[go: up one dir, main page]

CN104392080A - Lithium-battery variable fractional order and equivalent circuit model and identification method thereof - Google Patents

Lithium-battery variable fractional order and equivalent circuit model and identification method thereof Download PDF

Info

Publication number
CN104392080A
CN104392080A CN201410797302.6A CN201410797302A CN104392080A CN 104392080 A CN104392080 A CN 104392080A CN 201410797302 A CN201410797302 A CN 201410797302A CN 104392080 A CN104392080 A CN 104392080A
Authority
CN
China
Prior art keywords
order
battery
fractional
foe
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410797302.6A
Other languages
Chinese (zh)
Other versions
CN104392080B (en
Inventor
张承慧
商云龙
张奇
崔纳新
李泽元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201410797302.6A priority Critical patent/CN104392080B/en
Publication of CN104392080A publication Critical patent/CN104392080A/en
Application granted granted Critical
Publication of CN104392080B publication Critical patent/CN104392080B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The invention discloses a lithium-battery variable fractional order and equivalent circuit model and an identification method thereof. The lithium-battery variable fractional order and equivalent circuit comprises a run time circuit and a battery I-V characteristic circuit, wherein a capacitor in the battery I-V characteristic circuit is a variable fractional order capacitor. A second order RC circuit model is generalized to a non-integer order, and the model parameters and the number of fractional order of different SOC are identified based on a least square method, so that the fractional order and equivalent circuit varying order according to the SOC is obtained. The instruction of fractional order realizes the continuous change of the order number of the model, so that the model is relatively stable, good in dynamic property and high in precision. The variation of fractional order realizes more freedom and more flexibility and innovation of the model. As the number of RC networks is not increased, the fractional order model effectively solves the contradiction between the accuracy and practicality of the model, is suitable for various working conditions of batteries, and has high practical value. The invention provides a precise battery model easy to realize for precise estimation of SOC.

Description

一种锂电池分数阶变阶等效电路模型及其辨识方法A fractional-order variable-order equivalent circuit model of a lithium battery and its identification method

技术领域technical field

本发明涉及一种锂电池分数阶变阶等效电路模型及其辨识方法。The invention relates to a fractional-order variable-order equivalent circuit model of a lithium battery and an identification method thereof.

背景技术Background technique

为了应对能源危机和环境污染,电动汽车应运而生并已成为全世界关注的焦点。车载动力电池作为电动汽车的关键部件,其性能对整车的动力性、经济性和安全性至关重要,是制约电动汽车规模发展的关键因素。锂电池具能量密度高、使用寿命长、性价比好和单体电压高等优点,逐步成为混合动力汽车或纯电动汽车的动力源之一。精确的电池模型对车载动力锂电池的合理设计和安全运行具有重要意义,是电池SOC(荷电状态)、SOH(健康状态)估算方法的基础。In order to deal with the energy crisis and environmental pollution, electric vehicles have emerged as the times require and have become the focus of attention all over the world. As a key component of electric vehicles, vehicle-mounted power batteries are crucial to the power, economy and safety of the vehicle, and are a key factor restricting the scale development of electric vehicles. Lithium batteries have the advantages of high energy density, long service life, good cost performance and high single voltage, and gradually become one of the power sources of hybrid electric vehicles or pure electric vehicles. Accurate battery models are of great significance to the rational design and safe operation of vehicle-mounted power lithium batteries, and are the basis of battery SOC (state of charge) and SOH (state of health) estimation methods.

然而,建立一个精确且结构简单的电池模型绝非易事,这是因为锂电池内部的化学反应涉及电能、化学能、热能的复杂转换,具有高度的非线性和不确定性。目前,常用的电池模型按建模机理的不同可为以下五类:①电化学模型、②分析模型、③随机模型、④神经网络模型和⑤等效电路模型。其中,等效电路模型因其简单直观的形式以及适宜于电气设计与仿真等优点已成为被广泛运用的一种新模型。在等效电路模型中,二阶RC模型相比其他等效电路模型物理意义清晰、模型参数辨识试验容易执行、参数辨识方法系统、模型精度较高,可以更加准确、直观地模拟电池的动态特性。但是,二阶RC模型在电池充放电初期和末期,由于模型阶数较低,存在较大的拟合误差,不能精确地模拟电池的动静态特性。增加RC的串联阶数虽然可以提高电池模型的准确性,能更好的模拟动力电池的充放电特性,但是如果动力电池模型的阶数过高,将不利于获取模型中的参数,并且也会大大增加模型的计算量,甚至会导致系统震荡,所以另一方面也应该限制RC的阶数。因此,定结构等效电路模型难以描述锂电池两端陡中间平的非线性电压特性,不能解决模型的准确性和实用性之间的矛盾。However, it is not easy to establish an accurate and simple battery model, because the chemical reaction inside the lithium battery involves complex conversion of electrical energy, chemical energy, and thermal energy, which is highly nonlinear and uncertain. At present, the commonly used battery models can be divided into the following five categories according to the different modeling mechanisms: ① electrochemical model, ② analytical model, ③ stochastic model, ④ neural network model and ⑤ equivalent circuit model. Among them, the equivalent circuit model has become a new model widely used because of its simple and intuitive form and the advantages of being suitable for electrical design and simulation. In the equivalent circuit model, the second-order RC model has clear physical meaning compared with other equivalent circuit models, the model parameter identification test is easy to perform, the parameter identification method is systematic, and the model accuracy is higher, which can simulate the dynamic characteristics of the battery more accurately and intuitively. . However, the second-order RC model has a large fitting error due to the low order of the model at the initial and final stages of battery charging and discharging, and cannot accurately simulate the dynamic and static characteristics of the battery. Although increasing the series order of RC can improve the accuracy of the battery model and better simulate the charging and discharging characteristics of the power battery, if the order of the power battery model is too high, it will not be conducive to obtaining the parameters in the model, and will also It will greatly increase the calculation amount of the model, and even cause system oscillation, so on the other hand, the order of RC should also be limited. Therefore, the fixed structure equivalent circuit model is difficult to describe the nonlinear voltage characteristics of the steep and flat middle of the lithium battery, and cannot solve the contradiction between the accuracy and practicability of the model.

为此,中国发明专利申请(申请号201410185885.7)和实用新型(专利号ZL201420226360.9)提出了一种基于AIC准则的变阶RC等效电路模型,通过略微增加模型的复杂度,能更加准确地描述锂电池两端陡中间平的非线性电压特性,误差在0.04V以内,有效解决了模型复杂度和实用性之间的矛盾,具有较高的实用价值。但是,该模型是整数阶的电池模型,模型的切换只能是整数阶的变化,因此模型阶数波动大,不符合自然界中渐变的发展规律,因此模型精度受到很大的限制。事实上,电池内部电化学反应过程极其复杂,包括导电离子转移、内部电化学反应、充放电迟滞效应以及浓差扩散效应等,表现出较强的非线性特性,更适合用分数阶模型来模拟。对比整数阶模型,分数阶电池模型在设计上具有更多的自由度、更大的柔性和新意。同时,它们的引入也增加了许多新的现象和规律,具有常规整数阶电池模型无法实现的优越。For this reason, the Chinese invention patent application (application number 201410185885.7) and utility model (patent number ZL201420226360.9) proposed a variable-order RC equivalent circuit model based on the AIC criterion. By slightly increasing the complexity of the model, it can be more accurately Describe the non-linear voltage characteristics of the lithium battery, which is steep at both ends and flat at the middle, and the error is within 0.04V, which effectively solves the contradiction between model complexity and practicability, and has high practical value. However, the model is an integer-order battery model, and the switching of the model can only be an integer-order change. Therefore, the model order fluctuates greatly, which does not conform to the gradual development law in nature, so the accuracy of the model is greatly limited. In fact, the internal electrochemical reaction process of the battery is extremely complex, including the transfer of conductive ions, internal electrochemical reactions, charge and discharge hysteresis effects, and concentration diffusion effects, etc., showing strong nonlinear characteristics, which are more suitable for simulation by fractional order models . Compared with the integer-order model, the fractional-order battery model has more degrees of freedom, greater flexibility and novelty in design. At the same time, their introduction also adds many new phenomena and laws, which have advantages that conventional integer-order battery models cannot achieve.

发明内容Contents of the invention

为解决现有技术存在的不足,本发明公开了一种锂电池分数阶变阶等效电路模型及其辨识方法,根据锂离子电池的电化学反应原理,传统二阶RC等效电路模型使用两个整数阶的RC网络描述电池的极化效应和浓差效应,本发明将模型的两个整数阶RC网络推广到非整数阶(分数阶),并基于最小二乘法辨识不同SOC处的模型参数和阶次,从而获得了一个根据SOC变阶的分数阶等效电路模型。分数阶的引入实现了模型阶数的连续变化,使得模型更加稳定、动态性能更优、精度更高。由于增加了分数阶变阶参数,模型获得了更多的自由度、更大的柔性和新意。该模型是在传统二阶RC模型的基础上实现的,并未增加模型RC网络的个数,有效解决了模型精度和简便性之间的矛盾,具有较高的实用价值。In order to solve the deficiencies in the prior art, the present invention discloses a lithium battery fractional-order variable-order equivalent circuit model and its identification method. According to the electrochemical reaction principle of lithium-ion batteries, the traditional second-order RC equivalent circuit model uses two Two integer order RC networks describe the polarization effect and concentration effect of the battery. The present invention extends the two integer order RC networks of the model to non-integer order (fractional order), and identifies model parameters at different SOCs based on the least squares method and order, thus obtaining a fractional-order equivalent circuit model that varies according to the SOC order. The introduction of the fractional order realizes the continuous change of the model order, making the model more stable, with better dynamic performance and higher precision. Due to the addition of fractional order variable parameters, the model has more degrees of freedom, greater flexibility and novelty. The model is realized on the basis of the traditional second-order RC model, without increasing the number of model RC networks, effectively solving the contradiction between model accuracy and simplicity, and having high practical value.

为实现上述目的,本发明的具体方案如下:To achieve the above object, the specific scheme of the present invention is as follows:

一种锂电池分数阶变阶等效电路模型,包括运行时间电路及电池I-V特性电路,所述运行时间电路及电池I-V特性电路通过电流控制电流源及电压控制电压源进行信号传输;所述运行时间电路包括电池的自放电电阻Rd及电容CQ,电阻Rd与电容CQ并联在电流控制电流源的两端,电流控制电流源的一端接地;所述电池I-V特性电路的电压控制电压源的正极端与两个相并联的支路的一端相连,负极端与电池模型的负极端相连,所述两个相并联的RC网络支路的每一个支路均包括两个相串联的分数阶RC回路和一个内阻Ro,所述两个相并联的支路的另一端与电池模型的正极端相连。A fractional-order variable-order equivalent circuit model of a lithium battery, including a running time circuit and a battery IV characteristic circuit, wherein the running time circuit and the battery IV characteristic circuit perform signal transmission through a current-controlled current source and a voltage-controlled voltage source; the running The time circuit includes the self-discharging resistance R d and the capacitor C Q of the battery, the resistance R d and the capacitor C Q are connected in parallel at the two ends of the current control current source, and one end of the current control current source is grounded; the voltage control voltage of the IV characteristic circuit of the battery The positive terminal of the source is connected to one end of two parallel-connected branches, and the negative terminal is connected to the negative terminal of the battery model, each branch of the two parallel-connected RC network branches includes two series-connected fractions The second-order RC loop and an internal resistance R o , the other ends of the two parallel branches are connected to the positive terminal of the battery model.

所述电池I-V特性电路中两个相并联的RC网络支路中,放电支路包括依次串联的二极管Dd、分数阶电容FOE1d与电阻R1d组成的分数阶RC回路、分数阶电容FOE2d与电阻R2d组成的分数阶RC回路及电阻RodIn the two RC network branches connected in parallel in the IV characteristic circuit of the battery, the discharge branch includes a fractional-order RC loop composed of a diode D d in series, a fractional-order capacitor FOE 1d and a resistor R 1d , and a fractional-order capacitor FOE 2d Fractional-order RC circuit formed with resistance R 2d and resistance R od ;

充电支路包括依次串联的反接二极管Dd、分数阶电容FOE1c与电阻R1c组成的分数阶RC回路、分数阶电容FOE2c与电阻R2c组成的分数阶RC回路及电阻RocThe charging branch includes a series-connected reverse diode D d , a fractional RC loop composed of a fractional capacitor FOE 1c and a resistor R 1c , a fractional RC loop composed of a fractional capacitor FOE 2c and a resistor R 2c , and a resistor R oc .

所述运行时间电路和I-V特性电路通过一个电流控制电流源及电压控制电压源建立联系,当对电池进行充放电时,负载电流ibat通过电流控制电流源对电容CQ进行充放电,改变CQ存储的电量,表征电池SOC的变化,CQ两端电压OCV也随之变化,I-V特性电路的受控电压源OCV随SOC的变化而变化。The running time circuit and the IV characteristic circuit are connected through a current control current source and a voltage control voltage source. When charging and discharging the battery, the load current i bat charges and discharges the capacitor C Q through the current control current source, changing C The power stored by Q represents the change of battery SOC, and the voltage OCV across C and Q also changes accordingly. The controlled voltage source OCV of the IV characteristic circuit changes with the change of SOC.

所述电容CQ表示电池的可用容量,CQ=3600·CAh·f1·f2,其中,CAh为用安时为单位的电池容量,f1和f2分别是电池循环寿命和温度的修正因子。The capacitance C Q represents the available capacity of the battery, C Q =3600·C Ah ·f 1 ·f 2 , wherein, C Ah is the battery capacity in ampere hours, f 1 and f 2 are the battery cycle life and Correction factor for temperature.

所述电流控制电流源的电流为电池的端电流ibat,当电池进行充放电时负载电流ibat通过电流控制电流源对电容CQ进行充放电,改变电容CQ中存储的电量,从而表征电池SOC的变化。The current of the current control current source is the terminal current i bat of the battery. When the battery is charging and discharging, the load current i bat charges and discharges the capacitor C Q through the current control current source, and changes the electric quantity stored in the capacitor C Q , thereby representing Changes in battery SOC.

所述电流控制电流源的两端的电压为电池开路电压OCV。The voltage across the two ends of the current control current source is the battery open circuit voltage OCV.

两个相并联的RC网络支路分别是RC网络放电支路和RC网络充电支路,两个RC网络支路中的电容均为分数阶电容。The two parallel RC network branches are respectively the RC network discharge branch and the RC network charge branch, and the capacitors in the two RC network branches are all fractional order capacitors.

所述RC网络放电支路分数阶元件FOE1d和FOE2d的阶数α,β随电池SOC状态不同而变化,且满足0≤αd,βd≤1。当αd,βd=0时,分数阶元件FOE等效为一电阻,当αd,βd=1时,分数阶元件FOE等效为一整数阶电容;当0<αd,βd<1时,分数阶元件FOE为一分数阶电容;The orders α and β of the fractional-order elements FOE 1d and FOE 2d in the discharge branch of the RC network vary with the state of the battery SOC, and satisfy 0≤α d , β d ≤1. When α d , β d =0, the fractional element FOE is equivalent to a resistor; when α d , β d =1, the fractional element FOE is equivalent to an integer-order capacitance; when 0<α d , β d When <1, the fractional-order element FOE is a fractional-order capacitor;

所述RC网络充电支路分数阶元件FOE1c和FOE2c的阶数α,β随电池SOC状态不同而变化,且满足0≤αc,βc≤1。当αc,βc=0时,分数阶元件FOE等效为一电阻,当αc,βc=1时,分数阶元件FOE等效为一整数阶电容;当0<αc,βc<1时,分数阶元件FOE为一分数阶电容。The orders α and β of the fractional-order elements FOE 1c and FOE 2c in the charging branch of the RC network vary with the state of the battery SOC, and satisfy 0≤α c , β c ≤1. When α c , β c =0, the FOE of the fractional-order element is equivalent to a resistor; when α c , β c =1, the FOE of the fractional-order element is equivalent to an integer-order capacitance; when 0<α c , β c When <1, the fractional-order element FOE is a fractional-order capacitor.

一种锂电池分数阶变阶等效电路模型的辨识方法,包括以下步骤:An identification method for a fractional-order variable-order equivalent circuit model of a lithium battery, comprising the following steps:

步骤一:写出锂电池的放电过程和静置状态的分数阶数学模型表达式;Step 1: Write the expression of the fractional-order mathematical model of the discharge process and static state of the lithium battery;

步骤二:对锂电池进行恒流充放电,得到电池模型的可用容量CQ和自放电电阻RdStep 2: Perform constant current charge and discharge on the lithium battery to obtain the available capacity C Q and self-discharge resistance R d of the battery model;

步骤三:对锂电池进行脉冲放电测试,获取不同SOC处电池开始放电时的电池端电压的瞬间下降值、放电结束后电池端电压的瞬间跃升值、放电电流以及电池端电压的零输入响应等数据;Step 3: Perform a pulse discharge test on the lithium battery to obtain the instantaneous drop of the battery terminal voltage at different SOCs when the battery starts to discharge, the instantaneous jump value of the battery terminal voltage after the discharge, the discharge current, and the zero input response of the battery terminal voltage, etc. data;

步骤四:根据步骤三获得的数据,基于最小二乘法辨识模型的参数和阶数;Step 4: Based on the data obtained in Step 3, identify the parameters and order of the model based on the least square method;

步骤五:根据步骤四计算得到的电池模型参数计算不同SOC处的开路电压OCV、欧姆内阻R0d、电化学极化内阻R1d、电化学极化分数阶电容FOE1d、浓差极化内阻R2d和浓差极化分数阶电容FOE2dStep 5: Calculate the open circuit voltage OCV, ohmic internal resistance R 0d , electrochemical polarization internal resistance R 1d , electrochemical polarization fractional order capacitance FOE 1d , and concentration polarization at different SOCs based on the battery model parameters calculated in step 4 Internal resistance R 2d and concentration polarization fractional order capacitance FOE 2d ;

步骤六:根据步骤五得到的模型参数,基于最小二乘法辨识开路电压OCV、欧姆内阻R0d、电化学极化内阻R1d、电化学极化分数阶电容FOE1d、浓差极化内阻R2d和浓差极化分数阶电容FOE2d与SOC间的关系;Step 6: Based on the model parameters obtained in step 5, identify the open circuit voltage OCV, ohmic internal resistance R 0d , electrochemical polarization internal resistance R 1d , electrochemical polarization fractional order capacitance FOE 1d , and concentration polarization internal resistance based on the least squares method. The relationship between resistance R 2d and concentration polarization fractional capacitance FOE 2d and SOC;

步骤七:根据步骤二至六获得的参数,在Matlab中搭建锂电池分数阶变阶等效电路模型。Step 7: According to the parameters obtained in steps 2 to 6, build a fractional-order variable-order equivalent circuit model of the lithium battery in Matlab.

放电过程中锂电池的端电压可表示为:The terminal voltage of a lithium battery during discharge can be expressed as:

Uu batbat == OCVOCV dd -- ii disdis &CenterDot;&Center Dot; RR 00 dd -- Uu 11 dd (( 00 ++ )) &CenterDot;&CenterDot; (( 11 -- ee -- tt &alpha;&alpha; // &tau;&tau; 11 dd )) -- Uu 22 dd (( 00 ++ )) &CenterDot;&CenterDot; (( 11 -- ee -- tt &beta;&beta; // &tau;&tau; 22 dd )) -- -- -- (( 11 ))

式中,Ubat为电池端电压;R0d为欧姆内阻;OCVd为放电开路电压;α,β为分数阶元件FOE1d和FOE2d的阶数,满足0<α,β≤1;idis为放电电流;τ1d2d分别为两个RC网络的时间常数。In the formula, U bat is the battery terminal voltage; R 0d is the ohmic internal resistance; OCV d is the discharge open circuit voltage; α, β are the orders of fractional order elements FOE 1d and FOE 2d , satisfying 0<α, β≤1; i dis is the discharge current; τ 1d , τ 2d are the time constants of the two RC networks respectively.

当α,β=0时,分数阶元件FOE等效为一电阻,当α,β=1时,分数阶元件FOE等效为一电容;When α, β=0, the fractional-order element FOE is equivalent to a resistor; when α, β=1, the fractional-order element FOE is equivalent to a capacitor;

U1d(0+)和U2d(0+)为电池放电结束瞬间两个分数阶RC支路的端电压初值,其值可表述为:U 1d (0+) and U 2d (0+) are the initial values of the terminal voltages of the two fractional RC branches at the end of battery discharge, and their values can be expressed as:

U1d(0+)=idis·R1d    (2)U 1d (0+)=i dis R 1d (2)

U2d(0+)=idis·R2d    (3)U 2d (0+)=i dis R 2d (3)

电池放电结束后,电池的端电压可表示为:After the battery is discharged, the terminal voltage of the battery can be expressed as:

Uu batbat == OCVOCV dd -- Uu 11 dd (( 00 ++ )) &CenterDot;&CenterDot; (( 11 -- ee -- tt aa // &tau;&tau; 11 dd )) -- Uu 22 dd (( 00 ++ )) &CenterDot;&CenterDot; (( 11 -- ee -- tt bb // &tau;&tau; 22 dd )) -- -- -- (( 44 ))

式中,电池的极化电压随着时间的增长而逐渐减小,当t→∞时,趋于0,此时电池端电压Ubat等于电池的开路电压OCV。In the formula, the polarization voltage of the battery and It gradually decreases with the increase of time, when t→∞, and Tends to 0, at this time the battery terminal voltage Ubat is equal to the open circuit voltage OCV of the battery.

所述步骤五的具体过程为:由于电池欧姆内阻的存在,当电池放电时,电池端电压会瞬间跌落,其值记为ΔU1;当电池停止放电时,电池端电压会瞬间跃升,其值记为ΔU2,因此,电池的欧姆内阻R0可由下式得到:The specific process of the fifth step is: due to the existence of the ohmic internal resistance of the battery, when the battery is discharged, the battery terminal voltage will drop instantaneously, and its value is recorded as ΔU 1 ; when the battery stops discharging, the battery terminal voltage will instantly jump, and its The value is recorded as ΔU 2 , therefore, the ohmic internal resistance R 0 of the battery can be obtained by the following formula:

RR 00 == &Delta;&Delta; Uu 11 ++ &Delta;&Delta; Uu 22 22 ii batbat -- -- -- (( 55 ))

电化学极化内阻R1d可由下式得到:The electrochemical polarization internal resistance R 1d can be obtained by the following formula:

RR 11 dd == Uu 11 dd (( 00 ++ )) ii disdis -- -- -- (( 66 ))

浓差极化内阻R2d可由下式得到:Concentration polarization internal resistance R 2d can be obtained by the following formula:

RR 22 dd == Uu 22 dd (( 00 ++ )) ii disdis -- -- -- (( 77 ))

电化学极化分数阶电容FOE1d可由下式得到:The electrochemical polarization fractional order capacitance FOE 1d can be obtained by the following formula:

FOEFOE 11 dd == &tau;&tau; 11 dd RR 11 dd -- -- -- (( 88 ))

浓差极化分数阶电容FOE2d可由下式得到:Concentration polarization fractional capacitance FOE 2d can be obtained by the following formula:

FOEFOE 22 dd == &tau;&tau; 22 dd RR 11 dd -- -- -- (( 99 ))

所述步骤六中:开路电压OCV与SOC存在非线性关系,具体关系式为:In the step six: there is a nonlinear relationship between the open circuit voltage OCV and the SOC, and the specific relationship is:

OCVOCV == aa 00 ++ aa 11 &CenterDot;&Center Dot; lnln SOCSOC ++ aa 22 &CenterDot;&CenterDot; lnln (( 11 -- SOCSOC )) ++ aa 33 SOCSOC ++ aa 44 &CenterDot;&CenterDot; SOCSOC -- -- -- (( 1010 ))

式中,a0-a4为常数,由实验数据基于最小二乘法辨识得到。In the formula, a 0 -a 4 are constants, which are identified from the experimental data based on the least square method.

电池欧姆内阻Rod与SOC的关系式为:The relationship between battery ohmic internal resistance R od and SOC is:

Ro(SOC)=b0·e-SOC+b1+b2·SOC-b3·SOC2+b4·SOC3    (11)R o (SOC) = b 0 · e - SOC + b 1 + b 2 · SOC - b 3 · SOC 2 + b 4 · SOC 3 (11)

式中,b0-b4为常数,由实验数据基于最小二乘法辨识得到。In the formula, b 0 -b 4 are constants, which are identified from the experimental data based on the least square method.

电化学极化内阻R1d与SOC的关系式为:The relationship between electrochemical polarization internal resistance R 1d and SOC is:

R1d(SOC)=c0·e-SOC+c1+c2·SOC-c3·SOC2+c4·SOC3    (12)R 1d (SOC)=c 0 ·e −SOC +c 1 +c 2 ·SOC−c 3 ·SOC 2 +c 4 ·SOC 3 (12)

式中,c0-c4为常数,由实验数据基于最小二乘法辨识得到。In the formula, c 0 -c 4 are constants, which are identified from the experimental data based on the least square method.

电化学极化分数阶电容FOE1d与SOC的关系式为:The relationship between electrochemical polarization fractional capacitance FOE 1d and SOC is:

FOE1d(SOC)=d0·SOC5+d1·SOC4+d2·SOC3+d3·SOC2+d4·SOC+d5    (13)FOE 1d (SOC)=d 0 SOC 5 +d 1 SOC 4 +d 2 SOC 3 +d 3 SOC 2 +d 4 SOC+d 5 (13)

式中,d0-d5为常数,由实验数据基于最小二乘法辨识得到。In the formula, d 0 -d 5 are constants, which are identified from the experimental data based on the least square method.

浓差极化内阻R2d与SOC的关系式为:The relationship between concentration polarization internal resistance R 2d and SOC is:

R2d(SOC)=e0·e-SOC+e1+e2·SOC-e3·SOC2+e4·SOC3    (14)R 2d (SOC)=e 0 ·e- SOC +e 1 +e 2 ·SOC-e 3 ·SOC 2 +e 4 ·SOC 3 (14)

式中,e0-e4为常数,由实验数据基于最小二乘法辨识得到。In the formula, e 0 -e 4 are constants, which are identified from the experimental data based on the least square method.

浓差极化分数阶电容FOE2d与SOC的关系式为:The relationship between concentration polarization fractional capacitance FOE 2d and SOC is:

FOE2d(SOC)=f0·SOC5+f1·SOC4+f2·SOC3+f3·SOC2+f4·SOC+f5    (15)FOE 2d (SOC) = f 0 SOC 5 + f 1 SOC 4 + f 2 SOC 3 + f 3 SOC 2 + f 4 SOC + f 5 (15)

式中,f0-f5为常数,由实验数据基于最小二乘法辨识得到。In the formula, f 0 -f 5 are constants, which are identified from the experimental data based on the least square method.

电化学极化分数阶电容FOE1d阶数与SOC的关系式为:The relationship between the electrochemical polarization fractional order capacitance FOE 1d order and SOC is:

α(SOC)=g0·SOC4+g1·SOC3+g2·SOC2+g3·SOC+g4    (16)α(SOC)=g 0 ·SOC 4 +g 1 ·SOC 3 +g 2 ·SOC 2 +g 3 ·SOC+g 4 (16)

式中,g0-g4为常数,由实验数据基于最小二乘法辨识得到。In the formula, g 0 -g 4 are constants, which are identified from the experimental data based on the least square method.

浓差极化分数阶电容FOE2d阶数与SOC的关系式为:The relationship between concentration polarization fractional order capacitor FOE 2d order and SOC is:

β(SOC)=h0·SOC4+h1·SOC3+h2·SOC2+h3·SOC+h4    (17)β(SOC)=h 0 ·SOC 4 +h 1 ·SOC 3 +h 2 ·SOC 2 +h 3 ·SOC+h 4 (17)

式中,h0-h4为常数,由实验数据基于最小二乘法辨识得到。In the formula, h 0 -h 4 are constants, which are identified from the experimental data based on the least square method.

本发明的有益效果:Beneficial effects of the present invention:

1.将传统的二阶RC等效电路模型推广到分数阶,并基于最小二乘法辨识不同SOC处的模型参数和阶次,获得了一个根据SOC变阶的分数阶等效电路模型;1. Extend the traditional second-order RC equivalent circuit model to the fractional order, and identify the model parameters and orders at different SOCs based on the least squares method, and obtain a fractional-order equivalent circuit model that varies according to the SOC order;

2.锂电池因其特殊的材料和化学特性,展现出了分数阶动力学行为,用整数阶描述电池特性其精度受到很大的限制,而釆用分数阶微积分描述那些本身带有分数阶特性的对象时,能更好地描述对象的本质特性及其行为;2. Due to its special material and chemical properties, lithium batteries exhibit fractional-order kinetic behavior. The accuracy of describing battery characteristics with integer orders is greatly limited, while using fractional-order calculus to describe those with fractional-order It can better describe the essential characteristics of the object and its behavior when it is an object with specific characteristics;

3.由于增加了分数阶阶数这一未知参数,模型获得了更多的自由度、更大的柔性和新意;3. Due to the addition of the unknown parameter of fractional order, the model has gained more degrees of freedom, greater flexibility and novelty;

4.由于分数阶微积分具有一定的记忆功能,且更符合自然界普遍连续的朴素哲学观点,分数阶变阶等效电路模型从而获得了更高的精度、更好的动态性能和稳定性;4. Since the fractional calculus has a certain memory function, and is more in line with the simple philosophical view of the universal continuity in nature, the fractional-order variable-order equivalent circuit model thus obtains higher precision, better dynamic performance and stability;

5.对比与传统二阶RC模型,由于未增加RC网络的个数,本发明有效解决了模型准确性和实用性之间的矛盾,具有较高的实用价值,并适用于电池的恒流充放电、脉冲充放电和UDDS循环工况,为SOC的精确估计提供了一个精确且易实现的电池模型。5. Compared with the traditional second-order RC model, since the number of RC networks is not increased, the present invention effectively solves the contradiction between model accuracy and practicability, has high practical value, and is suitable for constant current charging of batteries Discharge, pulse charge and discharge, and UDDS cycle conditions provide an accurate and easy-to-implement battery model for accurate SOC estimation.

附图说明Description of drawings

图1为本发明锂电池分数阶变阶等效电路模型结构示意图,其中c标识表示充电,d标识表示放电;Fig. 1 is a schematic structural diagram of a fractional-order variable-order equivalent circuit model of a lithium battery of the present invention, wherein the c mark represents charging, and the d mark represents discharging;

图2为本发明的脉冲充电下电池单体电压的响应过程图;Fig. 2 is the response process diagram of battery cell voltage under the pulse charge of the present invention;

图3为本发明的脉冲放电下电池单体电压的响应过程图;Fig. 3 is the response process diagram of battery cell voltage under the pulse discharge of the present invention;

图4为本发明的变阶分数阶、整数阶和固定分数阶模型模拟脉冲放电后电池端电压的恢复响应对比图,其中(a)为整体图,(b)为局部放大图;Fig. 4 is the comparison chart of recovery response of battery terminal voltage after variable order fractional order, integer order and fixed fractional order model simulation pulse discharge of the present invention, wherein (a) is the whole picture, (b) is the partial enlarged picture;

图5为本发明的脉冲充电下开路电压OCV与SOC的关系图;Fig. 5 is the relationship diagram of open circuit voltage OCV and SOC under the pulse charging of the present invention;

图6为本发明的脉冲充电下欧姆内阻R0与SOC的关系图;Fig. 6 is the relation figure of ohmic internal resistance R 0 and SOC under pulse charging of the present invention;

图7为本发明的脉冲充电下电化学极化内阻R1c与SOC的关系图;Fig. 7 is the relationship figure of electrochemical polarization internal resistance R 1c and SOC under pulse charging of the present invention;

图8为本发明的脉冲充电下电化学极化分数阶电容FOE1c与SOC的关系图;Fig. 8 is the relationship diagram of electrochemical polarization fractional order capacitance FOE 1c and SOC under the pulse charging of the present invention;

图9为本发明的脉冲充电下浓差极化内阻R2d与SOC的关系图;Fig. 9 is the relationship diagram between concentration polarization internal resistance R 2d and SOC under pulse charging of the present invention;

图10为本发明的脉冲充电下浓差极化分数阶电容FOE2c与SOC的关系图;Fig. 10 is a graph showing the relationship between concentration polarization fractional order capacitance FOE 2c and SOC under pulse charging according to the present invention;

图11为本发明的脉冲充电下电化学极化分数阶电容FOE1c阶数与SOC的关系图;Fig. 11 is the relationship diagram between the order of electrochemically polarized fractional order capacitor FOE 1c and SOC under the pulse charging of the present invention;

图12为本发明的脉冲充电下浓差极化分数阶电容FOE2c阶数与SOC的关系图;Fig. 12 is a graph showing the relationship between the concentration polarization fractional order capacitor FOE 2c order and SOC under pulse charging according to the present invention;

图13为本发明的脉冲放电下开路电压OCV与SOC的关系图;Fig. 13 is the relationship diagram of open circuit voltage OCV and SOC under the pulse discharge of the present invention;

图14为本发明的脉冲放电下欧姆内阻R0与SOC的关系图;Fig. 14 is the relation figure of ohmic internal resistance R 0 and SOC under the pulse discharge of the present invention;

图15为本发明的脉冲放电下电化学极化内阻R1d与SOC的关系图;Fig. 15 is the relationship figure of electrochemical polarization internal resistance R 1d and SOC under the pulse discharge of the present invention;

图16为本发明的脉冲放电下电化学极化分数阶电容FOE1d与SOC的关系图;Fig. 16 is the relationship diagram between electrochemical polarization fractional order capacitance FOE 1d and SOC under the pulse discharge of the present invention;

图17为本发明的脉冲放电下浓差极化内阻R2d与SOC的关系图;Fig. 17 is the relationship figure between concentration polarization internal resistance R 2d and SOC under the pulse discharge of the present invention;

图18为本发明的脉冲放电下浓差极化分数阶电容FOE2d与SOC的关系图;Fig. 18 is a graph showing the relationship between concentration polarization fractional order capacitance FOE 2d and SOC under pulse discharge according to the present invention;

图19为本发明的脉冲放电下电化学极化分数阶电容FOE1d阶数与SOC的关系图;Fig. 19 is a graph showing the relationship between the FOE 1d order and the SOC of the electrochemically polarized fractional-order capacitor under the pulse discharge of the present invention;

图20为本发明的脉冲放电下浓差极化分数阶电容FOE2d阶数与SOC的关系图;Fig. 20 is a graph showing the relationship between the FOE 2d order and the SOC of the concentration polarization fractional-order capacitor under the pulse discharge of the present invention;

图21为本发明的脉冲放电下变阶分数阶单体电池等效电路模型电压输出图;Fig. 21 is a voltage output diagram of the equivalent circuit model of the pulse discharge down-variable fractional-order single battery of the present invention;

图22为本发明的脉冲充电下变阶分数阶单体电池等效电路模型电压输出图;Fig. 22 is a voltage output diagram of the equivalent circuit model of the pulse charging down-variable fractional-order single battery of the present invention;

图23为本发明的恒流放电下变阶分数阶单体电池等效电路模型电压输出图;Fig. 23 is the voltage output diagram of the equivalent circuit model of the variable-order fractional-order single battery under the constant current discharge of the present invention;

图24为本发明的恒流充电下变阶分数阶单体电池等效电路模型电压输出图。Fig. 24 is a voltage output diagram of the equivalent circuit model of the constant current charging down-variable fractional order single battery of the present invention.

具体实施方式:Detailed ways:

下面结合附图对本发明进行详细说明:The present invention is described in detail below in conjunction with accompanying drawing:

搭建电池模型是指应用数学理论尽量全面地去描述实际电池的响应特性和内部特性。所谓响应特性是指电池的端电压与负载电流的对应关系;内部特性是指电池的内部变量欧姆内阻、极化内阻和极化电压与SOC、温度间的关系。Building a battery model refers to applying mathematical theory to describe the response characteristics and internal characteristics of the actual battery as comprehensively as possible. The so-called response characteristic refers to the corresponding relationship between the terminal voltage of the battery and the load current; the internal characteristic refers to the relationship between the internal variable ohmic internal resistance, polarization internal resistance and polarization voltage of the battery, SOC and temperature.

如图1所示为本发明公开的锂电池分数阶变阶等效电路模型,包括运行时间电路和I-V特性电路,其中,I-V特性电路包括两路支路,每个支路包括两组一个分数阶电容FOE与一个电阻并联组成的分数阶RC回路。所述运行时间电路包括电池的自放电电阻Rd、电容CQ和电流控制电流源电路,电阻Rd与电容CQ并联在电流控制电流源的受控源两端,独立电源的一端接地。As shown in Figure 1, the fractional-order variable-order equivalent circuit model of the lithium battery disclosed by the present invention includes a running time circuit and an IV characteristic circuit, wherein the IV characteristic circuit includes two branches, and each branch includes two groups of one fraction A fractional-order RC loop composed of an order capacitor FOE and a resistor in parallel. The running time circuit includes battery self-discharging resistor R d , capacitor C Q and a current control current source circuit. The resistor R d and capacitor C Q are connected in parallel at both ends of the controlled source of the current control current source, and one end of the independent power supply is grounded.

I-V特性电路包括欧姆内阻R0、电化学极化内阻R1、电化学极化分数阶电容FOE1、浓差极化内阻R2、浓差极化分数阶电容FOE2和电流控制电流源、电压控制电压源电路,其中:The IV characteristic circuit includes ohmic internal resistance R 0 , electrochemical polarization internal resistance R 1 , electrochemical polarization fractional order capacitance FOE 1 , concentration polarization internal resistance R 2 , concentration polarization fractional order capacitance FOE 2 and current control Current source, voltage control voltage source circuit, wherein:

电压控制电压源电路的受控源的正极连接两路,一路连接二极管Dd后连接电阻R1d、电阻R2d、电阻Rod后连接电池模型的正极,一路反接二极管Dc后连接电阻R1c、电阻R2c、电阻Roc后连接电池模型的正极。分数阶电容FOE1d并联在电阻R1d的两端;分数阶电容FOE1c并联在电阻R1c的两端;分数阶电容FOE2d并联在电阻R2d的两端;分数阶电容FOE2c并联在电阻R2c的两端;电压控制电压源电路的受控源正、负极之间的电压为电池开路电压OCV。The anode of the controlled source of the voltage control voltage source circuit is connected to two circuits, one path is connected to the diode D d , and then connected to the resistor R 1d , resistor R 2d , and resistor R od , and then connected to the positive electrode of the battery model, and one path is reversely connected to the diode D c , and then connected to the resistor R 1c , resistor R 2c , and resistor R oc are connected to the positive pole of the battery model. The fractional capacitor FOE 1d is connected in parallel to both ends of the resistor R 1d ; the fractional capacitor FOE 1c is connected in parallel to both ends of the resistor R 1c ; the fractional capacitor FOE 2d is connected in parallel to both ends of the resistor R 2d ; the fractional capacitor FOE 2c is connected in parallel to the resistor The two ends of R 2c ; the voltage between the positive and negative poles of the controlled source of the voltage control voltage source circuit is the battery open circuit voltage OCV.

运行时间电路和I-V特性电路通过一个流控电流源和一个压控电压源建立联系,当对电池进行充放电时,负载电流ibat通过流控电流源对电容CQ进行充放电,改变CQ存储的电量,表征电池SOC的变化,CQ两端电压OCV也随之变化,I-V特性电路的受控电压源OCV随SOC的变化而变化。The running time circuit and the IV characteristic circuit are connected through a current-controlled current source and a voltage-controlled voltage source. When charging and discharging the battery, the load current i bat charges and discharges the capacitor C Q through the current-controlled current source, changing C Q The stored power represents the change of battery SOC, and the voltage OCV across C Q also changes accordingly, and the controlled voltage source OCV of the IV characteristic circuit changes with the change of SOC.

电容CQ表示电池的可用容量,CQ=3600·CAh·f1·f2,其中,CAh为用安时为单位的电池容量,f1和f2分别是电池循环寿命和温度的修正因子。Capacitance C Q represents the available capacity of the battery, C Q =3600 · C Ah · f 1 · f 2 , where C Ah is the battery capacity in ampere hours, f 1 and f 2 are the cycle life and temperature of the battery, respectively correction factor.

电流控制电流源的受控源的电流为电池的端电流ibat,当电池进行充放电时负载电流ibat通过电流控制电流源对电容CQ进行充放电,改变电容CQ中存储的电量,从而表征电池SOC的变化。The current of the controlled source of the current control current source is the terminal current i bat of the battery. When the battery is charging and discharging, the load current i bat charges and discharges the capacitor C Q through the current control current source, changing the power stored in the capacitor C Q , To characterize the change of battery SOC.

所述电流控制电流源的受控源两端的电压为电池开路电压OCV。The voltage across the controlled source of the current controlled current source is the battery open circuit voltage OCV.

一种应用上述锂电池分数阶变阶等效电路模型的辨识方法,以电池放电为例,充电辨识方法与放电相同,在此不再赘述。包括以下步骤:An identification method using the above-mentioned fractional-order variable-order equivalent circuit model of a lithium battery, taking battery discharge as an example, the charging identification method is the same as that of discharging, and will not be repeated here. Include the following steps:

步骤一:写出锂电池的放电过程和静置状态的分数阶数学模型表达式;Step 1: Write the expression of the fractional-order mathematical model of the discharge process and static state of the lithium battery;

步骤二:对锂电池进行恒流充放电,得到电池模型的可用容量CQ和自放电电阻RdStep 2: Perform constant current charge and discharge on the lithium battery to obtain the available capacity C Q and self-discharge resistance R d of the battery model;

步骤三:对锂电池进行脉冲放电测试,获取不同SOC处电池开始放电时的电池端电压的瞬间下降值、放电结束后电池端电压的瞬间跃升值、放电电流以及电池端电压的零输入响应等数据;Step 3: Perform a pulse discharge test on the lithium battery to obtain the instantaneous drop of the battery terminal voltage at different SOCs when the battery starts to discharge, the instantaneous jump value of the battery terminal voltage after the discharge, the discharge current, and the zero input response of the battery terminal voltage, etc. data;

步骤四:根据步骤三获得的数据,基于最小二乘法辨识模型的参数和阶数;Step 4: Based on the data obtained in Step 3, identify the parameters and order of the model based on the least square method;

步骤五:根据步骤四计算得到的电池模型参数计算不同SOC处的开路电压OCV、欧姆内阻R0d、电化学极化内阻R1d、电化学极化分数阶电容FOE1d、浓差极化内阻R2d和浓差极化分数阶电容FOE2dStep 5: Calculate the open circuit voltage OCV, ohmic internal resistance R 0d , electrochemical polarization internal resistance R 1d , electrochemical polarization fractional order capacitance FOE 1d , and concentration polarization at different SOCs based on the battery model parameters calculated in step 4 Internal resistance R 2d and concentration polarization fractional order capacitance FOE 2d ;

步骤六:根据步骤五得到的模型参数,基于最小二乘法辨识开路电压OCV、欧姆内阻R0d、电化学极化内阻R1d、电化学极化分数阶电容FOE1d、浓差极化内阻R2d和浓差极化分数阶电容FOE2d与SOC间的关系;Step 6: Based on the model parameters obtained in step 5, identify the open circuit voltage OCV, ohmic internal resistance R 0d , electrochemical polarization internal resistance R 1d , electrochemical polarization fractional order capacitance FOE 1d , and concentration polarization internal resistance based on the least squares method. The relationship between resistance R 2d and concentration polarization fractional capacitance FOE 2d and SOC;

步骤七:根据步骤二至六获得的参数,在Matlab中搭建锂电池分数阶变阶等效电路模型。Step 7: According to the parameters obtained in steps 2 to 6, build a fractional-order variable-order equivalent circuit model of the lithium battery in Matlab.

如图2所示为本发明的脉冲充电下电池单体电压的响应过程图;如图3所示为本发明的脉冲放电下电池单体电压的响应过程图;脉冲放电过程中电池的端电压可表示为:As shown in Figure 2, it is the response process figure of the battery cell voltage under the pulse charging of the present invention; As shown in Figure 3, it is the response process figure of the battery cell voltage under the pulse discharge of the present invention; The terminal voltage of the battery in the pulse discharge process Can be expressed as:

Uu batbat == OCVOCV dd -- ii disdis &CenterDot;&CenterDot; RR 00 dd -- Uu 11 dd (( 00 ++ )) &CenterDot;&CenterDot; (( 11 -- ee -- tt &alpha;&alpha; // &tau;&tau; 11 dd )) -- Uu 22 dd (( 00 ++ )) &CenterDot;&CenterDot; (( 11 -- ee -- tt &beta;&beta; // &tau;&tau; 22 dd )) -- -- -- (( 11 ))

式中,Ubat为电池端电压;R0d为欧姆内阻;OCVd为放电开路电压;α,β为分数阶元件FOE1d和FOE2d的阶数,满足0<α,β≤1。当α,β=0时,分数阶元件FOE等效为一电阻,当α,β=1时,分数阶元件FOE等效为一电容。U1d(0+)和U2d(0+)为电池放电结束瞬间两个分数阶RC支路的端电压初值,其值可表述为:In the formula, U bat is the battery terminal voltage; R 0d is the ohmic internal resistance; OCV d is the discharge open circuit voltage; α, β are the orders of fractional order elements FOE 1d and FOE 2d , satisfying 0<α, β≤1. When α, β=0, the fractional-order element FOE is equivalent to a resistor, and when α, β=1, the fractional-order element FOE is equivalent to a capacitor. U 1d (0+) and U 2d (0+) are the initial values of the terminal voltages of the two fractional RC branches at the end of battery discharge, and their values can be expressed as:

U1d(0+)=idis·R1d    (2)U 1d (0+)=i dis R 1d (2)

U2d(0+)=idis·R2d    (3)U 2d (0+)=i dis R 2d (3)

电池放电结束后,电池的端电压可表示为:After the battery is discharged, the terminal voltage of the battery can be expressed as:

Uu batbat == OCVOCV dd -- Uu 11 dd (( 00 ++ )) &CenterDot;&CenterDot; (( 11 -- ee -- tt aa // &tau;&tau; 11 dd )) -- Uu 22 dd (( 00 ++ )) &CenterDot;&CenterDot; (( 11 -- ee -- tt bb // &tau;&tau; 22 dd )) -- -- -- (( 44 ))

式中,电池的极化电压随着时间的增长而逐渐减小,当t→∞时,趋于0,此时电池端电压Ubat等于电池的开路电压OCV。In the formula, the polarization voltage of the battery and It gradually decreases with the increase of time, when t→∞, and Tends to 0, at this time the battery terminal voltage Ubat is equal to the open circuit voltage OCV of the battery.

所述步骤5的具体方法为:由于电池欧姆内阻的存在,当电池放电时,电池端电压会瞬间跌落,其值记为ΔU1;当电池停止放电时,电池端电压会瞬间跃升,其值记为ΔU2。因此,电池的欧姆内阻R0可由下式得到:The specific method of step 5 is: due to the existence of the ohmic internal resistance of the battery, when the battery is discharged, the battery terminal voltage will drop instantaneously, and its value is recorded as ΔU 1 ; when the battery stops discharging, the battery terminal voltage will instantly jump, its The value is noted as ΔU 2 . Therefore, the ohmic internal resistance R 0 of the battery can be obtained by the following formula:

RR 00 == &Delta;&Delta; Uu 11 ++ &Delta;&Delta; Uu 22 22 ii batbat -- -- -- (( 55 ))

电化学极化内阻R1d可由下式得到:The electrochemical polarization internal resistance R 1d can be obtained by the following formula:

RR 11 dd == Uu 11 dd (( 00 ++ )) ii disdis -- -- -- (( 66 ))

浓差极化内阻R2d可由下式得到:Concentration polarization internal resistance R 2d can be obtained by the following formula:

RR 22 dd == Uu 22 dd (( 00 ++ )) ii disdis -- -- -- (( 77 ))

电化学极化分数阶电容FOE1d可由下式得到:The electrochemical polarization fractional order capacitance FOE 1d can be obtained by the following formula:

FOEFOE 11 dd == &tau;&tau; 11 dd RR 11 dd -- -- -- (( 88 ))

浓差极化分数阶电容FOE2d可由下式得到:Concentration polarization fractional capacitance FOE 2d can be obtained by the following formula:

FOEFOE 22 dd == &tau;&tau; 22 dd RR 11 dd -- -- -- (( 99 ))

所述步骤6的具体方法为:开路电压OCV与SOC存在非线性关系,具体关系式为:The specific method of the step 6 is: there is a nonlinear relationship between the open circuit voltage OCV and the SOC, and the specific relationship is:

OCVOCV == aa 00 ++ aa 11 &CenterDot;&CenterDot; lnln SOCSOC ++ aa 22 &CenterDot;&CenterDot; lnln (( 11 -- SOCSOC )) ++ aa 33 SOCSOC ++ aa 44 &CenterDot;&CenterDot; SOCSOC -- -- -- (( 1010 ))

式中,a0-a4为常数,由实验数据基于最小二乘法辨识得到。In the formula, a 0 -a 4 are constants, which are identified from the experimental data based on the least square method.

电池欧姆内阻Rod与SOC的关系式为:The relationship between battery ohmic internal resistance R od and SOC is:

Ro(SOC)=b0·e-SOC+b1+b2·SOC-b3·SOC2+b4·SOC3    (11)R o (SOC) = b 0 · e - SOC + b 1 + b 2 · SOC - b 3 · SOC 2 + b 4 · SOC 3 (11)

式中,b0-b4为常数,由实验数据基于最小二乘法辨识得到。In the formula, b 0 -b 4 are constants, which are identified from the experimental data based on the least square method.

电化学极化内阻R1d与SOC的关系式为:The relationship between electrochemical polarization internal resistance R 1d and SOC is:

R1d(SOC)=c0·e-SOC+c1+c2·SOC-c3·SOC2+c4·SOC3    (12)R 1d (SOC)=c 0 ·e −SOC +c 1 +c 2 ·SOC−c 3 ·SOC 2 +c 4 ·SOC 3 (12)

式中,c0-c4为常数,由实验数据基于最小二乘法辨识得到。In the formula, c 0 -c 4 are constants, which are identified from the experimental data based on the least square method.

电化学极化分数阶电容FOE1d与SOC的关系式为:The relationship between electrochemical polarization fractional capacitance FOE 1d and SOC is:

FOE1d(SOC)=d0·SOC5+d1·SOC4+d2·SOC3+d3·SOC2+d4·SOC+d5    (13)FOE 1d (SOC)=d 0 SOC 5 +d 1 SOC 4 +d 2 SOC 3 +d 3 SOC 2 +d 4 SOC+d 5 (13)

式中,d0-d5为常数,由实验数据基于最小二乘法辨识得到。In the formula, d 0 -d 5 are constants, which are identified from the experimental data based on the least square method.

浓差极化内阻R2d与SOC的关系式为:The relationship between concentration polarization internal resistance R 2d and SOC is:

R2d(SOC)=e0·e-SOC+e1+e2·SOC-e3·SOC2+e4·SOC3    (14)R 2d (SOC)=e 0 ·e- SOC +e 1 +e 2 ·SOC-e 3 ·SOC 2 +e 4 ·SOC 3 (14)

式中,e0-e4为常数,由实验数据基于最小二乘法辨识得到。In the formula, e 0 -e 4 are constants, which are identified from the experimental data based on the least square method.

浓差极化分数阶电容FOE2d与SOC的关系式为:The relationship between concentration polarization fractional capacitance FOE 2d and SOC is:

FOE2d(SOC)=f0·SOC5+f1·SOC4+f2·SOC3+f3·SOC2+f4·SOC+f5    (15)FOE 2d (SOC) = f 0 SOC 5 + f 1 SOC 4 + f 2 SOC 3 + f 3 SOC 2 + f 4 SOC + f 5 (15)

式中,f0-f5为常数,由实验数据基于最小二乘法辨识得到。In the formula, f 0 -f 5 are constants, which are identified from the experimental data based on the least square method.

电化学极化分数阶电容FOE1d阶数与SOC的关系式为:The relationship between the electrochemical polarization fractional order capacitance FOE 1d order and SOC is:

α(SOC)=g0·SOC4+g1·SOC3+g2·SOC2+g3·SOC+g4    (16)α(SOC)=g 0 ·SOC 4 +g 1 ·SOC 3 +g 2 ·SOC 2 +g 3 ·SOC+g 4 (16)

式中,g0-g4为常数,由实验数据基于最小二乘法辨识得到。In the formula, g 0 -g 4 are constants, which are identified from the experimental data based on the least square method.

浓差极化分数阶电容FOE2d阶数与SOC的关系式为:The relationship between concentration polarization fractional order capacitor FOE 2d order and SOC is:

β(SOC)=h0·SOC4+h1·SOC3+h2·SOC2+h3·SOC+h4    (17)β(SOC)=h 0 ·SOC 4 +h 1 ·SOC 3 +h 2 ·SOC 2 +h 3 ·SOC+h 4 (17)

式中,h0-h4为常数,由实验数据基于最小二乘法辨识得到。In the formula, h 0 -h 4 are constants, which are identified from the experimental data based on the least square method.

1.实验建立1. Experiment setup

针对海特10并16串圆柱型26650磷酸铁锂动力电池进行实验和仿真,标称容量为23Ah,标称电压为51.2V。电池测试平台由先进的AVL电池模拟/测试柜、AVL InMotion硬件在环测试平台、AVL控制柜、温控箱和以及AVL Lynx控制软件组成。实验记录电池的电压、电流和SOC等工况值,采样频率设置为1Hz。Experiments and simulations were carried out on Hite's 10-parallel 16-series cylindrical 26650 lithium iron phosphate power battery, with a nominal capacity of 23Ah and a nominal voltage of 51.2V. The battery test platform consists of advanced AVL battery simulation/test cabinet, AVL InMotion hardware-in-the-loop test platform, AVL control cabinet, temperature control box and AVL Lynx control software. The experiment records the battery voltage, current and SOC and other operating conditions, and the sampling frequency is set to 1Hz.

考虑到充放电参数的差异,将HPPC混合脉冲试验(Hybrid Pulse Power CharacterizationTest,HPPC)中的混合脉冲试验改成单向脉冲试验,即动力电池脉冲充电试验和脉冲放电试验。所谓脉冲放电,即在室温25度下,将充满电的电池以0.2C的电流放电至SOC为95%,停止放电静置45min,接着以同样电流放电至SOC为90%,以此类推,直至SOC为0%时结束。脉冲充电过程与脉冲放电过程类似,在此不再赘述。Considering the difference in charge and discharge parameters, the hybrid pulse test in the HPPC hybrid pulse test (Hybrid Pulse Power Characterization Test, HPPC) was changed to a unidirectional pulse test, that is, the power battery pulse charge test and pulse discharge test. The so-called pulse discharge is to discharge a fully charged battery at a room temperature of 25 degrees to an SOC of 95% with a current of 0.2C, stop discharging and let it stand for 45 minutes, then discharge at the same current to an SOC of 90%, and so on until End when SOC is 0%. The pulse charging process is similar to the pulse discharging process, and will not be repeated here.

2.模型阶数和参数辨识2. Model order and parameter identification

如图4所示,为本发明的变阶分数阶、整数阶和固定分数阶模型模拟脉冲放电后电池端电压的恢复响应对比图。从图中可以看出,分数阶变阶等效电路模型模拟精度最高。As shown in FIG. 4 , it is a comparison chart of recovery response of battery terminal voltage after pulse discharge simulation by the variable order fractional order, integer order and fixed fractional order models of the present invention. It can be seen from the figure that the simulation accuracy of the fractional-order variable-order equivalent circuit model is the highest.

(1)开路电压OCV模型(1) Open circuit voltage OCV model

根据不同SOC(3.45%、5%、10%…90%、95%、98.89%)处测得的电池开路电压,可以分别拟合得到电池的充电开路电压和放电开路电压OCV,如图5和图13所示。并根据式(10),应用Matlab cftool工具箱可辨识出参数a0-a4,如表1所示。According to the battery open circuit voltage measured at different SOC (3.45%, 5%, 10%...90%, 95%, 98.89%), the charging open circuit voltage and discharging open circuit voltage OCV of the battery can be respectively fitted, as shown in Figure 5 and Figure 13 shows. And according to the formula (10), the parameters a 0 -a 4 can be identified by using the Matlab cftool toolbox, as shown in Table 1.

表1应用Matlab cftool工具箱拟合得到的开路电压OCV参数Table 1 The open circuit voltage OCV parameters obtained by fitting the Matlab cftool toolbox

参数parameter a0 a 0 a1 a 1 a2 a 2 a3 a 3 a4 a 4 充电辨识值Charging identification value -1.015-1.015 1.9151.915 -0.02047-0.02047 -0.006009-0.006009 0.035820.03582 放电辨识值Discharge identification value 2.5882.588 -1.499-1.499 -0.007343-0.007343 -0.01424-0.01424 0.042070.04207

(2)欧姆内阻R0模型(2) Ohm internal resistance R 0 model

根据不同SOC(3.45%、5%、10%…90%、95%、98.89%)处测得的电池欧姆内阻,可以分别拟合得到电池的充电欧姆内阻和放电欧姆内阻R0,如图6和图14所示。并根据式(11),应用Matlab cftool工具箱可辨识出参数b0-b4,如表2所示。According to the ohmic internal resistance of the battery measured at different SOC (3.45%, 5%, 10%...90%, 95%, 98.89%), the charging ohmic internal resistance and discharging ohmic internal resistance R 0 of the battery can be respectively obtained by fitting, As shown in Figure 6 and Figure 14. And according to the formula (11), the parameters b 0 -b 4 can be identified by using the Matlab cftool toolbox, as shown in Table 2.

表2应用Matlab cftool工具箱拟合得到的欧姆内阻R0参数Table 2 The ohmic internal resistance R 0 parameters obtained by fitting the Matlab cftool toolbox

参数parameter b0 b 0 b1 b1 b2 b 2 b3 b 3 b4 b 4 充电辨识值Charging identification value 0.56120.5612 -0.5588-0.5588 0.55460.5546 -0.2568-0.2568 0.056420.05642 放电辨识值Discharge identification value -0.638-0.638 0.63970.6397 -0.634-0.634 0.29670.2967 -0.0663-0.0663

(3)电化学极化内阻R1模型(3) Electrochemical polarization internal resistance R 1 model

根据不同SOC(3.45%、5%、10%、15%…、95%)处测得的电池电化学极化内阻,可以分别拟合得到的电池的充电电化学极化内阻和放电电化学极化内阻R1,如图7和图15所示。并根据式(12),应用Matlab cftool工具箱可辨识出参数c0-c4,如表3所示。According to the battery electrochemical polarization internal resistance measured at different SOC (3.45%, 5%, 10%, 15%..., 95%), the charging electrochemical polarization internal resistance and discharge voltage of the battery can be fitted respectively. The chemical polarization internal resistance R 1 is shown in Fig. 7 and Fig. 15 . And according to the formula (12), the parameters c 0 -c 4 can be identified by using the Matlab cftool toolbox, as shown in Table 3.

表3应用Matlab cftool工具箱拟合得到的电化学极化内阻R1参数Table 3 The electrochemical polarization internal resistance R1 parameters obtained by fitting with the Matlab cftool toolbox

参数parameter c0 c 0 c1 c 1 c2 c 2 c3 c 3 c4 c 4 充电辨识值Charging identification value 3.8913.891 -3.887-3.887 3.873.87 -1.835-1.835 0.42790.4279 放电辨识值Discharge identification value 10.2610.26 -10.24-10.24 10.110.1 -4.607-4.607 0.97880.9788

(4)电化学极化分数阶电容FOE1模型(4) Electrochemically polarized fractional order capacitor FOE 1 model

根据不同SOC(3.45%、5%、10%…90%、95%、98.89%)处测得的电化学极化分数阶电容,可以分别拟合得到电池的充电电化学极化分数阶电容和放电电化学极化分数阶电容FOE1,如图8和图16所示。并根据式(13),应用Matlab cftool工具箱可辨识出参数d0-d5,如表4所示。According to the electrochemical polarization fractional order capacitance measured at different SOC (3.45%, 5%, 10%...90%, 95%, 98.89%), the charging electrochemical polarization fractional order capacitance and Discharge electrochemical polarization fractional order capacitance FOE 1 , as shown in Fig. 8 and Fig. 16 . And according to the formula (13), the parameters d 0 -d 5 can be identified by using the Matlab cftool toolbox, as shown in Table 4.

表4应用Matlab cftool工具箱拟合得到的电化学极化分数阶电容FOE1参数Table 4 FOE 1 parameters of electrochemically polarized fractional order capacitance obtained by fitting with Matlab cftool toolbox

参数parameter d0 d 0 d1 d 1 d2 d 2 d3 d 3 d4 d 4 d5 d 5 充电辨识值Charging identification value -3.775e6 -3.775e 6 8.913e6 8.913e 6 -7.623e6 -7.623e 6 2.976e6 2.976e 6 -5.542e5 -5.542e 5 9.351e4 9.351e 4 放电辨识值Discharge identification value 1.387e8 1.387e 8 -5.26e8 -5.26e 8 7.008e8 7.008e 8 -4.023e8 -4.023e 8 9.138e7 9.138e 7 -3.683e6 -3.683e 6

(5)浓差极化内阻R2模型(5) Concentration polarization internal resistance R 2 model

根据不同SOC(3.45%、5%、10%、15%…、95%)处测得的电池浓差极化内阻,可以分别拟合得到的电池的充电浓差极化内阻和放电浓差极化内阻R2,如图9和图17所示。并根据式(14),应用Matlab cftool工具箱可辨识出参数e0-e4,如表5所示。According to the concentration polarization internal resistance of the battery measured at different SOC (3.45%, 5%, 10%, 15%..., 95%), the charging concentration polarization internal resistance and the discharge concentration polarization internal resistance of the battery can be fitted respectively. Differential polarization internal resistance R 2 , as shown in Figure 9 and Figure 17. And according to the formula (14), the parameters e 0 -e 4 can be identified by using the Matlab cftool toolbox, as shown in Table 5.

表5应用Matlab cftool工具箱拟合得到的浓差极化内阻R2参数Table 5 Concentration polarization internal resistance R2 parameters obtained by fitting with Matlab cftool toolbox

参数parameter e0 e 0 e1 e 1 e2 e 2 e3 e 3 e4 e 4 充电辨识值Charging identification value 3.2673.267 -3.265-3.265 3.2713.271 -1.594-1.594 0.39710.3971 放电辨识值Discharge identification value -4.582-4.582 4.5844.584 -4.535-4.535 2.1022.102 -0.4632-0.4632

(6)浓差极化分数阶电容FOE2模型(6) Concentration polarization fractional capacitance FOE 2 model

根据不同SOC(3.45%、5%、10%、15%…、95%)处测得的电池浓差极化分数阶电容,可以分别拟合得到的电池的充电浓差极化分数阶电容和放电浓差极化分数阶电容FOE2,如图10和图18所示。并根据式(12),应用Matlab cftool工具箱可辨识出参数f0-f5,如表6所示。According to the concentration polarization fractional order capacitance of the battery measured at different SOC (3.45%, 5%, 10%, 15%..., 95%), the charging concentration polarization fractional order capacitance and The discharge concentration polarization fractional order capacitor FOE 2 is shown in Fig. 10 and Fig. 18 . And according to the formula (12), the parameters f 0 -f 5 can be identified by using the Matlab cftool toolbox, as shown in Table 6.

表6应用Matlab cftool工具箱拟合得到的浓差极化分数阶电容FOE2参数Table 6 Concentration polarization fractional order capacitor FOE 2 parameters obtained by fitting with Matlab cftool toolbox

参数parameter f0 f 0 f1 f 1 f2 f 2 f3 f 3 f4 f 4 f5 f 5 充电辨识值Charging identification value -1.842e5 -1.842e 5 4.507e5 4.507e 5 -4.116e5 -4.116e 5 1.704e5 1.704e 5 -2.857e4 -2.857e 4 4.572e4 4.572e 4 放电辨识值Discharge identification value -4.529e5 -4.529e 5 1.188e6 1.188e 6 -1.153e6 -1.153e 6 5.072e5 5.072e 5 -9.649e4 -9.649e 4 8.68e4 8.68e 4

(7)电化学极化分数阶电容FOE1阶数模型(7) Electrochemically polarized fractional-order capacitor FOE 1 -order model

根据不同SOC(3.45%、5%、10%、15%…、95%)处测得的电池电化学极化分数阶电容阶数,可以分别拟合得到的电池的充电电化学极化分数阶电容FOE1阶数和放电电化学极化分数阶电容FOE1阶数,如图11和图19所示。并根据式(16),应用Matlab cftool工具箱可辨识出参数g0-g4,如表7所示。According to the battery electrochemical polarization fractional capacitance order measured at different SOC (3.45%, 5%, 10%, 15%..., 95%), the charging electrochemical polarization fractional order of the battery can be fitted separately Capacitance FOE 1 order and discharge electrochemical polarization fractional capacitance FOE 1 order, as shown in Figure 11 and Figure 19. And according to the formula (16), the parameters g 0 -g 4 can be identified by using the Matlab cftool toolbox, as shown in Table 7.

表7应用Matlabcftool工具箱拟合得到的电化学极化分数阶电容FOE1阶数参数Table 7 FOE first -order parameters of electrochemically polarized fractional-order capacitors fitted by Matlabcftool toolbox

参数parameter g0 g 0 g1 g 1 g2 g 2 g3 g 3 g4 g 4 充电辨识值Charging identification value 21.2421.24 -46.26-46.26 33.7433.74 -8.854-8.854 0.98610.9861 放电辨识值Discharge identification value -15.45-15.45 27.5727.57 -14.44-14.44 1.8621.862 0.65950.6595

(8)浓差极化分数阶电容FOE2阶数模型(8) Concentration polarization fractional-order capacitor FOE 2 -order model

为据不同SOC(3.45%、5%、10%、15%…、95%)处测得的电池浓差极化分数阶电容阶数,可以分别拟合得到的电池的充电浓差极化分数阶电容FOE2阶数和放电浓差极化分数阶电容FOE2阶数,如图12和图20所示。并根据式(17),应用Matlabcftool工具箱可辨识出参数h0-h4,如表8所示。According to the battery concentration polarization fractional capacitance order measured at different SOC (3.45%, 5%, 10%, 15%..., 95%), the charging concentration polarization fraction of the battery can be fitted separately The 2nd order of capacitor FOE and the 2nd order of discharge concentration polarization fractional capacitor FOE are shown in Figure 12 and Figure 20. And according to the formula (17), the parameters h 0 -h 4 can be identified by using the Matlabcftool toolbox, as shown in Table 8.

表8应用Matlab cftool工具箱拟合得到的浓差极化分数阶电容FOE2阶数参数Table 8 Concentration polarization fractional order capacitance FOE 2nd order parameters obtained by fitting with Matlab cftool toolbox

参数parameter h0 h 0 h1 h 1 h2 h 2 h3 h 3 h4 h 4 充电辨识值Charging identification value 2.7522.752 -6.434-6.434 5.0855.085 -1.319-1.319 0.49860.4986 放电辨识值Discharge identification value 4.8134.813 -10.91-10.91 8.48.4 -2.468-2.468 0.67790.6779

3.仿真及实验验证3. Simulation and experimental verification

为了验证电池模型的准确性,对电池进行恒流充放电和脉冲充放电实验。如图21-22所示,为在脉冲充、放电下获得的电池端电压实验结果与模型仿真结果的对比。从图中可以看出,本发明提出的分数阶变阶等效电路模型能较好地反应电池的脉冲充放电过程,说明该模型是准确的。其中,在静止阶段产生的误差比在恒流充放电阶段产生的误差要大一些。In order to verify the accuracy of the battery model, constant current charge and discharge and pulse charge and discharge experiments were carried out on the battery. As shown in Figure 21-22, it is the comparison between the experimental results of the battery terminal voltage obtained under pulse charging and discharging and the simulation results of the model. It can be seen from the figure that the fractional-order variable-order equivalent circuit model proposed by the present invention can better reflect the pulse charging and discharging process of the battery, indicating that the model is accurate. Among them, the error generated in the static stage is larger than the error generated in the constant current charge and discharge stage.

如图23-24所示,为在恒流充、放电下获得的电池端电压实验结果与模型仿真结果的对比。从图中可以看出,在充、放电的初期和末期,模型误差较大;而在充、放电的中期,模型输出值与实验值几乎重合。这与锂电池的两端陡中间平的非线性电压特性完全吻合。As shown in Figure 23-24, it is the comparison between the experimental results of the battery terminal voltage obtained under constant current charging and discharging and the simulation results of the model. It can be seen from the figure that the model error is relatively large in the initial and final stages of charging and discharging; while in the middle stage of charging and discharging, the output value of the model almost coincides with the experimental value. This is completely consistent with the nonlinear voltage characteristics of the lithium battery, which is steep at both ends and flat in the middle.

综上所述,本发明公开的变阶分数阶等效电路模型所得到的仿真结果基本符合实验数据,模型最大误差在0.05V以内,并且适用于电动汽车的脉冲充放电和恒流充放电等工况。证明了变阶分数阶模型的有效性。In summary, the simulation results obtained by the variable-order fractional-order equivalent circuit model disclosed in the present invention basically conform to the experimental data, the maximum error of the model is within 0.05V, and it is suitable for pulse charging and discharging and constant current charging and discharging of electric vehicles, etc. working conditions. The effectiveness of the variable-order fractional-order model is proved.

上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Although the specific implementation of the present invention has been described above in conjunction with the accompanying drawings, it does not limit the protection scope of the present invention. Those skilled in the art should understand that on the basis of the technical solution of the present invention, those skilled in the art do not need to pay creative work Various modifications or variations that can be made are still within the protection scope of the present invention.

Claims (10)

1.一种锂电池分数阶变阶等效电路模型,其特征是,包括运行时间电路及电池I-V特性电路,所述运行时间电路及电池I-V特性电路通过电流控制电流源及电压控制电压源进行信号传输;所述运行时间电路包括电池的自放电电阻Rd及电容CQ,电阻Rd与电容CQ并联在电流控制电流源的两端,电流控制电流源的一端接地;所述电池I-V特性电路的电压控制电压源的正极端与两个相并联的RC网络支路的一端相连,负极端与电池模型的负极端相连,所述两个相并联的RC网络支路的每一个支路均包括两个相串联的分数阶RC回路和一个内阻Ro,所述两个相并联的RC网络支路的另一端与电池模型的正极端相连。1. A lithium battery fractional-order variable-order equivalent circuit model is characterized in that it comprises a running time circuit and a battery IV characteristic circuit, and the described running time circuit and the battery IV characteristic circuit are carried out by a current control current source and a voltage control voltage source Signal transmission; the running time circuit includes battery self-discharging resistor R d and capacitor C Q , resistor R d and capacitor C Q are connected in parallel at both ends of the current control current source, and one end of the current control current source is grounded; the battery IV The positive end of the voltage control voltage source of the characteristic circuit is connected to one end of two parallel RC network branches, the negative end is connected to the negative end of the battery model, and each branch of the two parallel RC network branches Each includes two series-connected fractional-order RC loops and an internal resistance R o , and the other ends of the two parallel-connected RC network branches are connected to the positive terminal of the battery model. 2.如权利要求1所述的一种锂电池分数阶变阶等效电路模型,其特征是,两个相并联的RC网络支路分别是RC网络放电支路和RC网络充电支路,两个RC网络支路中的电容均为分数阶电容。2. a kind of lithium battery fractional-order variable-order equivalent circuit model as claimed in claim 1, is characterized in that, two RC network branches connected in parallel are respectively RC network discharge branch and RC network charging branch, two The capacitors in each RC network branch are fractional order capacitors. 3.如权利要求2所述的一种锂电池分数阶变阶等效电路模型,其特征是,所述RC网络放电支路分数阶元件FOE1d和FOE2d的阶数α,β随电池SOC状态不同而变化,且满足0≤αd,βd≤1,当αd,βd=0时,分数阶元件FOE等效为一电阻,当αd,βd=1时,分数阶元件FOE等效为一整数阶电容;当0<αd,βd<1时,分数阶元件FOE为一分数阶电容;3. a kind of lithium battery fractional-order variable-order equivalent circuit model as claimed in claim 2, is characterized in that, the order α of described RC network discharge branch fractional-order element FOE 1d and FOE 2d , β changes with battery SOC It varies with different states and satisfies 0≤α d , β d ≤1. When α d , β d =0, the fractional-order element FOE is equivalent to a resistance. When α d , β d =1, the fractional-order element FOE is equivalent to an integer-order capacitance; when 0<α d , β d <1, the fractional-order element FOE is a fractional-order capacitance; 所述RC网络充电支路分数阶元件FOE1c和FOE2c的阶数α,β随电池SOC状态不同而变化,且满足0≤αc,βc≤1,当αc,βc=0时,分数阶元件FOE等效为一电阻,当αc,βc=1时,分数阶元件FOE等效为一整数阶电容;当0<αc,βc<1时,分数阶元件FOE为一分数阶电容。The order α and β of the fractional-order elements FOE 1c and FOE 2c in the charging branch of the RC network vary with the state of the battery SOC, and satisfy 0≤α c , β c ≤1, when α c , β c =0 , the fractional-order element FOE is equivalent to a resistor, when α c , β c =1, the fractional-order element FOE is equivalent to an integer-order capacitance; when 0<α c , β c <1, the fractional-order element FOE is A fractional capacitance. 4.如权利要求1所述的一种锂电池分数阶变阶等效电路模型,其特征是,所述电池I-V特性电路中两个相并联的RC网络支路中,放电支路包括依次串联的二极管Dd、分数阶电容FOE1d与电阻R1d组成的分数阶RC回路、分数阶电容FOE2d与电阻R2d组成的分数阶RC回路及电阻Rod4. A kind of lithium battery fractional-order variable-order equivalent circuit model as claimed in claim 1, is characterized in that, in the two RC network branches that are connected in parallel in the IV characteristic circuit of the battery, the discharge branch includes successively series-connected Diode D d , fractional order RC circuit composed of fractional order capacitance FOE 1d and resistance R 1d , fractional order RC circuit composed of fractional order capacitance FOE 2d and resistance R 2d , and resistance R od ; 充电支路包括依次串联的反接二极管Dc、分数阶电容FOE1c与电阻R1c组成的分数阶RC回路、分数阶电容FOE2c与电阻R2c组成的分数阶RC回路及电阻RocThe charging branch includes a series-connected reverse diode D c , a fractional RC loop composed of a fractional capacitor FOE 1c and a resistor R 1c , a fractional RC loop composed of a fractional capacitor FOE 2c and a resistor R 2c , and a resistor R oc . 5.如权利要求1所述的一种锂电池分数阶变阶等效电路模型,其特征是,所述运行时间电路和电池I-V特性电路通过一个电流控制电流源及电压控制电压源建立联系,当对电池进行充放电时,负载电流ibat通过电流控制电流源对电容CQ进行充放电,改变CQ存储的电量,表征电池SOC的变化,CQ两端电压OCV也随之变化,I-V特性电路的受控电压源OCV随SOC的变化而变化。5. a kind of lithium battery fractional-order variable-order equivalent circuit model as claimed in claim 1, is characterized in that, described run-time circuit and battery IV characteristic circuit establish connection by a current control current source and voltage control voltage source, When charging and discharging the battery, the load current i bat charges and discharges the capacitor C Q through the current control current source, changes the power stored in C Q , and represents the change of battery SOC, and the voltage OCV at both ends of C Q also changes accordingly, IV The controlled voltage source OCV of the characteristic circuit changes with the change of SOC. 6.如权利要求1所述的一种锂电池分数阶变阶等效电路模型,其特征是,所述电流控制电流源的两端的电压为电池开路电压OCV。6 . The fractional-order variable-order equivalent circuit model of a lithium battery as claimed in claim 1 , wherein the voltage at both ends of the current-controlled current source is the battery open-circuit voltage OCV. 6 . 7.如权利要求1至6任一所述的一种锂电池分数阶变阶等效电路模型的辨识方法,其特征是,包括以下步骤:7. The identification method of a fractional-order variable-order equivalent circuit model of a lithium battery as claimed in any one of claims 1 to 6, characterized in that it comprises the following steps: 步骤一:写出锂电池的放电过程和静置状态的分数阶数学模型表达式;Step 1: Write the expression of the fractional-order mathematical model of the discharge process and static state of the lithium battery; 步骤二:对锂电池进行恒流充放电,得到电池模型的可用容量CQ和自放电电阻RdStep 2: Perform constant current charge and discharge on the lithium battery to obtain the available capacity C Q and self-discharge resistance R d of the battery model; 步骤三:对锂电池进行脉冲放电测试,获取不同SOC处电池开始放电时的电池端电压的瞬间下降值、放电结束后电池端电压的瞬间跃升值、放电电流以及电池端电压的零输入响应等数据;Step 3: Perform a pulse discharge test on the lithium battery to obtain the instantaneous drop of the battery terminal voltage at different SOCs when the battery starts to discharge, the instantaneous jump value of the battery terminal voltage after the discharge, the discharge current, and the zero input response of the battery terminal voltage, etc. data; 步骤四:根据步骤三获得的数据,基于最小二乘法辨识模型的参数和阶数;Step 4: Based on the data obtained in Step 3, identify the parameters and order of the model based on the least square method; 步骤五:根据步骤四计算得到的电池模型参数计算不同SOC处的开路电压OCV、欧姆内阻R0d、电化学极化内阻R1d、电化学极化分数阶电容FOE1d、浓差极化内阻R2d和浓差极化分数阶电容FOE2dStep 5: Calculate the open circuit voltage OCV, ohmic internal resistance R 0d , electrochemical polarization internal resistance R 1d , electrochemical polarization fractional order capacitance FOE 1d , and concentration polarization at different SOCs based on the battery model parameters calculated in step 4 Internal resistance R 2d and concentration polarization fractional order capacitance FOE 2d ; 步骤六:根据步骤五得到的模型参数,基于最小二乘法辨识开路电压OCV、欧姆内阻R0d、电化学极化内阻R1d、电化学极化分数阶电容FOE1d、浓差极化内阻R2d和浓差极化分数阶电容FOE2d与SOC间的关系;Step 6: Based on the model parameters obtained in step 5, identify the open circuit voltage OCV, ohmic internal resistance R 0d , electrochemical polarization internal resistance R 1d , electrochemical polarization fractional order capacitance FOE 1d , and concentration polarization internal resistance based on the least squares method. The relationship between resistance R 2d and concentration polarization fractional capacitance FOE 2d and SOC; 步骤七:根据步骤二至六获得的参数,搭建锂电池分数阶变阶等效电路模型。Step 7: According to the parameters obtained in steps 2 to 6, build a fractional-order variable-order equivalent circuit model of the lithium battery. 8.如权利要求7所述的一种锂电池分数阶变阶等效电路模型的辨识方法,其特征是,放电过程中锂电池的端电压可表示为:8. The identification method of a fractional-order variable-order equivalent circuit model of a lithium battery as claimed in claim 7, wherein the terminal voltage of the lithium battery during discharge can be expressed as: Uu batbat == OCVOCV dd -- ii disdis &CenterDot;&Center Dot; RR 00 dd -- Uu 11 dd (( 00 ++ )) &CenterDot;&Center Dot; (( 11 -- ee -- tt aa // &tau;&tau; 11 dd )) -- Uu 22 dd (( 00 ++ )) &CenterDot;&Center Dot; (( 11 -- ee -- tt &beta;&beta; // &tau;&tau; 22 dd )) -- -- -- (( 11 )) 式中,Ubat为电池端电压;R0d为欧姆内阻;OCVd为放电开路电压;α,β为分数阶元件FOE1d和FOE2d的阶数,满足0<α,β≤1;idis为放电电流;τ1d2d分别为两个RC网络的时间常数;U1d(0+)和U2d(0+)为电池放电结束瞬间两个分数阶RC支路的端电压初值。In the formula, U bat is the battery terminal voltage; R 0d is the ohmic internal resistance; OCV d is the discharge open circuit voltage; α, β are the orders of fractional order elements FOE 1d and FOE 2d , satisfying 0<α, β≤1; i dis is the discharge current; τ 1d and τ 2d are the time constants of the two RC networks; U 1d (0+) and U 2d (0+) are the initial terminal voltages of the two fractional RC branches at the end of the battery discharge . 9.如权利要求8所述的一种锂电池分数阶变阶等效电路模型的辨识方法,其特征是,U1d(0+)和U2d(0+)其值可表述为:9. The identification method of a fractional-order variable-order equivalent circuit model of a lithium battery as claimed in claim 8, wherein the values of U 1d (0+) and U 2d (0+) can be expressed as: U1d(0+)=idis·R1d  (2)U 1d (0+)=i dis R 1d (2) U2d(0+)=idis·R2d  (3)U 2d (0+)=i dis R 2d (3) 电池放电结束后,电池的端电压可表示为:After the battery is discharged, the terminal voltage of the battery can be expressed as: Uu batbat == OCVOCV dd -- Uu 11 dd (( 00 ++ )) &CenterDot;&Center Dot; ee -- tt aa // &tau;&tau; 11 dd -- Uu 22 dd (( 00 ++ )) &CenterDot;&Center Dot; ee -- tt bb // &tau;&tau; 22 dd -- -- -- (( 44 )) 式中,电池的极化电压随着时间的增长而逐渐减小,当t→∞时,趋于0,此时电池端电压Ubat等于电池的开路电压OCV。In the formula, the polarization voltage of the battery and It gradually decreases with the increase of time, when t→∞, and Tends to 0, at this time the battery terminal voltage Ubat is equal to the open circuit voltage OCV of the battery. 10.如权利要求9所述的一种锂电池分数阶变阶等效电路模型的辨识方法,其特征是,所述步骤五的具体过程为:由于电池欧姆内阻的存在,当电池放电时,电池端电压会瞬间跌落,其值记为ΔU1;当电池停止放电时,电池端电压会瞬间跃升,其值记为ΔU2,因此,电池的欧姆内阻R0可由下式得到:10. A method for identifying a fractional-order variable-order equivalent circuit model of a lithium battery as claimed in claim 9, wherein the specific process of step five is: due to the existence of the ohmic internal resistance of the battery, when the battery is discharged , the battery terminal voltage will drop instantaneously, and its value is recorded as ΔU 1 ; when the battery stops discharging, the battery terminal voltage will instantly jump, and its value is recorded as ΔU 2 , therefore, the ohmic internal resistance R 0 of the battery can be obtained by the following formula: RR 00 == &Delta;U&Delta; U 11 ++ &Delta;U&Delta; U 22 22 ii batbat -- -- -- (( 55 )) 电化学极化内阻R1d可由下式得到:The electrochemical polarization internal resistance R 1d can be obtained by the following formula: RR 11 dd == Uu 11 dd (( 00 ++ )) ii disdis -- -- -- (( 66 )) 浓差极化内阻R2d可由下式得到:Concentration polarization internal resistance R 2d can be obtained by the following formula: RR 22 dd == Uu 22 dd (( 00 ++ )) ii disdis -- -- -- (( 77 )) 电化学极化分数阶电容FOE1d可由下式得到:The electrochemical polarization fractional order capacitance FOE 1d can be obtained by the following formula: FOEFOE 11 dd == &tau;&tau; 11 dd RR 11 dd -- -- -- (( 88 )) 浓差极化分数阶电容FOE2d可由下式得到:Concentration polarization fractional capacitance FOE 2d can be obtained by the following formula: FOEFOE 22 dd == &tau;&tau; 22 dd RR 22 dd -- -- -- (( 99 )) ..
CN201410797302.6A 2014-12-19 2014-12-19 A kind of lithium battery fractional order becomes rank equivalent-circuit model and its discrimination method Active CN104392080B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410797302.6A CN104392080B (en) 2014-12-19 2014-12-19 A kind of lithium battery fractional order becomes rank equivalent-circuit model and its discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410797302.6A CN104392080B (en) 2014-12-19 2014-12-19 A kind of lithium battery fractional order becomes rank equivalent-circuit model and its discrimination method

Publications (2)

Publication Number Publication Date
CN104392080A true CN104392080A (en) 2015-03-04
CN104392080B CN104392080B (en) 2017-07-11

Family

ID=52609983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410797302.6A Active CN104392080B (en) 2014-12-19 2014-12-19 A kind of lithium battery fractional order becomes rank equivalent-circuit model and its discrimination method

Country Status (1)

Country Link
CN (1) CN104392080B (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104809270A (en) * 2015-03-19 2015-07-29 南京理工大学 Design method for square ring array electromagnetic absorber integrating equivalent circuit with genetic algorithm
CN104965179A (en) * 2015-07-06 2015-10-07 首都师范大学 Lithium ion storage battery temperature combinational circuit model and parameter identification method thereof
CN105929338A (en) * 2016-05-30 2016-09-07 北京大学深圳研究生院 Method for measuring states of battery and application of method
CN106067792A (en) * 2016-07-04 2016-11-02 华南理工大学 High-power fractional order electric capacity and the control method thereof that a kind of exponent number is more than 1
CN106354962A (en) * 2016-08-02 2017-01-25 电子科技大学 Lithium-iron-phosphate-battery fractional-order equivalent circuit model establishing method based on frequency demultiplication representation
CN106503394A (en) * 2016-11-16 2017-03-15 华南理工大学 A kind of method of the fractional order circuit model for setting up tantalum electric capacity
CN106855612A (en) * 2017-02-21 2017-06-16 山东大学 The fractional order KiBaM battery models and parameter identification method of meter and non-linear capacity characteristic
CN106872901A (en) * 2017-02-21 2017-06-20 山东大学 KiBaM fractional orders equivalent circuit comprehensive characteristics battery model and parameter identification method
CN106896327A (en) * 2017-03-10 2017-06-27 山东大学 Fractional order KiBaM equivalent circuit comprehensive characteristics battery models and its parameter identification method
CN107122511A (en) * 2016-03-11 2017-09-01 中国石油大学(北京) A kind of super capacitor fractional model parameter identification method
CN107144793A (en) * 2017-05-03 2017-09-08 山东大学 The fractional order KiBaM model parameter identification methods and system of a kind of electrokinetic cell
CN107526881A (en) * 2017-08-10 2017-12-29 浙江大学城市学院 A kind of electrode of lithium cell impedance modeling method derived based on continuity
CN109271742A (en) * 2018-10-29 2019-01-25 成都师范学院 Magnetron memory
CN109299572A (en) * 2018-10-29 2019-02-01 成都师范学院 load control memory
CN109492283A (en) * 2018-10-29 2019-03-19 成都师范学院 Electric current fractional order integration control formula recalls rank member
CN110412471A (en) * 2019-08-08 2019-11-05 西南科技大学 A method for constructing a composite electrochemical polarization model of a lithium-ion battery pack
CN110716146A (en) * 2019-09-30 2020-01-21 精进电动科技股份有限公司 Estimation method of power battery open circuit voltage
CN111626013A (en) * 2020-04-27 2020-09-04 南京航空航天大学 Unscented Kalman SOC estimation method for battery of hybrid power system
CN111722119A (en) * 2020-06-24 2020-09-29 山东大学 An identification method for multi-characteristic fusion model of fractional-order equivalent circuit of power battery
CN111751731A (en) * 2020-07-19 2020-10-09 东北石油大学 Method and device for determining battery activity, electronic device and storage medium
CN112305440A (en) * 2020-09-27 2021-02-02 精进电动科技股份有限公司 Battery remaining capacity and health state joint estimation method
CN112487748A (en) * 2020-10-14 2021-03-12 中车长春轨道客车股份有限公司 Lithium ion battery fractional order model establishment method considering time-frequency domain characteristics
CN113900032A (en) * 2021-09-30 2022-01-07 上海芯飏科技有限公司 Method and system for correcting depth of discharge using transient response
CN114879053A (en) * 2022-06-16 2022-08-09 珠海科创电力电子有限公司 Method for predicting service life of energy storage lithium iron phosphate battery
CN115219911A (en) * 2022-07-22 2022-10-21 河北工业大学 A SOC-SOH joint estimation method based on lithium battery model and fractional order theory
CN113138344B (en) * 2021-04-23 2024-03-05 安徽理工大学 SOC estimation method based on fractional order extended Kalman filtering algorithm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701464A (en) * 2013-12-13 2014-04-02 华北电力大学(保定) Fractional order element converter
CN103915909A (en) * 2014-03-31 2014-07-09 华南理工大学 Wireless power transmission system with integral-order parts and fractional-order parts realizing series-parallel resonance
CN103926538A (en) * 2014-05-05 2014-07-16 山东大学 Variable tap-length RC equivalent circuit model and realization method based on AIC
CN204314878U (en) * 2014-12-19 2015-05-06 山东大学 A kind of lithium battery fractional order becomes rank equivalent-circuit model

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701464A (en) * 2013-12-13 2014-04-02 华北电力大学(保定) Fractional order element converter
CN103915909A (en) * 2014-03-31 2014-07-09 华南理工大学 Wireless power transmission system with integral-order parts and fractional-order parts realizing series-parallel resonance
CN103926538A (en) * 2014-05-05 2014-07-16 山东大学 Variable tap-length RC equivalent circuit model and realization method based on AIC
CN204314878U (en) * 2014-12-19 2015-05-06 山东大学 A kind of lithium battery fractional order becomes rank equivalent-circuit model

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴红杰 等: "基于分数阶理论的锂离子电池动态模型及其参数辨识方法", 《新型工业化》 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104809270A (en) * 2015-03-19 2015-07-29 南京理工大学 Design method for square ring array electromagnetic absorber integrating equivalent circuit with genetic algorithm
CN104809270B (en) * 2015-03-19 2018-04-27 南京理工大学 Merge the square ring array electro-magnetic abortion film design method of equivalent circuit and genetic algorithm
CN104965179A (en) * 2015-07-06 2015-10-07 首都师范大学 Lithium ion storage battery temperature combinational circuit model and parameter identification method thereof
CN104965179B (en) * 2015-07-06 2018-07-13 首都师范大学 A kind of the temperature combinational circuit model and its parameter identification method of lithium-ions battery
CN107122511B (en) * 2016-03-11 2020-08-04 中国石油大学(北京) A method for parameter identification of fractional-order model of supercapacitor
CN107122511A (en) * 2016-03-11 2017-09-01 中国石油大学(北京) A kind of super capacitor fractional model parameter identification method
CN105929338A (en) * 2016-05-30 2016-09-07 北京大学深圳研究生院 Method for measuring states of battery and application of method
CN105929338B (en) * 2016-05-30 2018-12-25 北京大学深圳研究生院 A kind of method and its application measuring battery status
CN106067792A (en) * 2016-07-04 2016-11-02 华南理工大学 High-power fractional order electric capacity and the control method thereof that a kind of exponent number is more than 1
CN106067792B (en) * 2016-07-04 2023-05-23 华南理工大学 High-power fractional order capacitor with order larger than 1 and control method thereof
CN106354962A (en) * 2016-08-02 2017-01-25 电子科技大学 Lithium-iron-phosphate-battery fractional-order equivalent circuit model establishing method based on frequency demultiplication representation
CN106503394A (en) * 2016-11-16 2017-03-15 华南理工大学 A kind of method of the fractional order circuit model for setting up tantalum electric capacity
CN106503394B (en) * 2016-11-16 2019-05-14 华南理工大学 A method of establishing the fractional order circuit model of tantalum capacitor
WO2018153116A1 (en) * 2017-02-21 2018-08-30 山东大学 Fractional-order kibam battery model factoring in nonlinear capacity characteristics and parameter recognition method
CN106872901A (en) * 2017-02-21 2017-06-20 山东大学 KiBaM fractional orders equivalent circuit comprehensive characteristics battery model and parameter identification method
CN106855612A (en) * 2017-02-21 2017-06-16 山东大学 The fractional order KiBaM battery models and parameter identification method of meter and non-linear capacity characteristic
US11526639B2 (en) 2017-02-21 2022-12-13 Shandong University Fractional-order KiBaM battery model considering nonlinear capacity characteristics and parameter identification method
CN106872901B (en) * 2017-02-21 2019-09-24 山东大学 KiBaM- fractional order equivalent circuit comprehensive characteristics battery model and parameter identification method
CN106855612B (en) * 2017-02-21 2019-09-24 山东大学 The fractional order KiBaM battery model and parameter identification method of meter and non-linear capacity characteristic
CN106896327A (en) * 2017-03-10 2017-06-27 山东大学 Fractional order KiBaM equivalent circuit comprehensive characteristics battery models and its parameter identification method
CN106896327B (en) * 2017-03-10 2019-04-16 山东大学 Fractional order KiBaM- equivalent circuit comprehensive characteristics battery model and its parameter identification method
CN107144793A (en) * 2017-05-03 2017-09-08 山东大学 The fractional order KiBaM model parameter identification methods and system of a kind of electrokinetic cell
CN107144793B (en) * 2017-05-03 2019-05-21 山东大学 A kind of the fractional order KiBaM model parameter identification method and system of power battery
CN107526881A (en) * 2017-08-10 2017-12-29 浙江大学城市学院 A kind of electrode of lithium cell impedance modeling method derived based on continuity
CN109299572B (en) * 2018-10-29 2022-11-08 成都师范学院 Charge-controlled memory order
CN109492283A (en) * 2018-10-29 2019-03-19 成都师范学院 Electric current fractional order integration control formula recalls rank member
CN109271742A (en) * 2018-10-29 2019-01-25 成都师范学院 Magnetron memory
CN109299572A (en) * 2018-10-29 2019-02-01 成都师范学院 load control memory
CN110412471A (en) * 2019-08-08 2019-11-05 西南科技大学 A method for constructing a composite electrochemical polarization model of a lithium-ion battery pack
CN110412471B (en) * 2019-08-08 2021-03-12 西南科技大学 Construction method of composite electrochemical polarization model of lithium ion battery pack
CN110716146A (en) * 2019-09-30 2020-01-21 精进电动科技股份有限公司 Estimation method of power battery open circuit voltage
CN111626013A (en) * 2020-04-27 2020-09-04 南京航空航天大学 Unscented Kalman SOC estimation method for battery of hybrid power system
CN111722119A (en) * 2020-06-24 2020-09-29 山东大学 An identification method for multi-characteristic fusion model of fractional-order equivalent circuit of power battery
CN111722119B (en) * 2020-06-24 2021-11-02 山东大学 An identification method for multi-characteristic fusion model of fractional-order equivalent circuit of power battery
CN111751731A (en) * 2020-07-19 2020-10-09 东北石油大学 Method and device for determining battery activity, electronic device and storage medium
CN112305440A (en) * 2020-09-27 2021-02-02 精进电动科技股份有限公司 Battery remaining capacity and health state joint estimation method
CN112305440B (en) * 2020-09-27 2024-05-14 精进电动科技股份有限公司 Combined estimation method for residual electric quantity and health state of battery
CN112487748A (en) * 2020-10-14 2021-03-12 中车长春轨道客车股份有限公司 Lithium ion battery fractional order model establishment method considering time-frequency domain characteristics
CN113138344B (en) * 2021-04-23 2024-03-05 安徽理工大学 SOC estimation method based on fractional order extended Kalman filtering algorithm
CN113900032A (en) * 2021-09-30 2022-01-07 上海芯飏科技有限公司 Method and system for correcting depth of discharge using transient response
CN113900032B (en) * 2021-09-30 2024-11-29 上海芯跳科技有限公司 Method and system for correcting depth of discharge by utilizing transient response
CN114879053A (en) * 2022-06-16 2022-08-09 珠海科创电力电子有限公司 Method for predicting service life of energy storage lithium iron phosphate battery
CN115219911A (en) * 2022-07-22 2022-10-21 河北工业大学 A SOC-SOH joint estimation method based on lithium battery model and fractional order theory
CN115219911B (en) * 2022-07-22 2025-03-25 河北工业大学 A SOC-SOH joint estimation method based on lithium battery model and fractional order theory

Also Published As

Publication number Publication date
CN104392080B (en) 2017-07-11

Similar Documents

Publication Publication Date Title
CN104392080B (en) A kind of lithium battery fractional order becomes rank equivalent-circuit model and its discrimination method
CN103926538B (en) Change exponent number RC equivalent-circuit model based on AIC criterion and implementation method
Yao et al. Modeling of lithium-ion battery using MATLAB/simulink
CN103529399B (en) Simulation method of lead acid battery-based improved PNGV model
Cittanti et al. Modeling Li-ion batteries for automotive application: A trade-off between accuracy and complexity
CN103197251B (en) A kind of discrimination method of dynamic lithium battery Order RC equivalent model
CN104965179B (en) A kind of the temperature combinational circuit model and its parameter identification method of lithium-ions battery
El Ghossein et al. Survey on electrical modeling methods applied on different battery types
Wehbe et al. Battery equivalent circuits and brief summary of components value determination of lithium ion: A review
CN106443467A (en) Lithium ion battery charging electric quantity modeling method based on charging process and application thereof
Li et al. A new parameter estimation algorithm for an electrical analogue battery model
CN106896327A (en) Fractional order KiBaM equivalent circuit comprehensive characteristics battery models and its parameter identification method
Yao et al. Modeling of Lithium Ion battery with nonlinear transfer resistance
CN105866700A (en) Lithium ion battery quick screening method
CN103217651A (en) Method and system for estimating charge state of storage battery
CN106872901B (en) KiBaM- fractional order equivalent circuit comprehensive characteristics battery model and parameter identification method
CN105116338A (en) Parallel type battery system modeling method based on SOC compensator
CN203825171U (en) Variable order RC equivalent circuit model based on AIC criterion
CN110646741A (en) A kind of parameter acquisition method of lithium-ion battery equivalent circuit model
Arumugam et al. Comparative analysis and validation of basic battery models for electric vehicles applications
CN111722119B (en) An identification method for multi-characteristic fusion model of fractional-order equivalent circuit of power battery
CN204314878U (en) A kind of lithium battery fractional order becomes rank equivalent-circuit model
Huang et al. State of charge estimation of lithium-ion battery based on second-order extended Kalman filter
Koirala et al. Comparison of two battery equivalent circuit models for state of charge estimation in electric vehicles
Li et al. Evaluation and analysis of circuit model for lithium batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant