CN104393039B - InAlN/AlGaN增强型高电子迁移率晶体管及其制作方法 - Google Patents
InAlN/AlGaN增强型高电子迁移率晶体管及其制作方法 Download PDFInfo
- Publication number
- CN104393039B CN104393039B CN201410570899.0A CN201410570899A CN104393039B CN 104393039 B CN104393039 B CN 104393039B CN 201410570899 A CN201410570899 A CN 201410570899A CN 104393039 B CN104393039 B CN 104393039B
- Authority
- CN
- China
- Prior art keywords
- layer
- temperature
- source
- thickness
- inaln
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910002704 AlGaN Inorganic materials 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 230000004888 barrier function Effects 0.000 claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 230000003647 oxidation Effects 0.000 claims abstract description 6
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 78
- 230000008569 process Effects 0.000 claims description 54
- 229910052751 metal Inorganic materials 0.000 claims description 42
- 239000002184 metal Substances 0.000 claims description 42
- 238000005229 chemical vapour deposition Methods 0.000 claims description 32
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 29
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 20
- 238000000151 deposition Methods 0.000 claims description 16
- 238000005566 electron beam evaporation Methods 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052733 gallium Inorganic materials 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000001312 dry etching Methods 0.000 claims description 7
- 238000004151 rapid thermal annealing Methods 0.000 claims description 7
- 229910021529 ammonia Inorganic materials 0.000 claims description 6
- 230000008020 evaporation Effects 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 238000000407 epitaxy Methods 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 238000005036 potential barrier Methods 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims 4
- 230000008021 deposition Effects 0.000 claims 2
- 230000004907 flux Effects 0.000 claims 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 230000006911 nucleation Effects 0.000 abstract description 20
- 238000010899 nucleation Methods 0.000 abstract description 20
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract description 19
- 238000003780 insertion Methods 0.000 abstract description 18
- 230000037431 insertion Effects 0.000 abstract description 18
- 239000000203 mixture Substances 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 description 29
- 229910052782 aluminium Inorganic materials 0.000 description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 17
- 230000015556 catabolic process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000005533 two-dimensional electron gas Effects 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 238000004886 process control Methods 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000005527 interface trap Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004347 surface barrier Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本发明公开了一种InAlN/AlGaN增强型高电子迁移率晶体管及其制作方法,主要解决现有增强型器件制造工艺复杂和控制难度大以及晶体管阈值电压低的问题。该器件自下而上,包括衬底、AlN成核层、沟道层和AlN界面插入层,该插入层上设有势垒层和源漏区欧姆接触,势垒层上设有绝缘栅介质层,绝缘栅介质层上设有栅电极,源漏区欧姆接触上设有源、漏电极。该势垒层采用In0.17Al0.83N材料;沟道层采用AlxGa1‑xN材料,且其Al组分x在5%‑20%之间;绝缘栅介质层为通过氧化势垒层形成的Al2O3。本发明器件阈值电压高,制造工艺简单,可重复性高,可用于数字电路和高压功率开关等领域中的电子器件。
Description
技术领域
本发明属于微电子技术领域,涉及半导体器件,具体的说是一种采用In0.17Al0.83N作为势垒层,AlxGa1-xN作为二维电子气沟道层,通过氧等离子体处理工艺对In0.17Al0.83N势垒层表面氧化形成Al2O3绝缘栅介质,和采用金属有机物化学气相淀积技术在源漏欧姆接触区域二次再生长n型重掺杂GaN形成欧姆接触的增强型高电子迁移率晶体管结构及实现方法,主要用于制作高压功率开关和数字电路领域的高性能电子器件。
背景技术
AlGaN/GaN基高电子迁移率晶体管HEMT以其大的禁带宽度、高的临界击穿场强、高的电子饱和漂移速度、以及强的自发和压电极化效应产生的具有优越输运特性的二维电子气2DEG等出色的材料性能而受到广泛关注,在高温、高压、高频大功率微波电子器件应用方面有得天独厚的优势。自1993年人们制造出第一支HEMT样管至今,国内外相关研究人员对其进行了广泛而深入的研究,并取得了令人瞩目的研究成果。
随着高频功率放大器对器件性能需求的不断增长,传统的AlGaN/GaN异质结材料,如图1所示,由于在异质结界面存在无法消除的晶格失配和逆压电效应,使得AlGaN/GaNHEMT无法长时间工作在高温和高压状态。因此,探索怎样从材料外延技术、新材料应用、器件结构设计和器件制备工艺等方面优化来提高器件性能成为现在主要的研究问题。其中,InAlN/GaNHEMT器件成为近年来的研究热点,并极有可能取代传统AlGaN/GaNHEMT。与常规AlGaN/GaN异质结材料相比,InAlN/GaN异质结材料可以实现晶格匹配而消除势垒层应变弛豫和逆压电效应,从而提高HEMT器件在高温和高压下长时间工作时的可靠性。同时,InAlN势垒层有更强的自发极化效应,即使没有压电极化效应,InAlN/GaN异质结也能以较薄的势垒层产生高密度的2DEG,使HEMT获得高的工作频率和输出功率密度。2013年Yue等人制造的SiC衬底InAlN/GaN HEMT获得了400GHz的电流增益截止频率,参见Yue Y,Hu Z,GuoJ,et al.,“Ultrascaled InAlN/GaN high electron mobility transistor with cutofffrequency of 400GHz”,Japanese Journal of Applied Physics,2013,52(8):08JN14。2010年Sarazin等人制造的SiC衬底InAlN/GaN HEMT获得了10.3W/mm@10GHz和5.8W/mm@35GHz的功率密度。参见文献Sarazin N,Morvan E,di Forte Poisson M,et al.,“AlInN/AlN/GaN HEMT technology on SiC with 10W/mm and 50% PAE at 10GHz”,IEEEElectron Device Letters,2010,31(1):11和Crespo A,Bellot M,Chabak K,et al.,“High power Ka-band performance of AlInN/GaN HEMT with 9.8nm thin barrier”,IEEE Electron Device Letters,2010,31(1):2。
InAlN/GaN HEMT有非常优异的电特性,在高频大功率微波放大器应用方面有非常明显的优势,但是,InAlN/GaN增强型HEMT难以实现,限制了其在数字电路和功率开关器件中的应用。这种困难主要来自三个方面,即高密度2DEG的有效调控、大的源漏区欧姆接触电阻和栅极泄漏电流。
InAlN/GaN异质结有着很强的自发极化效应,能以薄的势垒层产生高面密度的2DEG。可以通过栅极槽栅干法刻蚀工艺移除栅极下方势垒层,从而降低沟道2DEG面密度。参见文献Wang R,Saunier P,Xing X,et al.,“Gate-recessed enhancement-mode InAlN/AlN/GaN HEMTs with 1.9A/mm drain current density and 800mS/mmtransconductance”,IEEE Electron Device Letters,2010,31(12):1383。由于采用反应离子刻蚀工艺,等离子体的轰击对2DEG沟道不可避免造成损伤,增加界面陷阱态密度,影响器件栅极夹断能力和关态功耗。同时刻蚀速率和深度难以精确控制,工艺一致性和重复性难以保证。
InAlN势垒层属于高Al组分材料,由于高的表面势垒高度,在器件制造时很难得到低的欧姆接触电阻,而欧姆接触电阻直接影响器件的导通电阻和频率特性。通常采用源漏注入掺杂杂质的方法来实现低的源漏欧姆接触电阻,Faria等人在掺杂浓度为5×1019cm-3的n型重掺杂GaN材料上,用Ti/Al/Ni/Au实现了0.035Ωmm接触电阻。参见文献Faria F,GuoJ,Zhao P,et al.,“Ultra-low resistance ohmic contacts to GaN with high Sidoping concentrations grown by molecular beam epitaxy”,Applied PhysicsLetters,2012,101(3),032109。但该技术对离子注入能量和剂量及工艺控制精确度有严格的要求,而且离子注入技术会对材料带来损伤,需要高温退火工艺激活掺杂杂质。欧姆接触高温退火会严重影响肖特基特性,甚至会使栅金属最终形成欧姆接触。同时,高温退火对InAlN势垒层质量造成一定的退化,进一步影响异质结2DEG输运特性。此外,可以先刻蚀移除欧姆接触区域InAlN势垒层,再进行二次外延生长n型重掺杂GaN来降低源漏区欧姆接触电阻。参见文献Guo J,Li G,Faria F,et al.,“MBE-regrown Ohmic in InAlN HEMTs witha regrowth interface resistance of 0.05Ωmm”,IEEE Electron Device Letters,2012,33(4),525。然而这种n型重掺杂GaN再生长工艺采用分子束外延技术,该技术设备昂贵,不适合市场化大生产和成本控制。
InAlN势垒层中有较高密度的线性位错和V型坑缺陷,V型坑附近容易引起In元素的富集而形成漏电通道,易形成大的栅极反向泄漏电流,对HEMT器件击穿电压提高极为不利。InAlN/GaN HEMT的栅极漏电远大于AlGaN/GaN HEMT的,参见文献Turuvekere S,Karumuri N,Rahman A,et al.,“Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs:comparison and modeling”,IEEE Transactions on Electron Devices,2013,60(10),3157。为了降低栅极反向泄漏电流,常在器件栅极下方采用原子层淀积的方法引入高介电系数的绝缘栅介质,形成MOS结构。然而,常规原子层淀积方法生长绝缘栅介质工艺精度控制难度大,生长的材料表面致密性较差,且由于该方法具有保形性的特点,对底层材料表面平整度要求较高。
综上所述,目前现有技术无法有效实现2DEG面密度的调制、降低源漏区欧姆接触电阻和栅极反向泄漏电流。此外,器件制备工艺步骤复杂,工艺精度控制难度大,设备昂贵,不能满足市场化商品生产。
发明内容
本发明目的在于针对上述已有技术的缺点,提出一种InAlN/AlGaN增强型高电子迁移率晶体管及其制作方法,以有效降低沟道中二维电子气浓度,显著提高器件阈值电压;减小器件制造难度,提高器件制造工艺的重复性和可控性,使器件能更好地应用在高压功率开关和数字电路中。
本发明的技术方案是这样实现的:
为实现上述目的,本发明的InAlN/AlGaN增强型高电子迁移率晶体管,自下而上,包括衬底、AlN成核层、沟道层和AlN界面插入层,该插入层上设有势垒层和源漏区欧姆接触,势垒层上设有绝缘栅介质层,绝缘栅介质层上设有栅电极,源漏区欧姆接触上设有源、漏电极,其特征在于:
势垒层,采用厚度为4-13nm的In0.17Al0.83N材料;
沟道层,采用AlxGa1-xN材料,且其Al组分x在5%-20%之间,材料厚度在400nm-1000nm之间;
绝缘栅介质层,是通过氧化势垒层In0.17Al0.83N形成厚度为3-10nm的Al2O3。
为实现上述目的,本发明制作InAlN/AlGaN增强型高电子迁移率晶体管的方法,包括如下步骤:
(1)在衬底基片上,利用金属有机物化学气相淀积技术生长AlN成核层;
(1a)在衬底基片上以610-630℃的低温生长厚度为20-40nm的低温AlN层;
(1b)在低温AlN层上以1050-1080℃的高温生长厚度为60-200nm的高温AlN层;
(2)用金属有机物化学气相淀积技术,在成核层上生长厚度为400nm-1000nm的AlxGa1-xN沟道层,其中Al组分x在5%-20%之间;
(3)用金属有机物化学气相淀积技术,在沟道层上生长厚度为0.8-1.4nm的AlN界面插入层;
(4)用金属有机物化学气相淀积技术,在界面插入层上生长厚度为4-13nm的In0.17Al0.83N势垒层;
(5)采用氧等离子体处理工艺,对In0.17Al0.83N势垒层表面进行氧化,形成厚度为3-10nm的Al2O3绝缘栅介质层;
(6)采用电子束蒸发工艺,在绝缘栅介质层上淀积厚度为0.01~0.05μm/0.1~0.5μm的Ni/Au金属组合,形成栅电极;
(7)在栅电极两侧对In0.17Al0.83N势垒层进行干法刻蚀处理,形成源漏欧姆接触区域;
(8)用金属有机物化学气相淀积技术在源漏欧姆接触区域生长n型重掺杂的GaN层:
(8a)在源漏欧姆接触区域以700-740℃的低温生长厚度为2-5nm的低温GaN层;
(8b)在低温GaN层上以940-960℃的高温生长厚度为5-20nm的Si掺杂高温GaN层,其中Si的剂量为0.1-1x1020cm-3;
(9)采用电子束蒸发工艺,在源漏电极图形区先淀积厚度为0.01~0.05μm/0.06~0.15μm/0.03~0.08μm/0.03~0.05μm的欧姆接触金属Ti/Al/Ni/Au,再在830℃下退火,形成源漏电极,完成器件制作。
本发明与现有技术相比具有如下优点:
1.本发明由于采用氧化势垒层形成绝缘栅介质来降低栅极漏电并提高器件击穿电压,避免了器件槽栅干法刻蚀工艺控制的难度和对器件二维电子气沟道的损伤,提高了器件制造工艺的重复性和可控性;同时,In0.17Al0.83N势垒层被氧化形成Al2O3绝缘栅介质,其厚度减薄,可有效降低沟道中二维电子气面密度,使器件阈值电压增大,改善了器件开关特性。
2.本发明由于采用金属有机物化学气相淀积技术在源漏欧姆接触区二次再生长n型重掺杂GaN来降低源漏区域串联电阻及欧姆接触电阻,改善了器件电流和功率输出特性。
3.本发明的器件由于采用AlxGa1-xN作为沟道层,其禁带宽度和临界击穿场强大于常规的GaN材料,可进一步提高器件的击穿电压,改善器件功率特性;并可通过改变Al组分进一步调控沟道中的二维电子气面密度,使器件阈值电压增大,改善器件开关特性。
4.本发明的器件由于采用In0.17Al0.83N作为势垒层,AlxGa1-xN作为沟道层,易于实现增强型高电子迁移率晶体管,简化了制造工艺步骤和控制难度,增加了工艺处理的重复性和一致性。
附图说明
图1是传统AlGaN/GaN高电子迁移率晶体管的结构图;
图2是本发明基于InAlN/AlGaN增强型高电子迁移率晶体管的结构图;
图3是本发明基于InAlN/AlGaN增强型高电子迁移率晶体管的制作流程图。
具体实施方式
参照图2,本发明的InAlN/AlGaN增强型高电子迁移率晶体管,自下而上,包括衬底、成核层、沟道层和AlN界面插入层。其中,插入层上设有势垒层和源漏区欧姆接触,势垒层上设有绝缘栅介质层,绝缘栅介质层上引出栅电极,源漏区欧姆接触上引出源、漏电极。
上述器件的衬底可以为蓝宝石或碳化硅或硅;成核层由低温AlN层和高温AlN层组成,其厚度分别为20~40nm和60~200nm;沟道层由AlxGa1-xN材料组成,其厚度为400~1000nm;界面插入层由AlN材料组成,其厚度为0.8~1.4nm;势垒层由In0.17Al0.83N材料组成,其厚度为4~13nm;绝缘栅介质层由氧化势垒层形成的Al2O3组成,其厚度为3~10nm;源漏欧姆接触区由低温和高温GaN组成,其厚度分别为2~5nm和5~20nm。
参照图3,本发明制作基于InAlN/AlGaN增强型高电子迁移率晶体管给出如下三种实施例。
实施例一,制作衬底为蓝宝石的增强型高电子迁移率晶体管。
步骤一,外延AlN成核层。
使用金属有机物化学气相淀积技术在蓝宝石衬底上,先外延厚度为20nm的低温AlN成核层;再在低温AlN成核层上淀积厚度为60nm的高温AlN成核层;
外延下层低温AlN材料采用的工艺条件为:温度为610℃,压强为40Torr,氨气流量为1500sccm,铝源流量为4sccm,氢气流量为2500sccm;
淀积上层高温AlN材料采用的工艺条件为:温度为1050℃,压强为40Torr,氨气流量为1500sccm,铝源流量为13sccm,氢气流量为2500sccm。
步骤二,淀积Al0.05Ga0.95N沟道层。
使用金属有机物化学气相淀积技术在AlN成核层上淀积厚度为1000nm,且铝组分为0.05的Al0.05Ga0.95N沟道层;淀积沟道层采用的工艺条件为:温度为1040℃,压强为40Torr,氨气流量为1500sccm,镓源流量为90sccm,铝源流量为4sccm,氢气流量为2500sccm。
步骤三,淀积AlN界面插入层。
使用金属有机物化学气相淀积技术在Al0.05Ga0.95N沟道层上淀积厚度为0.8nm的AlN界面插入层;淀积界面插入层采用的工艺条件为:温度为940℃,压强为40Torr,铝源流量为4sccm,氨气流量为1600sccm,氢气流量为2500sccm。
步骤四,淀积In0.17Al0.83N势垒层。
使用金属有机物化学气相淀积技术在AlN界面插入层上淀积厚度为4nm的In0.17Al0.83N势垒层。淀积势垒层采用的工艺条件为:温度为720℃,压强为200Torr,铝源流量为4sccm,铟源流量为30sccm,氨气流量为1200sccm,氮气流量为2500sccm。
步骤五,氧化In0.17Al0.83N势垒层,形成Al2O3绝缘栅介质层。
使用氧等离子体处理工艺氧化In0.17Al0.83N势垒层,形成厚度为3nm的Al2O3绝缘栅介质层。氧化势垒层采用的工艺条件为:氧流量为5sccm,处理时间为10s,功率为300W,反应室压强3Pa。
步骤六,制作栅电极。
在Al2O3绝缘栅介质层上制作掩膜,使用电子束蒸发技术在栅介质层上淀积金属,制作栅极,其中所淀积的金属为Ni/Au金属组合,金属厚度为0.01μm/0.1μm。淀积金属采用的工艺条件为:真空度小于1.2×10-3Pa,功率范围为200~800W,蒸发速率为
步骤七,刻蚀源漏区域的Al2O3和In0.17Al0.83N层。
在Al2O3绝缘栅介质层上制作掩膜,使用RIE干法刻蚀技术去除源漏区域的Al2O3和In0.17Al0.83N层。刻蚀Al2O3和In0.17Al0.83N层采用的工艺条件为:Cl2流量为10sccm,反应室压强为10mTorr,电极功率为150W。
步骤八,淀积低温GaN层。
使用金属有机物化学气相淀积技术在源漏欧姆接触区域淀积厚度为2nm的低温GaN层。其采用的工艺条件为:温度为700℃,压强为40Torr,镓源流量为25sccm,氨气流量为1200sccm,氢气流量为2500sccm。
步骤九,淀积n型重掺杂的高温GaN层。
使用金属有机物化学气相淀积技术在源漏欧姆接触区域淀积厚度为5nm的高温GaN层,同时向反应室通入硅烷,掺入浓度为0.1×1020cm-3的Si,形成n型重掺杂的GaN。其采用的工艺条件为:温度为940℃,压强为40Torr,镓源流量为25sccm,氨气流量为1200sccm,氢气流量为2500sccm。
步骤十,制作源电极和漏电极。
在绝缘栅介质层上制作掩膜,用电子束蒸发技术分别在源漏欧姆接触区上淀积金属,再在N2气氛中进行快速热退火,制作源极和漏极,其中所淀积的金属采用Ti/Al/Ni/Au金属组合,金属厚度为0.01μm/0.06μm/0.03μm/0.03μm;淀积金属采用的工艺条件为:真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率为快速热退火采用的工艺条件为:温度为830℃,时间为30s。
实施例二,制作衬底为硅的增强型高电子迁移率晶体管。
步骤1,使用金属有机物化学气相淀积技术外延AlN成核层。
(1a)以温度为630℃,压强为40Torr,氨气流量为1500sccm,铝源流量为4sccm,氢气流量为2500sccm的工艺条件,在硅衬底上外延厚度为40nm的低温AlN成核层;
(1b)以温度为1080℃,压强为40Torr,氨气流量为1500sccm,铝源流量为13sccm,氢气流量为2500sccm的工艺条件,在低温AlN成核层上淀积厚度为200nm的高温AlN成核层。
步骤2,使用金属有机物化学气相淀积技术淀积Al0.2Ga0.8N沟道层。
以温度为1080℃,压强为40Torr,氨气流量为1500sccm,镓源流量为90sccm,铝源流量为18sccm,氢气流量为2500sccm的工艺条件,在AlN成核层上淀积厚度为400nm,且铝组分为0.2的Al0.2Ga0.8N沟道层。
步骤3,使用金属有机物化学气相淀积技术淀积AlN界面插入层。
以温度为940℃,压强为40Torr,铝源流量为4sccm,氨气流量为1600sccm,氢气流量为2500sccm的工艺条件,在Al0.2Ga0.8N沟道层上淀积厚度为1.4nm的AlN界面插入层。
步骤4,使用金属有机物化学气相淀积技术淀积In0.17Al0.83N势垒层。
以温度为720℃,压强为200Torr,铝源流量为4sccm,铟源流量为30sccm,氨气流量为1200sccm,氮气流量为2500sccm的工艺条件,在AlN界面插入层上淀积厚度为13nm的In0.17Al0.83N势垒层。
步骤5,使用氧等离子体处理工艺氧化In0.17Al0.83N势垒层,形成Al2O3绝缘栅介质层。
以氧流量为5sccm,处理时间为30s,功率为300W,反应室压强为4Pa的工艺条件,氧化In0.17Al0.83N势垒层,形成厚度为10nm的Al2O3绝缘栅介质层。
步骤6,使用电子束蒸发技术制作栅电极。
在Al2O3绝缘栅介质层上制作掩膜,以真空度小于1.5×10-3Pa,功率范围为200~800W,蒸发速率为的工艺条件,在栅介质层上淀积金属,制作栅极,其中所淀积的金属为Ni/Au金属组合,金属厚度为0.05μm/0.5μm。
步骤7,使用RIE干法刻蚀技术去除源漏区域的Al2O3和In0.17Al0.83N层。
在Al2O3绝缘栅介质层上制作掩膜,以Cl2流量为20sccm,反应室压强为20mTorr,电极功率为200W的工艺条件,去除源漏区域的Al2O3和In0.17Al0.83N层。
步骤8,使用金属有机物化学气相淀积技术淀积低温GaN层。
以温度为740℃,压强为40Torr,镓源流量为25sccm,氨气流量为1200sccm,氢气流量为2500sccm的工艺条件,在源漏欧姆接触区域淀积厚度为5nm的低温GaN层。
步骤9,使用金属有机物化学气相淀积技术淀积n型重掺杂的高温GaN层。
以温度为960℃,压强为40Torr,镓源流量为25sccm,氨气流量为1200sccm,氢气流量为2500sccm的工艺条件,在源漏欧姆接触区域淀积厚度为20nm的高温GaN层,同时向反应室通入硅烷,掺入浓度为1×1020cm-3的Si,形成n型重掺杂的GaN。。
步骤10,使用电子束蒸发技术制作源电极和漏电极。
在绝缘栅介质层上制作掩膜,以真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率为的工艺条件,分别在源漏欧姆接触区上淀积金属,其中所淀积的金属采用Ti/Al/Ni/Au金属组合,金属厚度为0.05μm/0.15μm/0.08μm/0.05μm;再以温度为830℃,时间为30s的工艺条件,在N2气氛中进行快速热退火,制作源极和漏极。
实施例三,制作衬底为碳化硅的增强型高电子迁移率晶体管。
步骤A,外延AlN成核层。
A1)使用金属有机物化学气相淀积技术采用温度为620℃,压强为40Torr,氨气流量为1500sccm,铝源流量为4sccm,氢气流量为2500sccm的条件,在碳化硅衬底上外延厚度为30nm的低温AlN成核层;
A2)使用金属有机物化学气相淀积技术采用温度为1070℃,压强为40Torr,氨气流量为1500sccm,铝源流量为13sccm,氢气流量为2500sccm的工艺条件,在低温AlN成核层上淀积厚度为100nm的高温AlN成核层。
步骤B,淀积Al0.14Ga0.86N沟道层。
使用金属有机物化学气相淀积技术在AlN成核层上淀积厚度为700nm,且铝组分为0.14的Al0.14Ga0.86N沟道层。淀积沟道层采用的工艺条件为:温度为1070℃,压强为40Torr,氨气流量为1500sccm,镓源流量为90sccm,铝源流量为12sccm,氢气流量为2500sccm。
步骤C,淀积AlN界面插入层。
使用金属有机物化学气相淀积技术在Al0.14Ga0.86N沟道层上淀积厚度为1nm的AlN界面插入层。淀积界面插入层采用的工艺条件为:温度为940℃,压强为40Torr,铝源流量为4sccm,氨气流量为1600sccm,氢气流量为2500sccm。
步骤D,淀积In0.17Al0.83N势垒层。
使用金属有机物化学气相淀积技术在AlN界面插入层上淀积厚度为10nm的In0.17Al0.83N势垒层。淀积势垒层采用的工艺条件为:温度为720℃,压强为200Torr,铝源流量为4sccm,铟源流量为30sccm,氨气流量为1200sccm,氮气流量为2500sccm。
步骤E,氧化In0.17Al0.83N势垒层,形成Al2O3绝缘栅介质层。
使用氧等离子体处理工艺氧化In0.17Al0.83N势垒层,形成厚度为8nm的Al2O3绝缘栅介质层。氧化势垒层采用的工艺条件为:氧流量为5sccm,处理时间为20s,功率为300W,反应室压强3Pa。
步骤F,制作栅电极。
在Al2O3绝缘栅介质层上制作掩膜,使用电子束蒸发技术在栅介质层上淀积金属,制作栅极,其中所淀积的金属为Ni/Au金属组合,金属厚度为0.03μm/0.3μm。淀积金属采用的工艺条件为:真空度小于1.2×10-3Pa,功率范围为200~800W,蒸发速率为
步骤G,刻蚀源漏区域的Al2O3和In0.17Al0.83N层。
在Al2O3绝缘栅介质层上制作掩膜,使用RIE干法刻蚀技术去除源漏区域的Al2O3和In0.17Al0.83N层。刻蚀Al2O3和In0.17Al0.83N层采用的工艺条件为:Cl2流量为15sccm,反应室压强为15mTorr,电极功率为170W。
步骤H,淀积低温GaN层。
使用金属有机物化学气相淀积技术在源漏欧姆接触区域淀积厚度为3nm的低温GaN层。其采用的工艺条件为:温度为720℃,压强为40Torr,镓源流量为25sccm,氨气流量为1200sccm,氢气流量为2500sccm。
步骤I,淀积n型重掺杂的高温GaN层。
使用金属有机物化学气相淀积技术在源漏欧姆接触区域淀积厚度为10nm的高温GaN层,同时向反应室通入硅烷,掺入浓度为0.5×1020cm-3的Si,形成n型重掺杂的GaN层。其采用的工艺条件为:温度为950℃,压强为40Torr,镓源流量为25sccm,氨气流量为1200sccm,氢气流量为2500sccm。
步骤J,制作源电极和漏电极。
J1)在绝缘栅介质层上制作掩膜,用电子束蒸发技术分别在源漏欧姆接触区上淀积金属,其中所淀积的金属采用Ti/Al/Ni/Au金属组合,金属厚度为0.03μm/0.1μm/0.05μm/0.04μm。淀积金属采用的工艺条件为:真空度小于1.8×10-3Pa,功率范围为200~1000W,蒸发速率为
J2)在N2气氛中进行快速热退火,制作源极和漏极,快速热退火采用的工艺条件为:温度为830℃,时间为30s。
以上所述仅为本发明的较佳实施例而已,并不构成对本发明的限制,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。但并不限于这些实施例。
Claims (10)
1.一种InAlN/AlGaN增强型高电子迁移率晶体管,自下而上,包括衬底、AlN成核层、沟道层和AlN界面插入层,该插入层上设有势垒层和源漏区欧姆接触,势垒层上设有绝缘栅介质层,绝缘栅介质层上设有栅电极,源漏区欧姆接触上设有源、漏电极,其特征在于:
势垒层,采用厚度为4-13nm的In0.17Al0.83N材料;
沟道层,采用AlxGa1-xN材料,且其Al组分x在5%-20%之间,材料厚度在400nm-1000nm之间;
绝缘栅介质层,是通过氧化势垒层In0.17Al0.83N形成厚度为3-10nm的Al2O3。
2.如权利要求1所述的InAlN/AlGaN增强型高电子迁移率晶体管,衬底采用蓝宝石或Si材料或SiC材料。
3.一种InAlN/AlGaN增强型高电子迁移率晶体管的制作方法,包括如下步骤:
(1)在衬底基片上,利用金属有机物化学气相淀积方法生长AlN成核层;
(1a)在衬底基片上以610-630℃的低温生长厚度为20-40nm的低温AlN层;
(1b)在低温AlN层上以1050-1080℃的高温生长厚度为60-200nm的高温AlN层;
(2)用金属有机物化学气相淀积方法,在成核层上生长厚度为400nm-1000nm的AlxGa1-xN沟道层,其中Al组分x在5%-20%之间;
(3)用金属有机物化学气相淀积方法,在沟道层上生长厚度为0.8-1.4nm的AlN界面插入层;
(4)用金属有机物化学气相淀积方法,在界面插入层上生长厚度为4-13nm的In0.17Al0.83N势垒层;
(5)采用氧等离子体处理工艺,对In0.17Al0.83N势垒层表面进行氧化,形成厚度为3-10nm的Al2O3绝缘栅介质层;
(6)采用电子束蒸发工艺,在绝缘栅介质层上淀积厚度为0.01~0.05μm/0.1~0.5μm的Ni/Au金属组合,形成栅电极;
(7)在栅电极两侧对In0.17Al0.83N势垒层进行干法刻蚀处理,形成源漏欧姆接触区域;
(8)用金属有机物化学气相淀积方法在源漏欧姆接触区域生长n型重掺杂的GaN层:
(8a)在源漏欧姆接触区域以700-740℃的低温生长厚度为2-5nm的低温GaN层;
(8b)在低温GaN层上以940-960℃的高温生长厚度为5-20nm的Si掺杂高温GaN层,其中Si的剂量为(0.1-1)x1020cm-3;
(9)采用电子束蒸发工艺,在源漏电极图形区先淀积厚度为0.01~0.05μm/0.06~0.15μm/0.03~0.08μm/0.03~0.05μm的欧姆接触金属Ti/Al/Ni/Au,再在830℃下退火,形成源漏电极,完成器件制作。
4.如权利要求3所述的一种InAlN/AlGaN增强型高电子迁移率晶体管的制作方法,其中所述步骤(1)中用金属有机物化学气相淀积在衬底上生长AlN成核层,包含两步工艺:
在衬底上生长低温AlN层的工艺条件是:温度为610-630℃,压强为40Torr,氨气流量为1500sccm,铝源流量为4sccm,氢气流量为2500sccm;
在低温AlN层上生长高温AlN层的工艺条件是:温度为1050-1080℃,压强为40Torr,氨气流量为1500sccm,铝源流量为13sccm,氢气流量为2500sccm。
5.如权利要求3所述的InAlN/AlGaN增强型高电子迁移率晶体管的制作方法,其中所述步骤(2)中的金属有机物化学气相淀积,其工艺条件为:温度为1040~1080℃,压强为40Torr,氨气流量为1500sccm,镓源流量为90sccm,铝源流量为4-18sccm,氢气流量为2500sccm。
6.如权利要求3所述的InAlN/AlGaN增强型高电子迁移率晶体管的制作方法,其中所述步骤(3)中的金属有机物化学气相淀积,其工艺条件为:温度为940℃,压强为40Torr,铝源流量为4sccm,氨气流量为1600sccm,氢气流量为2500sccm。
7.如权利要求3所述的InAlN/AlGaN增强型高电子迁移率晶体管的制作方法,其中所述步骤(4)中的金属有机物化学气相淀积,其工艺条件为:温度为720℃,压强为200Torr,铝源流量为4sccm,铟源流量为30sccm,氨气流量为1200sccm,氮气流量为2500sccm。
8.如权利要求3所述的InAlN/AlGaN增强型高电子迁移率晶体管的制作方法,其中所述步骤(5)中的氧等离子体处理,其工艺条件为:氧流量为5sccm,处理时间为10~30s,功率为300W,反应室压强3~4Pa。
9.如权利要求3所述的InAlN/AlGaN增强型高电子迁移率晶体管的制作方法,其中所述步骤(7)中的干法刻蚀,其工艺条件为:Cl2流量为10-20sccm,反应室压强为10-20mTorr,电极功率为150-200W。
10.如权利要求3所述的InAlN/AlGaN增强型高电子迁移率晶体管的制作方法,其中所述步骤(9)中的电子束蒸发和快速热退火,其工艺条件如下:
电子束蒸发:真空度小于1.8×10-3Pa,功率为200~1000W,蒸发速率为
快速热退火:温度为830℃,时间为30s。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410570899.0A CN104393039B (zh) | 2014-10-23 | 2014-10-23 | InAlN/AlGaN增强型高电子迁移率晶体管及其制作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410570899.0A CN104393039B (zh) | 2014-10-23 | 2014-10-23 | InAlN/AlGaN增强型高电子迁移率晶体管及其制作方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104393039A CN104393039A (zh) | 2015-03-04 |
CN104393039B true CN104393039B (zh) | 2017-02-15 |
Family
ID=52610912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410570899.0A Active CN104393039B (zh) | 2014-10-23 | 2014-10-23 | InAlN/AlGaN增强型高电子迁移率晶体管及其制作方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104393039B (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105466970B (zh) * | 2015-12-11 | 2018-02-13 | 北京大学 | 用于检测氮化镓基异质结构中陷阱态的检测方法和结构 |
CN108573853B (zh) * | 2017-03-09 | 2021-01-29 | 合肥彩虹蓝光科技有限公司 | 一种GaN基HEMT器件外延结构及其生长方法 |
CN108807183B (zh) * | 2018-05-08 | 2021-10-08 | 西安电子科技大学 | 一种mos器件的制作方法及器件 |
CN109300974B (zh) * | 2018-08-20 | 2020-11-10 | 西安电子科技大学 | 一种非极性InAlN/GaN高电子迁移率晶体管及制备方法 |
CN109192725A (zh) * | 2018-09-03 | 2019-01-11 | 深圳市科创数字显示技术有限公司 | 一种双叠层mos-hemt |
CN109599437A (zh) * | 2018-11-13 | 2019-04-09 | 西安电子科技大学 | 基于InGaN双沟道异质结构的高电子迁移率晶体管及其制备方法 |
CN109728087B (zh) * | 2019-01-08 | 2020-09-08 | 西安电子科技大学 | 基于纳米球掩模的低欧姆接触GaN基HEMT制备方法 |
DE102019111598A1 (de) * | 2019-05-06 | 2020-11-12 | Aixtron Se | Verfahren zum Abscheiden eines Halbleiter-Schichtsystems, welches Gallium und Indium enthält |
CN110718584B (zh) * | 2019-10-17 | 2024-03-26 | 中证博芯(重庆)半导体有限公司 | 基于GaN或GaAs的MIS-HEMT器件及其制备方法 |
CN112635551A (zh) * | 2020-12-18 | 2021-04-09 | 西安电子科技大学 | 一种GaN异质结材料及其制作方法 |
CN112736131B (zh) * | 2021-01-05 | 2023-02-10 | 西安电子科技大学 | YAlN/GaN高电子迁移率晶体管及其制作方法 |
CN113192836A (zh) * | 2021-04-26 | 2021-07-30 | 深圳市汇芯通信技术有限公司 | 射频半导体器件的制备方法及其结构 |
US12237382B2 (en) * | 2021-06-18 | 2025-02-25 | Win Semiconductors Corp. | Semiconductor device and power amplifier |
CN115440586A (zh) * | 2022-09-26 | 2022-12-06 | 山东大学 | 一种基于混合气体退火的InAlN/GaN HEMT的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007103451A (ja) * | 2005-09-30 | 2007-04-19 | Toshiba Corp | 半導体装置及びその製造方法 |
CN102646581A (zh) * | 2011-02-21 | 2012-08-22 | 富士通株式会社 | 半导体器件和制造半导体器件的方法 |
CN102810564A (zh) * | 2012-06-12 | 2012-12-05 | 程凯 | 一种射频器件及其制作方法 |
CN102938413A (zh) * | 2012-11-21 | 2013-02-20 | 西安电子科技大学 | AlGaN/GaN异质结增强型器件及其制作方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1421626A2 (en) * | 2001-08-07 | 2004-05-26 | Jan Kuzmik | High electron mobility devices |
-
2014
- 2014-10-23 CN CN201410570899.0A patent/CN104393039B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007103451A (ja) * | 2005-09-30 | 2007-04-19 | Toshiba Corp | 半導体装置及びその製造方法 |
CN102646581A (zh) * | 2011-02-21 | 2012-08-22 | 富士通株式会社 | 半导体器件和制造半导体器件的方法 |
CN102810564A (zh) * | 2012-06-12 | 2012-12-05 | 程凯 | 一种射频器件及其制作方法 |
CN102938413A (zh) * | 2012-11-21 | 2013-02-20 | 西安电子科技大学 | AlGaN/GaN异质结增强型器件及其制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104393039A (zh) | 2015-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104393039B (zh) | InAlN/AlGaN增强型高电子迁移率晶体管及其制作方法 | |
CN101916773B (zh) | 一种双沟道mos-hemt器件的制作方法 | |
WO2020221222A1 (zh) | 一种高阈值电压常关型高电子迁移率晶体管及其制备方法 | |
CN102386223B (zh) | GaN高阈值电压增强型MOSHFET器件及制备方法 | |
CN105931999B (zh) | 薄势垒增强型AlGaN/GaN高电子迁移率晶体管及其制作方法 | |
CN101789446B (zh) | 一种双异质结mos-hemt器件 | |
CN112736131B (zh) | YAlN/GaN高电子迁移率晶体管及其制作方法 | |
CN101752389A (zh) | 一种Al2O3/AlN/GaN/AlN MOS-HEMT器件及制作方法 | |
CN112542508B (zh) | ScAlN/GaN高电子迁移率晶体管及其制作方法 | |
CN111682064B (zh) | 高性能MIS栅增强型GaN基高电子迁移率晶体管及其制备方法 | |
CN110676172B (zh) | 一种实现低导通电阻的增强型氮化镓晶体管的方法 | |
CN113555431B (zh) | 基于P型GaN漏电隔离层的同质外延氮化镓高电子迁移率晶体管及制作方法 | |
CN111613671A (zh) | 一种对称结构的GaN基MIS-HEMT器件及其制备方法 | |
CN105374869B (zh) | 具有原位栅介质的AlGaN/GaN异质结器件及其制作方法 | |
CN114725022A (zh) | 一种基于GaOx-GaN的CMOS反相器的制备方法 | |
CN112951910A (zh) | BAlN/GaN高电子迁移率晶体管及其制作方法 | |
CN104393038A (zh) | 高击穿电压InAlN/AlGaN高电子迁移率晶体管及其制作方法 | |
CN209487514U (zh) | 一种高质量栅界面的GaN MISFET器件 | |
CN118213399A (zh) | P型混合栅氮化镓hemt功率晶体管及制造方法 | |
CN111799326A (zh) | 一种新型二维电子气浓度调控的晶体管结构及制作方法 | |
CN117497414A (zh) | 高电子迁移率氧化镓场效应晶体管制备方法及晶体管 | |
CN112768409B (zh) | GaN HEMT集成器件及其制备方法 | |
CN103779409A (zh) | 基于耗尽型AlGaN/GaN HEMT器件结构及其制作方法 | |
CN114725214A (zh) | 一种多层钝化凹槽栅mis-hemt器件及其制备方法 | |
CN110335894B (zh) | Hemt结构及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240708 Address after: 335500 High tech Industrial Park Fengshou Industrial Park East Outer Ring Road, Wannian County, Shangrao City, Jiangxi Province Patentee after: Jiangxi Wannian Crystal Semiconductor Co.,Ltd. Country or region after: China Address before: 710071 No. 2 Taibai South Road, Shaanxi, Xi'an Patentee before: XIDIAN University Country or region before: China |
|
TR01 | Transfer of patent right |