Methods 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000007528 sand casting Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004018 waxing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C3/00—Selection of compositions for coating the surfaces of moulds, cores, or patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mold Materials And Core Materials (AREA)
Abstract
一种用于镁合金熔模精密铸造的六方氮化硼型壳面层涂料,以硅溶胶为粘结剂,以六方氮化硼粉体为耐火原料的型壳面层涂料,该涂料的组分及含量为:100重量份的硅溶胶、5‐10重量份的去离子水、0.100‐0.15重量份的杀菌剂、400‐600重量份的六方氮化硼微粉、20‐30重量份的聚醋酸乙烯乳液、0.100‐0.150重量份的润湿分散剂、0.050‐0.100重量份的消泡剂。本发明制备得到的型壳面层具有与镁合金反应活性低的特点,且因六方氮化硼不为镁合金熔体浸润而利于镁合金铸件,尤其是具有大面积薄壁结构特征的镁合金铸件的充型,而且其它各项性能指标均能达到镁合金熔模精密铸造的要求。A hexagonal boron nitride shell surface coating for magnesium alloy investment precision casting, using silica sol as a binder and hexagonal boron nitride powder as a refractory raw material for the shell surface coating, the composition of the coating The components and content are: 100 parts by weight of silica sol, 5-10 parts by weight of deionized water, 0.100-0.15 parts by weight of bactericide, 400-600 parts by weight of hexagonal boron nitride micropowder, 20-30 parts by weight of poly Vinyl acetate emulsion, 0.100-0.150 parts by weight of wetting and dispersing agent, and 0.050-0.100 parts by weight of defoaming agent. The shell surface layer prepared by the present invention has the characteristics of low reactivity with magnesium alloys, and because the hexagonal boron nitride is not infiltrated by the magnesium alloy melt, it is beneficial to magnesium alloy castings, especially magnesium alloys with large-area thin-walled structure characteristics The filling of castings, and other performance indicators can meet the requirements of magnesium alloy investment precision casting.
Description
技术领域technical field
本发明涉及的是一种有色金属熔模精密铸造技术领域的涂料,具体是一种用于镁合金熔模精密铸造的六方氮化硼型壳面层涂料。The invention relates to a paint in the technical field of non-ferrous metal investment precision casting, in particular to a hexagonal boron nitride shell surface coating for magnesium alloy investment precision casting.
背景技术Background technique
镁及镁合金作为最轻的金属结构材料,具有比强度/比刚度高、尺寸稳定、易于加工成形、导热导电性好、阻尼减振、电磁屏蔽和容易再回收等优点,因此被誉为“21世纪绿色工程材料”。镁合金已经成为航天航空、汽车、电子通信等工业领域的重要结构材料。镁合金具有较强的铸造工艺适应性,几乎所有的铸造方法如砂型铸造、金属型铸造、重力铸造、消失模铸造、低压铸造、熔模铸造、压铸和离心铸造都可以生产镁合金铸件。其中,熔模精密铸造(又称熔模铸造)技术是实现大型镁合金铸件整体成形最有竞争力的技术之一。作为一项材料近净成形技术,熔模铸造在高精度、复杂结构铸件的成形中起着不可替代的作用,其工艺从压制蜡模、组蜡、制型、脱蜡、焙烧到最终充型,工艺过程复杂而周期长,也正因为这样的工艺过程,使熔模铸造具有了独特的魅力,使其应用于制造镁合金的铸造,可获得表面粗糙度低、表面和冶金质量高、尺寸精确的大型、复杂、薄壁镁合金结构件。As the lightest metal structural materials, magnesium and magnesium alloys have the advantages of high specific strength/specific stiffness, stable size, easy processing and forming, good thermal and electrical conductivity, damping and vibration reduction, electromagnetic shielding and easy recycling, so they are known as " 21st Century Green Engineering Materials". Magnesium alloys have become important structural materials in aerospace, automobile, electronic communication and other industrial fields. Magnesium alloys have strong casting process adaptability. Almost all casting methods such as sand casting, metal casting, gravity casting, lost foam casting, low pressure casting, investment casting, die casting and centrifugal casting can produce magnesium alloy castings. Among them, investment casting (also known as investment casting) technology is one of the most competitive technologies for realizing the overall forming of large magnesium alloy castings. As a material near-net shape technology, investment casting plays an irreplaceable role in the forming of high-precision, complex-structure castings. Its processes range from pressing wax patterns, waxing, molding, dewaxing, roasting to final filling. , the process is complicated and the cycle is long, and it is precisely because of this process that the investment casting has a unique charm, so that it can be applied to the casting of magnesium alloys, which can obtain low surface roughness, high surface and metallurgical quality, and size Accurate large, complex, thin-walled magnesium alloy structural parts.
由于镁合金反应活性高,在铸造过程中与大部分的氧化物陶瓷材料,如氧化铝、氧化硅、锆英粉等,均会发生不同程度的反应而导致镁合金铸件表面反应层的产生,当镁合金铸件的反应层达到一定的厚度,会对铸件的表面粗糙度及尺寸精度都会造成影响,对于大型、薄壁的镁合金铸件,表面反应层厚度的控制尤其重要,因此遴选一种与镁合金反应活性低,且利于镁合金充型的面层涂料体系,是实现大型、薄壁镁合金熔模铸造成功与否的技术关键。Due to the high reactivity of magnesium alloys, during the casting process, most of the oxide ceramic materials, such as alumina, silicon oxide, zircon powder, etc., will react to varying degrees, resulting in the formation of a reaction layer on the surface of magnesium alloy castings. When the reaction layer of magnesium alloy castings reaches a certain thickness, it will affect the surface roughness and dimensional accuracy of the castings. For large and thin-walled magnesium alloy castings, the control of the thickness of the surface reaction layer is especially important. Magnesium alloys have low reactivity and are conducive to the filling of magnesium alloys. The surface coating system is the key to the success of large-scale, thin-walled magnesium alloy investment casting.
六方氮化硼是一种化学性质非常稳定的耐火材料,具有类似石墨的层状结构,良好的耐温和润滑性,化学性质非常稳定,对熔融金属,如铝、镁、锌等均呈化学惰性,且不被金属熔体所浸润,其与水、弱酸、强碱中都不会发生化学反应,所制得的涂料稳定而不易胶凝,因此以氮化硼作为型壳面层涂料的原料,所制得的型壳面层表面也不易为金属熔体浸润,尤其利于大面积薄壁镁合金铸件的充型,镁合金铸件表面所形成的反应层也比用一般的氧化物(如氧化铝、氧化硅等)型壳面层所形成的要薄,利于提高铸件表面质量和精度。Hexagonal boron nitride is a refractory material with very stable chemical properties. It has a layered structure similar to graphite. It has good temperature resistance and lubricity. It has very stable chemical properties and is chemically inert to molten metals such as aluminum, magnesium, and zinc. , and is not infiltrated by the metal melt, it will not react chemically with water, weak acid, or strong alkali, and the prepared coating is stable and not easy to gel, so boron nitride is used as the raw material of the shell surface coating , the surface of the prepared shell surface layer is not easy to be infiltrated by metal melt, which is especially beneficial to the filling of large-area thin-walled magnesium alloy castings. The reaction layer formed on the surface of magnesium alloy castings is also better than that of ordinary oxides (such as alumina, Silicon oxide, etc.) The shell surface layer formed should be thin, which is beneficial to improve the surface quality and precision of the casting.
经过对现有技术的检索发现,中国专利文献号CN103084324A公开日,公开了一种坩埚及其涂层方法,包括以下工艺步骤:制作涂料,涂料中包括六方氮化硼和纯水;将涂料喷涂在坩埚的内壁;将坩埚风干。该技术中的涂料包含了六方氮化硼和纯水,还包括了硅溶胶或聚乙烯醇粘结剂。该技术应用于生产光伏太阳能领域和半导体领域的单晶硅/多晶硅材料,该技术中的六方氮化硼涂层与硅液润湿性很差,在承载液态硅的情况下不易与硅料产生粘连,另外由于六方氮化硼本身具有良好的润滑性,这使得硅锭脱模良好。但该技术中六方氮化硼难以实现在水中均匀地分散和悬浮,因此其流动性难以保证;同时其搅拌过程中产生气泡无法消除,严重影响涂料形成涂层的表面质量。After searching the prior art, it was found that the Chinese Patent Document No. CN103084324A discloses a crucible and its coating method, including the following process steps: making a coating, which includes hexagonal boron nitride and pure water; spraying the coating On the inside of the crucible; allow the crucible to air dry. The coating in this technology contains hexagonal boron nitride and pure water, and also includes silica sol or polyvinyl alcohol binder. This technology is applied to the production of monocrystalline silicon/polysilicon materials in the photovoltaic solar energy field and the semiconductor field. The hexagonal boron nitride coating in this technology has poor wettability with silicon liquid, and it is not easy to produce silicon material under the condition of carrying liquid silicon. In addition, due to the good lubricity of hexagonal boron nitride itself, this makes the silicon ingot release well. However, in this technology, it is difficult to uniformly disperse and suspend hexagonal boron nitride in water, so its fluidity is difficult to guarantee; at the same time, the bubbles generated during the stirring process cannot be eliminated, which seriously affects the surface quality of the coating formed by the paint.
发明内容Contents of the invention
本发明针对镁合金熔模铸造行业中常用的氧化铝、氧化硅、锆英粉等面层材料造成铸件表面质量差等的不足,提出一种用于镁合金熔模精密铸造的六方氮化硼型壳面层涂料,以硅溶胶为粘结剂,以六方氮化硼粉体为耐火原料的型壳面层涂料,其型壳面层具有与镁合金反应活性低,且因六方氮化硼不为镁合金熔体浸润而利于镁合金铸件,尤其是具有大面积薄壁结构特征的镁合金铸件的充型,而且其它各项性能指标均能达到镁合金熔模精密铸造的要求。Aiming at the disadvantages of poor surface quality of castings caused by surface materials such as alumina, silicon oxide and zircon powder commonly used in the magnesium alloy investment casting industry, the present invention proposes a hexagonal boron nitride for magnesium alloy investment precision casting Shell surface coating, using silica sol as binder and hexagonal boron nitride powder as refractory raw material, the shell surface layer has low reactivity with magnesium alloy, and due to the hexagonal boron nitride It is not for the infiltration of magnesium alloy melt but is beneficial to the filling of magnesium alloy castings, especially the magnesium alloy castings with large-area thin-walled structure characteristics, and other performance indicators can meet the requirements of magnesium alloy investment precision casting.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明涉及一种六方氮化硼型壳面层涂料,其粘度为32‐36s,该涂料的组分包括:作为无机粘结剂的硅溶胶、作为有机粘结剂的聚醋酸乙烯乳液和作为耐火原料的六方氮化硼微粉。The present invention relates to a kind of hexagonal boron nitride type shell coating, its viscosity is 32-36s, and the component of this coating comprises: silica sol as inorganic binding agent, polyvinyl acetate emulsion as organic binding agent and as Hexagonal boron nitride micropowder as refractory raw material.
所述的六方氮化硼型壳面层涂料的具体组分及含量为:100重量份的硅溶胶、5‐10重量份的去离子水、0.100‐0.15重量份的杀菌剂、400‐600重量份的六方氮化硼微粉、20‐30重量份的聚醋酸乙烯乳液、0.100‐0.150重量份的润湿分散剂、0.050‐0.100重量份的消泡剂。The specific components and contents of the hexagonal boron nitride type shell surface coating are: 100 parts by weight of silica sol, 5-10 parts by weight of deionized water, 0.100-0.15 parts by weight of bactericide, 400-600 parts by weight of Parts of hexagonal boron nitride fine powder, 20-30 parts by weight of polyvinyl acetate emulsion, 0.100-0.150 parts by weight of wetting and dispersing agent, and 0.050-0.100 parts by weight of defoamer.
所述的杀菌剂采用但不限于:卡松杀菌剂;Described bactericide adopts but not limited to: Kasong bactericide;
所述的消泡剂采用但不限于:正丁醇,优选为化学纯;The defoamer is used but not limited to: n-butanol, preferably chemically pure;
所述的硅溶胶采用但不限于:碱性硅溶胶;Described silica sol adopts but not limited to: alkaline silica sol;
所述的六方氮化硼微粉的粒度为200‐325目,纯度大于99.5%;The particle size of the hexagonal boron nitride fine powder is 200-325 mesh, and the purity is greater than 99.5%;
所述的聚醋酸乙烯乳液的固含量为42±2%,pH值为3‐4;The solid content of the polyvinyl acetate emulsion is 42 ± 2%, and the pH value is 3-4;
所述的润湿分散剂为脂肪醇聚氧乙烯醚。The wetting and dispersing agent is fatty alcohol polyoxyethylene ether.
本发明涉及上述六方氮化硼型壳面层涂料的制备方法,通过将硅溶胶、去离子水、杀菌剂、六方氮化硼微粉和聚醋酸乙烯乳液、润湿分散剂、消泡剂分两组分别进行混合然后合并制成。The present invention relates to the preparation method of above-mentioned hexagonal boron nitride type shell coating, by dividing silica sol, deionized water, bactericide, hexagonal boron nitride micropowder and polyvinyl acetate emulsion, wetting and dispersing agent, defoaming agent into two parts Groups are mixed separately and then combined to make.
所述的制备方法具体包括以下步骤:Described preparation method specifically comprises the following steps:
1)将硅溶胶、去离子水、杀菌剂在配浆机中混合,并缓慢启动配浆机进行混合;然后加入六方氮化硼微粉,并在配制过程中保持漩涡,在加入六方氮化硼微粉的同时,采用配浆机进行搅拌或添加人工辅助搅拌,使六方氮化硼微粉完全分散在硅溶胶中,全过程通过冰水机控制涂料的温度不超过26.7℃;1) Mix silica sol, deionized water, and fungicide in the mixing machine, and slowly start the mixing machine for mixing; then add hexagonal boron nitride micropowder, and keep vortex during the preparation process, add hexagonal boron nitride At the same time of micro-powdering, the mixing machine is used for stirring or artificial auxiliary stirring is added to completely disperse the hexagonal boron nitride micro-powder in the silica sol. During the whole process, the temperature of the coating is controlled by the chiller to not exceed 26.7°C;
2)将聚醋酸乙烯乳液、润湿分散剂、消泡剂另外混合:先加入聚醋酸乙烯乳液,再缓慢加入润湿分散剂和消泡剂,搅拌以3‐5分钟为宜,然后将混合液加入到步骤1中的配浆机中并进一步搅拌2小时以上,再移至沾浆桶中,保持涂料在沾浆桶中持续地搅拌,经6h搅拌后粘度可以达到32‐36s,即制得合格的六方氮化硼型壳面层涂料。2) Mix polyvinyl acetate emulsion, wetting and dispersing agent, and defoamer separately: first add polyvinyl acetate emulsion, then slowly add wetting and dispersing agent and defoaming agent, stir for 3-5 minutes, and then mix Add the liquid into the mixing machine in step 1 and stir for more than 2 hours, then move it to the slurry bucket, keep the coating continuously stirred in the slurry bucket, after 6 hours of stirring, the viscosity can reach 32-36s, that is, Qualified hexagonal boron nitride shell coating.
由于涂料中的水分会随着时间的推移而挥发,因此涂料中各组分的比例会有所变化,涂料粘度会逐渐增加,因此在后续的涂料维护过程中,当粘度高于36s,可适当添加硅溶胶进行稀释,使涂料粘度处于32‐36s即可。Since the moisture in the paint will volatilize over time, the proportion of each component in the paint will change, and the viscosity of the paint will gradually increase. Therefore, in the subsequent paint maintenance process, when the viscosity is higher than 36s, it can be properly Add silica sol to dilute, so that the viscosity of the paint is 32‐36s.
技术效果technical effect
与现有技术相比,本方法制得的六方氮化硼型壳面层涂料具有良好的悬浮性和触变性;涂料形成面层后,具有良好的透气性和较高的表面强度,很好地满足了镁合金熔模精密铸造用面层涂料的要求。该涂料配制方法简单,无毒害,同时由于六方氮化硼对于镁合金而言,具有高温化学惰性和不浸润性,所以生产的镁合金铸件表面光洁度高,且适用于各种牌号和成分的镁合金铸件的熔模精密铸造。该涂料的使用,将会大大增加镁合金铸件的成品率,具有较好的经济效益。Compared with the prior art, the hexagonal boron nitride type shell surface coating prepared by the method has good suspension and thixotropy; after the coating forms the surface layer, it has good air permeability and high surface strength, which is very good. It satisfies the requirement of surface coating for magnesium alloy investment precision casting. The preparation method of the coating is simple, non-toxic, and because hexagonal boron nitride is chemically inert and non-wetting at high temperature for magnesium alloys, the surface finish of the magnesium alloy castings produced is high, and it is suitable for magnesium alloys of various grades and components. Investment casting of alloy castings. The use of the coating will greatly increase the yield of magnesium alloy castings and has better economic benefits.
具体实施方式Detailed ways
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below. This embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following implementation example.
实施例1Example 1
本实施例通过以下步骤实现镁合金精密铸造用六方氮化硼型壳面层涂料的制备:This embodiment realizes the preparation of the hexagonal boron nitride type shell surface coating for magnesium alloy precision casting through the following steps:
1)将100kg硅溶胶、5kg去离子水和100g杀菌剂加入到配浆机中,缓慢启动配浆机进行混合;1) Add 100kg of silica sol, 5kg of deionized water and 100g of bactericide into the mixing machine, and slowly start the mixing machine for mixing;
2)将600kg的200目‐325目的六方氮化硼微粉在搅拌的条件下逐渐加入到配浆桶中,并辅以人工搅拌,使六方氮化硼微粉完全分散在硅溶胶中,并且通过冰水机控制涂料的温度,使温度不超过26.7℃;2) Gradually add 600kg of 200-mesh-325-mesh hexagonal boron nitride micropowder into the slurry mixing tank under the condition of stirring, supplemented by manual stirring, so that the hexagonal boron nitride micropowder is completely dispersed in the silica sol, and pass through the ice The water machine controls the temperature of the paint so that the temperature does not exceed 26.7°C;
3)将20kg聚醋酸乙烯乳液、100g润湿分散剂和50g消泡剂分别在另外一个混料桶中混合:先加入聚醋酸乙烯乳液,再缓慢加入润湿分散剂和消泡剂,搅拌以3‐5分钟为宜,将上述溶液加入浆桶中,至此面层涂料配制完毕;3) Mix 20kg of polyvinyl acetate emulsion, 100g of wetting and dispersing agent and 50g of defoamer in another mixing tank: first add polyvinyl acetate emulsion, then slowly add wetting and dispersing agent and defoaming agent, and stir until 3-5 minutes is appropriate, add the above solution into the slurry bucket, and the preparation of the surface coating is completed;
4)配制完成后的涂料在配浆机中搅拌2小时以上再移至沾浆桶中;保持涂料在沾浆桶中持续地搅拌,并且每隔2h采用4号詹氏流速杯测量涂料粘度,经6h后涂料的粘度达到了32s,可进行沾浆。4) After the preparation is completed, the paint is stirred in the slurry mixing machine for more than 2 hours and then moved to the slurry bucket; keep the coating continuously stirred in the slurry bucket, and use the No. 4 Jane's flow rate cup to measure the viscosity of the paint every 2 hours. After 6 hours, the viscosity of the paint has reached 32s, and it can be dipped.
采用此型壳面层涂料制备的陶瓷型壳,生产出的镁合金铸件,经检测,表面呈灰白色,平整光滑,经X光检验未发现超标的型壳夹杂,表面光洁度好,表面反应层厚度小于0.08mm。The magnesium alloy casting produced by the ceramic shell prepared by this type of shell surface coating, after testing, the surface is off-white, flat and smooth, no excessive shell inclusions were found through X-ray inspection, the surface finish is good, and the thickness of the surface reaction layer Less than 0.08mm.
实施例2Example 2
本实施例通过以下步骤实现不锈钢精密铸造型壳面层的生产:The present embodiment realizes the production of the stainless steel investment casting mold shell surface layer through the following steps:
1)将100kg硅溶胶、7.5kg去离子水和125g杀菌剂加入到配浆机中,缓慢启动配浆机进行混合;1) Add 100kg of silica sol, 7.5kg of deionized water and 125g of bactericide into the mixing machine, and slowly start the mixing machine for mixing;
2)将500kg的200目‐325目的六方氮化硼微粉在搅拌的条件下逐渐加入到配浆桶中,并辅以人工搅拌,使六方氮化硼微粉完全分散在硅溶胶中,并且通过冰水机控制涂料的温度,使温度不超过26.7℃;2) Gradually add 500kg of 200-mesh-325-mesh hexagonal boron nitride micropowder into the slurry mixing tank under the condition of stirring, supplemented by manual stirring, so that the hexagonal boron nitride micropowder is completely dispersed in the silica sol, and pass through the ice The water machine controls the temperature of the paint so that the temperature does not exceed 26.7°C;
3)将25kg聚醋酸乙烯乳液、125g润湿分散剂和75g消泡剂分别在另外一个混料桶中混合:先加入聚醋酸乙烯乳液,再缓慢加入润湿分散剂和消泡剂,不能加得太快,否则会使溶液凝胶,搅拌以3‐5分钟为宜,将上述溶液加入浆桶中,至此面层涂料配制完毕;3) Mix 25kg of polyvinyl acetate emulsion, 125g of wetting and dispersing agent and 75g of defoamer in another mixing tank: first add polyvinyl acetate emulsion, then slowly add wetting and dispersing agent and defoaming agent, do not add If it is too fast, otherwise it will make the solution gel, it is better to stir for 3-5 minutes, then add the above solution into the slurry tank, and the preparation of the surface coating is completed;
4)配制完成后的涂料在配浆机中搅拌2小时以上再移至沾浆桶中;保持涂料在沾浆桶中持续地搅拌,并且每隔2h采用4号詹氏流速杯测量涂料粘度,经6h后涂料的粘度达到了34s,可进行沾浆。4) After the preparation is completed, the paint is stirred in the slurry mixing machine for more than 2 hours and then moved to the slurry bucket; keep the coating continuously stirred in the slurry bucket, and use the No. 4 Jane's flow rate cup to measure the viscosity of the paint every 2 hours. After 6 hours, the viscosity of the paint reaches 34s, and it can be dipped.
采用此型壳面层涂料制备的陶瓷型壳,生产出的镁合金铸件,经检测,表面呈灰白色,平整光滑,经X光检验未发现超标的型壳夹杂,表面光洁度好,表面反应层厚度小于0.10mm。The magnesium alloy casting produced by the ceramic shell prepared by this type of shell surface coating, after testing, the surface is off-white, flat and smooth, no excessive shell inclusions were found through X-ray inspection, the surface finish is good, and the thickness of the surface reaction layer Less than 0.10mm.
实施例3Example 3
本实施例通过以下步骤实现不锈钢精密铸造型壳面层的生产:The present embodiment realizes the production of the stainless steel investment casting mold shell surface layer through the following steps:
1)将100kg硅溶胶、10kg去离子水和150g杀菌剂加入到配浆机中,缓慢启动配浆机进行混合;1) Add 100kg of silica sol, 10kg of deionized water and 150g of bactericide into the mixing machine, and slowly start the mixing machine for mixing;
2)将400kg的200目‐325目的六方氮化硼微粉在搅拌的条件下逐渐加入到配浆桶中,并辅以人工搅拌,使六方氮化硼微粉完全分散在硅溶胶中,并且通过冰水机控制涂料的温度,使温度不超过26.7℃;2) Add 400kg of 200-mesh-325-mesh hexagonal boron nitride micropowder gradually into the slurry mixing tank under the condition of stirring, supplemented by manual stirring, so that the hexagonal boron nitride micropowder is completely dispersed in the silica sol, and pass through the ice The water machine controls the temperature of the paint so that the temperature does not exceed 26.7°C;
3)将30kg聚醋酸乙烯乳液、150g润湿分散剂和100g消泡剂分别在另外一个混料桶中混合:先加入聚醋酸乙烯乳液,再缓慢加入润湿分散剂和消泡剂,不能加得太快,否则会使溶液凝胶,搅拌以3‐5分钟为宜,将上述溶液加入浆桶中,至此面层涂料配制完毕;3) Mix 30kg of polyvinyl acetate emulsion, 150g of wetting and dispersing agent and 100g of defoamer in another mixing tank: first add polyvinyl acetate emulsion, then slowly add wetting and dispersing agent and defoaming agent, do not add If it is too fast, otherwise it will make the solution gel, it is better to stir for 3-5 minutes, then add the above solution into the slurry tank, and the preparation of the surface coating is completed;
4)配制完成后的涂料在配浆机中搅拌2小时以上再移至沾浆桶中;保持涂料在沾浆桶中持续地搅拌,并且每隔2h采用4号詹氏流速杯测量涂料粘度,经6h后涂料的粘度达到了36s,可进行沾浆。4) After the preparation is completed, the paint is stirred in the slurry mixing machine for more than 2 hours and then moved to the slurry bucket; keep the coating continuously stirred in the slurry bucket, and use the No. 4 Jane's flow rate cup to measure the viscosity of the paint every 2 hours. After 6 hours, the viscosity of the paint has reached 36s, and it can be dipped.
采用此型壳面层涂料制备的陶瓷型壳,生产出的镁合金铸件,经检测,表面呈灰白色,平整光滑,经X光检验未发现超标的型壳夹杂,表面光洁度好,表面反应层厚度小于0.11mm。The magnesium alloy casting produced by the ceramic shell prepared by this type of shell surface coating, after testing, the surface is off-white, flat and smooth, no excessive shell inclusions were found through X-ray inspection, the surface finish is good, and the thickness of the surface reaction layer Less than 0.11mm.
上述实施例中涉及的原料来源为:所述的硅溶胶为纳尔科(中国)环保技术服务有限公司提供的碱性硅溶胶,牌号为1130C;所述的杀菌剂为菏泽长江化工有限公司提供的卡松,牌号为1127;所述的六方氮化硼为营口硼达精细化工有限公司提供,粒度为200‐325目,纯度大于99.5%;所述的聚醋酸乙烯乳液由衡阳市冯氏粘合剂有限公司提供,固含量为42±2%,pH值为3‐4;所述的润湿分散剂由纳尔科(中国)环保技术服务有限公司提供,牌号为7856;所述的消泡剂为化学纯的正丁醇,由国药集团上海化学试剂公司提供。The sources of raw materials involved in the above examples are: the silica sol is alkaline silica sol provided by Nalco (China) Environmental Protection Technology Service Co., Ltd., the brand is 1130C; the fungicide is provided by Heze Changjiang Chemical Co., Ltd. Kasong, the grade is 1127; the hexagonal boron nitride is provided by Yingkou Borda Fine Chemical Co., Ltd., the particle size is 200-325 mesh, and the purity is greater than 99.5%; Provided by Mixture Co., Ltd., the solid content is 42±2%, and the pH value is 3-4; the wetting and dispersing agent is provided by Nalco (China) Environmental Technology Service Co., Ltd., and the brand is 7856; the described disinfectant The foaming agent is chemically pure n-butanol, provided by Sinopharm Shanghai Chemical Reagent Company.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410714450.7A CN104399874B (en) | 2014-12-01 | 2014-12-01 | Hexagonal boron nitride shell surface layer coating for magnesium alloy precision-investment casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410714450.7A CN104399874B (en) | 2014-12-01 | 2014-12-01 | Hexagonal boron nitride shell surface layer coating for magnesium alloy precision-investment casting |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104399874A true CN104399874A (en) | 2015-03-11 |
CN104399874B CN104399874B (en) | 2016-08-24 |
Family
ID=52637577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410714450.7A Active CN104399874B (en) | 2014-12-01 | 2014-12-01 | Hexagonal boron nitride shell surface layer coating for magnesium alloy precision-investment casting |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104399874B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105344924A (en) * | 2015-10-26 | 2016-02-24 | 无锡市永亿精密铸造有限公司 | Shell primary layer coating for casting of precise casting |
CN105344923A (en) * | 2015-10-26 | 2016-02-24 | 无锡市永亿精密铸造有限公司 | Primary layer coating for automobile precise casting connecting piece |
CN105344922A (en) * | 2015-10-26 | 2016-02-24 | 无锡市永亿精密铸造有限公司 | Primary layer coating for airplane blade precise coating |
CN105522112A (en) * | 2016-01-07 | 2016-04-27 | 上海交通大学 | High-collapsibility ceramic shell for manufacturing magnesium alloy fusible pattern and preparation method for high-collapsibility ceramic shell |
CN107417285A (en) * | 2017-07-26 | 2017-12-01 | 云南云铝润鑫铝业有限公司 | A kind of used in aluminium alloy casting transfer tube repairing material and preparation method thereof |
CN109108224A (en) * | 2018-07-18 | 2019-01-01 | 上海交通大学 | Niobium silicon-base alloy blade directional solidification moltening mold castings ceramic shell and preparation method |
CN109909445A (en) * | 2019-01-25 | 2019-06-21 | 上海交通大学 | Ceramic shell for inhibiting sand sticking on the surface of superalloy turbine blade and preparation method |
CN110802196A (en) * | 2019-10-22 | 2020-02-18 | 东风精密铸造安徽有限公司 | Silica sol binder for shell |
CN111171643A (en) * | 2020-01-14 | 2020-05-19 | 山东鲁阳浩特高技术纤维有限公司 | Aluminum liquid corrosion resistant nano coating and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52108323A (en) * | 1976-03-10 | 1977-09-10 | Showa Denko Kk | High temperature lubricant parting agent composition |
CN1449876A (en) * | 2003-05-08 | 2003-10-22 | 上海交通大学 | Zinc liquid corrosion-resistant coating and use method thereof |
CN102173837A (en) * | 2011-01-27 | 2011-09-07 | 无锡成博科技发展有限公司 | Lubricating coating of high-temperature oxidation resistant sliding plate and preparation process thereof |
US20110232857A1 (en) * | 2010-03-23 | 2011-09-29 | Mcguire Daniel S | Investment Casting Shell Incorporating Desiccant Material |
CN103084325A (en) * | 2013-01-31 | 2013-05-08 | 天津英利新能源有限公司 | Crucible and coating method thereof |
CN103128227A (en) * | 2013-03-07 | 2013-06-05 | 上海交通大学 | Method for manufacturing shell surface layer formed by stainless steel precision casting |
CN103708843A (en) * | 2013-12-20 | 2014-04-09 | 中钢集团洛阳耐火材料研究院有限公司 | Boron nitride coating and application method |
-
2014
- 2014-12-01 CN CN201410714450.7A patent/CN104399874B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52108323A (en) * | 1976-03-10 | 1977-09-10 | Showa Denko Kk | High temperature lubricant parting agent composition |
CN1449876A (en) * | 2003-05-08 | 2003-10-22 | 上海交通大学 | Zinc liquid corrosion-resistant coating and use method thereof |
US20110232857A1 (en) * | 2010-03-23 | 2011-09-29 | Mcguire Daniel S | Investment Casting Shell Incorporating Desiccant Material |
CN102173837A (en) * | 2011-01-27 | 2011-09-07 | 无锡成博科技发展有限公司 | Lubricating coating of high-temperature oxidation resistant sliding plate and preparation process thereof |
CN103084325A (en) * | 2013-01-31 | 2013-05-08 | 天津英利新能源有限公司 | Crucible and coating method thereof |
CN103128227A (en) * | 2013-03-07 | 2013-06-05 | 上海交通大学 | Method for manufacturing shell surface layer formed by stainless steel precision casting |
CN103708843A (en) * | 2013-12-20 | 2014-04-09 | 中钢集团洛阳耐火材料研究院有限公司 | Boron nitride coating and application method |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105344924A (en) * | 2015-10-26 | 2016-02-24 | 无锡市永亿精密铸造有限公司 | Shell primary layer coating for casting of precise casting |
CN105344923A (en) * | 2015-10-26 | 2016-02-24 | 无锡市永亿精密铸造有限公司 | Primary layer coating for automobile precise casting connecting piece |
CN105344922A (en) * | 2015-10-26 | 2016-02-24 | 无锡市永亿精密铸造有限公司 | Primary layer coating for airplane blade precise coating |
CN105522112A (en) * | 2016-01-07 | 2016-04-27 | 上海交通大学 | High-collapsibility ceramic shell for manufacturing magnesium alloy fusible pattern and preparation method for high-collapsibility ceramic shell |
CN107417285A (en) * | 2017-07-26 | 2017-12-01 | 云南云铝润鑫铝业有限公司 | A kind of used in aluminium alloy casting transfer tube repairing material and preparation method thereof |
CN109108224A (en) * | 2018-07-18 | 2019-01-01 | 上海交通大学 | Niobium silicon-base alloy blade directional solidification moltening mold castings ceramic shell and preparation method |
CN109909445A (en) * | 2019-01-25 | 2019-06-21 | 上海交通大学 | Ceramic shell for inhibiting sand sticking on the surface of superalloy turbine blade and preparation method |
CN110802196A (en) * | 2019-10-22 | 2020-02-18 | 东风精密铸造安徽有限公司 | Silica sol binder for shell |
CN111171643A (en) * | 2020-01-14 | 2020-05-19 | 山东鲁阳浩特高技术纤维有限公司 | Aluminum liquid corrosion resistant nano coating and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104399874B (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104399874B (en) | Hexagonal boron nitride shell surface layer coating for magnesium alloy precision-investment casting | |
CN105522112B (en) | Magnesium alloy investment casting high collapsibility ceramic shell and preparation method thereof | |
CN108655332B (en) | Water-based dip-coating paint for 3D printing sand mold and preparation method thereof | |
CN103949590B (en) | A kind of oxide doped and modified Y2O3The preparation method of+YSZ is high temperature resistant shell | |
CN105669208A (en) | Phenolic resin coated ceramic powder for laser 3D printing and preparation method thereof | |
CN106238670B (en) | Foundry facing and preparation method and application | |
CN102145372B (en) | Coating for metal mold casting of aluminum alloy thin-walled piece and preparation method and coating method thereof | |
CN105834361A (en) | Method for preparing modified ceramic mold shell through special-shaped cross section short carbon fibers | |
CN102744366B (en) | Preparation method of titanium aluminium-based and niobium silicon-based alloy directional solidification investment precision casting mold shell | |
CN102601307A (en) | Preparation method of shell mold for investment casting of TiAl based alloy | |
WO2017114070A1 (en) | Environmentally friendly preparation method for automobile booster turbine | |
CN102240776A (en) | Coating for lost mould cast steel and manufacture method thereof | |
CN101875091B (en) | Yttrium sol bonded yttrium oxide formwork and preparation method thereof | |
CN103128227B (en) | Method for manufacturing shell surface layer formed by stainless steel precision casting | |
CN102974761A (en) | Preparation method for calcium zirconate formwork through titanium and titanium aluminium alloy fired mould precision casting | |
CN102921885A (en) | Sand casting technology for titanium, zirconium and nickel and alloy casting thereof | |
CN113996759B (en) | Aluminum lithium alloy casting adopting shell to inhibit interface reaction and casting method thereof | |
CN107838402A (en) | A kind of manufacture method of complicated magnesium alloy structural part | |
CN1704188A (en) | Hot investment precision casting technique for rare earth ceramic cased titanium alloys | |
CN106903316A (en) | Titanium foam and its production and use | |
CN109277518B (en) | Preparation method of refractory material for TiAl alloy precision casting | |
CN102416462B (en) | A kind of preparation method of metal-base composites of local enhancement | |
CN104550736A (en) | Preparation method of boron nitride ceramic shell used for precision casting of titanium and titanium alloy | |
CN110899609B (en) | Graphite type coating paste for titanium and titanium alloy casting and preparation method and application thereof | |
CN103266236A (en) | Production process of high-quality aluminum alloy material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231027 Address after: Floor 1, 15 #, No. 36, Dalian East Road, Taicang City, Suzhou City, Jiangsu Province, 215400 Patentee after: Super Precision (Suzhou) Aviation Precision Machinery Manufacturing Co.,Ltd. Address before: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District Patentee before: SHANGHAI JIAO TONG University |